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• EU raw material policies for enhanced
monitoring of technology critical ele-
ments are discussed.

• Methodologies to define “technology
critical elements (TCEs)” are described.

• Interconnections of anthropogenic and
natural elemental cycles are highlight-
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• EU-28 anthropogenic element fluxes for
TCEs are compared to global natural
fluxes.
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The characterization of elemental cycles has a rich history in biogeochemistry.Well known examples include the
global carbon cycle, or the cycles of the ‘grand nutrients’ nitrogen, phosphorus, and sulfur. More recently, efforts
have increased to better understand the natural cycling of technology critical elements (TCEs), i.e. elements with
a high supply risk and economic importance in the EU. On the other hand, tools such as material-flow analysis
(MFA) can help to understand how substances and goods are transported and accumulated in man-made tech-
nological systems (‘anthroposphere’). However, to date both biogeochemical cycles andMFA studies suffer from
narrow system boundaries, failing to fully illustrate relative anthropogenic and natural flow magnitude and the
degree to which human activity has perturbed the natural cycling of elements. We discuss important intercon-
nections between natural and anthropogenic cycles and relevant EU rawmaterial dossiers. Increased integration
of both cycles could help to better capture the transport and fate of elements in nature including their environ-
mental/human health impacts, highlight potential future material stocks in the anthroposphere (in-use stocks)
and in nature (e.g., in soils, tailings, or mining wastes), and estimate anticipated emissions of TCEs to nature in
the future (based on dynamic stock modeling). A preliminary assessment of natural versus anthropogenic ele-
ment fluxes indicates that anthropogenic fluxes induced by the EU-28 of palladium, platinum, and antimony
(as a result of materials uses) might be greater than the respective global natural fluxes. Increased combination
of MFA and natural cycle data at EU level could help to derive more complete material cycles and initiate a dis-
cussion between the research communities of biogeochemists andmaterial flow analysts tomore holistically ad-
dress the issues of sustainable resource management.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Global population growth, wealthier lifestyles, technological change,
and government policies have altered raw materials supply and de-
mand patterns since the early twentieth century (Krausmann et al.,
2009; Vidal-Legaz et al., 2016). In particular, the use of multiple mate-
rials in single applications to increase product functionality and the
push towards low carbon technologies and resource efficiency have in-
creased the demand formany of the technology critical elements (TCEs)
that did not find widespread use just a few years ago (Greenfield and
Graedel, 2013). Global trade networks of goods, in which materials
move along the value chain of mining, processing, manufacture, use,
disposal, collection, and waste management, have increased in com-
plexity in recent years as multiple countries are involved in the life-cy-
cles of products (De Benedictis and Tajoli, 2011; Fagiolo et al., 2009;
Nemeth and Smith, 1985). Furthermore, future economic development
and economic growth are expected to take place in areas such as renew-
able energy technologies, infrastructure for fuel efficient and clean ener-
gy vehicles, and low carbon public transportation (UNEP, 2011a), all of
which heavily rely on metals (UNEP, 2013).

Against this context, the European Commission (EC) has launched a
number of rawmaterials policies, of which two cornerstones are the EU
Raw Materials Initiative (RMI) (EC, 2008) and the Circular Economy
(CE) Action Plan (EC, 2015). The RMI aims at securing a sustainable sup-
ply of raw materials for Europe and was launched in 2008, and consol-
idated in 2011. It focuses on non-energy and non-agricultural
materials and connects to EU external and internal policies, e.g., related
to raw materials trade (EC, 2014a) and EU structural and investment
funds (EC, 2014b). The RMI is an integrated strategy consisting of 3 pil-
lars, which target sustainable supply of rawmaterials from outside and
inside Europe, and aims to boost resource efficiency and recycling (Fig.
1). The initiative introduced and updated the list of critical raw mate-
rials (CRMs) for the EU in 2011, 2014, and 2017 (forthcoming) which
identify materials characterized by a high supply risk and a high eco-
nomic importance for Europe (Blengini et al., 2017c; EC, 2010, 2014c).

More recently, the CE action plan aims to stimulate Europe's transi-
tion towards a more circular economy (EC, 2015). Circular economy is
defined as a state in which “the value of products, materials, and re-
sources is maintained in the economy for as long as possible, and the
generation of waste is minimized” (EC, 2015). The CE action plan is cur-
rently being implemented. In 2017, the Commission plans to present a
Fig. 1. The three pillars of the EU Raw Materials Initiative (RMI).
strategy for plastics, report on CRMs in the circular economy, an assess-
ment of options for the improved interface between chemicals, prod-
ucts and waste legislation, a legislative proposal on water reuse, and a
monitoring framework on circular economy (EC, 2017).

EU policies such as the RMI and CE action plan rely on information
and data on material flows and stocks within the EU economy and
their level of circularity within Europe (anthropogenic cycles of the ele-
ments) (EC, 2012). Material flow analysis (MFA) approaches (Brunner
and Rechberger, 2004, 2016;Müller et al., 2014) have been usedwidely
over the past decade to characterize the anthropogenic life cycles of
both substances and goods (Chen and Graedel, 2012). MFA aims at ex-
amining the anthropogenic stocks and flows of materials at each stage
of their life cycle in order to gain a more complete understanding of
their status above ground. Material flows and stocks can be illustrated
using Sankeydiagrams (Schmidt, 2008) if the number of transformation
processes is small, or network visualizations (Nuss et al., 2016) for
datasets involving a larger number of transformations steps andmateri-
al flows between them. Understanding the whole system of material
flows can help to quantify potential primary and secondary source
strengths, managemetal usemore wisely, and protect the environment
(Brunner and Rechberger, 2004, 2016). The EC has recently published
MFAs for the EU-28 (28 member states which comprise the European
Union (EU)) for 28 materials (referred to as Material System Analysis
(MSA) studies in the report by (BIO by Deloitte, 2015)) and a EU MFA
data platform is currently in development in the Raw Materials Infor-
mation System hosted at the EC Joint Research Centre (Manfredi et al.,
2017).

The anthropogenic cycles of elements are embedded into their larger
natural biogeochemical cycles (natural cycles of the elements)
(Schlesinger, 2005) which describe, e.g., the exchanges of the
anthroposphere (often also referred to as the “technosphere”) with
the environment and subsequent transport, fate, and accumulation of
elements in nature. Natural cycles include natural element flows, e.g.,
due to riverineflux to oceans, eolian dust, seaspray, net primary produc-
tivity (NPP), extraterrestrial matter, volcanoes, and soil erosion (Sen
and Peucker-Ehrenbrink, 2012). The characterization of elemental cy-
cles has a rich history in biogeochemistry. Famous examples include
the global carbon cycle, or the cycles of the ‘grand nutrients’ nitrogen,
phosphorus, and sulfur. Knowledge of natural cycles has evolved over
manydecades as new sinks and sources have been discovered andmiss-
ing flows between reservoirs have been quantified. For example, the
current COST action TD1407 “Network on technology-critical elements
(TCEs): From Environmental Processes to Human Health Threats” funded
under the EU Framework ProgrammeHorizon 2020 attempts to expand
the knowledge-base on the natural cycling of technology-critical ele-
ments (TCEs) (i.e., platinum group elements (PGEs), rare earth ele-
ments (REEs), Nb, Ta, Ga, Ge, In, Tl, Te) (Cobelo-García et al., 2015). It
also aims to create a network of scientists working and interested on
TCEs with the aim of defining the current state of knowledge and
gaps, proposing priority research lines/activities, and acting as a plat-
form for new collaborations and joint research projects.

However, to date both biogeochemical cycles andMFA studies suffer
from narrow system boundaries, failing to fully illustrate the
interlinkages between natural and anthropogenic cycles, relative an-
thropogenic and natural flow magnitude (Rauch and Graedel, 2007;
Rauch and Pacyna, 2009; White and Hemond, 2012), and the degree
to which human activity has perturbed the natural cycling of elements
(Klee and Graedel, 2004; Rauch and Pacyna, 2009; Sen and
Peucker-Ehrenbrink, 2012). For example, while MFA studies indicate
the amounts of an element released from the anthroposphere into the
environment (flows crossing the system boundary), the subsequent
transport and fate, and possible accumulation in the environment are
often poorly studied. Given that increasing amounts of TCEs are today
transported and accumulated in man-made technological systems,
knowledge about anticipated future exchanges is also of importance ac-
counting for material end-use patterns in modern technologies and
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related in-use stock dynamics. Furthermore, considering only part of an
element's life-cycle (narrow system boundary) increases the risk for
burden shifting. Examples are manifold and include, for instance, bur-
den shifting between different environmental impact categories
(using chemically cleaned coals might reduce air emissions of toxic
metals but at the expense of increased energy requirements and climate
impacts), between different media (SO2 scrubbers create solid waste),
between life-cycle stages (embedded electronics improve operating ef-
ficiency but create waste disposal concerns), or between generations
(long-term storage of toxic waste). In addition, in the absence of de-
tailed toxicological studies, a comparison of anthropogenic fluxes and
concentrations to natural values can also help to understand the proba-
bility of adverse toxicological effects of elements (Klee and Graedel,
2004; Nriagu, 1996; Pacyna and Pacyna, 2001; White and Hemond,
2012). Therefore, a better understanding of both natural and anthropo-
genic cycles including their stocks and interlinkages can help to more
holistically view element cycles and connect the research communities
of both biogeochemists and MFA practitioners/resource managers with
each other.

Against this background, this paper attempts to highlight some of
the important interconnections between natural and anthropogenic cy-
cles and related data sources at EU level. It highlights a number of rele-
vant raw material dossiers by the EC that aim at increasing the
knowledge base on raw materials (e.g., Material System Analysis (BIO
by Deloitte, 2015), the Raw Materials Information System (RMIS)
(Manfredi et al., 2017), and EU criticality assessments (Blengini et al.,
2017c; EC, 2011, 2014d)). Given thatMFA studies on several TCEs are al-
ready available (from the MSA), further MFA studies currently being
carried out at EU level by the EC, and natural cycle counterparts being
generated in the COST action, synergies might develop that could, ulti-
mately, lead to a combination of both data sets to derive more complete
material cycles for the EU and globally, thereby initiating a discussion
between the research communities of biogeochemists and material
flow analysts to more holistically address the issues of sustainable re-
source management.

For this, we firstly provide a definition of TCEs based on resource
criticality assessments. Criticality assessments provide a first investiga-
tion of the importance of a material in today's uses (e.g., by a company,
country, region, or globally), highlight potential issues if the material
were not available, and describe issues of supply risk. Secondly,
interlinkages of natural and anthropogenic cycles are highlighted and
we discuss how both provide complementary sets of information, e.g.,
to anticipate possible future emissions from the anthroposphere to na-
ture, identify secondary (“hibernating”) resource stocks at the
anthroposphere-environment interface (e.g., inminewaste or landfills),
and better understand the environmental and human health impacts of
metals dissipated to the environment during a material's full life-cycle.
Thirdly, we discuss how data collected by biogeochemists and material
flow analysts could be increasingly combined to approximate the mag-
nitude of anthropogenic and natural metal mobilization in the EU and
estimate human vs. natural dominance in perturbing the cycles of the
elements. Finally, we conclude with ideas for future research that
would help in strengthening the dialogue between the research com-
munities of biogeochemists and material flow analysts.
2. Definition of technology-critical elements (TCEs)

In 2008, the United States National Research Council proposed a
framework for evaluating material “criticality” based on the material's
supply risk and impact of a supply restriction (NRC, 2008). Since then,
a number of organizations worldwide have built upon that framework
to evaluate raw materials' criticality in various ways (BGS, 2012;
Blengini et al., 2017c; DOD, 2013; EC, 2011, 2014d; Graedel et al.,
2015; IW Consult, 2011; Morley and Eatherley, 2008; NSTC, 2016;
Skirrow et al., 2013). Common to themajority of criticality assessments
is the focus on a material's supply risk and the “importance” of the ma-
terial, e.g., to a corporation, country, region, or globally.

Supply risk principally relates to concentration of production in a re-
stricted number of countries, their geopolitical and social and regulatory
structure, whether amaterial is produced on its own or is dependent on
the demand for another material (host-companion relationships), and
the extent to which a material can be substituted in certain end-use ap-
plications. Some assessments also consider the life-cycle wide environ-
mental implications (cradle-to-gate) of materials production (Nuss and
Eckelman, 2014). On the other hand, the impact of a supply restriction is
considered differently in the various assessments (Dewulf et al., 2016)
and the EU criticality methodology looks at a material's economic im-
portance to the EU economy as a whole (Blengini et al., 2017a, 2017b;
EC, 2010, 2014c).

The EC evaluates the criticality of various raw materials to the EU
economyevery three years (EC, 2011, 2014c). The list of critical rawma-
terials (CRMs) (referred to as TCEs by the COST action) for the EU (EC,
2011, 2014c) and the underlying criticality methodology (Blengini et
al., 2017a, 2017c; Chapman et al., 2013; EC, 2010) are key instruments
in the context of the EU rawmaterials policy. Such a list is a precise com-
mitment of the Raw Material Initiative (RMI) (EC, 2008) and subse-
quent updates. A list of typical parameters taken into account in the
EU criticality methodology (an economy-wide assessment) is shown
in Fig. 2. Other criticality methodologies and frameworks exist, e.g.,
looking at single corporation (Duclos et al., 2010), a sector or a few se-
lected technologies of strategic importance (sector-specific criticality
assessment) (Moss et al., 2013a, 2013b; USDOE, 2010, 2011), to entire
national/regional economies (economy-wide criticality assessment)
(Achzet et al., 2011; BGS, 2012; Coulomb et al., 2015; EC, 2010, 2014c;
Graedel et al., 2015; NRC, 2008; NSTC, 2016; Skirrow et al., 2013), and
the world (global criticality assessment) (Graedel et al., 2015).

Obviously, as supply and demand change over time (e.g., mines
opening/closing or new technologies entering the market) the EU list
of critical raw materials (CRMs) can change with each assessment
(Table 1). Such a change could be the result, e.g., of a new technological
breakthrough (resulting in sudden increases in demand), shifting pro-
duction patterns (e.g., fewer countries producing a material, or shifts
to producing countries with high governance risks), no proper material
substitutes being available, and problems with the recovery and recy-
clability of the material at end-of-life. For example, Ta was considered
a critical raw material in 2011 but is not part of the updated list in
2014. This is a result of changes in the shares of global primary produc-
tion of Ta. In the first criticality exercise D.R. Congo (with poor gover-
nance rating) has been a major Ta producer, while in the second
assessment in 2014 Brazil and Australia (with better governance rat-
ings) are also significant suppliers thereby reducing supply risk. More
information on each raw material are also provided in the annexes of
the respective criticality lists (EC, 2011, 2014c).

The EU CRM assessment helps to highlight the relative “importance”
of materials for which more detailed information, e.g., on their anthro-
pogenic and natural cycles would be beneficial for more sustainable re-
source management and to alleviate potential supply risks to the EU.
The assessment is backward looking and could be combined with
more prospective assessments to highlight materials with possible crit-
icality in the future to inform the scientific community of material flow
analysts and biogeochemists on the material cycles of immediate and
future interests.

3. Interlinkages of natural and anthropogenic element cycles

Proper monitoring of anthropogenic as well as natural material
stocks and flows in Europe and globally is crucial to foster resource effi-
ciency and a circular economy, reduce environmental pressures arising
throughout a material's life-cycle, and quantify the availability, or “ele-
mental criticality,” to the EU economy. However, to date important in-
formation from both biogeochemical cycles and MFA studies about
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relative anthropogenic and natural flow magnitudes, sources and sinks
of critical elements in Europe, dissipation and accumulation in both the
environment and anthroposphere, and the degree to which human ac-
tivity has perturbed the natural cycling of elements are missing. To
date, only a handful of global elemental cycles, inclusive of natural and
anthropogenic stocks and flows, have been constructed quantitatively
(Rauch and Graedel, 2007; Rauch and Pacyna, 2009; White and
Hemond, 2012), but no cycles of this kind exist at the level of the EU.
3.1. EC Raw Material System Analysis (MSA)

Through the MSA, the EC has recently amplified efforts to assemble
data on anthropogenic material stocks and flows in the EU economy
to more effectively manage its resource base (BIO by Deloitte, 2015;
EC, 2012). The MSA was carried out in 2015 and investigates the flows
and stocks of 28 raw materials from “cradle-to-grave”, that is, across
the entire material life cycle from resource extraction to materials pro-
cessing to manufacturing and fabrication to use and then to collection,
processing, and disposal/recycling (Fig. 3).

It is a follow-up of the “Study on Data Needs for a Full RawMaterials
Flow Analysis”, launched by the European Commission in 2012 within
the context of the EU RMI strategy (EC, 2012). The objective of the
MSA study is to provide information on material stocks and flows and
to assist the EC on the development of a full MSA for a selection of key
rawmaterials used in the EU-28. Anthropogenic stocks and flows infor-
mation is particularly important for CRMs for which reliable informa-
tion on their trade is sometimes incomplete or unavailable, their uses
are not well understood, and their recovery and reuse once discarded
is problematic. The EU MSA study includes reserve estimates (that
part of an identified resource that meets specified minimum physical
and chemical criteria related to currentmining and production practices
(USGS, 2012a)) but does not include reserve base or resource numbers.

An accurate assessment of global and EU-wide mineral resources
must include not only the resources available in ground (ore reserves
and mineral resources) (Mudd et al., 2017a; UNECE, 2017; USGS,
Table 1
Lists of critical raw materials (CRMs) according to the EC methodology.

EC criticality
assessment

(EC, 2011) (EC, 2014c)

Critical raw materials
(CRMs) identified

Sb, Be, Co, Fluorspar, Ga, Ge, Natural
graphite, In, Mg, Nb, PGMsa, REEsb, Ta, W

Sb, Be, B, Cr, Co, Coking
Magnesite, Mg, Natural

a Platinum group elements (Pt, Pd, Rh, Os, Ir, Ru).
b Rare earth elements according to the EU CRM assessment (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb
2012b), but also those that are present as stocks within the
technosphere and might become available through recycling (Fishman
et al., 2014; Krausmann et al., 2017; Maung et al., 2017; Rauch, 2009;
UNEP, 2010). According to Ayres et al., there are four categories of an-
thropogenic metal stocks, namely long-lived goods in use (e.g., build-
ings and infrastructure), short-lived goods in use (e.g., certain
consumer electronics), landfills and identifiable mine waste dumps,
and metals that have been irrecoverably lost by dissipation into the
environment (Ayres et al., 2002). In some cases, materials dissipated
into the environment might be recovered as technologies advance
(e.g., recovery of platinum group elements such as platinum and pal-
ladium from roadside dust (Hunt, 2013)), while in other cases recov-
ery might not be possible due to the high energy requirements
involved (Capilla and Delgado, 2014). Different MFA modeling ap-
proaches exist to quantify stock accumulations and flows within
the technosphere (Müller et al., 2014). The data resulting from the
MSA study for CRMs (BIO by Deloitte, 2015) provides an important
base of background information fromwhich future materials critical-
ity can be better addressed, and sustainable development pathways,
on an EU-wide scope, designed.

3.2. Biogeochemical cycles in the EU

Simultaneously, the current COST action TD1407 funded under
H2020 attempts to expand the knowledge-base on the natural cycling
ofTCEs and create a network of scientists interested in the natural and
anthropogenic cycles of TCEs in Europe (Cobelo-García et al., 2015)
(see this special journal issue for more details).

3.3. Interlinkages of natural and anthropogenic cycles

A combination of both natural and anthropogenic cycles can help to
quantify the link between societal flows and stocks of metals and their
natural cycling (van der Voet et al., 2013). This is in particular important
to highlight options for how the societal cycle could be further isolated
2017 assessment (forthcoming)

coal, Fluorspar, Ga, Ge, In,
graphite, Nb, P, PGMsa, REEsb, Si, W

Methodology described in (Blengini et al., 2017a,
2017b, 2017c). 2017 list to be published

, Dy, Yb, Lu, Ho, Er, Tm).



Fig. 3. Schematic figure of the MSA framework and flows/stocks considered.
(Source: (BIO by Deloitte, 2015.)

573P. Nuss, G.A. Blengini / Science of the Total Environment 613–614 (2018) 569–578
from thenatural cycle (given that virgin resource use and releases to na-
ture often result in adverse environmental and social impacts), quantify
both natural and anthropogenic stocks of TCEs, and show how the
Fig. 4. Schematic illustration of the anthropogenic cycle of an element locatedwithin the larger
primary productivity.
elements continue to cycle after exiting the anthroposphere. Fig. 4
shows a schematic illustration of the anthropogenic cycle embedded
into their larger natural cycle.
natural cycle (inspired by (Rauch and Pacyna, 2009;White and Hemond, 2012)). NPP: Net
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Firstly, the transport and fate of TCEs in the natural environment
is often poorly studies. MFA models can provide estimates of the
amount of an element crossing the system boundary, e.g., in the pro-
cess of being dissipated into the environment during processing,
manufacture, or the use stage, and as losses to air/soil/water during
waste management (e.g., metals leaching into soils from a landfill
over time) (Fig. 4). However, often these loss values are approximat-
ed in the process of mass balancing the MFA model. Instead, natural
cycles can provide actual measured values on these losses which can
inform the MFA model.

The subsequent fate of an element in the environment is not usually
taken into account in MFA studies but is important to quantify down-
stream impacts on human health and the environment, as well as to
identify reservoirs in nature with high element concentrations. For ex-
ample, natural cycles can identify element flows from the technosphere
into freshwater bodies or soils, accumulation in these reservoirs, as well
as uptake in local fish or plant species.

Life-cycle assessment (LCA) is a tool for systematically evaluating
the potential environmental burdens of products, technologies, and ser-
vices (Baumann and Tillman, 2004; Curran, 2012; ISO, 2006a, 2006b)
and is sometimes combined with MFA (Laner and Rechberger, 2016;
Lopes Silva et al., 2015; Venkatesh et al., 2009). Combinations of MFA
with chemical risk indices are less frequent (Eckelman and Graedel,
2007). However, the fate of pollutants in the environment and their im-
pacts are generally site-specific and can therefore be difficult to quantify
using generic fate-transportmodels (Goedkoop et al., 2009; Rosenbaum
et al., 2008). There is also a lack of knowledge and data on the toxicolog-
ical properties of many of the TCEs (Nuss and Eckelman, 2014; van der
Voet et al., 2013). Better on-site measurements in combination with
models by the biogeochemical community could help to enhance
existing estimates especially for the TCEs in Europe. This is relevant to
the overall issue of environmental sustainability.

Secondly, natural cycles could highlight metal “stocks” in na-
ture i.e., environmental compartments with high TCEs levels such
as soils, sediments, water bodies, but also mine waste rocks, tailings,
or landfills (both those still managed and those that have been aban-
doned and remain in nature) located at the anthroposphere-nature
interface, might become resource deposits from which secondary
raw materials can be recovered in the future (indicated with red
rectangles in Fig. 4). Geological stocks including reserves and some-
times reserve base are estimated and monitored by geologists (e.g.,
(BGS, 2014; UNECE, 2017; USGS, 2011), but for TCE which are fre-
quently produced as by-products they are often not available
(Mudd et al., 2017a). However, given that industrial applications
today rely on a large part of the elements of the periodic table
(UNEP, 2011b) andmetals losses take place, e.g., as mine wastes, dis-
sipative losses from mining and smelting (van der Voet et al., 2013),
and during the use phase (Ciacci et al., 2015), certain environmental
compartments such as soils, water bodies, or mine wastes and land-
fills might become increasingly relevant “suspects” for the recovery
of metals, especially TCEs in Europe. In fact, there is increasing inter-
est in better quantifying and systematically classifying anthropogen-
ic stocks including long- and short-lived goods in use, and landfill
and identifiable mine waste dumps (Fishman et al., 2014;
Krausmann et al., 2017; Maung et al., 2017; Rauch, 2009; UNEP,
2010). However, to date it is unclear whether environmental con-
centrations of TCEs are in fact increasing due to their use in new
technologies (Filella and Rodríguez-Murillo, 2017). The recovery of
TCEs from alternative sources such as old tailings or contaminated
soils is also often challenging from an engineering and economical
viewpoint (Mudd et al., 2017a, 2017b).

However, information on potential natural stocks of TCEs in Europe
forming as the result of continued losses to the environment such as in
soils, sediments, or abandoned mine waste dumps, are not yet widely
available (Fig. 4). The EU soil atlas provides some data and maps on or-
ganic soilmaterial and soilmaterial for construction in Europe (EASDAC,
2016), while the Geochemical Atlas of Europe provides some data on
TCE levels in different environmental compartments including soils
(EGS, 2016). Recently, theGEMAS (geochemicalmapping of agricultural
soil) project published concentrations of 53 elements in European
agricultural soils (Reimann et al., 2017). The TCE COST Action will
deliver data on concentrations of TCEs in the European environment
(e.g., soils, water, waste treatment, sediments, and biota). This can
show anomalies either from geological or anthropogenic sources,
highlight geographical hotspots of metal losses, and impacts of TCE
use on soil sustainability. Such data could then be increasingly incor-
porated into “maps” of the anthropogenic stocks and flows of mate-
rials in the EU.

Thirdly, dynamic stock modeling to calculate in-use stocks in MFA
can help to estimate future waste streams and emissions (see the
“use” process in the anthropogenic cycle shown in Fig. 4 and related
graph aswell as Fig. 5). As increased consumption has led to an accumu-
lation of significant stocks of metals in the anthroposphere (in the form
of building, infrastructure, consumer goods, and others), future outputs,
when goods reach their end-of-life, are becoming more important. The
level of collection and recycling of metals from these secondary re-
sources depends on various factors such as market prices for the mate-
rials, product compositions, recycling infrastructures in place (Reck and
Graedel, 2012; Reuter et al., 2013), and other issues. However, a signif-
icant fraction of societalmaterial inputs (from imports and domestic ex-
traction) are not recycled at the end of product life and become societal
outputs (waste and emissions) in the future. Anticipating such future
emissions is important for environmental policy to anticipate future
problems and take timely action (van der Voet et al., 2002). Future out-
puts ofmaterials from the use-phase can be quantified by using dynam-
ic MFA models in which the outflows of the in-use stocks are based on
inflow or stock data and lifetime distribution functions (Müller et al.,
2014).

From the perspective of the biogeochemical community, such infor-
mation provides possible scenarios for elements that might dissipate
into the environment in the future (i.e., crossing the system boundary
from anthroposphere to nature) if not managed properly during end-
of-life treatment. It can thereby help to prioritize future research efforts
to monitor specific single elements in the environment. Fig. 5 shows an
example of niobium in transportation (e.g., cars) at global-scale and the
related flows into use, and modeled outflows at end-of-life based on a
simple dynamic stock model using a lifetime assumption of 10 years
(Nuss et al., 2014).

Fig. 5 shows that metal containing goods exit the use-phase with
a time delay (depending on the life-time of the goods in use) and
outflows continue even after flow into use decreases (e.g., between
2009 and 2010 for niobium in automobiles). This delay depends on
the lifetime of the goods in use (e.g., materials in construction
might have lifetimes of 50 years or more, while those in typical
consumer goods, e.g., electronics, might only have lifetimes of a
few years).

In reality, the dynamics of material stocks depend, obviously, on
many variables such as technological development (e.g., recycling infra-
structure and product design), population size, welfare, market devel-
opment (prices, demand, costs), government policies, and others (not
taken into account in Fig. 5). Nevertheless, the example shows the gen-
eral idea that niobium becomes available in the future with a small
time-delay. Globally, roughly 53% of the outflow is recycled (end-of-
life recycling rate) while the remaining 47% become part of the waste
stream which may ultimately end-up in landfills. Stocks can be very
large and eventually will become waste and emissions that, if not man-
aged properly, can dissipate into the environment where they might
continue to cycle. For example, past studies have shown that lead in
cathode-ray tubes (CRTs) continues to be released from existing in-
use stocks even 1–2 decades after the inflow ended (note that today
CRTs have been largely replaced by flat screen displays) (Elshkaki et
al., 2005).



Fig. 5. Simple dynamic stockmodel for niobium showing the global flow into use for transportation purposes and themodeled (anticipated) outflowusing an average lifetime of 10 years
for vehicles (based on data provided in (Nuss et al., 2014)). Supplementary data are provided in Appendix A.
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4. Anthropogenic disturbance of elemental cycles at the Earth's
surface

The coupling of natural and human cycles of the TCEs can help to
show the degree to which human activity has perturbed the natural
cycling of elements (Klee and Graedel, 2004; Sen and
Peucker-Ehrenbrink, 2012) given current demand for primary re-
sources. Past studies have highlighted the increasing dominance of
humans in shaping their environment and relate to the scientific debate
on the anthropocene and planetary boundaries (given how slow geo-
logical change normally is, at least when measured against an average
human lifespan, the suggestion that people are now equivalent to a
“natural force”) (Castree, 2016; Hooke, 2000; Nir, 1983; Wilkinson,
2005).

With reference to the EU, it is yet unclear what the EU's contribu-
tion to global anthropogenic metal mobilization for the TCEs is and
how this compares to global (and EU-wide) natural mobilization es-
timates. One possibility to capture themetal mobilization induced by
the EU-28 is to use estimates on anthropogenic mass transfer values
for the 28materials covered in theMSA study (BIO by Deloitte, 2015)
Fig. 6. Simplified Sankey diagrams from the MSA study (BIO by Deloitte, 2015) showing th
mobilization of TCEs by the EU-28.
and compare these with global natural mobilization estimates (Sen
and Peucker-Ehrenbrink, 2012). The latter include riverine flux to
oceans, eolian dust, sea-salt spray, primary productivity, extraterres-
trial matter, volcanoes, and soil erosion (base year approximately
2011, given in Gg/yr).

For anthropogenic mobilization, the EU-28 is consuming not only
primary raw materials but relies also on imports of, e.g., processed
materials and semi-finished and finished products as well as second-
ary materials. Furthermore, not all materials entering the EU-28
economy are consumed domestically (within EU borders), but
exported to other countries located outside of the EU also take
place (Fig. 6).

In this study, we approximate anthropogenic element mobilization
by the EU-28 using the following material flows entering and exiting
the EU economy (see Fig. 6 and Tables S2 and S3 in Appendix A):

a) The sum of domestic extraction, imports of primary material, im-
ports of processed material, and imports of products (semi-finished
and finished). This reflects direct material input (DMI) excluding
secondary material inputs.
e flows (in kg/year, usually in metal content) used in the calculation of anthropogenic
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b) The domestic material consumption (DMC) calculated as: DMC=
Domestic Extraction + Imports – Exports.

This reflects the mobilization of elements as a result of (a) direct
material input to the EU of primarymaterials or (b) domestic consump-
tion of materials (i.e., subtracting material exports which are processed
in the EU but consumed elsewhere). However, we note that in this pre-
liminary assessment a number of additional anthropogenic element
flows such as biomass burning, coal and petroleum burning, human
productivity, and construction are not taken into account. The reason
for this is that MFA focuses on the direct material flows associated
with the extraction, processing, use, and end-of-life management
phase of a particular material, as well as imports and exports for differ-
ent life-cycle stages, but does not generally account for additional flow
associated with the activities mentioned above (e.g., element mass mo-
bilization from rock and sediment displacement during construction ac-
tivities, burning of fossil fuels, etc.). Such flows have been included in
other studies at global level and shown to be significant for anthropo-
genic mobilization estimates of a number of elements (Klee and
Graedel, 2004; Sen and Peucker-Ehrenbrink, 2012). Therefore, this as-
sessment should be seen only as a first conservative estimation of EU
anthropogenic mobilization to be further refined in the future. Using
data from MFA, however, allows one to tackle the issue of country/re-
gional system boundaries where elemental flows as a result of con-
sumption within a territory need to be properly accounted for.

Our assessment of natural versus anthropogenic elementfluxes indi-
cates that anthropogenic fluxes induced by the EU-28 of palladium (Pd),
platinum (Pt), and antimony (Sb) might be greater than the respective
global natural fluxes (Fig. 7 and Tables S2 and S3 in Appendix A). For
these elements, EU requirements for materials purposes alone (because
we donot includemobilization due to e.g., coal burning or construction)
might already lead tometals mobilization at the scale of current natural
fluxes. However, uncertainties in both the MFA calculations (which
could not be quantitatively assessed as of yet) and the naturalmobiliza-
tion fluxes do not allow us to definitively stating that human activities
within the EU dominate the biogeochemical cycling of these elements.
While for Pd, Pt, and Sb (identified on the higher end in this assess-
ment), anthropogenic mobilization due to mining was found to be the
major factor, other factors (i.e., biomass burning, coal and petroleum
burning, human productivity, and construction) can also be significant
(Klee and Graedel, 2004; Sen and Peucker-Ehrenbrink, 2012). Further-
more, losses during material extraction and processing are often not
Fig. 7.A first comparison of the ratio of EU-28 anthropogenic mobilization fluxes (only due to d
coal burning, construction, etc.) to global natural mobilization values. Positive logarithms indic
Human mobilization fluxes as a result of EU-28 economic activity are based on MFAs for year
Ehrenbrink, 2012) in approximately 2011 and include riverine flux to ocean, eolian dust, sea
(i.e., does not include, e.g. the Earth's mantle as shown conceptually in Fig. 4). Supplementary
properly accounted for but can be significant (for example, (Sen and
Peucker-Ehrenbrink, 2012) provide anapproach to allow for corrections
of unrecognizedmaterial losses duringmaterial extraction and process-
ing for the platinum-group metals and rare earth elements). Including
these flows might further increase the human mobilization numbers
provided here.

On the natural cycling side, global estimateswere used as EU specific
data does not yet exist. The latter could be increasingly provided for the
EU by the current COST action (Cobelo-García et al., 2015). Globally, Sen
and Peucker-Ehrenbrink find that surface anthropogenic fluxes of iridi-
um (Ir), osmium (Os), helium (He), gold (Au), ruthenium (Ru), antimo-
ny (Sb), platinum (Pt), palladium (Pd), rhenium (Re), rhodium, and
chromium (Cr) currently exceed natural fluxes (Sen and Peucker-
Ehrenbrink, 2012).

5. Discussion and conclusion

Sustainable resource management requires consideration of various
aspects related to the environmental, social, and economic aspects of
Europe's resource demands. Given that the EU is highly dependent on
imports of a large number of materials used in a modern economy, is-
sues of resource criticality are high on the political agenda today. For
this, proper knowledge of the natural material flows and stocks as
well as the human industrial and societal metabolism provide impor-
tant background information. A combination of both natural and an-
thropogenic cycles of the elements can help to provide more complete
“maps” of Europe's resource base, e.g., by showing potential future ma-
terial stocks both in the anthroposphere (in-use stocks) and in nature
(e.g., in soils, tailings, orminingwastes). Biogeochemicalmeasurements
can help to better capture the transport and fate of elements released
into the environment as a result of anthropogenic activities and high-
light potential environmental andhuman health impacts. They also pro-
vide an important “reference point” for MFA practitioners who, due to a
lack of data, often need to fill related data gaps, e.g., by balancing their
models using top-down and bottom-up approaches (Müller et al.,
2014). On the other hand, the use of dynamic material flow models
can provide plausible scenarios of anticipated emissions of TCEs in the
future, thereby informing the community of biogeochemist on elements
that it should be increasingly monitored in the future.

In particular, in the context of the ongoing debate aboutmoving into
the Anthropocene (Crutzen, 2006), information about the EU's contri-
bution to human-induced element mass mobilization compared to
irectmaterials use, i.e., not including other factors such as elementmassmobilization from
ate human fluxes (by the EU-28) that are greater than respective natural fluxes (global).
2012 (BIO by Deloitte, 2015). Natural mobilization figures come from (Sen and Peucker-
spray, net primary productivity (NPP), extraterrestrial matter, volcano, and soil erosion
data used in the figure and additional calculations are provided in Appendix A.
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their natural cycling are significant. Given that recent trends in global
materials flows and stocks are on an upward trend (Krausmann et al.,
2009, 2017) it is likely that human influence will continue to increase
for both TCEs as well as for the major metals (e.g., Fe, Cu, Zn, Al) and
bulk materials (e.g., construction materials).

In order to enhance the understanding of Europe's resource base, it is
therefore important that EU actors interested in various aspects of TCEs,
from their environmental processes, (eco)toxicological issues, and re-
source management/security of supply aspects, increase the dialogue
amongst each other. The current COST action provides a platform to
more holistically address the issues of sustainable resource manage-
ment and establish a long-term network. Future research needs relate
to better mapping of both anthropogenic and natural stocks and flows
in the EU and globally, and increasing this dialogue between various re-
search communities.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.09.117.
References

Achzet, B., Reller, A., Zepf, V., Rennie, C., Ashfield, M., Simmons, J., 2011. Materials Critical
to the Energy Industry: An Introduction. University of Augsburg.

Ayres, R., Ayres, L., Rade, I., 2002. The Life Cycle of Copper, Its Co-Products and By-Prod-
ucts. International Institute for Environment and Development (IIED), London.

Baumann, H., Tillman, A.-M., 2004. The Hitch hiker's Guide to LCA: An Orientation in Life
Cycle Assessment Methodology and Application. Studentlitteratur, Lund, Sweden.

BGS, 2012. Risk List 2012: An Updated Supply Risk Index for Chemical Elements or Ele-
ment Groups which Are of Economic Value. British Geological Survey, Nottingham,
United Kingdom.

BGS, 2014. European Mineral Statistics 2008–2012. British Geological Service, Keyworth,
Nottinghaam.

BIO by Deloitte, 2015. Study on Data for a Raw Material System Analysis: Roadmap and
Test of the Fully Operational MSA for RawMaterials. Prepared for the European Com-
mission, DG GROW.

Blengini, G., Blagoeva, D., Dewulf, J., Torres deMatos, C., Nita, V., Vidal-Legaz, B., Latunussa,
C., Kayam, Y., Talens Peirò, L., Baranzelli, C.E.L., Manfredi, S., Mancini, L., Nuss, P.,
Marmier, A., Alves-Dias, P., Pavel, C., Tzimas, E., Mathieux, F., Pennington, D.,
Ciupagea, C., 2017a. Assessment of the Methodology for Establishing the EU List of
Critical Raw Materials - Background Report (JRC Technical Report No. EUR 28654
EN). Publications Office of the European Union, Ispra, Italy.

Blengini, G., Blagoeva, D., Dewulf, J., Torres deMatos, C., Nita, V., Vidal-Legaz, B., Latunussa,
C., Kayam, Y., Talens Peirò, L., Baranzelli, C.E.L., Manfredi, S., Mancini, L., Nuss, P.,
Marmier, A., Alves-Dias, P., Pavel, C., Tzimas, E., Mathieux, F., Pennington, D.,
Ciupagea, C., 2017b. Assessment of the Methodology for Establishing the EU List of
Critical Raw Materials - Annexes (JRC Technical Report No. EUR 28654 EN). Publica-
tions Office of the, European Union, Ispra, Italy.

Blengini, G., Nuss, P., Dewulf, J., Nita, V., Peirò, L.T., Vidal-Legaz, B., Latunussa, C., Mancini,
L., Blagoeva, D., Pennington, D., Pellegrini, M., Van Maercke, A., Solar, S., Grohol, M.,
Ciupagea, C., 2017c. EU methodology for critical raw materials assessment: policy
needs and proposed solutions for incremental improvements. Res. Policy 53:12–19.
http://dx.doi.org/10.1016/j.resourpol.2017.05.008.

Brunner, P.H., Rechberger, H., 2004. Practical Handbook of Material Flow Analysis. CRC
Press.

Brunner, P.H., Rechberger, H., 2016. Handbook of Material Flow Analysis: For Environ-
mental, Resource, and Waste Engineers. CRC Press, Second edition.

Capilla, A.V., Delgado, A.V., 2014. Thanatia: The Destiny of the Earth's Mineral Resources:
A Thermodynamic Cradle-to-Cradle Assessment. World Scientific.

Castree, N., 2016. Anthropocene and Planetary Boundaries, in: International Encyclopedia
of Geography: People, the Earth, Environment and Technology. John Wiley & Sons,
Ltd.

Chapman, A., Arendorf, J., Castella, T., Tercero Espinoza, L., Klug, S., Wichmann, E., 2013.
Study on Critical Raw Materials at EU Level: Final Report. Oakdene Hollins, Fraunho-
fer ISI.

Chen, W.-Q., Graedel, T.E., 2012. Anthropogenic cycles of the elements: a critical review.
Environ. Sci. Technol. 46:8574–8586. http://dx.doi.org/10.1021/es3010333.

Ciacci, L., Reck, B.K., Nassar, N.T., Graedel, T.E., 2015. Lost by design. Environ. Sci. Technol.
49:9443–9451. http://dx.doi.org/10.1021/es505515z.

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Laing, G.D., Ospina-Alvarez, N., Rauch, S.,
Salaun, P., Schäfer, J., Zimmermann, S., 2015. COST action TD1407: network on tech-
nology-critical elements (NOTICE)—from environmental processes to human health
threats. Environ. Sci. Pollut. Res. 22:15188–15194. http://dx.doi.org/10.1007/
s11356-015-5221-0.

Consult, I.W., 2011. Rohstoffsituation Bayern - keine Zukunft ohne Rohstoffe: Strategien
und Handlungsoptionen (Raw materials situtation in Bavaria - no future without
raw materials: strategies and opportunities of action). IW Consult GmbH Köln.
Coulomb, R., Dietz, S., Godunova, M., Bligaard Nielsen, T., 2015. Critical Minerals Today
and in 2030 (OECD EnvironmentWorking Papers). Organisation for Economic Co-op-
eration and Development, Paris.

Crutzen, P.J., 2006. The “Anthropocene”. In: Ehlers, P.D.E., Krafft, D.T. (Eds.), Earth System
Science in the Anthropocene. Springer, Berlin Heidelberg, pp. 13–18.

Curran, M.A., 2012. Life Cycle Assessment Handbook: A Guide for Environmentally Sus-
tainable Products. 1 edition. Wiley-Scrivener, Hoboken, N.J.

De Benedictis, L., Tajoli, L., 2011. The world trade network. World Econ. 34:1417–1454.
http://dx.doi.org/10.1111/j.1467-9701.2011.01360.x.

Dewulf, J., Blengini, G.A., Pennington, D., Nuss, P., Nassar, N.T., 2016. Criticality on the in-
ternational scene: quo vadis? Res. Policy 50:169–176. http://dx.doi.org/10.1016/
j.resourpol.2016.09.008.

DOD, 2013. Strategic and CriticalMaterials: 2013 Report on Stockpile Requirements. Unit-
ed States Department of Defense (DOD), Office of the Under Secretary of Defense for
Acquisition, Technology, and Logistics.

Duclos, S.J.O., Konitzer, Jeffrey P., Douglas, G., 2010. Design in an era of constrained re-
sources. Mech. Eng. 132, 36–40.

EASDAC, 2016. Maps indicating the availability of raw material from soils in the
European Union [www document]. Jt. Res. Cent. JRC Eur. Soil Data Cent. ESDAC.
URL. http://esdac.jrc.ec.europa.eu/content/map-indicating-availability-raw-ma-
terial-soils-european-union-organic-soil-material-b-soil, Accessed date: 25
April 2017.

EC, 2008. The RawMaterials Initiative—Meeting Our Critical Needs for Growth and Jobs in
Europe. European Commission (EC).

EC, 2010. Critical Raw Materials for the EU, Report of the Ad-hoc Working Group on De-
fining Critical Raw Materials. European Commission (EC), Brussels, Belgium.

EC, 2011. Tackling the challenges in commodity markets and on raw materials,
COM(2011) 25 final. European Commission.

EC, 2012. Study on data needs for a full raw materials flow analysis (no. framework ser-
vices contract ENTR/2008/006/LOT 1). European Commission DG Enterprise and
Industry.

EC, 2014a. Raw materials trade [www document]. URL. http://ec.europa.eu/trade/policy/
accessing-markets/goods-and-services/raw-materials/, Accessed date: 2 April 2017.

EC, 2014b. European structural and investment funds [www document]. URL. http://
ec.europa.eu/regional_policy/en/funding/, Accessed date: 2 April 2017.

EC, 2014c. Report on Critical Raw Materials for the EU, Report of the Ad-hoc Working
Group on Defining Critical Raw Materials. European Commission (EC), Brussels,
Belgium.

EC, 2014d. On the Review of the List of Critical Raw Materials for the EU and the Imple-
mentation of the Raw Materials Initiative (COM(214) 297 Final). European
Commission.

EC, 2015. Closing the loop - an EU action plan for the circular economy. European Com-
mission (EC).

EC, 2017. Circular economy strategy [www document]. URL. http://ec.europa.eu/environ-
ment/circular-economy/, Accessed date: 2 April 2017.

Eckelman, M.J., Graedel, T.E., 2007. Silver emissions and their environmental impacts: a
multilevel assessment. Environ. Sci. Technol. 41:6283–6289. http://dx.doi.org/
10.1021/es062970d.

EGS, 2016. Geochemical atlas of Europe [www document]. Contrib. Iugsiagc Glob.
Geochem. Baselines EuroGeoSurveys EGS. http://weppi.gtk.fi/publ/foregsatlas/,
Accessed date: 25 April 2017.

Elshkaki, A., van der Voet, E., Timmermans, V., Van Holderbeke, M., 2005. Dynamic stock
modelling: a method for the identification and estimation of future waste streams
and emissions based on past production and product stock characteristics. Energy,
Dubrovnik Conference on Sustainable Development of Energy, Water and Environ-
ment Systems. 30:pp. 1353–1363. http://dx.doi.org/10.1016/j.energy.2004.02.019.

Fagiolo, G., Reyes, J., Schiavo, S., 2009. The evolution of the world trade web: a weighted-
network analysis. J. Evol. Econ. 20:479–514. http://dx.doi.org/10.1007/s00191-009-
0160-x.

Filella, M., Rodríguez-Murillo, J.C., 2017. Less-studied TCE: are their environmental con-
centrations increasing due to their use in new technologies? Chemosphere 182:
605–616. http://dx.doi.org/10.1016/j.chemosphere.2017.05.024.

Fishman, T., Schandl, H., Tanikawa, H., Walker, P., Krausmann, F., 2014. Accounting for the
material stock of nations. J. Ind. Ecol. 18:407–420. http://dx.doi.org/10.1111/
jiec.12114.

Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., Van Zelm, R., 2009.
ReCiPe 2008, a life cycle impact assessment method which comprises harmonised
category indicators at themidpoint and the endpoint level. Report I: Characterisation,
First edition.

Graedel, T.E., Harper, E.M., Nassar, N.T., Nuss, P., Reck, B.K., 2015. Criticality of metals and
metalloids. Proc. Natl. Acad. Sci. 112:4257–4262. http://dx.doi.org/10.1073/
pnas.1500415112.

Greenfield, A., Graedel, T.E., 2013. The omnivorous diet of modern technology. Resour.
Conserv. Recycl. 74:1–7. http://dx.doi.org/10.1016/j.resconrec.2013.02.010.

Hooke, R.L., 2000. On the history of humans as geomorphic agents. Geology 28:843–846.
http://dx.doi.org/10.1130/0091-7613(2000)28b843:OTHOHAN2.0.CO;2.

Hunt, A., 2013. Element Recovery and Sustainability. Royal Society of Chemistry.
ISO, 2006a. Environmental Management - Life Cycle Assessment - Principles and Frame-

work, ISO14040. ISO, Geneva, Switzerland.
ISO, 2006b. Environmental Management - Life Cycle Assessment - Requirements and

Guidelines, ISO 14044. ISO, Geneva, Switzerland.
Klee, R., Graedel, T.E., 2004. Elemental cycles: a status report on human or natural domi-

nance. Annu. Rev. Environ. Resour. 29.
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., Fischer-Kowalski, M.,

2009. Growth in global materials use, GDP and population during the 20th century.
Ecol. Econ. 68:2696–2705. http://dx.doi.org/10.1016/j.ecolecon.2009.05.007.

doi:10.1016/j.scitotenv.2017.09.117
doi:10.1016/j.scitotenv.2017.09.117
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0005
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0005
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0010
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0010
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0015
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0015
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0020
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0020
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0020
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0025
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0025
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0030
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0030
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0030
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0035
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0035
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0035
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0040
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0040
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0040
http://dx.doi.org/10.1016/j.resourpol.2017.05.008
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0050
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0050
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0055
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0055
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0060
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0060
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0065
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0065
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0065
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0070
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0070
http://dx.doi.org/10.1021/es3010333
http://dx.doi.org/10.1021/es505515z
http://dx.doi.org/10.1007/s11356-015-5221-0
http://dx.doi.org/10.1007/s11356-015-5221-0
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0090
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0090
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0090
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0095
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0095
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0095
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0100
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0100
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0105
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0105
http://dx.doi.org/10.1111/j.1467-9701.2011.01360.x
http://dx.doi.org/10.1016/j.resourpol.2016.09.008
http://dx.doi.org/10.1016/j.resourpol.2016.09.008
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0120
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0120
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0120
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0125
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0125
http://esdac.jrc.ec.europa.eu/content/map-indicating-availability-raw-material-soils-european-union-organic-soil-material-b-soil
http://esdac.jrc.ec.europa.eu/content/map-indicating-availability-raw-material-soils-european-union-organic-soil-material-b-soil
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0135
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0135
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0140
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0140
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0145
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0145
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0150
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0150
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0150
http://ec.europa.eu/trade/policy/accessing-markets/goods-and-services/raw-materials/
http://ec.europa.eu/trade/policy/accessing-markets/goods-and-services/raw-materials/
http://ec.europa.eu/regional_policy/en/funding/
http://ec.europa.eu/regional_policy/en/funding/
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0165
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0165
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0165
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0170
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0170
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0170
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0175
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0175
http://ec.europa.eu/environment/circular-economy/
http://ec.europa.eu/environment/circular-economy/
http://dx.doi.org/10.1021/es062970d
http://dx.doi.org/10.1021/es062970d
http://weppi.gtk.fi/publ/foregsatlas/
http://dx.doi.org/10.1016/j.energy.2004.02.019
http://dx.doi.org/10.1007/s00191-009-0160-x
http://dx.doi.org/10.1007/s00191-009-0160-x
http://dx.doi.org/10.1016/j.chemosphere.2017.05.024
http://dx.doi.org/10.1111/jiec.12114
http://dx.doi.org/10.1111/jiec.12114
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0215
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0215
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0215
http://dx.doi.org/10.1073/pnas.1500415112
http://dx.doi.org/10.1073/pnas.1500415112
http://dx.doi.org/10.1016/j.resconrec.2013.02.010
http://dx.doi.org/10.1130/0091-7613(2000)28&lt;843:OTHOHA&gt;2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(2000)28&lt;843:OTHOHA&gt;2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(2000)28&lt;843:OTHOHA&gt;2.0.CO;2
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0235
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0240
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0240
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0245
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0245
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0250
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0250
http://dx.doi.org/10.1016/j.ecolecon.2009.05.007


578 P. Nuss, G.A. Blengini / Science of the Total Environment 613–614 (2018) 569–578
Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A.,
Schandl, H., Haberl, H., 2017. Global socioeconomic material stocks rise 23-fold over
the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. 114:
1880–1885. http://dx.doi.org/10.1073/pnas.1613773114.

Laner, D., Rechberger, H., 2016. Material Flow Analysis. :pp. 293–332 http://dx.doi.org/
10.1007/978-94-017-7610-3_7.

Lopes Silva, D.A., de Oliveira, J.A., Saavedra, Y.M.B., Ometto, A.R., Rieradevall i Pons, J.,
Gabarrell Durany, X., 2015. Combined MFA and LCA approach to evaluate the metab-
olism of service polygons: a case study on a university campus. Resour. Conserv.
Recycl. 94:157–168. http://dx.doi.org/10.1016/j.resconrec.2014.11.001.

Manfredi, S., Hamor, T., Wittmer, D., Nuss, P., Solar, S., Latunussa, C., Tecchio, P., Nita, V.,
Vidal, B., Blengini, G.A., Mancini, L., Ciuta, T., Mathieux, F., Pennington, D., 2017.
RawMaterials Information System (RMIS): Towards v2.0: A Roadmap (JRC Technical
Report), In Preparation. European Commission, Joint Research Centre, Ispra, Italy.

Maung, K.N., Hashimoto, S., Mizukami, M., Morozumi, M., Lwin, C.M., 2017. Assessment of
the secondary copper reserves of nations. Environ. Sci. Technol. http://dx.doi.org/
10.1021/acs.est.6b04331.

Morley, N., Eatherley, D., 2008. Material Security: Ensuring Resource Availability for the
UK Economy. Oakdene Hollins, Ltd., Chester, UK.

Moss, R., Tzimas, E., Kara, H., Willis, P., Kooroshy, J., 2013a. The potential risks frommetals
bottlenecks to the deployment of strategic energy technologies. Energy Policy, Special
section: Long Run Transitions to Sustainable Economic Structures in the European
Union and Beyond. 55:pp. 556–564. http://dx.doi.org/10.1016/j.enpol.2012.12.053.

Moss, R., Tzimas, E., Willis, P., Arendorf, J., Thompson, P., Chapman, A., Morley, N., Sims, E.,
Bryson, R., Peason, J., 2013b. Critical metals in the path towards the decarbonisation
of the EU energy sector. Assess. Rare Met. Supply-Chain Bottlenecks Low-Carbon En-
ergy Technol. JRC Rep. EUR. 25994.

Mudd, G.M., Jowitt, S.M., Werner, T.T., 2017a. The world's by-product and critical metal
resources part I: uncertainties, current reporting practices, implications and grounds
for optimism. Ore Geol. Rev. 86:924–938. http://dx.doi.org/10.1016/
j.oregeorev.2016.05.001.

Mudd, G.M., Jowitt, S.M., Werner, T.T., 2017b. The world's lead-zinc mineral resources:
scarcity, data, issues and opportunities. Ore Geol. Rev. 80:1160–1190. http://
dx.doi.org/10.1016/j.oregeorev.2016.08.010.

Müller, E., Hilty, L.M., Widmer, R., Schluep, M., Faulstich, M., 2014. Modeling metal stocks
and flows: a review of dynamicmaterial flow analysis methods. Environ. Sci. Technol.
48:2102–2113. http://dx.doi.org/10.1021/es403506a.

Nemeth, R.J., Smith, D.A., 1985. International trade and world-system structure: a multi-
ple network analysis. Rev. Fernand Braudel Cent. 8, 517–560.

Nir, D., 1983. Man, a Geomorphological Agent - An Introduction to Anthropic Geomor-
phology. Springer, Netherlands.

NRC, 2008. Minerals, Critical Minerals, and the U.S. Economy, Committee on Critical Min-
eral Impacts of the U.S. Economy, Committee on Earth Resources, National Research
Council. The National Academies Press, Washington, DC.

Nriagu, J.O., 1996. A history of global metal pollution. Science 272:223-223. http://
dx.doi.org/10.1126/science.272.5259.223.

NSTC, 2016. Assessment of Critical Minerals: Screening Methodology and Initial Applica-
tion (Subcommittee on Critical and Strategic Mineral Supply Chains of the Committee
on Environment, Natural Resources, and Sustainability of the National Science and
Technology Council). Executive Office of the President, National Science and Technol-
ogy Council (NSTC).

Nuss, P., Eckelman, M.J., 2014. Life cycle assessment of metals: a scientific synthesis. PLoS
One 9, e101298. http://dx.doi.org/10.1371/journal.pone.0101298.

Nuss, P., Harper, E.M., Nassar, N.T., Reck, B.K., Graedel, T.E., 2014. Criticality of iron and its
principal alloying elements. Environ. Sci. Technol. 48:4171–4177. http://dx.doi.org/
10.1021/es405044w.

Nuss, P., Chen, W.-Q., Ohno, H., Graedel, T.E., 2016. Structural investigation of aluminum
in the U.S. economy using network analysis. Environ. Sci. Technol. 50:4091–4101.
http://dx.doi.org/10.1021/acs.est.5b05094.

Pacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace
metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9:
269–298. http://dx.doi.org/10.1139/a01-012.

Rauch, J.N., 2009. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground re-
sources. Proc. Natl. Acad. Sci. 106, 18920–18925.

Rauch, J.N., Graedel, T.E., 2007. Earth's anthrobiogeochemical copper cycle. Glob.
Biogeochem. Cycles 21, GB2010. http://dx.doi.org/10.1029/2006GB002850.
Rauch, J.N., Pacyna, J.M., 2009. Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Glob.
Biogeochem. Cycles 23.

Reck, B.K., Graedel, T.E., 2012. Challenges in metal recycling. Science 337:690–695. http://
dx.doi.org/10.1126/science.1217501.

Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K.,
Matschullat, J., de Caritat, P., 2017. GEMAS: establishing geochemical background
and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem.
http://dx.doi.org/10.1016/j.apgeochem.2017.01.021.

Reuter, M., Hudson, C., Van Schaik, A., Heiskanen, K., Meskers, C., Hagelüken, C., 2013.
Metal recycling: opportunities, limits, infrastructure. Rep. Work. Group Glob. Met.
Flows Int. Resour. Panel.

Rosenbaum, R.K., Bachmann, T.M., Gold, L.S., Huijbregts, M.A.J., Jolliet, O., Juraske, R.,
Koehler, A., Larsen, H.F., MacLeod, M., Margni, M., McKone, T.E., Payet, J.,
Schuhmacher, M., van de Meent, D., Hauschild, M.Z., 2008. USEtox—the UNEP-
SETAC toxicity model: recommended characterisation factors for human toxicity
and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess.
13:532–546. http://dx.doi.org/10.1007/s11367-008-0038-4.

Schlesinger, W.H., 2005. Biogeochemistry. Gulf Professional Publishing.
Schmidt, M., 2008. The Sankey diagram in energy and material flow management. J. Ind.

Ecol. 12:82–94. http://dx.doi.org/10.1111/j.1530-9290.2008.00004.x.
Sen, I.S., Peucker-Ehrenbrink, B., 2012. Anthropogenic disturbance of element cycles at

the Earth's surface. Environ. Sci. Technol. 46:8601–8609. http://dx.doi.org/10.1021/
es301261x.

Skirrow, R., Huston, D., Mernagh, T., Thorne, J., Dulfer, H., Senior, A., 2013. Critical Com-
modities for a High-TechWorld: Australia's Potential to Supply Global Demand. Geo-
science Australia, Canberra.

UNECE, 2017. United Nations framework classification for fossil energy and mineral re-
serves and resources (unfc) [www document]. U. N. Econ. Comm. Eur. UNECE. URL.
https://www.unece.org/energywelcome/areas-of-work/unfc-and-resource-classifi-
cation/about-unfc-and-resource-classification.html, Accessed date: 25 April 2017.

UNEP, 2010. Metal Stocks in Society: A Scientific Synthesis. International Panel for Sus-
tainable Resource Management Working Group on the Global Metal Flows, Paris.

UNEP, 2011a. Towards a Green Economy: Pathways to Sustainable Development and Pov-
erty Eradication. United Nations Environment Programme (UNEP).

UNEP, 2011b. Recycling Rates of Metals - A Status Report, A Report of theWorking Group
on the Global Metal Flows to the International Resource Panel. United Nations Envi-
ronment Programme (UNEP), Paris.

UNEP, 2013. E-Book: International Resource Panel Work on Global Metal Flows. United
Nations Environment Programme (UNEP), International Resource Panel.

USDOE, 2010. Critical Materials Strategy. U.S. Department of Energy.
USDOE, 2011. Critical Materials Strategy. U.S. Department of Energy (USDOE).
USGS, 2011. Mineral Commodity Summaries 2011. U.S. Geological Survey, Reston, VA.
USGS, 2012a. USGS Mineral Commodity Summaries - Appendix C: A Resource/Reserve

Classification for Minerals. U.S. Geological Survey, Reston, VA.
USGS, 2012b. USGS Mineral Commodity Summaries - Appendix B. U.S. Geological Survey,

Reston, VA.
Venkatesh, G., Hammervold, J., Brattebø, H., 2009. Combined MFA-LCA for analysis of

wastewater pipeline networks. J. Ind. Ecol. 13:532–550. http://dx.doi.org/10.1111/
j.1530-9290.2009.00143.x.

Vidal-Legaz, B., Mancini, L., Blengini, G., Pavel, C., Marmier, A., Blagoeva, D., Latunussa, C.,
Nuss, P., Dewulf, J., Nita, V., Kayam, Y., Manfredi, S., Magyar, A., Dias, P., Baranzelli, C.,
Tzimas, E., Pennington, D., 2016. EU Raw Materials Scoreboard. 1st ed. Publications
Office of the European Union, Luxembourg.

van der Voet, E., Kleijn, R., Huele, R., Ishikawa, M., Verkuijlen, E., 2002. Predicting future
emissions based on characteristics of stocks. Ecol. Econ. 41:223–234. http://
dx.doi.org/10.1016/S0921-8009(02)00028-9.

van der Voet, E., Salminen, R., Eckelman, M., Mudd, G., Norgate, T., Hischier, R., 2013. En-
vironmental Risks and Challenges of Anthropogenic Metals Flows and Cycles (A Re-
port of the Working Group on the Global Metal Flows to the International Resource
Panel). United Nations Environment Programme (UNEP).

White, S., Hemond, H., 2012. The Anthrobiogeochemical cycle of indium: a review of the
natural and anthropogenic cycling of indium in the environment. Crit. Rev. Environ.
Sci. Technol. 42:155–186. http://dx.doi.org/10.1080/10643389.2010.498755.

Wilkinson, B.H., 2005. Humans as geologic agents: a deep-time perspective. Geology 33:
161–164. http://dx.doi.org/10.1130/G21108.1.

http://dx.doi.org/10.1073/pnas.1613773114
http://dx.doi.org/10.1007/978-94-017-7610-3_7
http://dx.doi.org/10.1007/978-94-017-7610-3_7
http://dx.doi.org/10.1016/j.resconrec.2014.11.001
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0275
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0275
http://dx.doi.org/10.1021/acs.est.6b04331
http://dx.doi.org/10.1021/acs.est.6b04331
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0285
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0285
http://dx.doi.org/10.1016/j.enpol.2012.12.053
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0295
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0295
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0295
http://dx.doi.org/10.1016/j.oregeorev.2016.05.001
http://dx.doi.org/10.1016/j.oregeorev.2016.05.001
http://dx.doi.org/10.1016/j.oregeorev.2016.08.010
http://dx.doi.org/10.1016/j.oregeorev.2016.08.010
http://dx.doi.org/10.1021/es403506a
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0315
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0315
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0320
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0320
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0325
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0325
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0325
http://dx.doi.org/10.1126/science.272.5259.223
http://dx.doi.org/10.1126/science.272.5259.223
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0335
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0335
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0335
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0335
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0335
http://dx.doi.org/10.1371/journal.pone.0101298
http://dx.doi.org/10.1021/es405044w
http://dx.doi.org/10.1021/es405044w
http://dx.doi.org/10.1021/acs.est.5b05094
http://dx.doi.org/10.1139/a01-012
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0360
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0360
http://dx.doi.org/10.1029/2006GB002850
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0370
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0370
http://dx.doi.org/10.1126/science.1217501
http://dx.doi.org/10.1126/science.1217501
http://dx.doi.org/10.1016/j.apgeochem.2017.01.021
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0385
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0385
http://dx.doi.org/10.1007/s11367-008-0038-4
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0395
http://dx.doi.org/10.1111/j.1530-9290.2008.00004.x
http://dx.doi.org/10.1021/es301261x
http://dx.doi.org/10.1021/es301261x
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0410
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0410
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0410
https://www.unece.org/energywelcome/areas-of-work/unfc-and-resource-classification/about-unfc-and-resource-classification.html
https://www.unece.org/energywelcome/areas-of-work/unfc-and-resource-classification/about-unfc-and-resource-classification.html
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0420
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0420
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0425
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0425
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0430
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0430
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0430
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0435
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0435
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0440
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0445
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0450
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0455
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0455
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0460
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0460
http://dx.doi.org/10.1111/j.1530-9290.2009.00143.x
http://dx.doi.org/10.1111/j.1530-9290.2009.00143.x
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0470
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0470
http://dx.doi.org/10.1016/S0921-8009(02)00028-9
http://dx.doi.org/10.1016/S0921-8009(02)00028-9
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0480
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0480
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0480
http://refhub.elsevier.com/S0048-9697(17)32460-9/rf0480
http://dx.doi.org/10.1080/10643389.2010.498755
http://dx.doi.org/10.1130/G21108.1

	Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles
	1. Introduction
	2. Definition of technology-critical elements (TCEs)
	3. Interlinkages of natural and anthropogenic element cycles
	3.1. EC Raw Material System Analysis (MSA)
	3.2. Biogeochemical cycles in the EU
	3.3. Interlinkages of natural and anthropogenic cycles

	4. Anthropogenic disturbance of elemental cycles at the Earth's surface
	5. Discussion and conclusion
	Appendix A. Supplementary data
	References


