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Abstract—In the last years, we are witnessing an increasing
availability of geolocated data, ranging from satellite images to
user generated content (e.g., tweets). This big amount of data is
exploited by several cloud-based applications to deliver effective
and customized services to end users. In order to provide a good
user experience, a low-latency response time is needed, both
when data are retrieved and provided. To achieve this goal,
current geospatial applications need to exploit efficient and
scalable geospatial databases, the choice of which has a high
impact on the overall performance of the deployed applications.
In this paper, we compare, from a qualitative point of view,
four state-of-the-art SQL and NoSQL databases with geospatial
features, and then we analyze the performances of two of them,
selecting the ones based on the Database-as-a-service (DBaaS)
model: Azure SQL Database and Azure DocumentDB (i.e., an
SQL database versus a NoSQL one). The empirical evaluation
shows pros and cons of both solutions and it is performed on a
real use case related to an emergency management application.

Keywords-Big Geospatial data; Geospatial databases;
Database-as-a-service (DBaaS)

I. INTRODUCTION

The availability of big geospatial and geolocated data
significantly increased in the last years [1], [2] and many
applications have been proposed to exploit geospatial data
to provide innovative services tailored to users needs in
different domains (e.g., smart cities, IoT, emergency man-
agement, archeology [3], [4], [5], [6], [7], [8]). In order
to provide a good user experience, efficient geospatial
databases are needed. For this reason, we evaluate state-
of-the-art geospatial databases in order to understand which
are the pros and cons of the current solutions. We consider
both SQL and NoSQL databases [9] to understand which
category of databases is more efficient for managing large
geospatial data. Specifically, we initially compare four state-
of-the-art geospatial databases by considering only their
features. Then, we perform a large set of experiments to
evaluate the efficiency of the selected geospatial databases
by means of a real application, which has been designed for
supporting emergency management services related to flood,
fire, and extreme weather events. Since there is an increasing

interest in cloud-based solutions, the application is devel-
oped using the Software-as-a-Service (SaaS) approach and
also the geospatial database is deployed in the cloud using
such approach. This configuration allows us to evaluate the
efficiency of geospatial databases when they are deployed in
a cloud-based system with the SaaS service model, which
is becoming increasingly adopted, against operational costs.
The basic functionalities of the implemented application
are similar to those of several other developed in different
contexts. Specifically, it allows the end users to retrieve or
send geolocated data based on their location, which is one of
the standard behaviors of a general location based service.
The performed experiments highlight pros and cons of the
analyzed geospatial databases.

The main contributions of this paper are (i) a qualitative
comparison of geospatial databases, (ii) a performance com-
parison of two them in a real use case, i.e., a Cloud-based
SaaS deployment, and (iii) a summary of pros and cons of
the evaluated SQL and NoSQL solutions.

The paper is organized as follows. Section II describes the
related work, while Section III analyzes the main features
of the four state-of-the-art geospatial databases and compare
them from a qualitative point of view. Section IV reports a
case study, an emergency management geospatial application
that is used in Section V to evaluate the performances
of SQL and NoSQL geospatial databases from different
point of views. Finally, Section VI draws conclusions and
describes future work.

II. RELATED WORK

Current databases are usually classified in two macro-
categories: relational databases (e.g., [10], [11], [12]) and
NoSQL databases (e.g., [13], [14], [15], [16]). Relational
databases are usually the most appropriate and efficient
choice when data are structured (i.e., when data are charac-
terized by a known a-priori and fixed set of attributes known
at design time). Differently, NoSQL databases, such as key-
value-based and document-oriented databases, are usually
more appropriate when the input data collection contains
unstructured or semi-structured data, or when the structure



(attributes) of the data evolves overtime and it is (partially)
unknown at design time. The majority of the traditional
databases are mainly focused on non-spatial data. However,
since such type of data play an important role in many
application domains, several spatial databases, relational and
not, have been proposed to manage and query geospatial
data [10], [11], [13], [14]. Spatial databases, or in general
databases with (geo)spatial features, are usually an extension
of traditional databases in which ad-hoc (geo)spatial data
types, query operators and indexes are integrated. The most
common use of geospatial databases consists in executing
queries that select all the objects contained in a geographical
area or the k-Nearest Neighbours of an input object. Some
of the most famous and commonly used state-of-the-art
relational databases with geospatial features are SQL Server
2016 [17] and its cloud version, which is also commercially
named Azure SQL Database [10], and PostGIS [11], while
two well established NoSQL databases with geospatial fea-
tures are DocumentDB [13] and MongoDB [14].

The advantages and disadvantages of relational vs non-
relational databases have been throughly analyzed in many
papers [18], [9]. However, the reported analyses are not
focused on the geospatial features of the selected databases.
In this paper, we perform a qualitative and quantitative
analyses of the geospatial characteristics, comparing SQL
vs no-SQL databases.

In recent years, we witnessed an increasing interest in
cloud-based applications deployed using the Database-as-a-
service (DBaaS) model [19]. When the database is provided
as a service, developers/application owners do not have to
install and maintain the databases used by their applications.
The provider offers a pre-defined set of service levels, each
of which is generally associated to a monthly costs that
includes the hosting, the installation and the maintenance
operations. In this way, the developers/application owners
can focus on the design of the database without worry about
software and hardware failures and updates. For instance,
Microsoft offers both SQL [10] and NoSQL [13] databases
as services. However, several other vendors provide similar
services (e.g., Amazon Web Services and Oracle). More-
over, the Database-as-a-service model allows increasing or
decreasing the performances of the database on demand,
depending on the current work load of the system. The
performance analysis of DBaaS databases in combination
with location based services deployed using HTTP web
services is a practical yet interesting topic that has not been
addressed in previous work, and that we explore in this
paper.

III. QUALITATIVE COMPARISON OF DATABASES WITH
GEOSPATIAL FEATURES

In this section, we analyze the main characteristics of four
state-of-the-art databases with geospatial features. Specif-
ically, we selected two SQL and two NoSQL databases.

For each of them we highlight pros and cons, from a
qualitative point of view, by taking into consideration also
the application scenario in which they are generally used.

A. Relational databases

Relational databases (e.g., [17], [10], [11], [12]) are well-
established systems used for storing and querying large
structured data sets. They are based on the relational model,
i.e., a set of tables where each table is used to represent
a set of objects with similar characteristics. They have
been successfully used in both Online transaction processing
(OLTP) and Online Analytical Processing (OLAP) applica-
tions. Many solutions have been proposed for increasing
the efficiency of relational databases, some of which are
also characterized by geospatial features (e.g., [17], [10],
[11]). Specifically, indexes and partitioning are commonly
used to boost their performances. In the following, we
describe two of the most commonly used relational databases
with geospatial features: Azure SQL Database [10] and
PostGIS [11].

1) Azure SQL Database: Azure SQL Database [10] is a
relational Database-as-a-Service (DBaaS). It has the same
functionalities of the centralized Microsoft SQL Server
2016 [17] but it is provided as a service in the cloud.
It can be easily and dynamically adapted to the load of
applications by using a scale-up approach. Through a simple
graphical interface, the database administrator can increase
the power of the server that is used to run the database, and
the Azure system transparently increases the performances
of the database while avoiding service interruptions and
data losses. Both Azure SQL Database and Microsoft SQL
Server 2016 allow defining and quering spatial objects. They
support two main categories of data types: (i) Geometry,
which represents data on a Euclidean coordinate system by
using flat XY coordinate pairs and (ii) Geography, which
represents data on an earth-like spherical coordinate system
in longitude-latitude shape. Moreover, Azure SQL Database
can manage the standard spatial objects (e.g., Point, Mul-
tiPoint, Polygon, MultiPolygon) and standard spatial opera-
tions available for geography objects (e.g., Intersection, Dis-
tance, Difference, Within). Specifically Azure SQL Database
implements the Simple Features for SQL specification from
the Open Geospatial Consortium (OGC) [20], [21]. Azure
SQL Database and Microsoft SQL Server 2016 support
also spatial indexes, which are implemented using the B-
Tree (i.e., Binary Tree) data structure. Azure SQL Database
and Microsoft SQL Server 2016 are compatible with state-
of-the-art geographic information systems (GIS) such as
ArcGIS [22] as well as with map server softwares such as
GeoServer [23]. Both tools are commonly used to analyze
geospatial data and visualize maps by exploiting geospatial
queries and data types.

2) PostGIS: PostGIS [11] is a spatial database extender
of the open source relational PostgreSQL database [12]. It



enables the definition of geospatial objects and operations
by extending the basic data types and querying operators
of PostgreSQL. PostGIS follows the Simple Features for
SQL specification from the Open Geospatial Consortium
(OGC) [20], [21]. PostGIS is the most efficient open source
solution for managing geospatial data. Similarly to Azure
SQL Database, it supports all the standard geometry data
types (e.g., Point, MultiPoint, Polygon, MultiPolygon) and
all the standard geospatial operators (e.g., Distance, Within,
Intersects, Closest). It also supports three types of spatial
indexes: B-trees (binary trees), R-trees (sub-rectangles trees)
and GiST (Generalized Search Trees) to speed up the
execution of spatial queries. Also PostGIS is compatible
with state-of-the-art geographic information systems (GIS)
such as ArcGIS [22] as well as with map server softwares
such as GeoServer [23].

B. NoSQL databases

NoSQL databases (e.g., [13], [14], [15], [16]) are com-
monly used to manage unstructured data, such as documents.
They are designed for scaling horizontally because they
have been proposed to manage big data sets by means of
commodity servers. However, in order to obtain horizontal
scalability, they do not provide the standard ACID properties
that are usually provided by relational databases. Depending
on the application requirements, this could be a weakness
of NoSQL databases. Only few NoSQL databases support
geospatial data. MongoDB and Azure DocumentDB are two
NOSQL document databases that are commonly used in
many big data applications and provides geospatial func-
tionalities.

1) MongoDB: MongoDB [14] is an open source NoSQL
document-oriented database, based on JSON-like docu-
ments. To perform queries and for storage purposes on
geospatial data, MongoDB needs an initial definition of the
surface type used for running operations on its data. It sup-
ports two surfaces: (i) Spherical, which involves calculation
based on an Earth-like sphere and (ii) Flat, which considers
a Euclidean plane with 2d coordinates, stored as legacy
coordinate pairs (i.e., pairs of longitude, latitude values).

MongoDB supports a set of standard GeoJSON data types
(Point, LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon, and GeometryCollection) and implements a
subset of basic spatial operations (inclusion, intersection, and
proximity). Hence, the types of possible queries are limited
with respect to those provided by the relational state of the
art spatial databases, such as Microsoft Azure SQL Database
and PostGIS. Moreover, MongoDB supports only basics 2-
dimensional indexes.

MongoDB supports also horizontal scalability (i.e., the
scalability achieved by adding new commodity servers in a
cluster environment when the size of the data increases) and
distributed execution of queries by exploiting the sharding
technique. The basic idea exploited by the sharding tech-

nique consists in partitioning the input data collection in
chunks and store each chunk on a different server. When
a query is executed, each server executes the query on its
chunk of data, parallelizing its execution. The partitioning
of the data is based on the value of the selected sharding at-
tribute. Hence, the choice of the sharding attribute is crucial
in order to achieve a balance distribution of the data in the
servers. It is important to highlight that MongoDB supports
also the use of geospatial attributes as sharding attribute.
The selection of the most appropriate sharding attribute is
based on the predicates of the (expected) frequent queries.
MongoDB provides no automatic support for changing the
sharding attribute after sharding a collection. Hence, a good
estimation of the expected work load (i.e., types of expected
queries) at design time is important. The connection with the
GeoServer is available through an external plug-in included
in the GeoTools suite but it is not officially supported.

2) Azure DocumentDB: DocumentDB [13] is a NoSQL
document-oriented database designed by Microsoft. Simi-
larly to Azure SQL Database, also DocumentDB is avail-
able as a service. It can manage large data collections by
distributing data on a set of servers by means of the shard-
ing approach. DocumentDB implements the same spatial
operations and data types supported by MongoDB and it
is compatible with the protocol used by MongoDB. Hence,
the applications written for MongoDB can use DocumentDB
as data store by using the existing drivers for MongoDB and
changing the connection string. Equivalently to MongoDB,
there is the unsupported plug-in included in the GeoTools
to connect DocumentDB to the GeoServer.

C. Comparison of Databases with Geospatial features

In Sections III-A1-III-B2, we described the main features
of four state-of-the-art databases with geospatial features. In
this section, we report a summary of the functionalities of
the considered databases and draw conclusions about their
pros and cons. The summary of the qualitative comparison
of the selected databases with geospatial features is reported
in Table I. The comparison is based on the following key
features:

• Types of supported geometry objects
– Types of objects that can be represented (e.g.,

points, lines, polygons).
• Implemented geometry functions

– Types of analysis and queries that can be executed
by means of built-in functions.

• Spatial index support and types of supported indexes
– The availability of indexes allows enhancing the

performance of the queries.
• Compatibility with GeoServer

– GeoServer is a commonly used open source map
server software used to share, process and edit
geospatial data. The compatibility with it, or a



Table I
QUALITATIVE COMPARISON OF THE FUNCTIONALITIES OF FOUR STATE-OF-THE-ART GEOSPATIAL DATABASES.

Database Supported Ge-
ometry objects

Main supported
geometry func-
tions

Supported Spa-
tial indexes

Compatibility
with GeoServer

DaaS Horizontal scal-
ability

PostGIS Point,
LineString,
Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollec-
tion

PostGIS supports
the Open
Geospatial
Consortium
(OGC) methods
on geometry
instances

B-Tree index R-
Tree index, GiST
index

Yes No No

Azure SQL
Database

Point LineString,
Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollec-
tion

Azure SQL
Database
supports the
Open Geospatial
Consortium
(OGC) methods
on geometry
instances

2d plane index,
B-trees

Yes Yes (Microsoft
Azure cloud
computing
platform)

No

MongoDB Point,
LineString,
Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollec-
tion,

Inclusion,
Intersection, Dis-
tance/Proximity

2dsphere index,
2d index

Yes (based on the
unsupported ex-
ternal MongoDB
plug-in included
in GeoTools)

Yes (MongoDB
Atlas cloud
service)

Yes (sharding)

DocumentDB Point,
LineString,
Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
GeometryCollec-
tion

Inclusion, Dis-
tance/Proximity

2d plane index,
quadtree

Yes (based on the
unsupported ex-
ternal MongoDB
plug-in included
in GeoTools)

Yes (Microsoft
Azure cloud
computing
platform)

Yes (sharding)

similar system, is indispensable to deliver the con-
tent to the end users on maps, especially when
bandwidth constrained mobile devices are used.

• Database as a Service (DaaS)
– The availability of the database in the DaaS ver-

sion allows hiding the complexity of the database
administration, demanding such activities to the
service provider.

• Horizontal scalability
– A database characterized by a horizontal scalability

can easily scale with respect to the number of
requests by including more (commodity) servers.
This feature is extremely useful when managing
big data.

The main difference that is highlighted by the information
reported in Table I is that relational databases (PostGIS
and Azure SQL) implement more geospatial functionalities
than NoSQL ones (MongoDB and DocumentDB). Moreover,
they are also more tightly integrated and supported by
the GeoServer software. In fact, the plug-in that is used
to connect GeoServer with MongoDB and DocumentDB
is in the unsupported branch of the current version of
GeoTools [24]. The interoperability with the GeoServer,

or with a similar software, is indispensable for geospatial
applications that need to visualized maps and geolocated
objects, especially when mobile devices are involved. Hence,
in terms of functionalities, spatial relational databases are
preferable (they are a more mature technology) because they
allow performing complex geospatial queries and are well-
integrated with geographic information systems (GIS) as
well as with map server software such as GeoServer.

In the Section V, we will perform a set of experiment to
evaluate also the efficiency of the selected databases in a
real application scenario.

IV. CASE STUDY: AN EMERGENCY MANAGEMENT
APPLICATION

To evaluate the efficiency of the selected spatial databases,
we test two web services that are used by a real emergency
management application. Specifically, we implement two
services that can be used by first responders (e.g., civil
protection agents) and common citizens in case of natural
hazards to send geolocated reports from a mobile device
in order to improve the real-time understanding of the
situation in the field, thus enhancing the assessment of the
situational picture and hence improving the decision making



process. The application allows both authorities and citizens
to generate a report at a specific location (point) and to
retrieve all reports available on a given geographical region.
Each report is a characterized by a description (a text field)
and a geolocated picture.

The described application is based on two web services:
• GET web service: this service is used to retrieve all the

reports located in a specific area, which is characterized
by a rectangular bounding box.

• POST web service: this service is used to submit a
geolocalized report, with the associated text and picture.

The considered use case and the implemented services
are similar to those analysed in previous studies [25], and
they are common in many geospatial applications, which
usually allow retrieving data on a given geographical area
and submitting data with the associated position. Hence,
the results reported in Section V, which are based on
the emergency management application, can be used as
reference also to chose the database for other geospatial
applications.

In the following section, we analyze the performance of
the two implemented web services by using two different
databases.

V. EXPERIMENTAL RESULTS

We performed an experimental campaign to evaluate
the efficiency of SQL with respect to NoSQL geospatial
databases in the real application context described in Sec-
tion IV. The application has been implemented by means
of a set of web services deployed by using the Platform-
as-a-Service (PaaS) paradigm. Specifically, Microsoft Azure
Cloud Service has been used to deploy the application.
We performed the experiments by considering an SQL
database and a NoSQL one. Specifically, we selected Azure
SQL Database and Azure DocumentDB, respectively. We
decided to select those databases because they are tightly
integrated with the Microsoft Azure Cloud infrastructure and
are provided as services (Database-as-a-service (DBaaS)). In
this way we avoid the introduction of biases in the evaluation
due to different service provider performances. Since they
are based on the DBaaS model, we can easily change the
power of the hardware that is used to run the database. This
allows us to clearly understand also the database resource
requirements for the implemented geospatial application.

Since the price of the (DBaaS) databases is related to the
underlying resources, the analysis of the database “perfor-
mance level” in function of its cost is an interesting practical
information. To perform this analysis, for each database
we consider three different configurations, hence different
performance levels. The selected configurations, their main
characteristics, and the related monthly prices1 are reported
in Table II. A set of predefined configurations are provided

1The reported prices could be different from the current ones.

Table II
QUALITATIVE COMPARISON OF THE FUNCTIONALITIES OF FOUR

STATE-OF-THE-ART GEOSPATIAL DATABASES.

Azure SQL
Database

Azure DocumentDB Monthly price

Service Tier / Per-
formance level

RUs / Performance
level

(euro)

Tier P2 13500 RUs ∼800 euro
Tier P4 29200 RUs ∼1500 euro
Tier P6 60400 RUs ∼3100 euro

for Azure SQL Database, whereas Azure DocumentDB is
more flexible and allows setting the maximum performance
of the selected database by specifying the maximum number
of requested Request Units (RUs). The higher the RU value,
the better the performance of the database. Specifically, there
is a predefined set of Azure SQL Database configurations,
each one characterized by a specific maximum value of
Database Transaction Units (DTUs), where the number of
DTUs represents the maximum performance of the used
database. Differently, Azure DocumentDB is characterized
by a different performance measure, called Request Units
(RUs), and the end user can specify the desired “performance
level” of Azure DocumentDB by setting the number of
Request Units (RUs). DTUs and RUs are not directly com-
parable. Hence, in order to perform a fair comparison, we
decided to select a set of configurations of the two databases
characterized by the same monthly price. Specifically, for
each predefined configuration of Azure SQL Database, we
selected an Azure DocumentDB configuration characterized
by approximately the same monthly price by setting the
number of RUs value. The monthly price is probably the
most important factor when selecting a cloud-based service,
including the selection of a DBaaS database, because the
users of cloud-based services are interested in understanding
what is the minimum price that allows satisfying their
application requirements (in terms of execution time and
scalability). From a different points of view, given two
DBaaS databases characterized by the same monthly price,
the service users are interested in selecting the most efficient
and scalable one.

To perform the evaluation campaign we used a set of
synthetic data sets, which are publicly available at http:
//dbdmg.polito.it/GeoSpatialData/. The cardinality (number
of records) of the considered data sets ranges from 250,000
records to 1,000,000 records. We generated two versions of
each data set, characterized by the same content but a differ-
ent data format. Specifically, we generated a relational and
a GeoJSON version of each data set, which are used to test
Azure SQL Database and Azure DocumentDB, respectively.

A. Performance evaluation

We evaluated the performances of the two selected
databases, in terms of average response time per request,
with respect to three main factors: (i) the number of con-
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Figure 1. GET operation. Average response time with respect to the number of concurrent users. Number of records = 1,000,000.

100

200

300

400

500

600

700

800

900

50 100 200

A
v
g

. 
R

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number concurrent users

Azure SQL Database

(a) Azure SQL Database - Tier P6.

100

200

300

400

500

600

700

800

900

50 100 200

A
v
g

. 
R

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number concurrent users

Azure DocumentDB

(b) Azure DocumentDB - 60400 RUs.

Figure 2. POST operation. Average response time with respect to the number of concurrent users. Number of records = 1,000,000.

current users submitting requests, (ii) the number of records
stored in the database, and (iii) the database performance
level.

We performed the tests by using a specific functionality
of Visual Studio Enterprise. Specifically, we used the Visual
Studio Online stress tool that allows specifying (i) which
web services must be invoked, (ii) by how many concurrent
users, and (iii) the users’ behavior. This tool simulates
the invocations of services to assess the performances web
service-based applications. All the performed tests are char-
acterized by a warm-up time of 1 minute, during which no
measurements are made, and then 5 minutes of effective
test. This setting allows excluding sampling in the transient
period and measure the performances at regime. For all
experiments, we set iteration time to 2 seconds, which
defines the awaiting time between a request and another
one from the same user. This setting enable the developer
to simulate the gap of time when a user starts two different
requests (or the same, if stuck).

We tested a “GET web service” that simulates the request
of a set of reports located in a user specified area (i.e., a
select request that returns a subset of the database records)
and a “POST web service” that simulates the upload of a
report by the end user (i.e., an insert request that insert a new
record in the database). Based on the size of the bounding
box of the area of interested that we selected, the select
operation executed by the invocation of the GET web service
returns 20 reports. This value is comparable to that attended
when real data are used.

The results of the performed experiments are reported in
the following subsections.

1) Impact of the number of concurrent users: The first
set of experiments aimed at analyzing the impact of the
number of concurrent users using the developed services
and hence the underlying database. We considered a number
of users ranging from 50 to 200 users. We performed two
separate sets of load tests: one for the GET web service (i.e.,
we simulate a user who requests all the reports geolocated
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Figure 3. GET operation. Average response time with respect to the number of records. Number of concurrent users = 50.

inside a specific area) and another or the POST web service
(i.e., we simulate an end user submitting a report, which is
then stored in the database). We performed the experiments
by considering the largest of the synthetically generated
data set (i.e., the one with 1,000,000 records) and the most
performance (most expensive) configurations of Azure SQL
Database and Azure DocumentDB. Specifically, we used the
Tier P6 configuration of Azure SQL Database and we set
the number of RUs to 60400 for Azure DocumentDB. The
achieve results are reported in Figures 1-2.

Figure 1(a) shows that the average response time of
Azure SQL Database is between 102ms and 103ms for
the considered configurations. Hence, on the average, the
response time is independent of the number of concurrent
users with the considered 1,000,000 records and the Tier P6
version of Azure SQL Database. This means that a good
user experience is provided to end users also when 200
users simultaneously use the service. Figure 1(b) reports
the results of the analogous experiments when Azure Doc-
umentDB is used to store and retrieve records (reports). Up
to 100 concurrent users, the average response time is almost
constant ( 67ms) and Azure DocumentDB is on the average
1.5 times faster than Azure SQL Database. However, when
200 concurrent users are considered, 5% of the requests
reach the timeout and the result is not returned. This means
that, in some specific time periods of the performed load test,
the number of requests, and specifically the related cost in
terms of RUs, exceeds the maximum value allowed by the
used configuration of Azure DocumentDB. For this reason
the average response time when 200 users are considered is
not reported in Figure 1(b).2 Hence, considering the same
number of records and the similar performance levels (costs),
Azure DocumentDB is faster than Azure SQL Database but

2Since some requests timeout, the average response time returned by the
load test in that experiment is not correct because it considers also the
execution times of the requests that reached the timeout.

it manages less concurrent requests.
We performed a similar set of experiments for the “POST”

service. The results, reported in Figures 2(a)-2(b), are con-
sistent with the ones we already discussed. Also in this
case, Azure DocumentDB is on the average 1.5 times faster
than Azure SQL Database when up to 100 concurrent users
are considered but Azure DocumentDB cannot serve all
the requests when 200 users are considered. For the POST
service, the number of users has also an impact on the
response time of Azure SQL Database, that increases when
200 users are considered. Hence, concurrent inserts in Azure
SQL Database are less scalable than simultaneous select
operations.

Based on the results reported in Figures 1-2, we can also
notice that for both databases the average response time of
the select operation (GET web service) is at least two times
lower than the average response time of the insert operation
(POST web service). This is probably related to the fact
that select operations can be performed in parallel without
needing to lock the input resources.

2) Impact of the number of records: Another factor
that could potentially impact on the performances of the
databases is the number of records already stored in the
databases. For this reason we performed a scalability test by
varying the number of records from 250,000 to 1,000,000.
We considered 50 concurrent users and the most efficient
configurations, among the considered ones, of Azure SQL
Database and Azure DocumentDB. The results for the
GET web service are reported in Figure 3. The achieved
results show that the average response time seems to be
independent of the database cardinality. In fact, the average
response time of Azure SQL Database ranges from 102ms to
104ms (2ms can be considered a non-significant difference
considering that the reported response times include also
the communication costs). A similar consideration holds
for Azure DocumentDB, which is faster than Azure SQL
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Figure 4. GET operation. Average response time with respect to the number of concurrent users. Number of records = 1,000,000. Number of users = 50.
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Figure 5. Success rate with respect to the performance level of the database. Number of records = 1,000,000.

Database also in this set of experiments. The results obtained
for the POST web service, which are not reported in this
paper, are similar to the ones discussed for the GET web
service.

3) Impact of the database performance level: The last set
of experiments is focused on the impact of the performance
level of the database. We performed these experiments to
understand which performance level, and hence cost, is
needed to retrieve and insert data from a geospatial DBaaS
database in the considered use case scenario. However,
similar considerations holds also for similar applications in
analogous geospatial softwares. We performed the experi-
ments by using the 1,000,000 records data set and we set
the number of concurrent user to 50.

Figure 4(a) shows that all the considered Azure SQL
Database configurations/tiers are characterized by a similar
average response time and hence can be used to efficiently
and satisfactory answer to the end users requests. Differently,
for Azure DocumentDB (see Figure 4(b)) only the top two

configurations (characterized by 29200RUs and 60400RUs,
respectively) can succeed to answer to the all the concurrent
requests of the end users. Hence, for the considered use case,
the configuration with 13500RUs is not sufficient and 0.3%
of the requests reach the timeout and fail.

To analyze in more details the impact of the performance
level of the database on the quality of the application, we
analyzed also the success rate3 of the executed requests with
respect to the database configuration and the number of
concurrent users. The results reported in Figure 5(a), con-
sistently with the results of the previous experiments, show
that Azure SQL Database has always a success rate equal to
100%, independently of the number of concurrent users and
the database configuration. Differently, Azure DocumentDB
is characterized by some fails (see Figure 5(b)). As expected,
the higher the number of concurrent users the lower the
success rate. Moreover, the success rate is also clearly related

3The success rate is the ratio of the user requests that success.



to the number of RUs and hence to the cost of the considered
Azure DocumentDB configuration.

B. Summary of the experimental evaluation

The performed experiments allow drawing some general
empirical conclusions about the two geospatial DBaaS-based
databases benchmarked in this experiments. Both databases
are characterized by good average response times and hence
they can be used in the back-end of geospatial applica-
tions that select objects based on their location or submit
geolocated objects. On the average Azure DocumentDB is
faster then Azure SQL Database, also thanks to sharding
that allows parallelizing the execution of the user requests
over several nodes. However, Azure SQL Database scales
better than Azure DocumentDB with respect to the number
of concurrent users submitting simultaneous requests.

VI. CONCLUSION AND FUTURE WORK

In this paper, we performed a comparative analysis of
geospatial databases for two different point of views: (i) a
qualitative comparison based on the features of the con-
sidered databases and (ii) an empirical comparison of the
average execution times, based on a large campaign of
experiments. Both analyses highlight pros and cons of the
considered databases and provide some practical insights
about the best database depending on the number of expected
concurrent users, data set cardinality, and budget.

We plan to extend the performed analysis by considering
more complex types of queries, based for instance on
intersection between areas, and real data.
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