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Abstract Here we discuss the Mersenne numbers to give an example of a generalized sum.
Using this sum, a recurrence relation is given.
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Of generalized sums of numbers, we have given some examples in previous works [1-3]. Here

we propose the study of the Mersenne Numbers,  using the same approach.  About  these

numbers, a large literature exists (see for instance that given in [4]).  The form of the numbers

is that of a power of two minus 1. Among them we find the Mersenne primes. The numbers are

named after Marin Mersenne (1588 – 1648), a French Minim friar, who studied them in the

early 17th century.

Mersenne numbers are: 

M n=2
n−1

Let us consider them to give an example of generalized sum. We can start from the following

calculus:

. Mm+n=2
m+n−1

Mm+n=2
m+n−1=2m2n−1−2m+2m−2n+2n−1+1=2m(2n−1)−1+2m−2n+1+2n−1

Mm+n=(2m−1)(2n−1)+2m−1+2n−1

Therefore, we can write the following generalized sum:

Mm+n=Mm⊕M n=(2m−1)(2n−1)+(2m−1)+(2n−1)

or:

                                        (1)  Mm+n=Mm⊕M n=Mm+M n+MmM n
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This is a generalized sum that we find in the case of the multiplicative groups (for the use of

multiplicative groups in statistics and statistical mechanics see [5,6]).

Using (1), for the Mersenne numbers we can imagine the following recursive relation:

M n+1=M n⊕M 1=M n+M 1+M nM 1

That is:

2n+1−1=(2n−1)+(21−1)+(2n−1)(21−1)=2n+2n+1−2n−2+1=2n+1−1

The sum  (1) is associative, so that:

Mm⊕M n⊕M l=Mm+M n+M l+MmM n+M nM l+MmM l+MmM nM l

We cannot have a group of the Mersenne numbers, without considering also the opposites of

them, so that:

0=M n⊕Opposite(M n)

Therefore:

Opposite(M n)=−
M n

M n+1
=M−n

Explicitly: 

Opposite(2n−1)=− (2n−1)
(2n−1)+1

=(−2n+1)
2n

=2−n−1

These numbers are the Mersenne numbers with a negative exponent. So we have:

M nnn=M n⊕M−n=M n+M−n+M nM−n

0=20−1=(2n−1)+(2−n−1)+(2n−1)(2−n−1)=2n+2−n−2+2n2−n−2−n−2n+1=0
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