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SUMMARY. Cohesive zone (CZ) models have long been used by the scientific community to 
analyze the progressive damage of materials and interfaces. Based on these models, non-linear 
relationships between tractions and relative displacements are assumed. These relationships dictate 
both the work of separation per unit fracture surface and the peak stress that has to be reached for 
the crack formation. This contribution deals with T-spline-based isogeometric CZ modeling of 
interface debonding, where the path of the debonding crack is known a priori. The interface is 
discretized with zero-thickness contact elements which account for both contact and debonding 
within a unified framework, using a Gauss-point-to-surface formulation. Depending on the contact 
status, an automatic switching procedure is used to choose between cohesive and contact models. 
The continuum is discretized with cubic T-splines, as well as with cubic Non Uniform Rational B-
Splines (NURBS) and Lagrange polynomial elements for comparison purposes. Results for the 
double cantilever beam test and for the peel test with varying resolutions of the process zone and 
varying number of Gauss points used for the enforcement of the contact constraints are presented 
and compared. The superior accuracy of T-splines interpolations with respect to the NURBS and 
Lagrange ones for a given number of degrees of freedom is verified. 

1 INTRODUCTION 
Interfacial debonding often results in failure of laminated or generally jointed structures. 

Different numerical approaches have been proposed in the literature for the simulation of this 
process. Due to the appealing feature of predicting both the debonding onset and its growth, 
cohesive zone models (CZMs) have been widely used as numerical tool to simulate debonding as a 
result of the progressive decay of cohesive forces and the formation of traction-free surfaces 
between two materials or laminated structures where the potential cracks are known a priori [1,2].  

The numerical application of CZMs for debonding problems within finite element frameworks 
suffers from an intrinsic discretization sensitivity. Unless a sufficiently fine mesh discretizes the 
process zone of a cohesive crack, a sudden release of energy in large cohesive zone elements 
causes a sequence of artificial (non physical) snap-through or snap-back points in the global load-
deflection response, thus compromising the numerical efficiency [3]. Such situations lead to major 
numerical difficulties in solving the global system of equations, due to the fact that a standard 
Newton-Raphson iterative scheme fails to converge in the case of snap-backs or snap-through. A 
current solution strategy with respect to this problem aims at eliminating or reducing the 
oscillations.  Since the observed oscillations are discretization-induced, they are alleviated through 



 2 

mesh refinement. In contrast to refinement of the entire domain, local refinement of the process 
zone is a computationally more efficient alternative. To this end, different surface enrichment 
strategies have been developed in the literature using different types of enrichment functions for 
CZ interface elements [3,4], as well as for contact elements [5]. These techniques, however, only 
affect the interacting surfaces and leave the bulk behavior of the solid unaltered. Moreover, they 
typically do not increase the degree of continuity of the parameterization at the inter-element 
boundaries which is also responsible for unphysical stress oscillations at the interface. 

The isogeometric analysis (IGA) framework [6] has already demonstrated to guarantee 
substantial advantages in the computational treatment of unilateral contact by applying both 
NURBS and T-Splines [7-9]. The contact pressure distributions stemming from NURBS 
parameterizations are always non-negative and are virtually insensitive to changes in the 
interpolation order. In contrast, higher-order Lagrange parameterizations are sensitive to 
interpolation order, often display spurious oscillations, and may attain significant unphysical 
negative values. Moreover, for contact between smooth bodies the higher continuity achieved by 
the isogeometric discretization eliminates the need for special treatment of corner/edge cases or 
normal averaging procedures  and enhances iterative convergence and robustness in the solution of 
the non-linear problem. 

As a design tool NURBS, surfaces are limited by the simple fact that they are four sided, and 
their control mesh consists of a tensor product grid of control points. In the context of refinement 
this means that adding new control points to a NURBS surface entails adding entire rows or 
columns of control points to maintain this tensor product structure. Differently from NURBS, T-
splines allow local refinement due to the introduction of T-junctions and extraordinary points [10]. 
The T-Spline-based isogeometric approach is particularly suitable for CZ modeling, due to the 
high resolution required by these models in the process zone. Furthermore, in the isogeometric 
setting the discretized crack surfaces feature higher order inter-element continuity with respect to 
classical finite elements. In this contribution, debonding problems at known interfaces are treated 
with CZ modeling within the T-spline-based isogeometric framework, from which the NURBS 
framework can be recovered as a special case. The T-spline-based discretization is developed from 
the finite element point of view, using the Bézier extraction. The idea is to extract the linear 
operator which maps the Bernstein polynomial basis on Bézier elements to the global T-spline 
basis. In this way the isogeometric discretizations are automatically generated for any analysis-
suitable CAD geometry and easily incorporated into existing finite element frameworks [9,10]. A 
commercial T-spline plugin has been introduced recently for Rhino3d by Autodesk which is 
capable of defining and exporting analysis-suitable T-spline models (based on Bézier extraction) 
for use in IGA. This plugin is used to build the T-spline analysis models adopted in this study from 
a finite element point of view. 

2 NUMERICAL MODEL 

2.1 Isogeometric analysis: T-splines fundamentals 
In this section, the T-splines technology is briefly reviewed. We refer to [10] for details. In what 
follows we focus on cubic T-splines surfaces due to their predominance in industry. The spatial 
and parametric dimensions is denoted by ds  and dp , respectively. We denote also an element 
index by e  and the number of non-zero basis functions over an element e

 
by n . An important 

object of interest underlying T-spline technology is the T-mesh. For surfaces, a T-mesh is a 
polygonal mesh and we will refer to the constituent polygons as elements or, equivalently, faces. 
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Each element is a quadrilateral whose edges are permitted to contain T-junctions – vertices that are 
analogous to hanging nodes in finite elements. A control point, PA ∈ℜds,ds = 2

 
and control 

weight wA ∈ℜ  where the index A denotes a global control point number, is assigned to every 
vertex in the T-mesh. The valence of a vertex is the number of edges that touch the vertex. An 
extraordinary point is an interior vertex that is not a T-junction and whose valence does not equal 
four. Figure (1) shows an unstructured T-mesh. Notice the valence three and valence five 
extraordinary points denoted by open circles. The single T-junction is denoted by an open square.  
 

  
Figure 1: An unstructured T-mesh. Extraordinary points are denoted by open circles and T-
junctions are denoted by open squares. 

 
In this paper, we develop T-splines from the finite element point of view, utilizing Bézier 
extraction. The idea is to extract the linear operator which maps the Bernstein polynomial basis on 
Bézier elements to the global T-spline basis. The linear transformation is defined by a matrix 
referred to as the extraction operator and denoted by Ce . The transpose of the extraction operator 
maps the control points of the global T-spline to the control points of the Bernstein polynomials. 
Figure 2 illustrates the idea for a B-spline curve.  

 
Figure 2: Schematic representation of Bézier extraction for a B-spline curve. B-spline basis 
functions and control points are denoted by N and P , respectively. Bernstein polynomials and 
control points are denoted by B and Q , respectively. The curve T (ξ ) = PTN(ξ ) =QTB(ξ ) . 
 
This provides a finite element representation of T-splines, and facilitates the incorporation of T-
splines into existing finite element programs. Only the shape function subroutine needs to be 
modified. All other aspects of the finite element program remain the same. Based on the 
isoparametric approach, the unknown displacement field, its variation and the coordinates in the 
current configuration over a contact element have been defined as follows 

 ue(ξ ) = Re
a (

a=1

n

∑ ξ )uea δue(ξ ) = Re
a (

a=1

n

∑ ξ )δuea xe(ξ ) = Re
a (

a=1

n

∑ ξ )xea ,  (1) 

Q = CTP

N = CB
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where uea  , δuea  and xa
e are the unknown  displacement, displacement variation, and current 

coordinate of the control point PA , respectively, A = IEN(a,e) is a mapping from the local 

element numbering to the global control point numbering, and Ra
e ξ( ) is the generic rational T-

spline basis function pertaining to element e .  Note that xa
e =Xa

e +ua
e . 

2.2 Gauss-point-to-surface (GPTS) contact and debonding algorithm 
In this work, the interface is discretized with zero-thickness contact elements which account 

for both contact and debonding within a unified framework, using a Gauss-point-to-surface 
formulation as proposed in [11]. The algorithm has been here implemented in the finite element 
code FEAP (courtesy of Prof. R.L. Taylor) for NURBS and T-Splines discretizations. This 
formulation is characterized by the independent enforcement of the contact constraints at each 
quadrature point associated with the frictionless contact contribution to the virtual work. The 
virtual variation of the contact contribution to the potential is expressed as  

   
 δWc = pN δgN dΓ

Γc

∫ ,  (2) 

where the integral is evaluated on the pull-back of the active contact region in the reference 
configuration, Γc , through the use of an active set strategy. In eq. (2), pN denotes the normal 
cohesive or contact force, and gN is the normal gap between the two bodies in contact, one of 
which is taken as ‘slave’ and the other as ‘master’. The gap can be expressed as follows 

   
 gN = x

s − xm( ) ⋅n,  (3) 

 
In eq. (3), n = nm is the outward normal unit vector to the master surface, while xs,xm represent 
the current positions of a point of the slave body, and of its closest-point projection on the master 
body, respectively. With this definition, for positive gN

 
cohesive forces arise, and for negative 

 penetration between the bodies takes place and the contact algorithm is activated. The non-
penetration condition is here enforced in the normal direction using the penalty method. 
Depending on the gap status, an automatic switching procedure is thus used to choose between 
cohesive and contact models. The resulting non-linear problem is solved with a Newton-Raphson 
procedure. The global tangent stiffness matrix is obtained with a consistent linearization of eq. (2). 
Such a linearization yields  

 

 ΔδWc =
∂pN
∂gN

ΔgN δgN dΓ
Γc
∫ + pNΔδgN

Γc
∫ dΓ,  (4) 

 
where the symbols δ

 
and Δ denote, respectively, virtual variation and linearization. The 

geometrical parameters δgN
 
and ΔδgN are determined based on the contact T-spline element 

geometry as  

 δgN = δu
TN ΔgN =N

TΔu ,  (5)  

where the following vectors have been defined  

gN
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In eq. (6) ns  and nm   are the number of basis functions having support on the element of the slave 
and master body, respectively, where the quantities are currently being evaluated; ξs are the 
parametric coordinates of the point on the slave surface where the quantities are being evaluated, 
and ξm are the parametric coordinates of the respective projection point on the master surface. The 
normal traction forces pN as well as their partial derivatives with respect to the normal relative 
displacements ∂pN /∂gN depend on the cohesive or contact law parameters. By substitution of eq. 
(5) in eq. (2), the cohesive or contact contribution to the residual vector for the Newton-Raphson 
iterative solution of the non-linear problem is obtained as  
 
 R = pNN

Γc
∫ dΓ,  (7) 

 
For positive gaps, a bilinear cohesive zone law is here considered whose simple shape is able to 
capture the main characteristic parameters of interfaces, i.e. the cohesive strength, Pn,max, the 
critical value of the normal relative displacement, gNu, as well as the linear-elastic properties (slope 
of the curve in the ascending branch). For the law chosen in this study, it is (see also Figure 3) 
 

 
∂pN
∂gN

=

εN for gN < 0
pNmax
gNmax

for 0 ≤ gN < gNmax

−pNmax
gNu − gNmax

for gNmax ≤ gN < gNu

$

%

&
&
&

'

&
&
&

,  (8) 

where εN
 
is the penalty parameter. 

 

  
 Figure 3: Interfacial tractions-relative displacements law in the normal direction. 
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3 NUMERICAL RESULTS 

3.1 Numerical examples 
Two examples involving large deformations in plane stress conditions are now presented to 

demonstrate the accuracy and quality of the proposed contact and debonding formulation. For 
comparison purposes, not only T-splines but also NURBS and Lagrange discretizations are 
employed. The generation of the geometry and refinement are first conducted on the exact T-
spline parameterization, where T-junctions are locally added in the meshes near the contact 
surfaces, and then converted to the NURBS and Lagrange parameterizations, for the same global 
number of degrees of freedom ( D0 ).  

As first example, we consider the classical mode-I double cantilever beam (DCB) in plane 
stress, used in the ASTM3433 standard to determine the mode I fracture toughness. A specimen 
with length L =14mm , width w =1mm , thickness h = 0.2mm , and precrack length a0 = 4mm , 
is gradually pulled apart in displacement control (Figure 4a). An elastic isotropic behavior is 
assumed for both master and slave bodies, with material properties E =120GPa and ν = 0.2 . 
The penalty parameter is εN =10

5 , and two Gauss points are considered for each element of the 
contact interfaces. The global results in terms of load-deflection response is evaluated by 
considering two different mesh refinements with D0 = 280 andD0 =1956 , respectively, such 
that the element size at the interface is always less than the length of the fracture process zone 
wherein the cohesive traction-separation law is defined and the energy is dissipated. The effect of 
the interfacial strength on the numerical results is then studied by considering two different 
interfacial strengths ( pNmax = 4MPa , and pNmax = 6MPa  respectively), for a fixed critical 
energy GIC = 0.1N /mm and a fixed ratio between the ultimate and maximum opening 
displacements gNu / gNmax =12.5  (Figure 5a).  

The second example consists of a peel test between a fiber-reinforced polymer strip with length 
L2 =150mm and thickness h2 = 2mm adhering to a concrete substrate with length L1 =120mm  
and thickness h1 =10mm . The strip is peeled off the substrate by applying a vertical displacement 
at the right boundary, as shown in Figure 4b. An elastic isotropic behavior is assumed for both the 
bodies, with material properties E1 = 5MPa and ν1 = 0.2 for the substrate and E2 = 250MPa
and ν2 =ν1  for the strip. Plane stress conditions are considered. The cohesive parameters are here 
taken as pNmax = 6MPa , GIC = 0.1N /mm , gNu / gNmax =10 (see Figure 5b), and a quite fine 
mesh with a total number of degrees of freedom D0 = 3700 is here adopted to discretize the 
specimen. The penalty parameter εN is set to 103 , and two Gauss points are considered for each 
element of the contact interfaces. 

 

             
                 (a)                                              (b)    

Figure 4: The DCB (a) and the peel test (b) scheme. 
 

 
 

 

 

k 

-u 

 L 
 a0 

 u 

 u 

 L 
 Lad 

 2h 

 h1 

 h2 

 
 

 

 

k 

-u 

 L 
 a0 

 u 

 u 

 L1 
 Lad 

 2h 

 h1 

 h2 

 L2 



 7 

                                  
                 (a)                                 (b)    

 Figure 5: Cohesive zone laws: the DCB test (a) and the peel test (b). 

3.2 The Double Cantilever Beam results 
Results for the DCB test with varying resolutions of the process zone are now presented for T-

splines, NURBS and Lagrange discretizations with the same cubic polynomial order. In Figure 6, 
T-Splines interpolations are shown to outperform the NURBS and Lagrange interpolations for a 
given number of degrees of freedom. The solutions with T-splines feature significantly smaller 
oscillations during the entire debonding phase (i.e. in the softening branch of the curves) in 
comparison with NURBS and Lagrange solutions, thus reflecting the better ability of T-Splines to 
capture the debonding phenomena taking place in the process zone. This is due to their local 
refinement capability, and to the consequent better resolution of the interface for a given number 
of degrees of freedom. The worst results are always given by the Lagrange discretization. These 
results feature significant irregular oscillations in the debonding phase, due to the C0 continuity at 
the inter-element boundaries as opposed to the C2 continuity of both NURBS and T-Splines IGA 
basis functions. 
 

  

  
 (a) Lagrange  (b) NURBS  (c) T-splines 

 Figure 6: Load-displacement curves for CZM 1. εN =10
5 and GP = 2 . 
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The effect of the increase of the interfacial strength is to reduce the length of the fracture 
process zone and therefore to decrease the number of elements spanning this zone. It is expected 
that if the fracture strength pNmax  is increased to a point where less than one element spans the 
fracture process zone, convergence is no longer achieved or inaccurate results are found. For the 
limit case when pNmax  tends to infinity, the size of the fracture process zone vanishes and the 
analytical solution based on elastic bending theory and linear elastic fracture mechanics (LEFM) 
becomes applicable. The LEFM curve is here considered for comparison purposes in all plots. By 
comparing Figures 6 and 7, it is evident as increasing the cohesive strength leads to more severe 
irregularities and oscillations in the global response both for Lagrange and NURBS discretizations. 
The process zone is localized in a smaller region spanning less elements, and a higher mesh 
resolution near the crack tip would be necessary to capture well the results. Also in this case, the 
T-spline global response is remarkably smooth and exhibits few oscillations with limited 
magnitude only for the coarsest analyzed mesh.   

 

  

  
 (a) Lagrange  (b) NURBS  (c) T-splines 

 Figure 7: Load-displacement curves for CZM 2. εN =10
5 and GP = 2 . 
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5  and the highest pNmax here 
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 (a) Lagrange  (b) NURBS  (c) T-splines 

Figure 8: Load-displacement curves for CZM 2. Effect of the number of Gauss points on each 
contact element. εN =10

3 . 

3.1 The peel test results 
The peel test in Figure 4b has been analyzed for varying adhesive length Lad from 60mm up to 

120mm. Figure 9 shows the computed global load-displacement curves of the peeling process for 
the three discretizations.  

 

         
                (a) Lagrange and T-splines     (b) NURBS and T-splines  

 Figure 9: Load-displacement curves. εN =10
3  and GP = 2 . 
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and reduces the amplitude oscillations without increasing the computational cost. 

4 CONCLUSIONS 
This work evaluates the performance of T-splines-based isogeometric analysis for 2D mode-I 

debonding problems, as exemplified by a double-cantilever-beam and a bimaterial peel test. Based 
on the isogeometric concept in which the T-Splines representation of the bodies from CAD is 
maintained in a finite element environment, an integrated approach accounting for debonding and 
frictionless contact is implemented in the FEAP code for NURBS and T-Splines discretizations in 
2D. A Gauss-point-to-surface formulation is adopted whereby a desired number of quadrature 
points is located on the contact surface and the contact/cohesive zone constraints are enforced 
independently at each of these points. The superior accuracy of T-spline interpolations with 
respect to the NURBS and Lagrange ones is proved by analyzing the global load-displacement 
curves for given number of degrees of freedom. This is due to the combined effect of the higher 
continuity achieved at the inter-element boundaries, the non-negativeness of the isogeometric 
basis functions, and the local T-spline refinement capability. The final outcome is that relatively 
coarse T-spline meshes (compared to the other types of interpolations) can be adopted for the 
analysis of debonding problems, thus reducing the computational expense, and accurate results 
with no visible oscillations in the global response curves can be obtained.  
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