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Abstract 

The effect of a pulsed laser irradiation (Nd:YVO4, 1064 nm) in air on the surface morphology and chemical composition of 

silicon carbide and on the adhesion with an epoxy adhesive was investigated. Scanning and transmission electron 

microscopies, atomic force microscopy, and X-ray photoelectron spectroscopy revealed that the laser treatment reduced the 

contamination level of the surface and induced the formation of a silica-based nanostructured columnar layer on the SiC 

surface. The mechanism for the formation of five different microstructural regions is described in this paper. In addition, 

the formation of a 5-10-nm-thick 

graphite layer between the oxide layer and SiC was observed. The joining test    with Hysol
® 

EA9321 showed that the 

nanostructured columnar silica layer was completely infiltrated by the adhesive, thus leading to a significant increase in the 

joined specific area and a mechanical interlocking at the adhesive/substrate inter- face. Nevertheless, the apparent shear 

strength of the joined SiC samples slightly decreased after the laser processing of the surfaces from about 42 MPa for lapped 

SiC to about 35 MPa for laser-nanostructured SiC. The formation of the graphite layer was found to be responsible of the 

poor adhesion properties of the SiC sur- faces modified by the laser radiation. 

 
K E Y W O  R DS  

adhesives/adhesion, graphite, laser, silicon carbide 

1.  INTRODUCTION 

In the aerospace industry, there is a strong demand for the use of specific materials to face harsh operational conditions in 

conjunction with high performance and reliability. In the past decades, Airbus DS GmbH (former EADS Astrium) developed, 

in collaboration with a ceramic manufacturer (BOOSTEC Industries, France), the Sintered Silicon Carbide (S-SiC) technology 

for space applications, ie, large ultrastable lightweight optical instruments.
1,2 

Several projects for space based on telescopes and 

mirrors, such as Herschel, Gaia, and NIRSpec
3-5 

exploit the outstanding properties of this SiC material, among them the 

excellent microstructural and compositional homogeneity, the low residual internal stresses, the isotropic, and low    

coefficient of thermal expansion (CTE) as well as the excellent thermal and mechanical properties.
6
 

Beside the material manufacturing process, several assembly techniques like bolting, brazing, bonding, etc.
1 

were also 

developed to enhance SiC applications. Generally, before similar or dissimilar adhesive bonding, the SiC has to be accurately 

polished by an expensive lapping process, which significantly reduces the flexibility in the component design. 

Previous studies, carried out by Airbus Group Innovations and Airbus DS GmbH, demonstrated that a laser radiation can 

be used as an alternative and effective new technology for surface pretreatment of metals and several ceramics before 

bonding.
7,8 

When the  laser  treatment of the surface led to the formation of a nanostructured layer

an increase in the bonding performance was always achieved.
7 
The main advantages of the laser surface modification are: 

1. Cleaning and activation of the surface due to a one-step pretreatment, 

2. Increased surface area and enhanced mechanical/chemical anchoring of adhesive, 

3. Complete dry & environmental friendly process (ie, no hazardous chemicals are used to modify the surface, REACH 

conform), 



4. High reproducibility, the very accurate control of the process increases the quality, 

5. Easy implementation in automatic and production machinery, 

6. Time efficient and resource saving process (nearly no human influence). 

 
The modification of SiC surfaces by laser ablation prior to bonding was recently proposed by Harris et al. and Starikov et 

al.
9-11 

In these studies, the modified SiC surfaces showed a micro-pattern (micro-stripes or microcolumn arrays), which may 

negatively affect the mechanical properties of the ceramic material; indeed, a cohesive failure in the SiC adherents and not 

within the adhesive occurred when adhesively bonded joints were tested by apparent shear test in Ref.
9  

Although the laser 

treatment improved  the shear strength of the joined components, a lack of cohesive failure within the adhesive suggested that 

the maximum strength of the joints was not  achieved.
9
 

In this paper, the laser radiation in air was applied on SiC to obtain a homogeneous nanostructured oxide layer, which does 

not decrease the mechanical properties of the ceramic. A thorough study on the effect of the laser irradiation on the surface 

morphology, chemical composition, and adhesion properties of SiC was performed. For the first time, the cross section of the 

laser-affected zone was investigated using Focused Ion Beam technique, followed by detailed analysis of the cross sections 

using scanning and transmission electron microscopy. These detailed investigations led to the detection of a graphite layer at 

the oxide layer/SiC interface. This is the first report on the formation of such a graphite layer during laser irradiation of SiC in    

air and the mechanism for the formation of the laser- affected zone on SiC was proposed accordingly. 

 
 

2. EXPERIMENTAL PROCEDURE 

The silicon carbide used in this study was Boostec
®
SiC (former SiC100

®
) produced by Mersen (Bazet, France). It is a 

polycrystalline -SiC (>98.5 wt% SiC, no traces of free silicon) obtained by pressure less sintering. Chemical composition and 

properties of Boostec
®
SiC are reported in.

6 
As a reference for the bonding pretreatment, the lapped surfaces of SiC were used 

with a global flatness of below 5 µm. 

The laser-based surface modification of SiC with as sintered surface quality was carried out with the laser system 

PowerLine E Air 25 from Rofin (Bergkirchen, Germany) in air. This original designed laser system is a nanosecond pulsed 

Neodymium-doped Yttrium-Orthovanadate laser (Nd:YVO4) with a wavelength of 1064 nm. The laser system has an average 

supply power of 25 W and allows a pulse frequency from continuous wave (cw) up   to   200 kHz. During this study, a wide 

parameter study was executed covering the entire power intensity spectrum of the laser system. The discussed parameters are 

representative for the achieved results. 

Boostec
®
SiC samples (25x25x5 mm

3
) with lapped and laser-treated surface qualities were bonded to similar SiC- SiC joints 

using Hysol
® 

EA9321 (Henkel Corporation, Rocky Hill, CT), a two-component thixotropic paste adhesive, which was cured at 

room temperature for 8 days. 

As sintered, lapped and laser-structured SiC as well as joined SiC-SiC specimen were characterized using scanning 

electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detector (AURIGA FIB-SEM Instrument, Carl Zeiss 

Microscopy GmbH, Jena, Germany), transmission electron microscopy (TEM) (200 kV, JEOL 2010, FIB preparation of 

lamellas was done using FEI Quanta  3D  FEG 200/600, FEI Company, Hillsboro, OR), Atomic force microscopy (AFM) 

(Innova, Bruker Corporation, Boston, MA, analyses performed in tapping mode), and X-ray photoelectron spectroscopy 

(XPS) (Quantum 2000 Scanning ESCA Microprobe, Physical Electronics GmbH, Ismaning, Germany). The SEM analysis for 

lateral view of some the laser-treated SiC was performed on fractured surface achieved by cutting with a diamond wire saw 

(Modell 6234, Mannheim, Germany) from the back side up to 0.5-1.0 mm and the sample was then broken up after cooling in 

liquid nitrogen. 

The sessile drop technique was used to measure the sur- face wettability and energy of lapped and laser-structured SiC 

(Drop Shape Analyzer DSA100, Kruss GmbH, Hamburg, Germany). Distilled water and glycerol were used to determine the 

surface energy using the Owens and Wendt method.
12

 

The mechanical properties of SiC after laser treatment was evaluated by the co-axial ring in ring test according to DIN 

EN1288-5
13 

with a statistic of six samples. 

The mechanical strength (apparent shear strength) of the joined samples was determined using a single lap offset (SLO) test in 

compression according to a method adapted from standard ASTM D1002-05 (universal testing machine SINTEC D/10).
14 

The 

dimensions of the samples are reported in Figure 1. The samples were bonded with a joining area of 12.5x25 mm
2 

and a 

bonding gap thickness of 0.3 mm. For each joint three samples were tested. All the fracture surfaces were macroscopically 

characterized according to DIN EN ISO 10365.15 

 
 



 
 

FIGURE 1 Sample and test configuration for the single lap offset test 

 

 
3. RESULTS AND DISCUSSION 

3.1 Surface morphology and chemical characterization 

Figure 2A, B show the surface morphology of as sintered and lapped SiC, respectively. The residual porosity observable on as 

sintered and lapped SiC surfaces is due to the pressure less sintering process and was estimated to be about 2% in volume 

with a fine SiC powder grain size of <1 µm up to 2 µm (Figure 2A).
1

 

Figures 2C,3 show the morphology of the SiC surface after laser treatment that led to the formation of a homogeneous 

open porous nanostructure. The laser-structured zone consisted of the agglomerates of spherical nanoparticles that had an 

average diameter of about 5-30 nm (Figure 2C).  The cavities between the single agglomerates (red arrows in Figures 2C,3 

and 4) define, with their size and number, the degree of open porosity formed on the surface during the laser treatment. As 

shown in the lateral view of the laser treated as sintered SiC in Figure 4, when the laser parameter set-up was optimized, the 

cavities and agglomerates were homogenously distributed in both orientations, parallel and perpendicular to the surface, and 

formed a nanostructured columnar thin film on the SiC surface (~1 µm thick). This peculiar morphology led to an extensive 

increase in the surface area that, when completely penetrated by the adhesive, should create a mechanical anchoring system 

expected to enhance the mechanical performance of bonded samples. 

Table 1 shows the chemical composition of the as sintered and the laser-treated SiC surfaces as quantified by XPS. The 

position O1s peak at 532.9 eV and Si2p peak at 

103.5 eV, found in spectra of the laser-treated surfaces (figures not reported here), were consistent with the Si-O bonds in 

SiO2.
16 

This indicates that the nanostructured columnar layer formed during laser irradiation in air is primarily composed of 

silica SiO2. 

Furthermore, after the laser process in air, it was found that the carbon content was reduced for all laser parameter set-ups 

to less than 5 at. % in comparison with the usual content on the as sintered SiC of about 25 at. % or higher (C nonbonded to 

Si as Si-C). From dedicated carbon C1s spectra (figures not reported here) it is assumed that this is adventitious C (carbon 

contamination originating from the environment). These results demonstrate that the laser treatment had a cleaning effect and 

led to a significant reduction in surface contamination, as already observed by Kurtovic et al.
7 

on laser-treated Ti alloy.  The 

cleaning effect on the SiC surface was found to be stable after four weeks of storage in laboratory environment, only wrapped 

in a laboratory wipe and aluminum foil. 

 



 
 

FIGURE 2 SEM micrographs showing the top view of the (A) as sintered SiC, (B) lapped SiC, and (C) laser-treated SiC.  

 
 

 
 

FIGURE 3   Atomic force microscopy images of the laser-treated SiC surface.  
 

 
 

FIGURE 4 SEM micrograph showing the lateral view of the laser-nanostructured SiC surface.  

 
TABLE 1 Chemical composition of the as sintered and laser- treated SiC surfaces as quantified by XPS 

 

Element C N O Si Na 

As sintered SiC [at.%] 44.6 14.6 18.8 21.3 0.7 

 

 

 
TABLE 2 Contact angle and surface energy for lapped SiC and laser-treated SiC 

 

       

     

Lapped SiC 54 57  44 5 49 

Laser-treated SiC 15 33  79 3 82 

 

The sessile drop technique was used to determine the effect of the nanostructured columnar silica layer formation on the 

wettability. The results are shown in Table 2, where the surface energy has been divided into polar and dispersive components 

using Owens and Wendt’s method. It was found that the laser treatment significantly increased the wettability    and    surface    

energy    with a very high contribution of the polar component. The measured values are in agreement with the wettability and 

surface energy measured by Harry et al. for laser-processed SiC and they were expected to improve the adhesive bonding 

(A) (B) (C) 

Laser-treated SiC [at.%] 3.7 – 70.3 26.0 – 

 

Sample 

Angle (°) 

Water  Glycerol 

Surface energy (mJ/m2) 

Polar Dispersive Total 

 



± 

strength.
9

 

 
3.2 Mechanical strength of bulk SiC and joints 

The co-axial ring in ring test was performed, according to DIN EN1288-5, to evaluate the effect of the laser treatment on the 

mechanical strength of Boostec
®
SiC.  During the test, the tensile stress is increased at a constant rate and the most severely 

stressed region corresponds to the lower surface area defined by the loading ring. Any surface damage would cause a 

significant reduction in strength of the ceramic. 

The bending strength of SiC after laser treatment was 383 ± 28 MPa. This value is comparable with the reference value of 354 

±26 MPa (lapped SiC), thus demonstrating that the laser treatment had no detrimental effect on the mechanical properties of 

the bulk SiC material. 

In addition, after the mechanical tests, the fractography was performed to study the initial crack propagation. All samples 

(reference and laser treated) showed that the initial crack started inside the bulk SiC material at pores originating from the 

SiC manufacturing process. Figure 5 exemplarily shows the cross section of the laser treated as sintered SiC material and the 

large size ratio between a manufacturing process-related pore and the laser-induced surface morphology. 

The single lap offset (SLO) test in compression was used to evaluate the adhesion properties of SiC surfaces after laser 

treatment from low to high-energy densities. The selected adhesive, Hysol
® 

EA9321, is thixotropic two c o m p o n e n t s  

epoxy paste glue, which is well-known in the space industry.  This adhesive is characterized by a good toughness as well as 

stable strength values up to about 80°C.
17

 

 

 

 

 
 

FIGURE 5 SEM cross section of laser-treated SiC with the nanostructured silica layer on the top covering the SiC surface and a large pore in the 

ceramic formed during the manufacturing process of the SiC 

The measured apparent shear strength of the lapped SiC-SiC joints showed a reference value of 41.6 ±0.9 MPa and could 

not be reached by the laser- treated joined SiC samples, with a value of 34.8 ± 3.4 MPa.  This apparent shear strength of about 

35 MPa is a satisfactory value and, for a lot of applications, it would meet the mechanical requirements. However, it was the 

first time that the nanostructured modified surface obtained with the laser irradiation before bonding resulted in complete 

adhesive failure behavior. According to previous studies, carried out at Airbus Group Innovations and Airbus DS GmbH, on 

laser nanostructuring of different metallic and ceramic material surfaces, a cohesive failure mode in the adhesive was expected 

for the joints with laser pretreated bonding partners.
7 
However, the fracture surface characterization (Figure 6) evidenced 

adhesive failure mode for all investigated samples (lapped and laser-treated SiC-SiC joints). Furthermore, the adhesively failed 

surface showed   a very intense shiny surface characteristic, much more than the lapped SiC surface (Figure 6). This is a further 

indication for an unexpected failure mode occurred in combination with the laser irradiation of SiC, which differs from all 

previous investigated and assessed materials. 

 
3.3 Characterization of the laser-affected zone 

For a better understanding of the failure mechanism, further analyses were carried out to investigate the morphology and the 

composition of the laser-affected SiC. 

Figure 7 shows FIB lamella preparation of a laser treated SiC/Hysol
® 

EA9321/laser-treated SiC joint and a higher 

magnification at the interface between the silica-nanostructured columnar structure and the adhesive.  The adhesive 

completely infiltrated the columnar layer and air inclusions or unfulfilled cavities were not observed in this area. This was 

exemplary for all the investigated materials and confirmed that the infiltration of the adhesive was always about 100%. As 



discussed above, the penetration of the adhesive in the nanostructured layer should create a mechanical anchoring system 

expected to enhance the mechanical strength of bonded samples and cohesive failure. Despite excellent infiltration of the 

adhesive was observed, the improvement of the mechanical behavior was not achieved for these laser-treated SiC samples. 

Figure 7 (highest magnification micrograph) shows that, during the FIB lamella preparation, a crack propagated along the 

nanostructured columnar SiO2 layer/SiC interface, thus revealing the formation of a weakly bonded interface   in the laser-

treated SiC. SEM analyses on the fracture sur- faces after mechanical tests confirmed that the adhesive failure occurred at the 

SiO2/SiC interface in all the samples. 

The cross section of a typical laser-affected SiC surface is shown in Figure 8, where different regions can be identified as 

indicated by the red arrows; from the bottom to the top: (i) the SiC unaffected by the laser irradiation; (ii) a biphasic region 

with a round shaped phase (black in the picture) surrounded by a second phase (gray color); (iii) a few nm thick single phase 

region; (iv) a dense silica layer, and (v) the nanostructured columnar silica layer. To investigate with more details, the 

composition of the different regions, TEM analysis was performed at the SiO2/SiC interface. 

 

 
 

 
 

FIGURE 6 Fracture surfaces of (A) lapped SiC/Hysol
® 

EA9321/lapped SiC and (B) laser-treated SiC/Hysol
® 

EA9321/laser-treated SiC 

joints after single lap offset test.  

 
 

 

FIGURE 7 FIB lamella preparation of SiC-SiC joints, laser structured, bonded with adhesive Hysol
® 

EA9321, after failure at the 

(A) (B) 



nanostructure silica layer/substrate interface (red arrows).  

 

In Figure 9A (TEM image) the SiC bulk, unaffected by the laser treatment, corresponds to the large grains (about 2 µm 

size) visible on the top right side; between the large SiC grains and the silica layer a nanostructured area was clearly 

observed (its thickness was from ~100 to 250 nm). At a higher magnification (Figure 9B), it is evident that the biphasic 

region (identified in Figure 8) was formed by nanosize SiC and onion rings-like graphite. The carbon onions had a size in 

the range 10-30 nm (Figure 10). The formation of a C-rich layer during the laser treatment in air was also confirmed by 

XPS depth analysis. The carbon C1s spectra showed a shoulder around 284 eV consistent with C-C bond. Moreover, 

Gorelik et al.18 observed the formation of onion-like carbon clusters embedded in crystalline SiC after laser-induced 

crystallization of amorphous SiC. 

In addition, Figures 9,10 show that a homogeneous graphite layer was formed between the nanosize SiC and the silica. The 

graphite layer was present along the entire sur- face and had a thickness ranging between 5 and 10 nm. Because of its lamellar 

structure, the graphite layer was responsible for the poor adhesion properties of the laser treated as sintered SiC. It acted as a 

lubricant material at the interface and caused the adhesive failure behavior. The XPS analyses on the fracture surfaces after the 

mechanical tests revealed a very high concentration of C (~90%) on both surfaces, suggesting that the crack initiated and 

propagated within the graphite layer. 

The formation of C-rich regions in SiC during Nd:YAG lasers irradiation has been widely discussed in literature,
19-21 

but, 

to the best of the authors’ knowledge, a coherent and continuous graphite layer covering the SiC surface has never been 

observed in SiC materials after laser irradiation neither in vacuum, inert gas nor air conditions. 

C-rich layers at the SiO2/SiC interface were observed after thermal oxidation processes of semiconductor SiC involving long 

dwelling time (several hours).
22 

Katsui et al.
23 

discussed the formation of a 40-nm-thick carbon layer between SiC and SiO2  

scale during the passive oxidation of SiC at 1600°C for 40 hours. The reaction kinetics and the mechanisms leading to the 

formation of the C-rich layer, discussed in these previous studies, cannot be applied to the phenomenon observed in this 

work since the duration of the laser treatment in air was only few nanoseconds, between 10 and 50 ns. 

 

 

 
 

 
 

FIGURE 8 SEM micrograph showing the cross section of the laser-affected zone in SiC. 

 



 
 

FIGURE 9 TEM images showing the cross section of a laser- treated SiC: (A) affected and unaffected zones; (B) a higher magnification of the 

laser-affected zone 

 
 

FIGURE 10 TEM images showing the cross section of a laser- treated SiC in the laser-affected zone 

 

(A) 

(B) 



According to the TEM and SEM analysis, the microstructure of the laser affected zone of SiC can be summarized as in 

Figure 11. The following mechanism for the formation of the different regions is proposed: 

 
 

 
 

FIGURE 11 Schematic of the microstructure of the laser-affected zone of SiC: five different regions were identified.  

 

1. During the laser pulse (10-50 ns) in air, the laser affected zone (~200-300 nm) reached very high temperatures, well above 

the melting temperature of SiC. At about 2830°C, Figure 12,
24 

incongruent melting of SiC leads to the formation of a Si-rich 

liquid and C .  

 
Vaporization of both Si as gaseous SiO and/or Si (boiling point at ~3250°C), and C as CO, can occur at the sur- face in 

contact with air. In the region beneath the surface, the formation of volatile oxides was limited by the diffusion of oxygen 

through the liquid, while the vaporization   of Si caused a deviation from the 1:1 stoichiometry of the SiC system, increasing 

the C content in the liquid phase (region I in Figure 11). Because of the gradient of C con- centration and its high affinity with 

oxygen, C in excess near the surface could quickly diffuse into the liquid to the interface with air, forming a thin graphite layer 

(region III   in Figure 11) on an almost stoichiometric 1:1 Si:C region (region II in Figure 11). 

2. As soon as the laser pulse stopped, the sample was subjected to an ultrafast cooling that determined the formation of the 

complex nanostructure. At temperatures below the peritectic temperature, the C-rich region solidified in a mixture of two 

solid phases, SiC+C, as foreseen by the SiC phase diagram in Figure 12. This biphasic region was characterized by onion 

rings like C embedded in nano-SiC (region I in Figure 1 1 ). 

 

In addition, a liquid silica layer, deriving from the reaction between SiO and O2  condensed on the graphite layer (layer IV in 

Figure 11). The silica layer limited the diffusion of O2 to the SiO2/C interface and of CO outward, thus inhibiting the 

oxidation of the graphite layer, which was observed to be stable in the laser process conditions used in this study. 

At temperatures below the melting point of SiO2 (~1720°C), the nucleation and growth of nanostructured and granular 

columnar silica occurred via a vapor-solid mechanism (region V in Figure 11).
25,26

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 12  Si-C phase diagram from24
 

 



4 CONCLUSIONS 

The effect of the laser irradiation (Nd:YVO4, 1064 nm) in air on the surface morphology, chemical composition, and the 

adhesion properties with the adhesive Hysol
® 

EA9321 was investigated. X-ray photoelectron spectroscopy showed that the 

laser treatment had a cleaning effect and led to a 

significant reduction in surface contamination.  Moreover, the cleaning effect on the SiC surface was found to be stable after 

four week storage in laboratory environment. In previous studies at Airbus Group, the laser induced sur- face nanostructuring 

of several metals and ceramics was successfully used as pretreatment for adhesive bonding leading to higher mechanical 

properties of joints and cohesive failure in the adhesive. The effectiveness of the laser treatment can be attributed to the 

formation of a nanostructured columnar thin film on the substrates to be joined, which creates a mechanical anchoring system 

when penetrated by the adhesive. After the laser irradiation in air, the formation of a homogeneous and nanostructured    

columnar silica layer on SiC surface was observed and the adhesive, Hysol
® 

EA9321, completely infiltrated the open porosity 

of the layer.  Nevertheless, the mechanical strength of adhesively bonded laser-treated SiC was lower than the reference one 

(lapped SiC) and the failure mode was always adhesive. For the first time, a thorough investigation of the cross section of the 

laser-affected zone using Focused Ion Beam technique, followed by detailed analysis using SEM and TEM, showed that a 

stable 5-10-nm-thick graphite layer was formed at the SiO2/SiC interface and was responsible for the poor adhesion 

properties of the laser-nanostructured SiC. The mechanism for the formation of the different microstructural regions 

identified after laser-pulsed irradiation of the SiC surface is proposed based on the obtained results. 
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