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Abstract—Vehicular users are emerging as a prime market for tar-
geted advertisement, where advertisements (ads) are sent from network
points of access to vehicles, and displayed to passengers only if they
are relevant to them. In this study, we take the viewpoint of a broker
managing the advertisement system, and getting paid every time a
relevant ad is displayed to an interested user. The broker selects the
ads to broadcast at each point of access so as to maximize its revenue.
In this context, we observe that choosing the ads that best fit the users’
interest could actually hurt the broker’s revenue. In light of this conflict,
we present Volfied, an algorithm allowing for conflict-free, near-optimal
ad selection with very low computational complexity. Our performance
evaluation, carried out through real-world vehicular traces, shows that
Volfied increases the broker revenue by up to 70% with provably low
computational complexity, compared to state-of-the-art alternatives.

1 INTRODUCTION

Mobile devices have ceased to be a novelty: smartphones and
tablets now dwarf TV sets and desktop computers as the pre-
ferred way to consume multimedia content [1]. Advertisers have
followed suit, rapidly embracing a growing variety of mobile
devices [2].

Among mobile devices, vehicles are playing an increasingly
important role. The large amount of time drivers and passengers
spend therein, coupled with the advanced capabilities of present-
day and future on-board units, make them an ideal platform for
mobile – especially location-specific – advertising. For instance,
business such as shops and restaurants can advertise their products
on the vehicles themselves, as an alternative to static billboards.

Modern advertisement, be it directed to website visitors or
smartphone owners, is virtually always targeted. Popular services
such as Google AdWords [3] and Ink TAD [4] build uncannily
accurate [5] profiles of their users, with the purpose of only
showing them relevant ads, matching their interests. The benefit
of targeted advertisement is threefold [6]: advertisers make more
potential customers aware of their products and services; brokers
(e.g., Google) get higher click-through rates and thus higher
profits; users are exposed to less disruptive, and potentially useful,
content. Targeted advertisement is even more important in mobile
scenarios, where screen sizes and attention span further limit the
number of ads that users can visualize in a given time.

In our work, we consider a vehicular advertisement scenario.
Similar to Internet advertising systems [7], [8], advertisers sign an
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agreement with a broker: upon successfully displaying a relevant
ad to an interested user (called an impression [9]), the broker
receives a payment determined by the value of the ad itself. In our
vehicular environment, the broker controls a set of network points
of access (PoAs), e.g., cellular base stations or DSRC roadside
units, and decides which ads they should broadcast. Vehicles
passing by a PoA get the ads, and display them to their drivers
and/or passengers only if they are relevant to them. The number
of impressions is then reported periodically (e.g., daily) through a
secure connection.

In this context, the broker has to select in real time the ads to
broadcast at each PoA, in order to maximize its own revenue. To
this end, the broker can exploit information about the value of the
ads and the users’ interest (obtained through now-commonplace
profiling techniques), as well as their trajectory and radio coverage
(obtained from the PoAs themselves). At the same time, it has to
account for the fact that (i) PoAs can only broadcast a limited
number of ads, due to bandwidth considerations; (ii) vehicles will
only display a limited number of ads to their drivers, so as to
mitigate distractions, and (iii) such ads will be chosen by the
vehicles based on how relevant they are to their drivers/passengers.

Our paper offers the following main contributions:
(i) We present a system model describing both the features of

ads and the users’ interests in a multi-dimensional space.
Thanks to our model, we are able to identify a latent con-
flict existing between the users’ interests and the broker’s
revenue, and show that strategies solely accounting for the
former can severely hurt the latter. We therefore formulate
an optimization problem, formalizing all aspects of the ad
selection problem.

(ii) In view of the problem complexity, we present a greedy
algorithm, named after the computer game Volfied.

(iii) We formally prove that (a) Volfied generates conflict-free
decisions, (b) its performance never decreases as the number
of ads to broadcast grows, and (c) it can be applied to a
simplified system abstraction to obtain linear time complexity
with a negligible performance loss.

(iv) We evaluate Volfied in a real-world scenario, comparing
it against popular alternatives such as Top-k. We find that
Volfied greatly outperforms the alternatives, increasing the
broker’s revenue by up to 70% and the number of impressions
by almost 50%. Also, Volfied requires no caching at the ve-
hicles, which reduces the hardware requirements imposed on
vehicles, as well as the system implementation complexity.
In particular, when Volfied is used, vehicles are not required
to implement a caching policy or track the time and space



validity of each ad.
In spite of some common elements with previous works, as

described in Sec. 2, our work presents a novel, unified model
for vehicular advertising, capturing how network- and user-related
constraints impact respectively the number of ads that brokers can
transmit and users can visualize. Such a unified model is therefore
able to identify the conflict between users’ interests and broker’s
revenue. Similarly, the highly efficient ad selection algorithm we
propose has, to the best of our knowledge, no parallel in the
literature.

The remainder of the paper is organized as follows. After
discussing related work in Sec. 2, we present our system model
and optimization formulation in Sec. 3. Given the problem com-
plexity, in Sec. 4 we present our online heuristics, Volfied, and
highlight its properties. Then, in Sec. 5 we present a simplified
system abstraction aimed at making the ad selection faster, and
we quantify its impact on the broker’s revenue. Finally, we present
our reference scenario and our numerical results in Sec. 6, before
concluding the paper in Sec. 7.

2 RELATED WORK

Our work is related to three main research areas: ad selection,
mobile advertising, and content delivery in vehicular networks.

2.1 Ad selection and pricing
Advertisers and advertising platforms have to carefully choose
which ads each user should be exposed to, in order to avoid
irrelevant or overly annoying ads. This requires a priori [10] or
a posteriori [11] estimation of how well ads will be received
by the users they are displayed to. A priori estimation mostly
uses social networks; the intuition behind [10] is that if a user’s
friends are interested in a certain product, then the user herself
will likely be as well. [11] takes the a-posteriori approach, and
aims at quantifying how well received a displayed ad was through
such metrics as dwell time (how long users stay at the advertiser’s
site) and bounce rate (how likely they are to leave that site after
only seeing one page). These issues are orthogonal to our scenario,
where the user interests are part of the input.

A very important factor to account for when selecting ads is
also pricing. Existing works aim at maximizing social welfare [12]
in ad auctions, or take into account social influence in on-line
advertising [8]. Another research direction is to treat selection of
on-line ads as an optimization problem [9], [13], which however
cannot scale to large systems due to solution complexity. Finally,
an aspect that is out of the scope of this work, yet very relevant,
is privacy in targeted advertising, which has been addressed in
several papers (see, e.g., [7]).

2.2 Advertisement in mobile scenarios
Advertising to mobile users, e.g., drivers and passengers of a
vehicle, poses several additional challenges, as the number of
ads that can be delivered and displayed are limited by such
factors as network capacity, storage space on mobile devices, and
users’ attention span. There is a body of works focusing on ad
scheduling, i.e., deciding when (and where, in a mobile website or
social network feed) ads should be displayed, and at which price.
These works typically employ machine learning or game theory
approaches [14], and either focus on ad pricing or attempt to
maximize social welfare. For example, [15], [16] suggest methods

for advertisers to configure their ads features and generation speed
to maximize ads visibility. Similarly, [17] suggests ad scheduling
techniques over a shared medium to maximize revenue. This
approach requires advertisers to make complex decisions, which
are not practical in a vehicular environment due to its real-time
requirements.

Among the most recent works, [18] seeks to optimally choose
the ads to interleave in a customized news feed. The problem is
further decomposed into selecting which ads to serve (which is
similar to the problem we address in our own study) and where to
place the selected ads – an aspect which is not relevant in vehicular
scenarios. Similarly, the authors of [19] study how to insert ads in
a streaming scenario, e.g., a Facebook or Twitter newsfeed. While
the problem they face shares some aspects with ours, namely, the
on-line ad selection, the authors of [19] optimize a different metric
(global welfare instead of broker’s revenue) and use a different
methodology (mechanism design instead of optimization) from
our paper.

2.2.1 Vehicular networks

Several recent works seek to leverage the unique conditions of
vehicular networks, including mobility patterns and the avail-
ability of road-side infrastructure, to effectively serve ads to
vehicular users. As an example, [20] uses mobility information
to decide which (if any) ads any two vehicles should exchange
upon meeting. The authors of [21] pursue a similar objective, and
couple mobility information with signal-strength-based coding in
order to cope with non-line-of-sight conditions. [22] takes one step
further and looks into the cause of mobility, namely, the social
ties between users: since users with similar interests are likely to
move together, they can also exchange mutually-relevant ads. All
of [20], [21], [22] use real-world datasets and mobility traces for
their validation and performance evaluation.

Another body of works deals with why vehicular users should
take part in the ad delivery process. In this context, [23] de-
signs a cooperation framework where vehicles forward ads in
exchange for virtual cash, which can be later redeemed for fuel
or other services. Public-key cryptography, supported by road-
side infrastructure, ensures that vehicles correctly report their
behavior. Other works rely on game-theoretic approaches to foster
cooperation; as an example, in [24] cooperative game theory is
used to build a coalition of vehicles that cooperate with public
buses in order to share ads.

Some works consider targeted advertisement, where ads are
only relevant to certain vehicles. An example is [25], where
ads are forwarded from road-side infrastructure to seed vehicles
(selected based on their mobility), and from those to the other
vehicles. The authors seek to maximize the number of displayed
ads subject to a constraint on the number of seeds. Unlike our
own work, [25] assumes that all relevant ads will eventually be
displayed by vehicles, i.e., relevant ads are never discarded. The
work in [26] addresses a scenario and problem similar to ours, but
with a simpler display policy at the vehicle level. Their strategy
is radically different from ours: decisions are made by solving an
ILP optimization problem in real time, which would be infeasible
in our scenario.

A preliminary version of our work has appeared in the confer-
ence paper [27], targeting the ad selection and delivery problem
in a simpler setting and using a simpler system model. Major
additions with respect to [27] include:
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• a deeper discussion of the system architecture we consider,
and its relationship with emerging paradigms like multi-
access edge computing(Sec. 3.1), showing how Volfied can
be applied in both present-day and future vehicular networks;

• a comparison of two similarity metrics, namely, the Euclidean
distance and the cosine similarity (Sec. 3.2), highlighting how
the performance of Volfied is not tied to a specific similarity
metric;

• a formal proof that Volfied’s performance never decreases as
the number of ads to broadcast grows larger (Lemma 1 and
Theorem 2 in Sec. 4.1.1), i.e., Volfied can make effective
decisions in complex scenarios with multiple ads to choose
from and each ad relevant to a different set of vehicles;

• a theoretical analysis of the impact of sparse-set approxima-
tion on performance (Sec. 5.2), bounding the revenue loss the
Broker incurs, in exchange for lower complexity;

• an evaluation of the effect of caching on advertisement
delivery (Sec. 6.3), showing that Volfied outperforms its
counterparts even when vehicles are equipped with a cache.

2.3 Content delivery and infrastructure deployment

Mobile advertising is far from being the only use case for vehicular
networks; there is a vast body of works studying how such
networks can be leveraged to deliver, location-specific content of
different nature [28], [29], [30], [31], [32], [33]. Earlier works
focus on the viability of vehicular networks as a means for
information storage and delivery [29] and on the comparison be-
tween different approaches to vehicle-assisted data delivery [30].
Later ones tend to propose more sophisticated schemes that use
the available information on the network topology and vehicle
mobility to either select the best-suited relays [31] or, using
an opposite approach, move the content to an area where its
recipient is likely to pass by [32]. Other works such as [33] aim at
classifying existing proposals, and identifying the main strategies
they adopt. Some studies take into account scenarios when there
are multiple recipients for a specific content. In this case, it is
important to select a set of relay nodes that will ease content
dissemination [34], [35], without incurring in too much overhead.
In a similar spirit, the authors of [36] investigate the concept of
vehicular content delivery network.

DSRC Road-side units (RSUs) represent a unique feature of
vehicular networks, and there are many works studying how they
can be exploited for content caching [37] or cellular network
offloading [38]. RSU placement is a fairly complex problem
itself: the traditional approach is to make deployment decisions
exploiting available information on vehicular mobility [39], [40]
and/or possible vehicle-to-vehicle transfers. The problem is often
mapped to well-known ones such as set covering or maximum cov-
erage [35]. Recent works aim at optimizing application-specific
quality-of-service metrics [41], [42] and present sophisticate so-
lution techniques, from genetic algorithms [41] to polynomial-
time, constant-rate approximation algorithms [43]. It is important
to stress that the RSU deployment problem is orthogonal to ours;
to us, the number and location of RSUs are input parameters.

3 SYSTEM SCENARIO AND PROBLEM FORMULA-
TION

In this section, we first discuss our system architecture and
how it integrates within present-day and future cellular networks

(Sec. 3.1). Then we present the model of the system under study
(Sec. 3.2) and define the problem of ad scheduling in vehicular
networks (Sec. 3.3). Finally, in order to further clarify objective
and system constraints, we provide a mathematical formulation
of the problem whose solution provides the optimal ad selection,
although at high complexity (Sec. 3.4).

3.1 System architecture

Our system architecture includes three main entities:

• vehicles, to which ads are pushed;
• PoAs, in charge of transmitting the ads to the vehicles;
• brokers, that controlling one or more PoAs.

It is the broker’s job to select the sets of ads to be broadcasted at
each time step by each PoA. In order to make this decision, the
broker can use the following information:

• users’ interests and preferences, stored in a user information
database;

• the vehicles that are currently under coverage by PoAs and
the PoAs visited by vehicles in the past;

• the ads that have been broadcasted by PoAs in the past, stored
in an ad registry.

Information about users’ interests can be provided by the users
themselves upon subscription to the service, or obtained through
nowadays-common profiling techniques. Information about the
presence of vehicles under PoAs coverage can be obtained from
the PoAs themselves, by exploiting the beacons vehicles pe-
riodically transmit [44]. Furthermore, brokers can have access
to a traffic server containing information on the paths travelled
by vehicles in the past, as standardized by 3GPP [45]. In our
performance evaluation, we also study how errors in acquiring
both user and traffic information affect the performance.

As far as the network architecture is concerned, both a central-
ized and a distributed scenario can be envisioned. Starting with the
current LTE network architecture, depicted in Fig. 1(left), PoAs
correspond to eNBs, which communicate with vehicles through
LTE radio links. eNBs are then connected to the LTE network
Evolved Packet Core (EPC), which contains such entities as the
Serving Gateway (SGW) and the Packet Data Network Gateway
(PDN-GW). Through the PDN-GW, data can reach the public
Internet, including the datacenter (be it physical or virtual) hosting
the broker and the auxiliary servers (traffic server, ad registry, and
user information database). This architecture is centralized, due
to the fact that no entities other than EPC network functions can
be placed within the EPC network; in other words, data needs
to traverse the PDN-GW before they can reach the broker or
any other server. Similarly, we can consider DSRC RSUs that
communicate with vehicles and are connected to the Internet as
well, while the broker resides in a data center in the cloud.

An alternative to this scenario is the so-called Multi-access
edge computing (MEC) architecture, which envisions endowing
network edge nodes (e.g., eNBs or RSUs) with computation and
storage capabilities, so as to process data close to the users
(Fig. 1(right)). As an example, in this context eNBs can be
integrated with a virtualized EPC (vEPC) instance and run a broker
instance, implemented as a virtual application. Brokers controlling
different eNBs can coordinate with each other, exchanging infor-
mation about the ads they select. In this case, each broker would
know which ads each other broker selects, thus making the ad
server redundant.
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Fig. 1. System architecture including 802.11p and LTE radio links: centralized (left) and MEC (right). PoAs are either RSU or LTE eNBs. The broker
resides in a datacenter in the cloud in the centralized scenario, while broker entities are located at the PoA in the MEC-based architecture. In the
latter case, brokers can coordinate with each other and exchange information on the ads that the associated PoAs transmit. In this case, each broker
would be informed on the ads transmitted by each other broker and the ad registry would be redundant; the communication with the datacenter
would thus be limited to vehicle paths and user profiles.

3.2 System model
For simplicity, we consider that time is divided into discrete steps,
whose duration should be chosen so as to match the features
(e.g., vehicle mobility) of the scenario under consideration and,
as we will see in Sec. 4, does not impact how our algorithms
work or their complexity. At each time step, vehicles receive ads
broadcasted by each PoA under whose coverage they pass, and
can display up to M ads that are relevant (i.e., of interest) to the
user. Also, a vehicle displays an ad at most once1; the number of
ads that can be broadcasted by PoAs is constrained by bandwidth
and cost limitations. We denote the maximum number of ads that
each PoA can broadcast in one time step by K.

Model entities. The main entities we need to model are: (i)
vehicles (also referred as users), v ∈ V , (ii) ads a ∈ A and (iii)
PoAs u ∈ U . Each ad a has an associated value, r(a, u). Having
PoA-specific ad values allows us to model both local ads, which
are worthless at PoAs out of their target location, and global ads,
whose value is constant at all PoAs. Every time ad a is displayed
to a vehicle, the on-board platform notifies the broker, which gets
a revenue equal to the ad value. Thus the broker’s total revenue is
given by the number of impressions, each weighted by the value
of the displayed ad.

Vehicles can be equipped with a cache, allowing up to C ads to
be stored for later display. Unless otherwise specified, we assume
that ads have to be displayed in the same time slot when they are
downloaded (C = 0). The case where vehicles exploit a cache
(C > 0), however, is considered in Sec. 6.

The content of ads and the interest of vehicles are both
described in terms of features. Therefore, both ads and vehicles
can be mapped onto points in an n-dimensional feature space,
F ⊆ Rn, where n is the number of features.

Similarity and relevance. Between any two features ~f1, ~f2 in
the F space, we take a distance metric, D(~f1, ~f2), as a measure
of similarity. As it will be clearer later, this is instrumental in
guaranteeing that conflicts between the users’ interests and the
broker’s revenue are properly modeled and addressed.

In general, two points with similar locations in the F space
will have a small distance (and we will also say that they are close
to each other), while points with very different locations will have
a large distance. The distance from a point to itself is always zero.
In particular, in our system model, if both ~f1 and ~f2 are vehicles,

1. Ads that generate a revenue when displayed multiple times can be
represented by separate elements of A.

the distance expresses how different their interests are. If both
are ads, D(~f1, ~f2) conveys how different the ads themselves, and
their potential audience, are. Finally, if ~f1 is an ad a ∈ A and ~f2
is a vehicle v ∈ V , the distance D(a, v) is related to how relevant
ad a is to vehicle v: the smaller D(a, v) is, the more relevant a is
to v. We then define a distance threshold Dmax: only ads with a
distance lower than Dmax from user v, are relevant to v.

Note that multiple distance metrics have been proposed in the
literature, aiming at capturing the different meanings of the con-
cept of “closeness” between features in an n-dimensional space.
It is important to point out that our system model and algorithm
can work unmodified with any distance metric we choose, i.e., any
metric that exhibits the triangle inequality property.

The most straightforward definition we can adopt
for D(~f1, ~f2) is the Euclidean distance:

D(~f1, ~f2) =
∥∥∥~f1 − ~f2

∥∥∥
2
. (1)

Cosine similarity [46] is often used to compare points in a mul-
tidimensional space, especially in machine learning applications.
It is defined as:

~f1 · ~f2∥∥∥~f1∥∥∥
2

∥∥∥~f2∥∥∥
2

,

where ‖·‖2 represents the 2-norm operator. The intuition behind
the cosine similarity definition is to value orientation over magni-
tude. In our case, if two vehicles are interested in the same topics,
they will have a high cosine similarity regardless of how strong
each vehicle’s interest is. Notice, however, that cosine similarity
is not a distance metric. In applications where a distance metric is
needed, angular distance is used instead [47]:

D(~f1, ~f2) = cos−1

1−
~f1 · ~f2∥∥∥~f1∥∥∥
2

∥∥∥~f2∥∥∥
2

 , (2)

where cos−1 is the inverse cosine function. Note that, in accor-
dance with our remark above, the larger the distance value in (2),
the larger the difference between points ~f1 and ~f2.

The choice of the most appropriate distance metric depends
on the individual scenario under consideration, and the semantics
of the feature space F . Cosine similarity and angular distance
tend to work better where qualitative features (e.g., whether a
given restaurant cooks Chinese food) dominate. On the other hand,
quantitative aspects (e.g., prices or parking availability) tend to
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TABLE 1
Notation

Symbol Description
A = {a} Set of advertisements
V = {v} Set of vehicular users
U = {u} Set of PoAs

K No. of ads each PoA can broadcast in one time step
M No. of ads each vehicle can display in one time step

D(·, ·) Distance between users’ interests and/or ads
r(a, u) Value of ad a under the coverage of PoA u
R(a, u) Estimated total revenue for ad a ∈ A at PoA u

A(M)
ε M -sparse approximation of set A

be best captured by the Euclidean distance. In our performance
evaluation, we will use both the Euclidean distance (1) and
the angular distance (2), checking that Volfied works properly
regardless of the distance metric selected.

The notation we use is summarized in Tab. 1.

3.3 Problem definition

As mentioned, it is the broker’s task to define and enact what
we formally call a selection strategy: given the set A of ads, the
number of ads that can be broadcasted (K) and displayed (M ),
and the vehicles under PoA coverage, the broker has to select those
ads that maximize its revenue. Intuitively, the broker should select
ads that will be displayed by many vehicles and have a high value
r. The former implies that the selected ads should be relevant and
new to as many vehicles as possible, but, quite surprisingly, these
two conditions are not sufficient to ensure that a broadcasted ad is
actually displayed by the vehicles. Indeed, recall that the broker
decides which ads to broadcast, but vehicles decide which of these
ads to display. The aims of these two actors are different and
potentially conflicting: the broker would aim at selecting ads with
high value r, while vehicles display ads based on their relevance
to the user. Thus, whenever the broker can broadcast more ads
than vehicles can display (i.e., K > M ), a conflict between the
broker and the users’ interests may arise. We remark that K >
M in all practical cases, and that, as highlighted in the example
below, conflicts do not only waste radio resources, but they can
also severely reduce the broker’s revenue.

Example 1 (Why conflicts hurt). Consider a toy case with one
PoA (U = {u}), one vehicle (V = {v}) and two ads (A =
{a1, a2}). Assume: r(a1) = 10, r(a2) = 1, D(a1, v) = 0.1
and D(a2, v) = 0.05. Also, let us focus on one time step
and assume M = 1, i.e., the vehicle can display only one
ad, and Dmax = 0.15. First, consider K = 1, i.e., the PoA
can transmit only one ad, and that the PoA sends a1. Then the
vehicle will display a1 and the broker will earn r(a1, u) = 10.
It is important to stress that the broker will select the ad to
transmit in order to maximize its own revenue, and therefore
it will send a1 to v in spite of the fact that a2 would be
more relevant. Now, assume K = 2 and that the PoA sends
a1 and a2: one would expect that by sending more ads, the
broker would earn at least the same revenue. However, owing
to the fact that M = 1, vehicle v will disregard a1 and only
display a2, since a2 is more relevant to v than a1. Thus, the
broker’s revenue will be r(a2, u) = 1.

In light of this, we introduce the following definition.

Definition 3.1 (conflict-free set). A set of selected ads, S ⊆ A,
is conflict free if, for each vehicle v ∈ V , the set includes at
most M ads that are relevant to v.

3.4 Problem formulation

We now formally state the ad selection problem as follows. We
denote the current time step by tc, and the set of past and current
steps by T . Then the set of binary parameters χ(u, v, t) ∈ {0, 1}
express whether PoA u covers vehicle v at time t ∈ T .

Our formulation involves two binary decision variables:
β(a, u, tc) and δ(a, v, tc). The former concerns the broker, and it
indicates whether an ad a is broadcasted by PoA u at the current
time step or not. The latter concerns individual vehicles, and it
indicates whether ad a is displayed by vehicle v at time tc. Note
that, although the vehicles and the broker make different decisions
for different, and indeed conflicting, purposes, we are able to
reproduce both decisions in the same optimization problem, as
laid out next.
Constraints. A vehicle v can display only the relevant ads that it
receives from the current PoA, i.e., for any a ∈ A and v ∈ V ,

δ(a, v, tc) ≤ χ(u, v, tc)β(a, u, tc)11[D(a,v)≤Dmax] , (3)

where u is the PoA, and 11[D(a,v)≤Dmax] takes 1 if D(a, v) ≤
Dmax and 0 otherwise. Next, vehicles can display at most M ads
in time step tc: ∑

a∈A
δ(a, v, tc) ≤M, ∀v ∈ V. (4)

Each ad can be shown at most once by every vehicle:∑
t∈T

δ(a, v, t) ≤ 1, ∀a ∈ A, v ∈ V. (5)

Note that the δ values that refer to previous time steps are input
parameters to the problem.

Last, we must make sure that a vehicle v selects the ads to
display based on their relevance to itself. In other words, vehicle v
will not display an ad a if it receives from the PoA M (or more)
ads whose relevance to v is higher than a’s and were not displayed
before:

δ(a, v, tc)≤max

{
0,M −

∑
a′∈A :

D(a′,v)>D(a,v)

[
χ(u, v, tc)β(a′, u, tc)

(
1−

∑
t∈T \{tc}

δ(a′, v, t)

)]}
∀a ∈ A, v ∈ V. (6)

Notice that the right-hand side of (6) can be greater than one;
in that case, the constraint has no effect and the binary variable
δ(a, v, tc) can take value 0 or 1, whichever maximizes the
objective.

As far as the broker is concerned, the only constraint is on the
maximum number of ads that each PoA can broadcast at a given
time step: ∑

a∈A
β(a, u, tc) ≤ K ∀u ∈ U . (7)

Objective. Given the above constraints, the broker’s objective is
to maximize its revenue at every time step:

max
∑
a∈A

∑
v∈V

∑
u∈U

δ(a, v, tc)χ(u, v, tc)r(a, u) . (8)
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Discussion. The above formulation has the interesting property of
accounting for the way both vehicles and broker make decisions.
Constraint (6) describes how vehicles will select ads based on
the ads’ relevance to themselves, while objective (8) represents
the broker’s aim to maximize its own revenue. Thus, conflicts are
accounted for: by solving the optimization problem, the broker
will maximize its revenue subject to the behavior of the vehicles.

On the negative side, the problem falls into the MILP (mixed-
integer linear programming) category, and is therefore impractical
to solve in real-time for moderate- to large-scale instances. Specif-
ically, the ad selection is a 0− 1 knapsack problem with constant
weights, whose item values are the outcome of another 0 − 1
knapsack problem (the selection of the ads to display). Thus, the
optimization problem is NP-hard. In light of this, we present below
a heuristic approach.

4 ON-LINE DECISION MAKING

In this section, we present an online decision algorithm, allowing
to make the same type of decisions as the optimization formulation
introduced above, but (i) in a much more efficient way and (ii)
without requiring any information on the future trajectories of
vehicles. Clearly, while maximizing the objective in (8), subject to
constraints (3)–(7) and given knowledge about all time steps in T ,
ensures an optimal ad selection, our online decision algorithm
may provide a suboptimal solution. We will show however that
the online solution we obtain is optimal in some particular cases
and closely matches the optimum under general conditions.

In order to design our online algorithm, we underline that the
broker has to face two main challenges while selecting the ads to
transmit. The first has to do with the conflict between the broker’s
revenue and the user interests, which may significantly impair the
broker’s revenue. The second is complexity, since the set of ads A
is potentially very large, as are the sets of ads relevant to individual
vehicles: this is especially important because we need to make our
decisions using every time the most recent information available.

We address these two challenges separately. First, we propose
a way to make conflict-free decisions leveraging on the estimated
revenue that ads can generate. Then we introduce a sparse-
set approximation that bounds the complexity of estimating ad
revenues. For ease of presentation, we describe our decision-
making scheme with reference to one PoA and one time step
only, and we drop the PoA and time indices when discussing this
scenario. Sec. 4.2 explains how to extend the proposed schemes to
the multi-step and multi-PoA cases.

4.1 Conflict-free decisions: Volfied

In order to select a set of ads that maximizes its revenue, the broker
has to first estimate the revenue it will get from broadcasting
a generic ad a. Let R(a) denote such estimated revenue. R(a)
is computed by adding r(a) thereto every time a vehicle v, to
which a is relevant, enters the PoA coverage area, and subtracting
the same amount when v leaves the coverage area.

Armed with the estimated revenues R(a), the broker ap-
plies an ad selection strategy. The most straightforward strategy
would be Top-k, which selects the K ads with highest estimated
revenue R(a). However, Top-k has the major disadvantage of
ignoring the fact that vehicles can display at most M ads each,
thus it may create conflicts that harm the broker’s revenue and
waste radio resources on ads that will not be displayed (see Sec.

Algorithm 1 Conflict-free ad selection: Volfied
Require: A,K,M,Dmax, R(a)

1: S ← ∅
2: sort a ∈ A by R(a) in decreasing order
3: for all a ∈ A do
4: if |{b ∈ S : D(a, b) ≤ 2Dmax}| < M then
5: S ← S ∪ {a}
6: if |S| ≥ K then
7: break

return S

3.3). To avoid this, we devise a conflict-free alternative, called
Volfied and presented in Alg. 1.

The objective of Alg. 1 is to identify the set S ⊆ A of ads to
broadcast, initialized in line 1. Volfied starts by sorting set A by
estimated revenue, in line 2. Then, for each ad a, it checks how
many ads are already in S that are at a distance from a smaller
than 2Dmax (line 4). If less than M , a is added to the set of
ads to serve, in line 5. The algorithm ends when either all ads
have been evaluated, or K ads have been selected (line 6). By
choosing a set of ads such that each has at most M others within
distance 2Dmax from itself, as we do in line 4–line 5, ensures us
that there is no point in the whole space F that has more than M
ads within distance Dmax from itself. Recalling that vehicles are
also mapped to points in F, this implies that no vehicle has more
than M relevant ads, i.e., the set chosen by Volfied is conflict-free.

In the following, we prove several important properties con-
cerning the quality of the decisions made by Volfied (Sec. 4.1.1)
and its time complexity (Sec. 4.1.2).

4.1.1 Quality of decisions

The most important property of the decisions made by Volfied is
that they are conflict-free. Formally, the following theorem holds.

Theorem 1. The set of ads S selected by Volfied is conflict free.

Proof: Consider a set with one ad only; this is clearly
conflict free. Then, by construction (line 4), Volfied selects an
additional ad only if, for every ad a ∈ S , there are less than M
ads within distance 2Dmax. This implies that, for any vehicle v,
S includes at most M ads relevant to v, i.e., S remains conflict
free. Indeed, due to triangle inequality, for any two ads a and b
s.t. D(a, b) > 2Dmax, we have: D(a, v)+D(v, b) ≥ D(a, b) >
2Dmax, for any vehicle v. That is, given an ad a, which is relevant
to v, only ads within distance 2Dmax from a may be relevant to
v too.

We can also prove a robustness property, namely, that the per-
formance of Volfied never decreases if we increase the number K
of ads to broadcast, i.e., it is monotonic with respect to it. To that
end, we first need to prove the following lemma on the validity of
revenue estimations.

Lemma 1. The revenue obtained by broadcasting by a conflict-
free set of ads S ⊆ A, with |S| ≤ K , corresponds to the sum
of the estimated revenues of the ads therein, i.e.,

∑
a∈S R(a).

Proof: As discussed in Sec. 4.1, the estimated rev-
enue R(a) of each ad a is the product between the value r(a)
and the number of vehicles for which a is relevant. If the set S is
conflict-free, then all vehicles will display all ads relevant to them,
with each ad contributing exactly R(a) to the broker’s revenue.
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We can now prove that increasing the number K of ads
to select never hurts. To this end, it is sufficient to prove that
increasing K by one does not decrease the revenue.
Theorem 2. Increasing K by one never hurts the total revenue

yielded by Volfied.

Proof: Having a higher value of K means that Volfied will
run for more iterations. Since the set of ads and their revenue
are unmodified, Volfied will still select the same Korig ads that it
would select with a lower value of K , and (at most) one additional
ad, i.e., Sorig ⊇ Snew. By Lemma 1, this also implies that the
revenue does not decrease.
It is important to notice that Theorem 2 depends on Lemma 1, i.e.,
on the fact that the sets of selected ads are conflict-free. Indeed,
Example 1 depicts of how increasing K can decrease the revenue
if non-conflict-free decisions are made.

Finally, we show that, in the special case when K = M ,
Volfied is optimal:
Property 1. When K = M , then (i) Volfied and Top-k select the

same set of ads, and (ii) such a set is optimal.

Proof: Both algorithms select the min{K, |A|} highest-
revenue ads. It follows that the condition in line 4 in Alg. 1 is
always met (as K = M ), thus Volfied and Top-k select the same
ads. By Theorem 1, the set is conflict free; also it maximizes the
broker’s revenue since, by construction, it includes the K ads with
top estimated revenue R(a).

4.1.2 Complexity
We now turn to the issue of the time complexity of Volfied, and
prove that it is linear in the size of the ads set.
Theorem 3. The worst-case runtime complexity of Volfied is

O(|A| ·K).

Proof: From Algorithm 1, one can see that the loop in line
3 iterates over all the ads a ∈ A, thus in the worst case all ads
in A are processed. In line 4, we compare each ad against all
previously selected ads, which are at most K − 1. The operations
in the remaining lines have complexity O(1) and thus the overall
complexity of Algorithm 1 is O(|A| ·K).

Finally, we remark that Volfied relies on the estimated rev-
enues, i.e., the R(a) values. Such estimates need to be refreshed
every time a vehicle enters or exits the coverage area of a PoA.
Every update has a linear cost in the number of ads, as shown
below.
Property 2. The worst-case complexity of updating the revenue

estimation, due to a vehicle entering/exiting a PoA coverage
area, is |A|.

Proof: Consider a vehicle v and that all ads are relevant
to v. When v enters or leaves the coverage of a PoA, the revenue
estimation of all ads (in the worst case) has to be updated, thus the
complexity is |A|.
The overall complexity of Volfied coupled with the revenue
estimation procedure is then O(K · |A|2). Clearly, when the
number of ads and vehicles involved is large, the update procedure
becomes cumbersome. To overcome this issue, below we propose
an efficient approach which greatly reduces the number of ads to
consider, as described in Sec. 5.

It is worth mentioning that the duration of time steps impacts
none of the complexity results stated above. Shorter time steps
will indeed imply that Volfied is run more frequently, but the

complexity of each run remains very low, as stated in Theorem 3.
As far as the revenue estimation procedure is concerned, it is run
every time a vehicle enters or exists the coverage area of a PoA,
and therefore it is not affected by the time step duration.

4.2 Multi-PoA, multi-step
The ad selection algorithm can be easily extended to networks
comprising multiple PoAs and operating for multiple time steps,
such as the one considered in our performance evaluation in Sec. 6.

Specifically, when considering multiple time steps, there is no
profit in serving vehicles with the same ad multiple times. Thus,
the way the estimated revenues R are computed is enhanced as
follows: R(a, u) is increased by r(a, u) only if a has not been
broadcasted to the vehicle before.

Similarly, we can account for the presence of multiple PoAs,
i.e., for the fact that vehicles may have received an ad from some
PoA they visited in the past. If a vehicle under the coverage of a
PoA, u ∈ U , has been served ad a ∈ A in the past by another
PoA, u′ ∈ U , the corresponding r(a, u) value is discounted from
the revenue estimates R(a, u). This requires the broker (not the
advertisers) to know which PoAs the vehicles visited, a piece of
information that can be easily gathered from the beacons cars are
required to periodically send and that will be available in next-
generation network systems [44], or by a traffic server entity as
specified by 3GPP [45]. It does not require to know which ads
were displayed by cars.

Notice that the Volfied algorithm itself works unmodified in
multi-PoA and multi-step scenarios. In other words, the algorithm
always makes per-PoA decisions, whether the architecture is
centralized (as in Fig. 1(left)) or decentralized (as in Fig. 1(right)).
It also implies that all the properties we proved above still hold.
Nevertheless, the PoA deployment does impact the performance
of vehicular advertising, as we show in Sec. 6.3.

5 REDUCING THE NUMBER OF ADS

On-line approaches such as Volfied require making decisions
as they are needed, using every time the most recent available
information – in our case, the revenue estimates R(a). These
estimates must be refreshed every time a vehicle enters or exits the
coverage area of a PoA and, as stated in Property 2, the complexity
of doing so is linear in the number |A| of ads. Such a complexity
can be too high in some scenarios with many ads and/or high
vehicular mobility.

To cope with this issue, in Sec. 5.1 we present a technique
aimed at replacing the original set of ads with a sparse approx-
imation thereof, where the number of ads relevant to any given
vehicle is bounded. Then, in Sec. 5.2, we formally prove a bound
to the revenue loss we can incur into by using the sparse ad set in
lieu of the original one.

5.1 Computing the sparse-set approximation
As mentioned earlier, the complexity of the revenue estimation
procedure grows linearly with the size of the set A of ads. A
straightforward solution to speed up the ad selection procedure
consists in limiting the size of such set. However, blindly removing
ads would wantonly impair the system performance: the problem
is not that there are too many ads, but there are too many ads
similar to each other, hence with the same target audience. We
therefore replace the set A with its sparse approximation, as
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defined below. For the sake of clarity, we start by considering
M = 1, i.e., each vehicle can display at most one ad per time
step.
Definition 5.1 (Sparse set). X ⊆ F is a sparse set if, for any two

points ~f1, ~f2 ∈ X , D(~f1, ~f2) > 2ε.

The following result states that, given a sparse set of ads X ⊆
F, the distance between a point in X and any other point either
in X or in V (V ⊆ F), is at least ε. It follows that, given Dmax,
a vehicle cannot find in X more than d(Dmax/ε)

ne ads that are
relevant to itself.
Theorem 4. Given a sparse setX ⊆ A, for every point ~f ∈ X∪V ,

a closed ball of radius ε around ~f contains at most a single ad
a ∈ X .

Proof: In the case where ~f ∈ X is an ad, the theorem
holds given the definition of sparse set. Next, consider that ~f is a
vehicle; in this case the proof is given by contradiction, as follows.
Assume that there are two ads a1 and a2 in X s.t. D(a1, ~f) ≤ ε
and D(a2, ~f) ≤ ε. Then, by triangular inequality, D(a1, a2) ≤
D(a1, ~f) + D(a2, ~f) ≤ 2ε, which contradicts the definition of
sparse set. Thus the thesis is proven.

Let us now introduce the sparse approximation of an ad set.
Definition 5.2 (Sparse approximation). The sparse approximation

of a set of ads A is a set A(1)
ε ⊆ A such that: (i) A(1)

ε is a
sparse set, and (ii) for each ad a ∈ A, there exists a′ ∈ A(1)

ε

with r(a′) ≥ r(a) and D(a, a′) ≤ 2ε.

It is important to note that, due to local ads that are relevant
only to vehicles under PoAs located within the ads target location,
different PoAs may select different ads to be part of their sparse
approximation.

Intuitively, A(1)
ε is a sparse set obtained by removing re-

dundant, low-value ads from A. Alg. 2 provides a technique to
build the sparse approximation of A. The algorithm first sorts

Algorithm 2 Building a sparse approximation of the ad set
(function EpsilonSet)
Require: A, ε

1: A(1)
ε ← ∅

2: sort a ∈ A by r(a) in decreasing order
3: for all a ∈ A do
4: A(1)

ε ← A(1)
ε ∪ {a}

5: A ← A \ {b ∈ A : D(a, b) ≤ 2ε}
return A(1)

ε

the ads in the original set by their value (line 2). Then, at each
iteration, it adds the top (i.e., highest-value) ad to the sparse set
(line 4) and removes all other ads in A at distance less than or
equal to 2ε from said ad (line 5). An example of how Alg. 2
works is presented in Fig. 2. It is straightforward to see that, by
construction, the resulting set A(1)

ε is the sparse approximation of
A, as by Definition 5.2.

Next, we consider M > 1 (i.e., vehicles can display more
than one ad per time step). In this case, the broker should select
multiple ads targeting the same audience, if the value of K allows
it. We therefore introduce the notion of M -sparse set and M -
sparse approximation, A(M)

ε .
Definition 5.3 (M -sparse set). X (M) ⊆ F is an M -sparse set if,

for any point ~f ∈ X (M), there are at most M points within
distance 2ε from ~f (including ~f itself).

Definition 5.4 (M -sparse approximation). The M -sparse ap-
proximation of a set of ads A is a set A(M)

ε ⊆ A such
that (i) A(M)

ε is M -sparse, and (ii) for each subset B ⊆ A
with |B| ≤ M , there exists a subset B(M)

ε ⊆ A(M)
ε with

|B(M)
ε | = |B| and bijection function, g : B → B(M)

ε , s.t.
∀b ∈ B: r(g(b)) ≥ r(b) and D(b, g(b)) ≤ 2ε.

Algorithm 3 Building the M -sparse approximation of the ad set
Require: A, ε,M

1: A(0)
ε ← ∅

2: for j = 1 to M do
3: A(j)

ε ← A(j−1)
ε ∪ EpsilonSet(A \ A(j−1)

ε , ε)

return A(M)
ε

It is easy to see that, by construction, Alg. 3 builds the M -
sparse approximation of the ad set A. Indeed, it repeatedly calls
the EpsilonSet function defined in Alg. 2. As shown by the
following theorem, the sparse set resulting from Alg. 3 includes
groups of up toM similar ads that are relevant to the same vehicle.

Theorem 5. Given an M -sparse set A(M)
ε output by Alg. 3,

for every vehicle v ∈ V , a closed ball of radius ε around v
contains at most M ads.

Proof: The set A(M)
ε is generated recursively by forming

M sparse sets (as it can be seen in Algorithm 3). Each sparse set
satisfies Theorem 4 and, thus, contributes with at most a single
ad s.t. D(a, v) ≤ ε. It follows that the maximum number of ads
within a closed ball of radius ε, centered in v, is equal to M .

Replacing the original set of ads A with its sparse approxi-
mation A(M)

ε makes it possible for the broker to streamline the
ad selection procedure. In particular, the estimate of the revenue,
R(a), can be updated with bounded complexity.

Theorem 6. When performed onA(M)
ε , the complexity of the rev-

enue estimation update is: min
{⌈(

M ·Dmax

ε

)n⌉
,
∣∣∣A(M)

ε

∣∣∣}.

Proof: It follows from Theorem 5 that for each vehicle v a
closed ball of radius ε around v contains at mostM ads. Therefore,
we are left to consider how many such balls fit into a closed ball
of radius Dmax. The maximum number of balls of radius ε that fit
in such a volume is:

⌈(
M ·Dmax

ε

)n⌉
. Thus the maximum number

of ads within distance Dmax from the vehicle is the minimum
between such a value and the total number of ads in A(M)

ε .
Clearly, larger values of ε allow a greater reduction of the

number of ads, hence a faster ad selection. However, as ε grows,
a ∈ A and its corresponding ad, a′ ∈ A(M)

ε , become less similar.
It follows that a′ may become not relevant to a certain vehicle
(i.e., D(a′, v) > Dmax) while a was (i.e., D(a, v) ≤ Dmax).
This means that the opportunities of a selection strategy to pick
M relevant ads for a vehicle may diminish when the strategy is
applied to A(M)

ε instead of A. This may lead to a revenue loss,
which is analyzed in detail in Sec. 5.2. Also, in Sec. 6 we show
that such a performance loss is negligible even for large values of
ε, e.g., ε = Dmax/4.

Finally, we remark that the sparse approximation of the ad set
needs to be computed only once (and can be computed offline),
while the selection algorithm runs every time a new set of ads to
be broadcasted has to be identified.
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Fig. 2. How Alg. 2 works: given the initial set A with r(a1) > r(a2) > . . . > r(a5) (left), it first includes a1 in the sparse set A(1)
ε . Then, a2 and a3

are excluded as stated in line 5 (center). Finally, a4 and a5 are added to A(1)
ε (right).

5.2 Revenue loss due to the sparse ad set approxima-
tion
In the following, we consider that the sparse approximation A(M)

ε

is given as input to Volfied and show that in this case our algorithm
will select a subset of ads that is almost as good as the one it selects
when working withA, with a much lower complexity. Specifically,
our analysis consists of the following steps.
(i) We define the concept of analogy between two sets of ads,
which expresses a similarity between the elements of the two sets
with respect to both their position in the feature space, F, and their
value.
(ii) We show that, given a conflict-free set inA, there always exists
an analogue set in A(M)

ε .
(iii) By starting from a slightly sparser subset of A, we prove that
there exists an analogue set in A(M)

ε , which is also conflict free.
(iv) By exploiting this result, we quantify the maximum loss of
revenue that there may be when A(M)

ε is used instead of A. For
each selected ad, such loss is equal to the contribution of the users
located within a ring of radius Dmax and width ε in the F-space.
Our results and the corresponding proofs are reported below; for
ease of presentation, we refer to the case of a single PoA.

We first define the relationship of analogy between sets of ads
extracted from A and A(M)

ε , respectively.
Definition 5.5. Set Ŝ is analogue to set S (Ŝ ≈ S), if there exists

a bijection function such that the image of every ai ∈ S is an
ad, aj ∈ Ŝ , for which D(ai, aj) ≤ ε and r(aj) ≥ r(ai).

Next, we show Step (ii). The following theorem considers the
case M = 1 and establishes that, for any conflict-free set in A,
there exists an analogue set that can be extracted from A(1)

ε .
Theorem 7. Assume M = 1 and consider a set of ads, S ⊆ A,

that is conflict free. If Dmax > 2ε, then there exists a set
Ŝ ⊆ A(1)

ε s.t. Ŝ ≈ S .

Proof: Because S conflict-free, for any arbitrary vehicle v,
S includes at most a single ad, ai ∈ A, which is relevant to v, i.e.,
s.t. D(a, v) < Dmax. In order to build a set Ŝ ⊆ A(1)

ε , which is
analogue to S , we proceed as follows.

Consider the ads in S one at a time, and denote the generic
ad by ai. If ai belongs also to A(1)

ε , then the ad can be mapped
onto itself. Otherwise, by construction, there exists some other
ad, aj ∈ A(1)

ε , s.t. D(ai, aj) ≤ ε and r(aj) ≥ r(ai). Hence
ai can be mapped into aj . Note that no other ad in A could
have been already mapped onto aj because, in this case, there
would exist a different ad, aq ∈ S , s.t. D(aq, aj) ≤ ε. However,
since D(ai, aj) ≤ ε, due to triangle inequality, we would have:
D(ai, aq) ≤ D(ai, aj) + D(aj , aq) ≤ 2ε ≤ Dmax. This
contradicts the assumption on S being conflict free (recall that
M = 1). Thus, we can obtain a set Ŝ that meets the conditions
stated by the theorem.

Fig. 3. Example with n = 1 (i.e., F ⊆ R) and M = 1: S = {a1, a4}
is conflict free since D(a1, a4) > 2Dmax (i.e., no user can find both a1
and a4 relevant to herself). Instead, Ŝ = {a1, a3} is not conflict free as
D(a1, a3) = 2Dmax − ε/4.

The corollary below extends Theorem 7 to the case of denser
sets of ads, A(M)

ε with M > 1, where each user may find up to
M ads relevant to herself.
Corollary 1. Consider M > 1 and a conflict-free set S ⊆ A. If

Dmax > 2ε, then there exists Ŝ ⊆ A(M)
ε s.t. Ŝ ≈ S .

Proof: The corollary is proved by induction. Initially,
consider M = 1; by virtue of Theorem 7, the assertion holds.
Then assume that the corollary holds for m > 1 and let us prove
it for M = m + 1. To this end, recall that A(m+1)

ε is given
by A(m)

ε ∪ EpsilonSet(A \ A(m)
ε , ε). Thus, A(m+1)

ε can be
split into two disjoint sets A(m)

ε and Bε, where Bε is obtained as
sparse set of B = A\A(m)

ε . Similarly, Sm+1 can be split into two
disjoint sets. The first, Sm, satisfies the induction hypotheses for
M = m, and the second, S1, for M = 1. This means that there
exist two disjoint sets in A(m+1)

ε that are analogue to Sm and
S1, respectively. The union of such two sets is the set analogue to
Sm+1, which proves the corollary.

The above result does not ensure that Ŝ is conflict free. Indeed,
as shown by the example in Fig. 3, the location in the F-space of
an ad in Ŝ may vary with respect to its corresponding ad in S
by as much as ε, thus conflict freeness cannot be guaranteed in
general. It follows that, although any conflict-free set S ⊆ A has
an analogue set Ŝ ⊆ A(M)

ε , Volfied may never pick Ŝ (as it is not
conflict free). Only under some additional conditions, it is possible
to show that S ⊆ A does have its conflict-free analogue in A(M)

ε .
Consider as maximum distance a slightly larger value than

Dmax, i.e., ∆max = Dmax + ε, and let us define the concept of
extended conflict freeness as follows.
Definition 5.6. S ⊆ A is an extended conflict-free set if, for every

possible vehicle v, it does not include more than M ads within
∆max from v.

Then we can prove the following important result: for any
given extended conflict-free set, S ⊆ A, there exists an analogue
set Ŝ ⊆ A(M)

ε that is also conflict free.
Corollary 2. Consider an extended conflict-free set S ⊆ A and

assume that Dmax > 2ε. Then there exists a conflict-free set
Ŝ ⊆ A(M)

ε such that S ≈ Ŝ .
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Proof: By applying Corollary 1, we know that, given S ,
there exists Ŝ s.t. S ≈ Ŝ . What is left to show is that Ŝ is conflict
free. By contradiction, assume that Ŝ is not conflict free. Then
there exists a vehicle v for which more than M relevant ads
are included in Ŝ . Since S is extended conflict free, it includes
at most M ads within distance ∆max from v. Then there must
be an ad ai ∈ S , which is farther than ∆max from v, but its
corresponding ad aj ∈ Ŝ is within Dmax from v. Now, by
assumption, D(v, ai) > ∆max = Dmax + ε, and, since ai is
mapped onto aj , then D(ai, aj) ≤ ε. By triangle inequality,
it is easy to see that this is in contradiction with the fact that
D(v, aj) ≤ Dmax, which proves the assertion.

In conclusion, A(M)
ε can provide an analogue conflict free

set for any extended conflict-free set S ⊆ A. However, since
extended conflict-free sets are a bit sparser than conflict-free sets,
we may still have a performance loss, which increases with the
value of ε.

In order to quantify such loss we analyze the relation between
the revenue obtained by selecting S , denoted by R(S), and that
obtained with Ŝ , denoted byR(Ŝ). By virtue of Corollary 2, Ŝ has
very similar properties to S . The only case where R(S) > R(Ŝ)
is when, given a vehicle v and an ad ai ∈ S , ai is relevant to
v, while its corresponding ad in Ŝ is not. This case may occur
when ai is almost at distance Dmax from the vehicle in the
F-space. This motivates the definition below, which describes a
conservative estimation of the obtained revenue that is preserved
when considering S instead of Ŝ .
Definition 5.7 (Conservative revenue estimation). Denote with

R−(S) the conservative revenue estimation, which is the value
of revenue computed by considering as relevant to a generic
vehicle only those ads within distance Dmax − ε from the
vehicle in the F-space.

Theorem 8. If S ⊆ A is an extended conflict-free set, then there
exists a conflict-free set Ŝ ⊆ A(M)

ε s.t. R−(S) ≤ R(Ŝ).

Proof: Consider all vehicles that contribute to R−(S).
These vehicles are at most Dmax − ε far from their relevant
ads in the F-space, and, thus, in Ŝ they are at most at distance
Dmax − ε + ε = Dmax. It follows that they also contribute to
R(Ŝ). Furthermore, every ad in Ŝ has a value r higher than or
equal to that of its corresponding ad in S , due to Corollary 2.
Thus, any vehicle that contributes to R−(S), contributes a greater
or equal amount to R(Ŝ).

In conclusion, when Volfied is applied to A(M)
ε instead of A,

we can guarantee that it has the opportunity to select a set of
ads, which, in the worst case, is almost as good as that it would
select by using A. Indeed, for each selected ad, the revenue loss
is limited to the contribution of the users located within a ring
of radius Dmax and width ε in the F-space. In the cases where,
using A, Volfied generates an extended conflict-free set of ads,
then there is no revenue loss in using A(M)

ε .

6 PERFORMANCE EVALUATION

We first describe the real-world reference scenario we consider to
assess the performance of Volfied and to compare it against two
benchmark strategies (Sec. 6.1). The performance results are then
presented when ads are not cached (Sec. 6.2), as well as when
vehicles can cache ads and display them at a later time (Sec. 6.3).
Interestingly, our results show that Volfied outperforms Top-k in
both scenarios.

Fig. 4. Road layout (gray lines); deployed RSUs are represented by black
dots.

6.1 Reference scenario

We evaluate Volfied using a vehicular trace [48] depicting car
mobility in Cologne, Germany. The trace refers to a urban area
of 28 × 32 km2, and models over 110,000 vehicles, during the
course of 8 hours. We consider RSUs as PoAs and place 1,000
RSUs along the busiest roads and at the center of intersections, as
shown in Fig. 4. More sophisticate RSU deployment techniques,
e.g., [35], [39], [40], [41], [42], [43] discussed in Sec. 2.3, could
be adopted as well, requiring no change to our decision-making
schemes. The effect of a sparser RSU deployment, namely, when
only 100 RSUs are placed over the reference area, is instead
considered in Sec. 6.3.

The RSU range is set to 150 m, which, in the default case of
1,000 RSUs, results in covering roughly half of our reference area.
We stress that such a deployment is challenging for Volfied, since
it leads to a scenario where vehicles are under radio coverage for
just about 60% of the time they appear in the trace.

Each vehicle is assigned a five-dimensional feature vector, i.e.,
n = 5. Feature values are sampled from the normal distribution
with a mean of 0.5 and standard deviation of 0.15. Similarly, each
ad is assigned a five-dimensional feature vector and a value r, both
sampled uniformly in the range (0, 1). 90% of the ads are global,
the others are local. Recall that local ads can be displayed only
within the coverage area of a specific RSU, which is selected at
random.

We evaluate Volfied, Top-k and a Random strategy by simu-
lating the system over 480 time steps, with each step lasting one
minute. At each time step, RSUs broadcast the ads selected by the
broker. The tested algorithms only differ from each other in the ad
selection strategy, i.e., all of them can access the same information
on ads, vehicles and ad values. Specifically, Top-k selects the K
ads with highest estimated revenue R, Random selects K random
ads among those that have a positive revenueR, and Volfied makes
conflict free selection as described in Sec. 4.1.

We first assume in Sec. 6.2 that vehicles do not cache ads,
i.e., C = 0. Thus, in general, whenever a vehicle receives more
than M ads, i.e., more ads than can be displayed in a time step,
it displays the M most relevant ones and discards the others.
Notice that this never happens with Volfied, which makes conflict-
free decisions. In Sec. 6.3, instead, we consider that, whenever a
vehicle receives more than M relevant ads, it displays the M most
relevant ones and caches the others (up toC , in order of decreasing
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Fig. 5. Time evolution of the cumulative revenue, cumulative number of impressions and average distance for Volfied, Top-k and Random (default
configuration).

relevance). The vehicle may then display the cached ads in future
time steps. Note that the content of the cache is decided at each
time step individually, accounting for both the newly received ads
and the ones in the cache. Also, cached ads that are no longer
relevant, due to the changed vehicle location, are dropped, and so
are the ads that have been already displayed by the vehicle.

With regard to the system parameters, most of the results
are derived under our default configuration, whose settings are:
K = 5, M = 1, |A| = 10, 000, Dmax = 0.15, and ε = 0.025,
and under the assumption that the presence of vehicles under
an RSU can be detected without error. Note that the default
configuration implies that the tested algorithms use as input the
sparse set A(1)

0.025. Also, unless stated otherwise, the Euclidean
distance (1) is used as definition of D(~f1, ~f2).

The performance metrics we plot are:
• total revenue, which reflects the amount of money paid to

the broker by advertisers and is computed as the sum of
the revenue generated by all broadcasted ads (recall that the
revenue is equal to the ad value r multiplied by the number
of ad impressions);

• total number of impressions, i.e., the total number of ads
that have been displayed by vehicles. This metric reflects the
point of view of advertisers who would like to maximize ad
visibility;

• the average impression distance, which represents how rel-
evant, on average, a displayed ad is to the user. This last
metric accounts for the user’s point of view. The lower the
distance, the more relevant the displayed ads are to the users.
The average distance never exceeds Dmax.

We remark that other performance metrics such as bandwidth
consumption are virtually the same for all tested algorithms and
are therefore omitted.

TABLE 2
Comparison against the optimum for a single time step

Metric Top-k Random Volfied Optimum
Revenue 1444.3 810.1 1712.0 1770.3

Impressions 1647 1573 1910 1889
Distance 0.107 0.115 0.125 0.119

6.2 Numerical results with C = 0

Comparison against the optimal solution. We first compare the
performance of Volfied, as well as that of Top-k and Random,

against the optimum derived through (3)–(8). To this end, we
restrict ourselves to a single-step scenario so that the computation
of the optimal solution is viable. The results in Tab. 2 show
that Volfied provides near-optimal performance: its revenue is
just 3.4% lower than the optimum, while it generates 1% more
impressions and similar distance. Note that, since the optimum
maximizes the revenue, there may be cases where it selects ads
with very high value r but that are displayed by slightly fewer
users, while Volfied always generates a conflict-free set thus
resulting in a higher number of impressions. The performance gap
between the optimum and the other two schemes is much larger:
the revenue gain is 25% and 55% when compared to Top-k and
Random, respectively.

Performance over time. Fig. 5 shows the time evolution of
our performance metrics for the default configuration. As can be
observed, Volfied generates 70% higher revenue and 50% more
impressions than Top-k. This implies that Volfied satisfies the
interests of both broker and advertisers. Because Volfied aims at
maximizing the broker’s revenue, it may select ads that are slightly
(by about 0.01) less relevant to users with respect to Top-k and
Random, as shown by the right plot in Fig. 5.

Effect of the ad set size. Fig. 6 shows the impact of the ad set
size, |A|, on the system performance. Intuitively, the larger |A|,
the easier it is to find relevant ads to each vehicle. Indeed, revenue
(and also impressions, omitted for brevity) improves for larger
values of |A|. Interestingly, for 1,000 ads the difference between
the algorithms is small and Volfied generates 30% more revenue
than its alternatives. However, as |A| increases, the performance
gap also grows, and when |A| = 20, 000, Volfied increases
revenue by 70% with respect to the other schemes. Indeed, the
more ads in the system, the more critical their selection becomes
and the more severe the revenue loss that occurs due to the conflict
discussed in Sec. 3.3. Hence the advantage provided by Volfied
becomes more evident.

Number of ads to serve. The value of K corresponds to the
bandwidth that is consumed by ad broadcasting. The left plot in
Fig. 7 shows that, for small values of K , the broker’s revenue
increases with K . However, it is interesting to notice that the
revenue saturates as eventually the vehicles’ ability to display ads
and the number of relevant ads become a performance bottleneck.
Thus, there is a preferred value of K (which depends on the
system settings) that the broker should use.

Furthermore, it is surprising to notice that the performance
of Top-k and Random is not monotone with K: increasing K
beyond a certain point actually hurts the broker’s revenue. The
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Fig. 6. Effect of the ad set size on broker’s
revenue, when K = 5 and M = 1.
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Fig. 7. Effect of number of broadcasted ads (K) per time step, with fixed M = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5

T
o
ta

l 
re

v
e
n
u
e
 [
m

ill
io

n
s
]

M

Top-k
Random
Volfied

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 1  2  3  4  5

Im
p
re

s
s
io

n
s
 [
m

ill
io

n
s
]

M

Top-k
Random
Volfied

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 1  2  3  4  5

A
v
e
ra

g
e
 d

is
ta

n
c
e

M

Top-k
Random
Volfied
Dmax

Fig. 8. Effect of the number of displayable ads (M ) on performance metrics for fixed K = 5.

reason is twofold. First, the larger K , the more likely the conflicts.
Second, ads that were broadcasted before are not considered as
profitable anymore (although they can still generate revenue if not
all vehicles displayed them); thus, once the top K ads have been
broadcasted, it becomes increasingly harder to identify the best ads
to transmit. Interestingly, Top-k reaches its peak value of revenue
for a lower K than Random, due to the fact that the ads selected
by Top-k create conflicts more often than those that are randomly
chosen. This is confirmed by the right plot in Fig. 7, which shows
that the conflicts generated by Top-k reduce the distance between
ad and user, hence providing slightly smaller average distance than
Random.

Effect of M . We now fix K = 5 and study the performance
as M varies. Recall that a small value of M accounts for the
reduced screen size aboard a vehicle and for the limited driver’s
attention span, and that typically M < K. As shown in Fig. 8,
Top-k and Random are very sensitive to M . For M < K, they
provide much lower revenue and number of impressions; only
when M approaches K, i.e., when conflicts seldom occur, Top-k
gives good performance. Volfied, instead, is much more robust, as
its performance varies very little with M . It generates just 10%
lower revenue and 15% fewer impressions when M = 1 than
when M = K . We remark that the latter is the special case where
Volfied and Top-k yield the same revenue, which coincides with
the optimum (see also Sec. 4.1). Thus, the fact that Volfied gives
a similar revenue for M = 1 and for M = K , confirms that its
performance is near-optimal for any M < K.

Effect of ε. The top plot in Fig. 9 depicts the broker’s revenue
as ε varies, when Dmax = 0.15. As can be observed, for values
of ε ≤ Dmax/4, the revenue loss due to the sparse approximation
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the broker’s revenue.
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Fig. 10. Effect of Dmax on performance metrics.

is negligible. Also, for such values of ε we limit the number of
ads that have to be processed per vehicle arrival/departure. As
shown in Theorem 6, the number of processed ads is bounded by:⌈(

Dmax

ε

)n⌉
regardless of the size of the ad set A, which, for

ε = Dmax/4, amounts to 45 = 1024.
Vehicle detection accuracy. While deriving the previous

results, we assumed that an RSU could reliably detect all vehicles
under its coverage thanks to their beacon messages. The bottom
plot in Fig. 9 shows the impact of different levels of accuracy,
i.e., probability of successfully detecting a vehicle under an RSU.
Remarkably, Volfied with 0.3 accuracy provides higher revenue
than Top-k with accuracy equal to 1. It follows that Volfied is very
effective even with incomplete knowledge of the scenario, since it
can still successfully avoid conflicts.

Dmax and average distance. Dmax is another important
parameter as it determines which ads are relevant to a user.
Intuitively, the larger Dmax, the easier it is to select relevant ads
that will be displayed by a vehicle, but also the larger the average
ad-user distance. Fig. 10 confirms these trends for all selection
strategies. However, we can see that, when Dmax is very small, all
strategies yield similar revenue and average distance as the set of
ads with positive revenue, hence that can be selected, is very small.
Likely each vehicle has at most one ad within distance Dmax in
A(1)
ε . For larger values of Dmax, instead, Volfied provides higher

revenue than the other schemes, as conflicts become increasingly
likely and cause revenue loss (top plot in Fig. 10). For Volfied,
the price to pay is a slight increase in the average ad-user distance
(bottom plot in Fig. 10).

Impact of the distance metric. So far, we have used the
Euclidean distance defined in (1) as the definition of D(~f1, ~f2). In
Fig. 11 we check if, and to which extent, using the angular distance
defined in (2) changes the relative performance of Volfied and its
counterparts. Notice that, as the definition of distance changed,
we need to use a different threshold; specifically, we set Dmax =

0.092 as this guarantees the same average number of relevant ads
per vehicle as in the default scenario.

Fig. 11 (left) and Fig. 11 (center) are the counterparts of
Fig. 5 (left) and Fig. 5 (center), respectively, and depict the time
evolution of the revenue and number of impressions. We can
see that the relative performance of Volfied and its counterparts
is unchanged: Volfied guarantees both a higher revenue to the
broker and a higher number of impressions compared to Top-k
and Random. Fig. 11 (right) shows how the number M of ads that
can be displayed impacts the broker revenue, when K = 5, and
is the counterpart of Fig. 8 (left). We can again see that changing
the distance metric does not substantially alter the qualitative and
quantitative behavior of the schemes under study.

6.3 Numerical results with C > 0

We now consider that vehicles can store ads in their cache and
display them at a later time if convenient. Note that cache avail-
ability and size impact the performance of Volfied’s counterparts
only, most notably Top-k. Indeed, Volfied always delivers a set
of ads that can be immediately displayed, i.e., it does not exploit
caches even if they are available. Top-k instead would become the
optimal strategy when the vehicles are equipped with unlimited
cache and all the ads are global, as under these conditions every
transmitted ad will eventually be displayed – with caching having
the high-level effect of making up for the conflicts generated
by Top-k. In practice, however, caches are bounded in size and
local ads can still be dropped from the cache if a vehicle leaves
their relevance area. Therefore, Volfied retains its performance
advantage, as shown below.

Effect of cache size C . Fig. 12 depicts the total revenue
and the number of impressions as the vehicles cache size varies.
The latter is normalized to the average number of existing ads
that are relevant to a generic vehicle when A(1)

0.025 is considered
as ad set (namely, 5 ads). It is clear that the performance of
both Random and Top-k dramatically improves since the caching
mechanism mitigates the problem of conflicting ads. Indeed, at a
given time step, a vehicle can store the ads that are not relevant
enough to be displayed immediately, and display them later when
their relevance outweighs that of other newly received ads, or the
vehicle happens to be out of RSU coverage.

Sparse deployment. In order to assess the performance of the
different solutions in a scenario where caching plays a major role,
in Fig. 13 we focus on an extremely sparse scenario, including
100 RSUs only. This turns into vehicles being under RSU radio
coverage just for about 7% of the time they appear in the trace,
thus leaving plenty of opportunities for the vehicles to display
cached ads. Consistently, the number of impressions achieved by
Top-k (see bottom plot) gets much closer to the one of Volfied,
with respect to the case shown in Fig. 12; for large values of
cache size, it even exceeds the number of impressions obtained
under Volfied. However, looking at the total revenue (top plot),
we observe that, in this extreme scenario, Volfied and Top-k tend
to provide the same performance. We also wish to recall that in
the default configuration 90% the ads are global and therefore
cacheable – another condition that favors Top-k over Volfied.
Finally, comparing Fig. 13 to Fig. 12, it is worth noticing that the
performance of all schemes significantly decreases in the presence
of such a sparse RSU deployment.

Effect of |A| and K . We now fix the normalized cache size to
1.4 and investigate the impact of the ads set size (Fig. 14) and of
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Fig. 11. Effect of using the angular distance (2) as the definition of D(~f1, ~f2): time evolution of the revenue (left) and number of impression (center),
and effect of M on the revenue when K = 5 (right).
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Fig. 12. Effect of the cache size on the performance metrics, under
the default configuration. The cache size is normalized to the average
number of per-user relevant ads.

the number K of ads broadcasted by each RSU (Fig. 15). In such
a scenario, Top-k and Random show an improvement but Volfied
still greatly outperforms both of them confirming that caching
cannot fully solve the problem of ad conflicts. Focusing on Top-
k and Random, we also observe that in general the performance
of Random is either the same or lower than Top-k. Indeed, when
RSUs have chance to transmit many ads, Random only selects
the ones with positive revenue, thus ending up choosing the same
ads as Top-k. When instead there is no room for all ads with
positive revenue, then using Top-k makes a difference with respect
to the random choice. Furthermore, it is interesting to note that, as
shown in Fig. 15, the performance of both Top-k and Random
decreases as K grows beyond a certain value. The reason is
that, as RSUs broadcast more ads than what users can display
or cache, some ads are dropped by the vehicles. However, since
no feedback is provided, RSUs are unaware of which ads get
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Fig. 13. Total revenue and number of impressions in the presence of
a sparse RSU deployment, where vehicles spend under RSU radio
coverage just 7% of the time they appear in the trace. Default values
are assumed for the other system parameters.

discarded. This implies that RSUs do not rebroadcast ads that
it could be convenient to deliver again to the vehicles, leading to
a severely suboptimal ad selection.

7 CONCLUSIONS

We addressed targeted advertising in vehicular networks and
envisioned a system where advertisers pay a broker based on the
value and the number of impressions of each ad. We considered the
broker’s perspective and formulated the problem of selecting the
ads to broadcast that maximize the broker’s revenue, subject to a
maximum number of ads that can be transmitted. While doing this,
we identified a conflict between user and broker’s interests, which
severely hurts the broker’s revenue if not properly addressed.
Then, in light of the problem complexity, we introduced Volfied,
an efficient greedy algorithm that always selects a conflict-free set
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Fig. 14. Effect of varying the ad set size, on the broker’s revenue and
the number of impressions (K = 5, M = 1, and normalized cache size
equal to 1.4).

of ads while maximizing the broker’s revenue. The complexity of
Volfied has been proved to be linear with the number of ads.

In addition, we proposed a sparse approximation of the ad
set, which further speeds up ad selection. We evaluated Volfied
and our sparse approximation technique in a realistic vehicular
environment, against the optimum in a single-time step scenario
and against the Top-k and Random strategies in a multi-time
step scenario. Numerical results show that Volfied provides near-
optimal performance. Also, it improves the broker’s revenue by
up to 70%, and the number of displayed ads by up to 50%, with
respect to Top-k.

Finally, we extended our analysis to the case where vehicles
are equipped with a cache. Our results show that, even if Volfied
does not exploit the vehicles’ caching capabilities, its performance
still matches or outperforms the one of Top-k. This further high-
lights how Volfied represents an effective and efficient solution for
vehicular advertising, with low hardware requirements on vehicles
and low implementation complexity.
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