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Summary. This paper focuses on numerical strategies to predict the behavior of piezoelectric
materials and devices characterized by heterogenous microstructural features. Several of these
materials are attractive for technological applications including mechanical energy harvesting
and pressure/force sensors. After a general introduction on the linear piezoelastic problem, two
multiscale strategies are presented and applied to the solution of simple but significant problems
frequently encountered in nanotechnology test setups. The first strategy consists in classical
homogenization based on the choice of a representative volume element and on the classical
micro-macro work equality known as Hill’s lemma. The second strategy is based on the so
called FE2 method, where the microscale average response resulting from an homogenization
procedure is directly used as a constitutive model at each quadrature point at the macroscale.
Both strategies have been implemented within an advanced numeric framework based on the
authomatic differentiation technique.

1. INTRODUCTION

Piezoelectric devices are attractive for several technological applications, most notably for
mechanical energy harvesting and pressure/force sensors. Previous research [1] highlighted as
the experimental characterization and the numerical modeling of piezoelectric materials may
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open several opportunities for the development of micro-electro-mechanical systems (MEMS)
and nano-electro-mechanical systems (NEMS) with applications in human motion monitoring,
robotics and energy harvesting [2]. Nanostructured lead zirconate titanate ceramics (PZT) in the
form of nanowires and straight or buckled nanoribbons have been recently developed and pro-
posed in several applications [3]. ZnO, a semiconducting and piezoelectric oxide with wurtzite
crystal structure, has been obtained in a large number of nanostructures such as nanowires,
nanobelts and nanogenerators [4]. Very often the integration of piezoelectric materials into
composites allows for the improvement of their constitutive properties and the enhancement of
the global strength. Consequently the application spectrum is even extended.

The focus in this paper is on numerical methods to predict the piezomechanical behavior
of heterogeneous piezoelectric materials and devices. For simplicity, reference is made herein
primarily to piezocomposites, however the ultimate goal is the modeling of a novel class of
piezoelectric devices which will be tackled in the next step of the research. In order to pre-
dict the macroscale properties of materials and devices featuring heterogeneous properties at
the lower scale(s), several analytical and computational multiscale approaches have been de-
veloped in the past years [5, 6] to overcome the prohibitive computational expense required for
an explicit description of the lower-scale features. Although most of these efforts have been
devoted to continuum mechanics [7, 8], several applications to multiphysics problems are also
available. A few of these focus specifically on electromechanically coupled problems such as
in the case of piezoelectricity [9], and are based either on analytical approaches [10,11] or on
finite element analyses [12,13].

This work discusses two multiscale and multiphysics computational approaches suitable for
numerical modeling of the electromechanical behavior of piezoelectric nanocomposites. As
an intermediate step towards the development of a novel computational multiscale and multi-
physics framework, the two main multiscale approaches available in the literature have been
studied, implemented and applied to the computation of a few examples. This research activity
is suitable for the specific problem to be tackled in the next step of research. For simplicity, two
scales are considered throughout this paper and are termed microscale and macroscale. The
presented concepts can be however extended in a straightforward fashion to materials in which
a larger number of scales is significant and must be incorporated in the analysis. This paper
reports on this preliminary phase and is divided in three main parts:

1. in the first part, the theory of linear piezoelasticity [14, 15] is briefly introduced along with
its finite element formulation [16] and is applied to simulate the piezoelectric response of
a single ZnO nanowire under different loading conditions.

2. The second part describes a numerical homogenization procedure for piezoelectric nano
composites. This procedure requires the definition of a representative volume element
(RVE) at the microscale, with known constitutive behaviour of the individual constituents,
the formulation and solution of a microscale boundary value problem (BVP), and the
development of a suitable micro-macro scale transition. The formulation is applied to
predict the effective properties of piezocomposites.
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3. Finally, the third part introduces a multiscale approach based on a concurrent analysis
of the micro- and macroscales, within the framework of the so-called FE2 method. For
the time being, this more complex multiscale formulation has been implemented for the
mechanical field, whereas the extension to the multiphysics regime is currently underway.
This formulation is applied to the numerical analysis of a contact problem.

Advanced symbolic computational tools available in the AceGen-AceFem finite element envi-
ronment within Mathematica [17] are used throughout this work, with the advantage that the
tasks related to the finite element implementation are largely automated [18].

2. LINEAR PIEZOELECTRICITY

In this section, the theory of linear piezoelectricity and the finite element equations resulting
from its numerical approximation are outlined. A simple but significant application is presented.

2.1 Theory of linear piezoelectricity and finite element formulation

Piezoelectric problems are those in which an electric potential gradient causes deformation,
and viceversa. The governing equations, with subscript tensor notation, are listed as follows:

• Navier equations (assuming no body forces)

Tij,j = 0;Tij = Tji for i 6= j; (1)

• strain-displacement relations

Sij =
1

2
(ui,j + ui,j) ; (2)

• coupled electromechanical constitutive equations. These may be defined starting from
the introduction of a suitable potential in the form

H =
1

2
SijSklCijkl −

1

2
EiEkεik − SklEieikl; (3)

The coefficients in the constitutive matrices read [14]

Cijkl =
∂2H

∂Sij∂Skl
=
∂Tij

∂Skl
; eikl = − ∂2H

∂Skl∂Ei
=
∂Di

∂Skl
= −

(
∂Tik

∂El

)
T ; (4)

εik = − ∂2H

∂Ei∂Ek
=
∂Dk

∂Ei
; (5)

while the final form of the constitutive equations is

a) Tij = CijklSkl − ekijEk; b) Di = eiklSkl − εikEk; (6)

3
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where Cijkl, eikl, and εik are respectively the elastic, piezoelectric, and permittivity con-
stants. In the above equations, the strains, stresses and mechanical displacements are
respectively denoted by Sij, Tij and ui, while the electric field, and displacement are re-
spectively denoted by Ei and Di. Clearly, the coupling between mechanical and electric
fields is determined by the piezoelectric coefficients;

• Gauss and Faraday laws for the electrostatic field

a) Di,i = 0; and b) Ei = −φ,i; (7)

where φ denotes the electric potential. The boundary conditions for the mechanical field are

ui = ūi on Γu; ti = Tijnj = t̄i on Γt; (8)

where ū and t̄ are prescribed mechanical displacement and surface traction vectors, and Γ =
Γu ∪ Γt, Γu ∩ Γt = �, with Γ as the boundary of the domain. The boundary conditions for the
electric field are

φ = φ̄ on Γφ; d = Dini = d̄ on Γd; (9)

where φ̄ and d̄ are prescribed values of electric potential and electric charge flux, and Γ =
Γφ ∪ Γd, Γφ ∩ Γd = �. Using standard finite element procedures, the displacement field u and
the electric potential φ can be defined in terms of shape function matrices Nu and Nφ and nodal
values vectors û and φ̂. The final finite element equations governing the electromechanical
problem are obtained in the form

Kuuû + Kuφφ̂ =t̂ (10)

Kuφ
T û−Kφφφ̂ =d̂ (11)

where

Kuu =

∫
V

Bu
TCBudV ; Kuφ =

∫
V

Bu
TeBφdV ; Kφφ =

∫
V

Bφ
TεBφdV (12)

and

t̂ =

∫
Γt

Nu
T t̄dS; d̂ = −

∫
Γd

NT
φ d̄dS (13)

This theory has been implemented in solid 8-nodes brick element and 4-nodes plane stress and
plane strain elements.

2.2 A simple application: numerical modeling of a single ZnO nanowire

Herein, the theory of linear piezoelectricity is applied to investigate the piezoelectric behav-
ior of a single ZnO nanowire. The material properties used in the analysis are provided in Table
1.

4
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Table 1. Elastic, Piezoelectric and permittivity properties of ZnO

C11 C12 C13 C33 C44 C66 e31 e33 e15 ε11/ε0 ε33/ε0
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (C /m2 ) (C /m2 ) (C /m2 )
210 121 105 211 44 44.5 -0.36 1.57 -0.36 8.5 10.9

Various methods for electromechanical characterization of individual one-dimensional nanos-
tructures are available in the literature, namely: a) lateral bending (i.e. bending in a cantilever
configuration) with an atomic force microscopy (AFM) probe, b) compression between two
AFM probes, and c) three-point bending using an AFM probe. These three different loading
conditions are reproduced numerically. The nanowire geometry is modeled using a square cross
section with side of 50 nm and a length of 600 nm [4]. In the three tests, the nanowire is sub-
jected to a) a vertical force F = 80nN applied as a line load to the top free surface while the
other end is fixed, b) a compressive force F = 100nN, c) a vertical force F = 100nN applied to
the middle section of the nanowire assumed simply supported at the two ends. Fig. 1 illustrates
the electric potential distribution for the three load cases. A good agreement is found between
numerical predictions and the difference of potential φmeasured experimentally at the two ends
of the nanowire [4].

Figure 1. Minimum and maximum voltages in ZnO nanowire corresponding to the vertical
color scales are -0.342 to 0.343 V (a), 0 to 2.7 V (b), and 0 to 3.8 V (c), respectively.

3. HOMOGENIZATION OF HETEROGENEOUS PIEZOELECTRIC MATERIALS

In this section, first a special form of the constitutive equations (6) suitable for transversely
isotropic piezoelectric materials is introduced. This form can be used for macroscopic modeling
of piezocomposites with fibers aligned in one direction. Then the concept of RVE is presented
and Hill’s energy principle is introduced. This allows for the transition from micro to macro

5
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quantities characterizing the multiphysics problem. Finally an application to unidirectional
piezocomposites is illustrated.

3.1 Transversely isotropic behavior

Hereafter, the constitutive equations (6) are specialized for a transversely isotropic mate-
rial behavior with plane of isotropy 1-2. This can be considered as the macroscale “effective”
behavior for a piezocomposite in which piezoelectric fibers aligned in the 3-direction are em-
bedded into an isotropic (e.g. polymer) matrix. In such a case, the piezoelectric constitutive eqs.
(14) correlate average values of stress T̄ij and electric displacement D̄i, with average values of
strain S̄ij and electric field Ēi.

T̄11

T̄22

T̄33

T̄23

T̄31

T̄12

D̄1

D̄2

D̄3


=



Ceff
11 Ceff

12 Ceff
13 0 0 0 0 0 eeff

13

Ceff
12 Ceff

11 Ceff
13 0 0 0 0 0 eeff

13

Ceff
13 Ceff

13 Ceff
33 0 0 0 0 0 eeff

33

0 0 0 Ceff
44 0 0 0 eeff

15 0
0 0 0 0 Ceff

44 0 eeff
15 0 0

0 0 0 0 0 1
2

(
Ceff

11 − Ceff
12

)
0 0 0

0 0 0 0 eeff
15 0 εeff

11 0 0
0 0 0 eeff

15 0 0 0 εeff
11 0

eeff
13 eeff

13 eeff
33 0 0 0 0 0 εeff

33





S̄11

S̄22

S̄33

S̄23

S̄31

S̄12

Ē1

Ē2

Ē3


(14)

In the constitutive matrix, Ceff
ij , eeff

ij and εeff
ij (in total 10 indipendent coefficients in this case)

may be thought of as the effective piezoelectric coefficients of the composite material at the
macroscale. In homogenization techniques, these coefficients are obtained as shown in the
following subsections by taking into account the heterogeneous nature of the composite at the
microscale [10-13].

3.2 Unit cell models for numerical homogenization

The main idea of homogenization is finding a globally homogeneous medium equivalent to
the original composite, where the strain energies stored in the two systems are approximately the
same. Coupling between the macroscopic and microscopic scales is here based on averaging
theorems (Hill condition) as discussed e.g. in [5-7]. Formulated for the electromechanical
problem at hand, the Hill criterion in differential form reads

T̄ijδS̄ij + D̄iδĒi =
1

V

∫
V

TijδSijdV +
1

V

∫
V

DiδEidV (15)

and requires that the macroscopic volume average of the variation of work performed on the
RVE is equal to the local variation of the work on the macroscale. Eq. (15) may be split into
two parts

Ωm = T̄ijδS̄ij −
1

V

∫
V

TijδSijdV = 0 ; Ωe = D̄iδĒi −
1

V

∫
V

DiδEidV = 0. (16)
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For a unidirectional piezocomposite with fibers aligned in the 3-direction, homogenization can
be treated as a two-dimensional problem in the 1-2 plane by assuming plane strain conditions.
This allows a reduction of the total number of degrees of freedom and thus of the unknowns of
the problem.

Classically three types of boundary conditions are used for an RVE: prescribed displace-
ments, prescribed tractions and periodic boundary conditions. All three types satisfy the micro-
macro work equality stemming from Hill’s lemma in eq. (15) and are therefore suitable for the
analysis. In the application presented in this work prescribed displacements are used.

3.3 Computation of effective properties

Hill’s lemma, eq. (16) leads to the following equations:

S̄ij =
1

V

∫
V

SijdV T̄ij =
1

V

∫
V

TijdV (17)

Ēi =
1

V

∫
V

EidV D̄i =
1

V

∫
V

DidV (18)

Based on eqs. (14), (17) and (18), the general procedure to determine a row of the homogenized
constitutive matrix requires to compute the average stresses, strains, electric displacements and
electric fields by solving the BVP nine times with different boundary conditions. For each
particular load case only one value in the strain/electric field vector is taken as non-zero. For
example, in order to computeCeff

11 , a non-zero S̄11 is applied whereas the other strain and electric
field components are zero, so that the first row of eq. (14) simplifies to T̄11 = Ceff

11 S̄11 and the
desired coefficient is obtained as T̄11/S̄11 [13].

3.4 Application to unidirectional piezocomposites

The previous theory is here applied to a unidirectional piezocomposite made of PZT fibers
embedded into an epoxy matrix. Tables 2 and 3 summarize the material properties of fibers and
matrix. Both square (SQU) and hexagonal (HEX) fiber arrangements are considered and a

Table 2. Elastic, Piezoelectric and permittivity properties of PZT-7A

C11 C12 C13 C33 C44 C66 e31 e33 e15 ε11/ε0 ε33/ε0
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (C /m2 ) (C /m2 ) (C /m2 )
148 76.2 74.2 131 25.4 35.9 -2.1 9.5 9.2 460 235

square RVE is chosen, see Fig. 2 and Fig. 3. Other geometrical forms are possible but a square
unit cell enables a simpler enforcement of boundary conditions in a Cartesian space [12, 13].
Moreover, from Fig. 2 and 3 it is clear that the RVE is uniformly meshed such that matching
nodes are present on opposite faces of the RVE.

Fig. 2 and 3 (b,c) show the stress distributions in the RVE respectively for square and

7
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Table 3. Elastic, Piezoelectric and permittivity properties of Epoxy Matrix

C11 C12 C13 C33 C44 C66 e31 e33 e15 ε11/ε0 ε33/ε0
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (C /m2 ) (C /m2 ) (C /m2 )

8 4.4 4.4 8 1.8 1.8 0 0 0 4.2 4.2

hexagonal packing for the loading case in which a non-zero strain S̄11 is applied to the specimen,
while Fig. 2 and 3 (d,e) provide the electric field distributions in the RVE for the loading case
in which a non-zero electric potential Ē1 is applied to the right edge of the RVE. Fig. 4 shows
the influence of the fiber volume fraction on the final value of the effective coefficients Ceff

11

and εeff
11. Similar curves can be obtained for the other unknown coefficients.

4. MULTILEVEL FINITE ELEMENT

This section provides first a general overview of multilevel finite element procedures [5, 7,
19]. A method to calculate the macroscopic tangent stiffness matrix starting from a microscale
BVP is described for the general case of electromechanical problems according to [9]. An
application is finally presented where the outlined procedure is implemented in the context of
mechanical problems.

(a) RVE: HEX (b) T11 (c) T22 (d) E1 (e) E2 (f)

Figure 2. RVE HEX. Minimum and maximum stress corresponding to the vertical color scales
are 4.3 10−2 to 13.6 10−2 [nN/nm2] (b), 5.1 10−2 to 7.3 10−2 [nN/nm2] (c), Minimum and
maximum electric field corresponding to the vertical color scales are 2.3 10−2 to 2.5 [mV/nm]

(d), and -1.5 to 1.5 [mV/nm] (e), respectively.

4.1 Multilevel finite element analysis (FE2)

Multilevel finite element analysis differs from the homogenization technique presented in
the previous section in that the examination of the micro and macroscales is here performed
concurrently. While being computationally more expensive and more complicated to imple-
ment, techniques of this type present a number of significant advantages [5,7], as they:

8



Claudio Maruccio, Laura De Lorenzis, Luana Persano, Dario Pisignano and Giorgio Zavarise.

(a) RVE: SQU (b) T11 (c) T22 (d) E1 (e) E2 (f)

Figure 3. RVE SQU. Minimum and maximum stress corresponding to the vertical color scales
are 3.6 10−2 to 15.1 10−2 [nN/nm2] (b), 0.61 10−2 to 8.8 10−2 [nN/nm2] (c), Minimum and
maximum electric field corresponding to the vertical color scales are 2.1 10−2 to 2.4 [mV/nm]

(d), and -1.1 to 1.1 [mV/nm] (e), respectively.

0,0 0,1 0,2 0,3 0,4 0,5 0,6
8

10

12

14

16

18

20

22

(a) Influence of PZT Fiber Volume Fraction on C11.

0,0 0,1 0,2 0,3 0,4 0,5 0,6
0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

(b) Influence of PZT Fiber Volume Fraction on ε11.

Figure 4. Effective properties versus PZT Fiber Volume Fraction HEX-RVE.

• do not require any explicit assumption on the format of the macroscopic local constitutive
equations, since the macroscopic constitutive behaviour is obtained from the solution of
the associated microscale BVP;

• enable the incorporation of large deformations and rotations on both micro- and macrolevels;

• are suitable for arbitrary material behaviour, including physically nonlinear and time de-
pendent;

• provide the possibility to introduce detailed microstructural information, including the
physical and geometrical evolution of the microstructure, into the macroscopic analysis;

9
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• allow the use of any modelling technique on the microlevel, e.g. the finite element
method, the boundary element method, the Voronoi cell method, etc.

A detailed description of the approach can be found in [5,7] applied to mechanical problems, in
[9] for the electromechanical case, and in [19, 20] with a focus on the implementation algorithm.
In general, within a multiscale finite element analysis two different levels are concurrently ex-
amined, i.e. the macro and the microlevels, therefore the name FE2 method.

The method consists of the following steps. First the macroscopic structure to be analyzed is
discretised using the finite element method. Then, external loads are applied at this macrolevel
and if the macroscopic problem is nonlinear, a standard Newton-Raphson iterative procedure is
used. A discretised RVE is assigned to each macroscopic integration point. The geometry of the
RVE is based on the microstructural properties of the material under consideration (in the appli-
cation presented in this section, square and hexagonal packing of ZnO nanowires in a matrix).
For each macroscopic integration point, the local macroscopic deformation is computed starting
from the macroscopic nodal displacement field and used to formulate the boundary conditions
to be applied on the corresponding RVE. Now the BVP for the RVE is fully defined and from
the finite element analysis at the microlevel the resulting stress and strain distributions in the
RVE are computed. By averaging the RVE results over the unit cell volume the RVE averaged
Cauchy stress tensor is computed and returned to the macroscopic integration point as a local
macroscopic stress. At this point it is possible to determine the local macroscopic consistent
tangent by performing a sensitivity analysis at the RVE level. When the analysis of all RVEs
is completed, the stress tensor is available at each macroscopic integration point, and the inter-
nal macroscopic forces can be calculated. If these forces are in balance with the external load
according to the convergence criterion implemented, the next time step can start, otherwise the
iterative procedure is continued [5-7].

4.2 Macroscopic tangent computation

The unknown coefficients of the constitutive matrix at the macroscale can be determined by
directly deriving the average values of stress and electrical displacement using the expressions:

C̄ijkl =
∂T̄ij

∂S̄kl
=

∂

∂S̄kl

(
1

V

∫
V

TijdV

)
; (19)

ēikl =
∂D̄i

∂S̄kl
=

∂

∂S̄kl

(
1

V

∫
V

DidV

)
; (20)

ε̄ik =
∂D̄k

∂Ēi
=

∂

∂Ēi

(
1

V

∫
V

DidV

)
. (21)

Split of the microscopic strains and electric field into costant parts S̄kl, Ēi and fluctuating parts
S̃kl, Ẽi yields

Skl = S̄kl + S̃kl Ei = Ēi + Ẽi. (22)

10
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where by definition ∫
V

S̃kldV = 0

∫
V

ẼidV = 0. (23)

If the general form of the piezoelectric constitutive equations, eq. (6), is particularized for the
macroscale and rewritten in incremental form, this leads to

∆T̄ij = C̄ijkl∆S̄kl − ekij∆Ēk; ∆D̄i = ēikl∆S̄kl − ε̄ik∆Ēk; (24)

Substituting eq. (19), (20) and (21) into eq. (24) and after application of the chain rule, the
following relation is obtained:[

∆T̄ij
−∆D̄i

]
=

1

V
(

∫
V

[(
Cijkl (−eikl)

T

−eikl εik

)
+

(
Cijkl

∂S̃kl
∂S̄kl

(−eikl)
T

−eikl
∂S̃kl
∂S̄kl

εik
∂Ẽi

∂Ēi

)]
dV )

[
∆S̄kl
∆Ēk

]
(25)

In the AceGen/AceFem environment, the partial derivatives of the microscopic fluctuation of
strain and electric field with respect to their macroscopic counterparts may be implemented
through a sensitivity analysis [19, 20].

4.3 Case study

At present, the described procedure has been implemented only for the mechanical fields and
the multiphysics extension is currently underway. The case study concerns a contact problem
between a piezocomposite substrate and a probe during an indentation test. A node-to-segment
element for analysis of the 2D frictionless contact problem is used to enforce the contact con-
ditions between the two bodies with the penalty method. The material parameters used in the
analysis are given in Table 3 for the matrix material and in Table 1 for the ZnO nanofibers. A
displacement control procedure is used. Fig. 5 shows the mesh employed in the analysis (di-
mensions are in nm): for the upper element (body 1, slave) an homogenized domain is used with
2D quadrilateral plane strain elements and elastic material properties (E=20 GPa, and ν=0.3 ),
while the bottom element (body 2, master) is discretized using the developed FE2 framework.
The red dots symbolize the Gauss integration points at each of which a microscale BVP is
solved.

Fig.s 6 (b,c) illustrate the contour plots of the stress T11 at the microscale (considering square
packing) at two different locations: the point at the corner of the contact layer (y=2000 nm) be-
tween body 1 and 2 and the point in the middle position of the contact layer. Fig.s 7 (a, b, c)
show the stress levels at the macroscale when the upper surface of block 1 is displaced down-
wards by 10 nm. From the analysis, it is clear as higher values of stress at the microlevel are
generated in different locations of the macro structure. Hence, this results in a map of possible
failure points. Moreover, by simultaneously examining the macroscopic stress distributions as
well as the microscale results of RVEs at critical locations the role of microscale geometry and
fiber volume fraction on the macroscopic performance of piezoelectric materials and devices
can be explored in depth.
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2000 4000 6000 8000 10000

1000

2000

3000

4000

Figure 5. Mesh and boundary conditions used at the macroscale. The red dots symbolize the
Gauss integration points at each of which a microscale BVP is solved.

(a) Mesh at the microscale (b) x = 2500; y = 2000 (c) x = 5000; y = 2000 (d)

Figure 6. FE2: Microscale behavior, countour levels of T11. Minimum and maximum stress
corresponding to the vertical color scales are -0.446 10−2 to 0.178 10−2 [nN/nm2] (b), and

-0.224 10−2 to 0.148 10−2 [nN/nm2] (c), respectively.

5. CONCLUSIONS

This paper is focused on two numerical strategies to predict the behavior of piezoelectric
materials and devices characterized by heterogenous microstructural features. Several of these
materials are attractive for technological applications including mechanical energy harvesting
and pressure/force sensors. After a general introduction on the linear piezoelastic problem, two
multiscale strategies are presented and applied to the solution of simple but significant problems
frequently encountered in nanotechnology test setups. The first strategy consists in classical
homogenization based on the choice of a representative volume element and on the classical

12
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(a) T11 (b) T12 (c) T22 (d)

Figure 7. FE2: Macroscale behavior, stress countour levels. Minimum and maximum stress
corresponding to the vertical color scales are -0.442 10−2 to 0.251 10−2 [nN/nm2] (a), -0.275

10−2 to 0.275 10−2 [nN/nm2] (b), and -0.123 10−2 to 0. 14210−2 [nN/nm2] (c), respectively.

micro-macro work equality known as Hill’s lemma. The second strategy is based on the so
called FE2 method, where the microscale average response resulting from an homogenization
procedure is directly used as a constitutive model at each quadrature point at the macroscale.
Both strategies have been implemented within an advanced numeric framework based on the
authomatic differentiation technique.

The performance of the developed tools was illustrated through their application to simple
case studies: a single nanowire generator, a piezocomposite with PZT fibers and epoxy matrix,
and a contact problem between a probe and a piezocomposite with ZnO fibers and epoxy matrix.
These preliminary results demonstrate as the presented multiscale strategies may be used to
shed light on the role of microscale geometry and constitutive variables on the macroscopic
performance of piezoelectric material and devices. Ultimately, multiscale computational tools
can provide key capabilities for design and optimization of novel piezoelectric devices.
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