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ABSTRACT 
This work is devoted to the development of a new constitutive model for electric–mechanical 
contacts, based on a micro-macro approach to describe the contact behaviour. 

In order to model properly the physical aspect of the problem the surface microrugosity 
must be considered. In the proposed contact element a macroscopic formulation, based on 
microscopic evidences, is set up and implemented in the contact formulation. 

Some thermo-mechanical macroscopic models, based on microscopic characterizations, 
have already been developed to compute the normal and tangential contact stiffness and the 
thermal contact resistance. On the basis of such macroscopic models, a similar model, suitable 
for the electric-mechanical field, is developed. With reference to the thermal constriction 
resistance the electric contact resistance is studied, assuming a flux tube around each 
contacting asperity, and choosing a suitable geometry for its narrowing at the contact zone. 

Finally these selected microscopic laws are adapted to the macroscopic numerical 
necessities to obtain a constitutive law for the electric-mechanical contact element. 

Consistent linearization is developed in order to improve the computational speed, within 
the framework of the implicit methods. 

 
 
1. INTRODUCTION 

 
Within the Finite Element framework the numerical treatment of contact problems is 
generally based on two main solution strategies, i.e. the Lagrange multipliers method and the 
penalty method. Usually in both cases the physical behaviour of the contacting surfaces is not 
taken into account. In the case of the Lagrange multipliers technique the non-penetration 
conditions are satisfied exactly, but they are purely geometrical constraints and any physical 
aspect of the contact is disregarded. Considering the penalty method, the penalty parameter is 
usually chosen on the basis of numerical necessities. It is well known that a wrong choice of 
the parameter can lead to the ill-conditioning of the global stiffness matrix or to an 
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unacceptable violation of the contact constraints. However penalty methods can be easily 
implemented in the structure of the Finite Element codes, so that they are widely used. 

Actually within the framework of the penalty method it is possible to implement contact 
elements with interfacial constitutive laws, thus overcoming their limitation of being a pure 
solution strategy. 

 In the present paper this possibility is exploited to develop a new contact element suitably 
formulated to deal with contact problems in the coupled electric and mechanical fields. In the 
formulation the real physical mechanisms of contacting surfaces is taken into account using a 
non-linear constitutive relationship. The basic concept of contact as a unilateral constraint 
condition is extended through the implementation of a suitable constitutive law that describes 
at macroscopic scale what happens on the microscopic one. In this way the physical contact 
behaviour is determined using micro-mechanical formulations to develop a constitutive law 
for the contact finite element. 

 
 
2. CONTACT CONSTITUTIVE LAWS 

 
2.1. Surface parameters characterization and normal contact contribution 

When two surfaces come into contact the real contact area is actually concentrated on the 
summits of the highest asperities, hence it is composed of a collection of spots. 

The determination of the true contact area is fundamental for an accurate modelling of 
mechanical and electric phenomena; this means that it is necessary to determine the number of 
spots, their distribution and their medium size. All these parameters depend upon the applied 
contact pressure. The problem can be approached using either correlation formulae generated 
by fitting a set of experimental results or via a theoretical analysis. 

In this study a microscopic plastic model [1] afterwards enhanced [2-5], has been preferred 
and suitably adapted. The model was originally developed for the thermo-mechanical field, 
but in two recent works [6-7] we proposed the approach for the electric-mechanical one. This 
paper is the further development of that approach and for self-consistency we recall here the 
main lines of that study. The statistic characterization of the contacting surfaces proposed in 
[1] is used to determine the number of spots per unit area scn  and their mean spot radius a  
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where aA  is the apparent contact area, d  is the mean planes distance, m  is the mean 

absolute asperity slope and σ  is the RMS surface roughness. 
Combining equations (1) and (2) the ratio between the real and the apparent contact area 

can be expressed in the form 
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In the usual range of applied pressures the parameters m  and σ  can be kept constant, so 

that only the mean planes distance governs the evolution of the number of spots and their 
mean radius. In order to predict the contact conductance a mechanical dependence is 
introduced to relate the pressure applied at the interface to the real contact area rA , or to the 
ratio ar AA . This model is developed assuming that the local contact pressure is high enough 
to induce plasticisation on the top of the asperities, even for low apparent contact pressures. 
With such assumption the real contact pressure in the contact zones reaches the yielding value 
and the following relationship holds 

 

 FpAHA ar ==  (4) 

 
where H  is the asperities yielding limit, p  is the apparent pressure and F is the total 

contact force. The proportionality parameter H  plays a key role in the models of plastic type. 
It represents the surface hardness, which is completely different from that of the bulk material. 
Hardening processes usually occur on the external stratum, due to finishing treatments, 
contaminants, oxidation and other causes. Hence the effective yield pressure (which can be 
determined using micro-hardness tests) depends upon the depth of the plastic zone and its 
value can vary within a wide range. 

The results of Vickers micro-hardness tests can be correlated in a power form [8] 
 

 2
1

c
vV dcH ⋅=  (5) 

 
where VH  is Vickers micro-hardness in MPa, vd is the mean indenter diagonal and 1c , 2c  

are the correlation coefficients depending upon the material. 
Assuming that the contact micro hardness of the surface being penetrated by the asperities 

of the harder surface is the same as the Vickers indentation we have 
 

 adV
6102π=  (6) 

 
where the 106 factor as been introduced to use meter as length unit. 
In this way Vickers micro-hardness can be related to the relative mean planes distance 

through eqs. (2), (5) and (6) 
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Equations (7) and (3) through (4) can be combined to obtain the following relationship 

between the apparent contact pressure p and the mean planes distance d 
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It is worth to mention that the inverse complementary error function ( )σ2derfc , 

appearing in the above equations, has not solution in closed form, hence numerical integration 
is needed. 

 
2.2. Electric Contact Resistance 

Different techniques for the computation of the electric contact resistance, taking into account 
the dependences on various parameters, have been proposed. Just like the mechanical field, 
some of the available laws are obtained as a curve fitting of experimental results, while others 
are developed on theoretical basis.  

Considering the phenomena at microscopic level, the resistance is mainly due to the low 
fraction of surface area really in contact, which causes the main perturbation of the electric 
field in the interface zones. Electric resistance is calculated assuming that each single spot 
contribution can be added in parallel to the others, thus obtaining the resistance over the 
apparent contact area. The electric constriction resistance is studied supposing a flux tube 
around each asperity in contact, and choosing a suitable geometry for its narrowing at the 
contact zone. Various kinds of narrowing have been studied and comparisons with 
experimental tests show the best correspondence for the flat disk narrowing model. In the case 
of a disk and a half space it gives the following constriction resistance [9] 
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where ∗k  is the mean harmonic conductivity of the joint if two different materials are in 

contact, ( ) ( )21212 kkkkk +=∗ .
 
To deal with a flux tube the conductance is half the previous 

one, and a correction rule, iψ , as a function of the narrowing radius ia  and the flux radius ib  
must be applied 

 

 
( ) 5.1

**

1
22

ii

i

i

i
V

ba
akakc

i −
==

ψ
 (10) 

 
Applying this result to each ideal tube the total conductance of the joint is 
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and by recalling eq. (1), (2) and (3), after some algebra 
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3. FINITE ELEMENT FORMULATION 

 
3.1. Contact element geometry 

The present geometrical formulation is based on an enhanced version of the well-known node-
to-segment contact element proposed by Wriggers and Simo [10]. Some new geometrical 
variables are introduced to improve the correspondence between the geometric description 
and the physical formulation. Here we recall the main geometrical parameters defining the 
element behaviour, i.e. the normal gap Ng , the voltage jump Vg  and the contact area. 
Interested readers can find all the details on geometrical relationships and their linearization in 
[11-12]. The model is here discussed for two-dimension problems, the extension to a three-
dimension analysis has only formal complications, but not conceptual difficulties. For the 
sake of simplicity in the algorithm formulation it is assumed that contact surfaces can be 
described by 2D linear isoparametric elements. 
With reference to Figure 1 the normal gap Ng  is computed nodalwise, measuring the distance 
between the slave node S and its projection onto the master segment 
 

 ( ) nxx ⋅−= 1SNg  (13) 

 
where n  is the unit vector perpendicular to the master segment 1-2, Sx  and 1x  are vectors 

identifying the current position of nodes S and 1 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Contact element geometry 
 

The electric field requires the definition of the contact voltage jump Vg  
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where SV , 1V  and 2V  are the electric potential of nodes S, 1 and 2, while ξ  is the distance 
between the master node 1 and the projection of the slave node S onto the segment 12, 

normalized to the segment length ( ) txx ⋅−= 1
1

Sl
ξ . 

The element pointwise penetration check requires a pointwise force balance. Since the 
physical laws are formulated with dependence on the contact pressure the definition of the 
contact area is required 

 

 ( ) sA BsAS xxxx −+−=
2
1  (15) 

 
where s is the depth of the contact element. 
 
3.2. Normal and electric contact stiffness 

To develop the constitutive law the mean planes distance, d , is replaced by the difference 
between the maximum asperities height ζ  and the normal gap Ng , i.e. Ngd −= ζ . The 
normal force NF  is finally obtained as a product of the apparent contact area and the apparent 
pressure. Recalling eq. (8) 
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Collecting numerical constants and constant parameters in a suitable form 
 

 2
2

3
6

1
1

2
;1042

2

22

σ
σ

π
cc

m
cK

cc

NP =��

�
��

� ⋅�
�

	


�

�=
+

 (17) 

 
Equation (16) can be written as 
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The final form of the constitutive law for normal contact depends upon the normal gap and 

the apparent contact area. In this form the normal force can easily be expressed as a function 
of the unknown nodal displacements after the Finite Element discretisation. 

Substituting equation (7) and (8) in eq. (12) we obtain the exact formulation for the 
expression of the electric current 
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Also in this case the relationship is formulated as a function of the apparent contact area, 

the normal gap and the voltage jump, i.e. as a function of terms than can be easily expressed 
in terms of the primary variables. 

 
3.3. Global equation set 

The contact element contribution to the global tangent stiffness matrix can be computed by 
adding to the variation of a known functional Π  - representing the continuum - the virtual 
work given by the contact force and the analogous quantities in the electric field 
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The linearization of the system (20), taking into account all the possible dependences and 

coupling terms generates a complex form with several terms, some of which are discussed in 
detail in [12]. The contributions have different importance, and some of them may be 
disregarded or vanish. At present the most important terms have been implemented in the 
code, they are collected in the following expressions, evidencing the purely mechanical and 
purely electric contributions as well as the coupling terms 
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Virtual and finite variations of geometric parameters are involved in equations (21). In 

order to achieve a good computational efficiency consistent linearization of the terms is 
developed, details can be found in [11-12] for the geometrical terms and in [7] for the electric-
mechanical contributions. Here the variations will be directly expressed in matrix form. 
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3.4. Matrix notation 

We need the definition of some auxiliary vectors in order to express the stiffness terms in a 
suitable form for the Finite Element technique. For this purpose geometrical parameters can 
be combined in suitable vectors 
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If we order the unknowns collecting respectively the mechanical degrees of freedom of 

nodes S, 1, 2, A and B and then electric degrees of freedom of node S, 1 and 2, the consistent 
stiffness matrix can be written as 
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where TMeccK  and TElecK  are sub-matrixes expressing the purely mechanical and purely 

electric contributions respectively, while TMeccABK , TElecABK  represent the dependence of 
the mechanical and electric field on the variation of the element area. The sub-matrix 

12TCouplSK  is the coupling sub-matrix between the electric resistance and the normal gap. 
In detail we have 
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4. CONCLUDING REMARKS 

 
The problem of contact in the coupled electric-mechanical field is developed in detail and a 
new 2D electric-mechanical contact element is derived. It can be effectively used to study a 
wide range of problems in the electric-mechanical field with a good degree of precision. 
Contact constraints are incorporated into the virtual work equations using the penalty method, 
the global equation set is obtained and the electric, mechanical and coupling terms are 
expressed in suitable matrix form easy to implement in a Finite Element code. 
The preliminary practical applications show very satisfactory results, the effective validation 
of the numerical formulation is now in progress and will be dealt with in a succeeding paper. 

 
 

REFERENCES 
 

[1] Cooper M. G., Mikic B. B., Yovanovich M. M, Thermal contact conductance, Int. J. of Heat and Mass 
Transfer, Vol. 12, pp. 279-300 (1969). 

[2] Mikic B. B., Analytical studies of contact of nominally flat surfaces; effect of previous loading, Journal of 
Lubrification Technology, Vol. 93, pp. 451-459 (1971). 

[3] Mikic B. B., Thermal Contact Conductance; Theoretical Considerations, Int. J. of Heat and Mass Transfer, 
Vol. 17, pp. 205-214 (1974). 

[4] Yovanovich M. M., Thermal Contact Correlation, AIAA Paper, pp. 83-95 (1981). 

[5] Song S., Yovanovich M. M., Explicit Relative Contact Pressure Expression: Dependence Upon Surface 
Roughness Parameters and Vickers Microhardness Coefficients, AIAA 25th Aerospace Sciences Meeting, 
Reno Nevada (1987). 

[6] Zavarise G., Boso D., Schrefler B. A., A contact formulation for electrical and mechanical contact 
resistance, CMIS - 3rd Contact Mechanics International Symposium, Peniche (Lisbon), Portugal, June 17-
21, 2001. 

[7] Boso D. P., Schrefler B. A. Zavarise G., A coupled electric-mechanical approach for contact problems, 
accepted for WCCM V Fifth World Congress on Computational Mechanics, Vienna, Austria, 2002. 

[8] Hegazy A. H., Thermal joint conductances of conforming rough surfaces: effects of surface microhardness 
variation, PhD Thesis, Dept. of Mechanical Engineering, University of Waterloo, Canada (1985). 

[9] Holm R., Electric Contacts: Theory and applications, 4th edn., Springer Verlag, Berlin Heidelberg New 
York (1981). 

[10] P. Wriggers, J. C. Simo, A note on tangent stiffness for fully nonlinear contact problems, Comm. Appl. 
Numer. Meth., Vol. 1, pp. 199-203 (1985). 

[11] G. Zavarise, P. Wriggers, E. Stein, B. A. Schrefler, Real contact mechanisms and finite element 
formulation – A coupled thermomechanical approach, Int. J. Num. Meth. Eng., pp. 767-785 (1992). 

[12] B. A. Schrefler, G. Zavarise, Constitutive laws for normal stiffness and thermal resistance of a contact 
element, Microcomp. Civ. Eng., Vol. 8, pp 299-308 (1993). 


