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ABSTRACT: Debonding mechanisms in FRP-strengthened structures have been the subject of 
numerous investigations. Most of the modeling studies conducted thus far are based on the 
assumption of macroscopic relationships between local interfacial stresses and local relative 
displacements between FRP and substrate. Such laws are calibrated experimentally and 
incorporated in structural models with the purpose of determining macroscopic quantities of 
design interest. This approach presents a number of limitations, as macroscopic interfacial laws 
spatially homogenize complex damage and failure processes taking place at the lower scales. 
This paper proposes an alternative approach to the problem of FRP debonding, based on a 
mesomechanical analysis including explicit description of the interfacial geometry, and 
illustrates the first steps taken by the authors in this direction. The final goal is to be able to 
design and optimize the macroscopic interfacial behavior by tailoring the features at the lower 
scale. Also, a deeper understanding of mixed-mode interfacial failures is aimed at. The paper 
illustrates the basic idea, the main details about the current implementation, and preliminary 
numerical results. 

1 INTRODUCTION 

Debonding mechanisms often control failure of FRP-strengthened structures. As a result, they 
have been addressed in a vast amount of research studies. Most of the modeling efforts 
conducted thus far are based on the assumption of macroscopic relationships relating the local 
interfacial shear and normal stresses to the local relative displacements between FRP and 
substrate. This assumption stems from the field of non-linear fracture mechanics, and in 
particular from the so called cohesive-zone (CZ) modeling approach (Hillerborg et al. 1976). 

CZ models for interfaces between FRP and substrates of different materials have been calibrated 
experimentally and incorporated in several structural models to determine macroscopic 
quantities of design interest. Hereafter, explicit reference will be made to concrete substrates.  

Despite its wide employment and reasonable success especially in single-mode loading cases, 
this approach presents a number of shortcomings: 

a) CZ models based on macro-scale phenomenology spatially homogenize all effects that occur 
at the interface. Hence, the calibrated parameters of a macroscale CZ law may vary 
significantly as the experimental setup changes, and a law calibrated for a certain geometry 
and test setup is not necessarily accurate to simulate the same interface for different loading 
conditions or system geometries (e.g. in the strengthened structure);  



 

 

  

b) macroscopic CZ models depend on material properties and need to be re-obtained anytime a 
different material system is used. The experimental observations indicate as mode-II 
debonding typically occurs by formation of a cracking pattern a few millimeters from the 
bond line, whereas mode-I or mixed-mode debonding may involve a larger substrate 
thickness. The actual distribution of aggregates, the properties of the mortar, the presence of 
a superficial primer- and resin-modified region affected by factors such as porosity and 
primer/resin viscosity cannot be directly reflected in a macroscopic law;  

c) mixed-mode CZ laws suitable for the FRP-concrete interface are still an open issue. The 
models available for different material systems are not necessarily suitable for this case, due 
to possibly different microscopic damage mechanisms. 

A solution to each of these issues can be found by accounting explicitly for the processes 
occurring at the lower scales, and transferring these informations to the macroscale in a 
consistent manner. This is the idea underlying multiscale approaches, which are currently 
applied in several fields of science and engineering. This paper describes the first steps taken by 
the authors towards the multiscale modeling of debonding in FRP-concrete joints. The focus is 
on the mesoscale, where the coarser aggregates are explicitly described and the finer aggregates 
are incorporated in the mortar behavior. A multiscale transition is devised to derive macroscopic 
laws based on mesostructural details. This approach can shed light on the role played by the 
mesoscale parameters and lead to tailoring and optimization of the lower-scale features to 
achieve a desired macroscale response.  

2 MESOMECHANICAL MODEL FOR CONCRETE  

2.1 Previous work 

Several mesomechanical models have been developed to study the damage and failure 
mechanisms of concrete and other quasi-brittle heterogeneous materials. Early models were 
either based on idealized mesostructures (random particle model, Bazant et al. 1990, framework 
model, Schorn & Rode 1991, and lattice model, Schlangen & van Mier 1992), or on a realistic 
description of the aggregate geometry (Wittmann et al. 1984, De Schutter and Taerwe 1993). 
More recent models are mostly based on the latter approach, and typically consider concrete as a 
three-phase composite including mortar, coarse aggregate and the interfacial transition zone 
(Wang et al. 1999, Teng et al. 2004, Zhu et al. 2004, Häfner et al. 2006, Snozzi et al. 2011). 
These models mainly differ from each other in the representation of the geometry, as well as in 
the material models used for the single phases. The method for the geometry description ranges 
from hand drawing (Zhu et al. 2004) to Voronoi tessellation (Snozzi et al. 2011) to ad-hoc 
elaborated procedures incorporating random variables (Wang et al. 1999). The material models 
include rotating crack, damage and CZ approaches. In spite of the differences, all these models 
share the objective to derive the macroscopic mechanical response of concrete from the detailed 
consideration of the meso-level geometry and material behavior. 

The vast majority of the previous studies considered a 2D geometry, which is a rather crude 
assumption but maintains the computational effort within reasonable limits. Wriggers and 
Moftah (2006) presented a 3D approach with aggregates of spherical shapes. In this paper, we 
limit ourselves to a 2D geometry, however the extension to the 3D regime for angular 
aggregates is currently underway. 



 

 

  

2.2 Definition of the geometry 

2.2.1 Generalities 

The concrete mesostructure is here intended as being constituted by the coarse aggregates and 
the cement paste with the finer aggregates embedded. Currently, the interfacial transition zone 
between coarse aggregates and paste is not taken into account but is planned to be included in 
future developments. 

For the generation of the mesostructure, an important distinction is based on the shape of the 
coarse aggregates, which is generally taken as round or angular for gravel or crushed rock types, 
respectively. This paper considers concrete made with crushed rock aggregates, for which the 
procedure proposed by Wang et al. (1999) for the numerical generation of a random aggregate 
structure of angular shape is adopted. The main involved steps are summarized hereafter. 

2.2.2 Grading curve and outline of the procedure 

First of all, a suitable grading curve must be selected. This is given as a function P(D), which 
represents the cumulative percentage of aggregate P passing through the sieve of aperture size 
D. The latter ranges between Dmin and Dmax, which coincide respectively with the minimum and 
maximum size of the coarse aggregate. Herein, the classical Fuller curve is adopted, i.e.  

P = 100 !
!!"#

              (1) 

Once P(D) is known, the area of aggregate contained within each grading segment [Di, Di+1] can 
be computed as 

A!"",! =
! !! !! !!!!

! !!"# !! !!"#
A!""              (2) 

where Aagg is the total area of coarse aggregates, in turn equal to a desired fraction of the total 
concrete area, ranging for most concretes between 0.4 and 0.5. 

The generation of the aggregate structure proceeds through a take-and-place process, which is 
conducted for each grading segment starting with the largest one and proceeding until the 
smallest. For the generic segment i, once its aggregate area Aagg,i is computed with eq. (2), a 
number of particles of random shape and size are generated (take process) and placed (place 
process) into the area of the concrete specimen, until the area of aggregate left to be generated is 
insufficient for the creation of an additional particle within the same grading segment. When 
this condition is reached, the remaining aggregate area is added to the next grading segment and 
the procedure continues for this segment. 

2.2.3 The take process 

In the take process, the aggregate particles are generated as randomly shaped polygons, with 
size (i.e. width) dictated by the current grading segment and elongation (i.e. length to width 
ratio) prescribed as a random variable uniformly distributed between two predetermined values 
λmin and λmax. 

The shape of a polygon is completely defined by the number of sides n, and by the polar radii rj 
and the polar angles θj of the n vertices. Following visual observations and in line with Wang et 
al. (1999), n is taken herein as a random integer variable uniformly distributed between 4 and 
10. The polar radii rj are also considered as uniformly distributed random variables in the range 
between rmin and rmax, whereas the polar angles are found by first computing the angles 
subtended by consecutive sides, φj = θj+1 - θj. The latter are taken as random variables, 



 

 

  

uniformly distributed with an average value 2π/n and assumed to differ from this average by a 
maximum of  δ2π/n, with a predetermined value of δ ≤1. The subtended angles obtained from 
the random procedure are normalized to ensure that their sum equals 2π, as follows 

ϕ! =
!"
!!!
ϕ!              (3) 

and the polar angles are subsequently evaluated as  

θ! = α + ϕ!
!!!
!!!               (4) 

where α is a phase angle determining the orientation of the particle, also obtained from a 
random uniform distribution.  

Each particle as it results from the random generation procedure features a size and an 
elongation that do not necessarily correspond to the desired values. As in Wang et al. (1999), 
the size is herein assumed to coincide with the width of the particle, and the latter is computed 
as the minimum width of a rectangle excribing the particle, which is consistent with the 
meaning of variable D as the aperture size of a sieve. Also, the elongation is obtained as the 
length to width ratio of the minimum-width rectangle. Once the actual width and elongation of 
the particle are computed, straightforward scalings can be implemented to bring them to the 
desired values. 

2.2.4 The place process 

Once a particle is generated, its positioning within the concrete specimen requires that the 
coordinates of a reference point and the orientation angle α be specified. These three quantities 
are also considered as random variables, whereby the first two vary within the area of the 
concrete specimen and the last one between 0 and 2π. Also, it is assumed that each particle is 
surrounded by a mortar layer of thickness 𝛾 times the particle size. The value of 𝛾 is assumed to 
vary between 𝛾!"# and 𝛾!"#. 

2.3 Material modeling 

In this work, the aggregates are considered linearly elastic, the cement matrix is modeled with 
the isotropic damage law by Mazars (Pijaudier-Cabot & Mazars 2001), and a perfect interface is 
assumed between these two phases in the current implementation. The main features of the 
damage model are briefly summarized as follows. 

The isotropic damage model by Mazars adopts a single scalar damage variable d, ranging from 
0 for the undamaged state to 1 for the fully damaged state. Thus the stress-strain relation reads 

ε!" =
!!!!

!!(!!!)
𝜎!" −

!!
!!(!!!)

𝜎!!𝛿!"              (5) 

where 𝐸! and 𝜈! are respectively the elastic modulus and the Poisson’s ratio of the undamaged 
material, 𝜎!" and  𝜀!" are the stress and strain components, and 𝛿!" is Kronecker’s delta. The 
damage variable is evaluated from an appropriate combination of tension and compression 
damage, as follows 

𝑑 =   𝛼!𝑑! + 𝛼!𝑑!              (6) 



 

 

  

where 𝑑! and 𝑑! are the damage variables in tension and compression, respectively, combined 
through the weigthing coefficients 𝛼! and 𝛼!.  

The weithing coefficients are obtained through the decomposition of the principal stress tensor 
into a positive and a negative part, and through the computation of the corresponding tensile and 
compressive strains (Pijaudier-Cabot & Mazars 2001). The damage variables in tension and 
compression evolve based on the following relationships 

𝑑! =   1 − !! !!!!
!

− !!
!"# !! !!!!

;   𝑑! =   1 − !!(!!!!)
!

− !!
!"# !!(!!!!)

           (7) 

where the equivalent strain 𝜀 is defined as 

𝜀 = 𝜀! !!
!!!                (8) 

In eq. (8), ∙  are the Macaulay brackets and 𝜀! are the principal strains. As can be inferred from 
eqs. (5) and (7), this material model requires 7 parameters: 𝐸!, 𝜈!, 𝜅!, 𝐴!, 𝐵!, 𝐴!, 𝐵!. Beside 𝐸! 
and 𝜈! whose meaning is clear, 𝜅! can be set as the strain at peak stress of the material under 
uniaxial tension, i.e. 

𝜅! =
!!
!!

               (9) 

where 𝑓! is the material tensile strength. 

In the present 2D implementation, plane stress conditions are assumed. Within a 2D 
approximation, plane stress conditions are believed to be more realistic as they correspond to 
simulating a concrete specimen of small thickness. In such a case it is reasonable that the 
aggregate geometry be constant across the thickness. Conversely, plane strain conditions imply 
a large out-of-plane thickness which contradicts the 2D nature of the aggregate geometry. 

3 BENCHMARKING 

3.1 Generalities 

Before being used for modeling of the FRP-concrete interface, the mesomechanical concrete 
model described in the previous section was tested under simple loading conditions, including 
uniaxial tension and uniaxial compression. For ther latter tests, a square concrete specimen with 
100 mm size was used, see Figure 1. 

The geometry was created with the procedure outlined in Sect. 2.2, using the geometry 
parameters in Table 1. This geometry was then automatically meshed with triangular linear 
elements using the advancing front technique. Matching meshes for aggregate and mortar were 
obtained, with coincident nodes at the boundary due to the absence of interfacial elements in the 
current implementation. 

Local damage models are well known to suffer from mesh sensitivity induced by strain 
localization. To circumvent this problem, non-local or gradient enhancements of the model are 
needed and are currently being pursued. For the heterogeneous concrete specimen as opposed to 
a homogeneous one, the size of the element has an upper bound equal to the minimum distance 
between aggregates. For consistency of the multiscale procedure, the lower bound should be set 
as the maximum characteristic length of the lower scale, e.g. the size of the small aggregates 
which are considered dispersed in the mortar. 



 

 

  

3.2 First results 

Table 1 summarizes the material parameters for the mortar and the aggregates. These 
parameters were calibrated by means of the uniaxial tension and uniaxial compression tests for a 
concrete of 30 MPa compressive strength containing 40% coarse aggregates. The corresponding 
stress-strain curves are illustrated in Figure 1. 

Table 1. Geometry and material parameters. 

 

 

 

(c) 

(a) 

 

(b)  

Figure 1. Geometry (a) and mesh (b) of a numerical specimen subjected to tensile testing. (c) Stress-strain 
curves in uniaxial tension (positive values) and compression (negative values) for the model parameters 
in Table 1. 

4 MULTISCALE APPROACH FOR THE FRP-CONCRETE INTERFACE  

4.1 Formulation 

Herein, a multiscale cohesive framework is set up for the FRP-concrete interface to relate 
damage and failure processes taking place at the mesoscale to a macroscopic CZ model. This 
framework follows the approach proposed by Matouš et al. (2008). The macro- and mesoscales 
are linked using an energy-based computational homogenization procedure, which relies on an 
implementation of Hill’s stationarity condition. This scheme does not place any restrictions on 
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the stiffness of individual constituents. Heterogeneous interfaces with randomly distributed 
inclusions of an arbitrary shape and size can be investigated. Moreover, a computationally 
attractive coupling between scales is obtained.  

The starting point of the procedure is the definition of a representative volume element (RVE). 
In the present study, local periodicity of the interface is assumed, which simplifies the choice of 
the RVE by eliminating the need for sample enlargement and ensemble averaging. The study of 
a statistically representative RVE for non-periodic interfaces is one of the extensions to be 
pursued in future work. Moreover, the RVE considered hereafter does not consider the influence 
of the primer and resin layers but only includes the superficial layer of concrete underneath the 
FRP sheet. In order for a detailed and realistic geometry to be described, experimental 
quantitative observations are needed.  

A micromechanical test setup is developed on which computational homogenization is carried 
out. In order for the assumption of scale separation to hold, thickness and width of the RVE 
must be suitably larger than the maximum aggregate size. Herein we considered a thickness of 
20 mm and a width of 80 mm. The RVE is subjected to periodic boundary conditions on the 
lateral sides, due to the assumed local periodicity. The lower edge is considered fixed, whereas 
the upper edge is subjected to a monotonically increasing uniform displacement. Depending 
upon the direction of this applied displacement, pure mode-I, mode-II or mixed-mode 
conditions with a desired mode mixity can be obtained. The macroscopic tractions in the two 
directions are obtained as the summation of the reaction forces in the same directions at all the 
nodes of the upper edge of the RVE. The first results presented as follows were obtained in 
mode-I conditions, see Figure 2.  

4.2 First results 

Figure 2 shows the distribution of the damage variable d in the RVE under pure mode-I loading 
at failure. Figure 2a refers to the specimen directly obtained by the geometry procedure 
illustrated earlier. As aggregates are automatically generated at a minimum distance from the 
boundary of the domain, a superficial layer of mortar is produced. As a result, failure is 
localized in this layer. In real applications, it is common practice to remove the superficial 
mortar layer and expose the underlying aggregates e.g. through sandblasting. If such a 
procedure is reflected by removing the superficial layer of elements in the finite element model 
(Figure 2b), the damage distribution involves a thicker material layer and the mode-I strength 
and fracture energy of the interface are consequently increased (Figure 2c). 

 

 

 

(a) 

 

(b) 

Figure 2. Damage variable distribution within the RVE at failure under mode-I loading with (a) and 
without (b) superficial layer of mortar. (c) Macroscopic mode-I CZ model. 
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5 CONCLUSIONS 

This paper proposes a multiscale approach through which cohesive zone laws for the FRP-
concrete interface under variable mode mixity can be derived through a detailed examination of 
the mesoscale geometry and a suitable constitutive modeling of the constituent materials. The 
first results show the capability and flexibility of the approach to interpret changes in the 
mesoscale geometry and translate these into macroscopically different results. Further research 
is currently ongoing including the improvement of the model (non-local or gradient mortar 
constitutive description, incorporation of the interfacial transition zone), the examination of the 
representativity of the numerical sample (in the periodic as well as non-periodic cases), the 
analysis of the role of the aggregate shape, size and distribution on the macroscopic results, the 
investigation of mixed-mode effects, the extension to more realistic mesoscale geometries 
including primer and resin materials and concrete porosity, and the extension to the 3D setting.
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