POLITECNICO DI TORINO
Repository ISTITUZIONALE

A force control method for contact problems with large penetrations

Original

A force control method for contact problems with large penetrations / Zavarise, Giorgio. - STAMPA. - 1:(1997), pp. 280-
285. (Intervento presentato al convegno V Int. Conf. on Computational Plasticity tenutosi a Barcellona (Spagna) nel
1997).

Availability:
This version is available at: 11583/2700675 since: 2018-04-18T13:42:01Z

Publisher:
Pineridge Press

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

22 June 2024



COMPUTATIONAL PLASTICITY

Fundamentals and Applications

Proceedings of the Fifth International Conference on
Computational Plasticity

held in Barcelona, Spain

17th-20th March 1997

PART 1

Edited by

D.R.J. Owen
Department of Civil Engineering , University of Wales
Swansea, U.K.

E. Onate
Universidad Politécnica de Cataluna
Barcelona, Spain

E. Hinton
Department of Civil Engineering, University College
Swansea, U.K.

A publication of [LGIN13

International Center for Numerical Methods

in Engineering (CIMNE) veats
. | CIMNE |

Barcelona, Spain 1987-1997




COMPUTATIONAL PLASTICITY
Fundamentals and Applications

D.R.J. Owen, E. Onate and E. Hinton (Eds.)
© CIMNE, Barcelona 1997

A FORCE CONTROL METHOD FOR CONTACT PROBLEMS

WITH LARGE PENETRATIONS

G. Zavarise

University of Padua

Department of Constructions and Transports
Via Marzolo, 9

35131 Padova

ITALY

Abstract. In this paper we present a new
strategy to deal with contact problems with
large penctrations. The method is based on a
check of the nodal contact forces to select the
technique that has 1o be used to perform cach
iteration. In case the contact forces are
smaller than a set hmit the problem is solved
in a standard way using  consistent
lincarization and Newton's method. When
contact forees exceed the limit a modified
Newton method is used. This method is
based on enforcement of a contact force limit
and use of a simplified secant stiffness where
the geometric stiffness term is disregarded.
The efficiency of the procedure is illustrated
by the solution of example problems in
which large initial penctrations occur,

1 INTRODUCTION

In recent years attention has been given to
the efficiency and consistency of algorithing
used o solve non-lincar problems in
computational mechanics. In particular the
benefits of a linearization consistent with the
algorithm for the solution of any type of non-
lincar problem are well known. Consistent
linearization in fact guarantees a quadratic
rate of asymptotic convergence when the
ficld of the unknowns is close to a solution
value. It is a matter of fact however that, the
bigger the step, the greater the solution point
is from the starting one. This aspeet is often
disregarded, and standard Newton
procedures arc advocated from the first
iteration, regardiess of the fact that perhaps a
different method can be more reliable and
faster in converging the solution in the right
direction.
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In the case of contact problems, direct
application of Newton's method usually
produces difficultics during the first few
iterations, and some iterations are needed
simply to stabilize the solution before a
quadratic rate of convergence is obtained. In
fact one of the main ditficultics encountered
in solving contact problems is related 1o
large wutial penctrations which oceur
between  contacting bodies.  Contact
algorithms are usually activated a-posteriori.
e they first fet the bodies penetrate cach
other and the penetration is then detected as
violation of impenetrability  constraint
conditions. Only at this latter stage are
specific strategies activated o avoid
penctration. This strategy usually works in
cases of small penctrations and smooth
contact surfaces evolution, however for
prablems in which the contact area vares
significatively during the transient solution,
the step size is generally Timited by the
contact conditions.

Regardless of the strategy adopted. 1.¢.
penalty or Lagrangian multiplicr method., the
current  state  which violates  the
impenetrability conditions is used 1o
compute the virtual work contribution for
comtact, and this equation sct is lincarized.
(often in an in-consistent way), to solve the
non-lincar problem with a Newton type
method.

In case of large initial penctrations the
resulting contact forees can be very big. This
affects both the tangent stiffness and the
residual vector, and generally produces a
large local distortion of the mesh. Usually a
Newton method cannot recover to a smooth
deformation state; accordingly it is currently
necessary to use smaller loading or time




G. ZAVARISE and R. L. TAYLOR / A force control method for contact problems

increments which limit the amount of
penetration.

The most evident shortcomings of the
straight application of consistent
linearization from the first iteration are hence
the strict limitation on the step size, and the
poor convergence ratc during the first few
iterations. In this paper we propose a method
to perform large steps in the presence of
large penetrations. To do this we split the
solution strategy into two phases and use
different solution strategies for cach of them.
A smooth transition between these two
phases is also presented. The first phase
takes place during the first iterations of cach
time or loading step. Within this phase it is
an easy task to check that both the full
Newton strategy with consistent linearization
is often useless since the contact forces can
be many orders larger than the real ones. The
sccond phase takes place when, due to the
iterations performed in the first phase, the
contact penetrations have been reduced
significatively. The problem has hence been
driven close to the solution point. and then a
Newton strategy with consistent linearization
puarantees the best convergence rate.

2 STRATEGY OUTLINE

The target of the present work is 1o set up a
better strategy than a consistent {ull Newton
tincarization for the above cited phase one.
What we scck is a criterion to limit contact
forces and to construct the modified stiffness
matrix and residual vector. In such a way we
want to control local contact instabilities. and
1o quickly construct a solution path 1o an
almost converged point.

As first step we avoid the introduction
in the system of large physically meaningless
contact forces which originate from
unconstrained large penctrations. To do this
we note that the range of the maximum
contact force that the contacting bodies can
generally experience can be casily estimated.
This estimate is then used to set a bound for
such forces. We remark that we arc
discussing a range of values, not exact
values, hence the estimation is casy to do.

The employment of the upper bound
plus some modifications to the standard
Newton procedure permits us to perform
steps of unusual size, where the limit on the
step size in general still comes from the large
deformations of the continuum, and not from

the contact.

For a better understanding of what
happen within the first iterations, we start by
considering the characteristics of the
consistent tangent stiffness and the residual
vector for a typical contact problem. In the
case where a penalty method is used, the
term that is included as a discrete potential
for each active contact element is:

1,
W=—Agg )
L= At

where A_is the clement contact area, £ is
the penalty paramcter and g, is the local

approach of the two surfaces (normal gap).
The contact force F,, is recovered as

LA @
= —— = Agg, 2
e, *

The virtual variation of the potential for
active contacts hence becomes

SW = Arg, o8, = Fo¢, 3

where the symbol § denotes a variation. For
simplicity, the contact arca is considered to
be a constant in the simple example cited
here.

lincarization of thc contact
contribution produces two terms, one related
10 the contact force, and a second related to
the contact approach. Hence the standard
Newton procedure at each iteration solves
the following equation set

ar,
-Fbg, = #Ag,vag” +FA(8g,) @

LY

where A denotes a linearized increment.
Rearranging virtual variations and
increments of the unknowns, and then
disregarding virtual variation quantities, €q.
(4) can also be written in matrix form as {1]:

R=K,A (5)

with R the residual vector, K, the tangent
stiffness and A the increments of the
unknown displacement.

If now we focus on the point-to-
segment geometrical formulation, we get the
following well known equations [2]
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Ag, =A[(xs —x.)~n]=(Axs—Axl)~n+
(x;=x,)-an ©)
ASg, = (6x, —x,)- bn +(Ax, - Ax,) - Sn+
(x_\—x,)-ABn @)
where the involved terms are casily
recovered from Fig. 1. After some algebra

¢q. (6) and eq. (7) result in

Ag)\‘=[Ax\—(l-§)Ax|—§Ax:]'“ (8)

Adg, = -}{[_ax, +6x.] 0}
{[ax, - (1 -&)ax, - &ax, |-t} -
1/{[5,“ - (1= £)dx, - &x, ]t}

{[-Ax, + Ax, ] n} -

%{l'A". + Ax»,l-n}{l-ﬁx, + x| n} (9)
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Geometry and variable names for
POINE-LO-SeLMent Contacts.

Iigure 1L

The matrix form for the consistent tangent
stiffness and the residual may be established
from eq. (8) and cq. (9) as

R=-FN, (10)
K, = AENN{ -
L'[“—'(N”'r\’ + TN’ +*"T"N‘,Nj,} (i

where the following definitions arc used
n 0
Ny=|-(1-&n| Ny=|-n) (12)
—&n n

t
T.\ = '(‘ —g)t
-&t

(13)

To discuss the characteristics of the
tangent stiffness in more detail we can
explicitly write the terms as follows

P (-8 €
NN =n@n|-(1-¢) (1-&) £0-&)
-& -8 &

(14)
0 0 0
NT =a®t -1 (1-8) & (15)
to-(1-¢) ¢
0 -t |
TN =(@n|0 (1-8) -(1-8&)| o
0 & =&
0o 0 0
NN =n®n/0 | -l (17
0 -1 1

where cach term of the matrices is multiplied
by the dvadic product placed outside square
brackets.

fhe analysis of the tangent stiffness
shows that the term NN is independent of

the amount of penctration. This term depends
on the contact arca, the penalty
parameter, the orientation of the master
segment which determines the normal unit
veetor o, and the normalized position of the
projection of the node along the segment, £.
It is casy to recognise that this term is a core
part of the stiffness. On the other hand the
second term depends strongly on the amount
of penetration because it involves both the
contact force and the geometrical approach.
In the case of large penctrations it is evident
that the stiffness contribution related to the
contact force can be several orders of
magnitude different from its values when the
solution is almost reached. The situation is
even worse for the term which depends on
Fogy-

N

only

Eq. (7) shows that the second term is
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strongly related to the change of orientation
of the contact element, and in fact it vanishes
in case of a constant normal vector, which
results in
An=0dn=An=0 (18)
hence the terms related to Fy lead to the
geometric stifTness contributions.
Considering the complete stiffaess
matrix. we note that the second (geometrical)
term does not affect the diagonal term related
to the slave node S. This fact is cvident
again when contact problems are solved. In
case of large penetrations it is usually the
master surface that has large distortion. In
casc of high contact forces the geometrical
term becomes bigger and bigger, and due to
a negative contribution for the penetration
case the sign of the diagonals associated with
the master segment can change. Many other
non-diagonal terms change sign alsa. We
also note that the geometrical teem becomes
more and more important with the reduction
of the initial penctration. Its presence is
necessary for the rate of
convergence, but the main dominating term

quadratic

when convergence is achieved is the first
term, at feast for usual values of the penalty
parameter. 1t is then clear that, in case of non
realistic contact due 1o large
penctration the geometric term is both
uscless, because the geometry is simply too
far from the final one. and dangerous
strongly the  local
properties of the stiffness matrix.

To overcome the difficulties cited
above, we maodity the linearization during
the first phase disregarding the geometrical
term. which results in

farces

becasuse it affects

i

K, = —N,N; (19)
Ky

In the above, the penalty parameter and arca

are replaced using eq. (2).

The second modification for phase one
of the solution is related to the contact foree
which goes into the residual. For large
penetration, the contact forces computed
from c¢q. (2) are grossly in crror.
Redistribution of these forees to the nodes by
the vector N is the sccond clement of
instability of the solution. To fimit this force
we propose to modify the linear relationship
by using a cut-off with a maximum value

independent of the penetration (sec Fig. 2).
{n this way the addition of unrealistic forces
into the system is prevented.

!
‘MW
[P
. v
- rone
<
]
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o =
- -
; —
/
PENETRANON
Figure 2. Contact force versus penctration

with zonc distinction.

ft has to be remarked that the cut-off
alone is not sullicient to perform large steps.
n fact if consistent lincarization is used we
get a zero derivative when the cut-of U limit s
reached. and hence no contiet stffness 1s
associated to the residual, even if penetration
persists. The contact forces are then applied
without any contact resistance. te, they are
totally applicd to the continuum. Onee again
this will have dangerous effects, because the
resulting displacements for most cases leads
to release. and then a new instability often
takes place with part of the contacting
surfaces changing from an open to a closed
status during one iteration and vice versa for
the next. Also, the contact stiffness defined
by the penalty parameter is o big and
results in a sort of locking of the penetration,
which requires then many iterations (o
achicve near convergence.

We have achicved very pood
performance for phase one by using the
secant stiffness. Inomost cases the secant
stiffness is able to keep the gap closed and
rapidly relax the contact conditions to
achieve a penctration to values where
consistent linearization can then be
cmployed. The secant stiffuess is related to
the amount of penetration and to the
maximum contact force by

(20)

and is used directly in eq. (19). Notice that,
due to the constant force limit. the secant
stiffness depends only on the penetration and
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increases with a reduction of the penetration
until it reaches the standard penalty value.
Subsequently the contact solution procedure
shifts from phase one to phase two. where
standard consistent linearization is
performed, see also Fig. 2.

In cases where the maximum contact
force has been underestimated it is necessary
to add one more feature to increase the
maximum force limit within the iterations.
This is necessary to achieve convergence to
the correct solution. The increment of such
limit however should be done very carefully,
because it presents similar aspects as the
increase of contact stiffness within
augmentations [3], [4]. Since the cut-off limit
for the residual coincides with the
introduction of the geometrical term into the
‘tangent stiffness a too rapid increase of the
cut-off can result in a too carly shift into
phase two. The evolution of the contact state
has hence to be monitored to decide when
and if the increment can take place. An casy
criterion is a check of the contact force
evolution. The ratio between new and old
values of the penetration can be monitored to
decide if increase of the contact force limit
can be applied. The increment is not
performed if the penetration is still rapidly
changing within the iterations, i.e. if the ratio
if far from 1. When the increment ratio
satisfies the imposed limit a linear increment
of the initial force can be applied.

Qur experience has shown that the
proposed strategy permits convergence to be
achieved in few iterations even for very large
steps, which are well in excess of reasonable
limits for converging the continuum part of
the problem.

3 EXAMPLES

The examples given betow demonstrate the
effectiveness of the proposed contact
algorithm for large penetrations. Each
continuum is discretized with a simple 4
node large deformation elastic plane-strain
clement. All the examples involve contact
between two or more deformable bodies. The
stiffer material has an clastic modulus
E =25000 and a Poisson ratio v =0.25.
The chosen ratio between the stiffer and the
softer material is equal to 10, and the contact
penalty parameter is £=100000. The
material mode! is characterized by an
extension of small strain lincar elasticity to

finite deformations as described by Simo [5].

The first example deals with a
parabolic indentor pressed into flat plate. For
the initial penetration, depicted in Fig. 3.
convergence is achicved in 15 iterations, see
Table 1. The outline of the geometry at the
second and the final iteration is depicted in
Fig. 4.

Parabolid indentor  initial

penetration.

Figure 3.

Parabolid indentor geometry for

Figure 4.
the second iteration and  at

convergence.

The problem has been solved also with
a coarse mesh. In this case the large
dimension of the continuum eclements
prevents local distortions which occur for
smaller elements, and the initial step can be
larger. The initial penetration that we are
able to apply in this case involve the
complete initial penctration of the indentor
into the plate in a single step. The solution
for the step requires 15 iterations, and for 9
of them the cut-ofY of the contact forces takes
place as reported in Table 2, Example 6. The
deformed geometry at convergence is shown
in Fig. 5.

The proposed strategy deals also for
problems with muftiple contact surfaces. as
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depicted in Fig. 6 where the applied
penetration at the first iteration is depicted.
In this cxample 6 contact surfaces are
defined. Also in this casc the solution is
achieved in a single step with 14 iterations.
The final geometry is depicted in Fig. 7.

TEST2
coarse mcsh
Residual  § lim

TEST 3
mutltiple contact
Residual | hm

TEST 1
finc mesh
Residual lim

S64645 |- B93E+S |-

60043 |-
ST5E+3 119 [13.34E+4 29 | 268 E+3 |32
4.29 15 l2.60E+4 129 1244843 | 36
278 it {{2066+4 125 || 1.93E-3 | 30
687143 {13 | 9.08E43 (IS HTSRE-F | 24
146643 19 H7.68E+3 |13 12283 |20

JO0E43 P HS97TE43 ]9 LIOE-3 |14

3
226443 {06

694 E+3 (10 f6.648+2 |7
122043 |2 J303E+3 |4 6952 |6
3501542 3371643 |4 SHE-21s
424148 - 121 43 | - 208842 | -
1491040 - 6414 - 4921 -
20403 - 22481 - 28843 -
INTY - AR E-S - JO3 -t -
2010 |- 370 1-10 | -
labte 1. Residuals and namber of clements (or

which force cut-off takes place

Geometry at convergence of the
tirst step

Figare 5

1177777

L TTI7T77

TG

T AT T3

H

Wedge with multi body contacts:
penetration after the firstiteration.

Fieure 6.

Figure 7. Geometry at convergence.

4 CONCLUSIONS

The strategy described in the paper has
shown a goad capability to deal with contact
prablems  subjected  to titial
pencteations, The load control method
coupled with the employment of a secant
stiffness permits one to enforee gradually the
violated impencetrability condition within the
iterations. The tests performed to date have
shown good behavior, and the convergence
is usually achicved in a limited number of
iterations. The solutions are characterized by

farge

good stability and cfficieney. Thus the
proposed method can be used 1o solve
problems which have large penctrations and
rapidly changing contact arca.
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