
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A low power architecture for AER event-processing microcontroller / Aiassa, Simone; Motto Ros, Paolo; Masera, Guido;
Martina, Maurizio. - STAMPA. - 1:(2017), pp. 1-4. (Intervento presentato al convegno 2017 IEEE Biomedical Circuits
and Systems Conference (BioCAS) tenutosi a Torino nel 19-21 Ottobre 2017) [10.1109/BIOCAS.2017.8325170].

Original

A low power architecture for AER event-processing microcontroller

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/BIOCAS.2017.8325170

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2705710 since: 2021-07-28T12:04:01Z

IEEE

A Low Power Architecture for AER
Event-Processing Microcontroller
Simone Aiassa∗, Paolo Motto Ros†, Guido Masera∗, Maurizio Martina∗

∗Dipartimento di Elettronica e Telecomunicazioni (DET), Politecnico di Torino, Torino, Italy
†Electronic Design Laboratory (EDL), Istituto Italiano di Tecnologia (IIT), Genova, Italy

simone.aiassa@studenti.polito.it, paolo.mottoros@iit.it, {guido.masera | maurizio.martina}@polito.it

Abstract—This paper presents a custom MSP430TM-compatible
microcontroller, specifically tailored for quasi-digital processing
Address Event Representation (AER) events. Main target appli-
cations are fully reprogrammable sensory systems where events
pre-processing has to be carried out by means of easily-tunable
elaboration algorithms; a microcontroller-based design could
provide the right trade-off between flexibility and performance.
Key features are good time resolution, high reactivity, on-demand
only processing and power consumption reduction. The proposed
architecture has been analyzed and compared with an open
source MSP430TM-compliant microcontroller (openMSP430) in
terms of performance and power consumption. Accurate and
wide cases-spectrum simulations (targeting ASIC technology)
show an average power consumption reduction ranging from
50 % (same operating frequency) up to 79 % (same maximum
event rate); equivalently, with the same power budget, an average
improvement of either resolution of 84 % or maximum event rate
of 1020 % is obtained.

I. INTRODUCTION

Event-driven stands for an engineering approach for the
design of electronic hardware by trying to learn from the
behavior of biological nervous systems. The key point is that
the activity is triggered only when a significant information
occurs. Thus, computation and communication subsystems
are employed only on-demand, leading to efficient resource
utilization and power reduction without compromising perfor-
mance. As a consequence, this approach is well suited for
robotic applications e.g., [1].

Even if it is possible to map event-driven applications
onto clock-driven architectures based on commercial off-the-
shelf components [2], [3], inherently fully asynchronous event-
driven architectures are needed [4], [5] in order to minimize
power consumption. At the same time, other solutions [6]–
[12] show that it is possible to develop effective event-driven
architectures on synchronous hardware (FPGA or ASIC),
with all the advantages of relying on well known and tested
development tools (e.g., standard HDL compilers and synthe-
sizers) and platforms (e.g., programmable hardware), leading
to potentially technology-independent solutions.

The aim of this paper is to propose an example of power
efficient address-event microcontroller architecture, which can
be used in several applications where an event-based approach
can provide significant advantages, e.g., tactile sensing [13].
The idea is on one hand to promote flexibility and effectiveness
(with respect to any specific hardware solution), on the other
hand to improve time-domain data processing performance and

power consumption (w.r.t. common commercially available
MCUs, Micro-Controller-Units).

The application chosen as a reference use case (to define
significant performance tests) is the processing of Quasi-
Digital Address-Event Representation events (QD-AER) into
NeuroMorphic ones (NM-AER), in a similar scenario as
in [12], where an hardwired application-specific architecture
was designed. The proposed solution aims to improve the
flexibility of [12] by resorting to a programmable core.

AER is an event-based communication approach, where
the only transmitted data is the source identifier/address [14];
it is an efficient way of interconnecting multi-chip systems
or to manage inter-systems communication (e.g., [15]). The
fundamental concept of the neuromorphic paradigm (applied
to sensors) is to send an event only when a change in the
sensed physical quantity occurs. On the other hand, the quasi-
digital approach, aims to continuously represent time-based
analog information over a digital channel, allowing to greatly
reduce the complexity of the core of read-out circuits down to
only few digital inverter gates [16].

The processing of QD-AER events into NM-AER as a
sample application has been chosen for three reasons: first,
it is mostly an (event-based) I/O-bound test case, so to stress
the real limits of standard MCUs in event-driven applications;
second, to exploit the opportunities and performance of a
fully firmware reprogrammable device in pre-processing of
events; third, to enable the research and development of
hybrid QD/NM AER systems [12], where the advantages of
quasi-digital read-out circuits (very low power consumption,
small size, simplicity) can be complemented by those of a
communication infrastructure based on neuromorphic concepts
(bandwidth and latency minimization).

openMSP430

CORE

AE
proccessing
peripheral

AE
committing
peripheral

q
u
a
si-d

ig
ita

l
A
E
R

n
eu

ro
m
o
rp

h
ic

A
E
R

Hardware
pre-processing

Software
post-processing

Fig. 1: AER custom microcontroller block diagram: a quasi-
digital signal is received and pre-processed by the AE process-
ing peripheral. Then, a neuromorphic output is generated by
the AE committing peripheral.

II. DESIGN AND DEVELOPMENT

The proposed Address Event microcontroller relies on
an open source MSP430TM compatible core, the open-
MSP430 [17], which is largely adopted into low power
applications. It can execute the code generated by Texas
InstrumentTM tools allowing easy firmware upgrades. The core
is connected to two fully compatible firmware programmable
custom peripherals. Moreover, all the features of a common
microcontroller (like GPIO, Timer, UART, I2C and so on)
are still available. The whole system is described in Verilog
HDL to be both FPGA and ASIC ready. Figure 1 shows the
corresponding functional block diagram.

The first module is the AE processing peripheral devoted
to receive and pre-process an input stream of quasi-digital
events. Namely, the aim of this peripheral is to manage in
an optimized way the time-domain information and to reduce
the core workload. Figure 2 shows the details of the AE
processing peripheral which contains: a timer unit and a
processing unit. Both elements include a Data-Path (DP) and
a control unit, based on a Finite-State-Machine (FSM). This
duplex architecture allows to handle the input with a different
frequency than the microcontroller core, in order to tune
sampling resolution, without affecting core performance and
power consumption. The timer FSM acquires events through a
source-ready/destination-ready handshake [12]. The timer unit
produces 16-bit timestamps with a free running counter and
sends them to the processing unit through a four-phase hand-
shake protocol. The processing unit is able to manage an event
with a fixed maximum number of addresses (256 as default).
For each address the time distance between contiguous events
is computed and stored in an internal memory to keep track of
the last four events. Thanks to this strategy, a kind of event-
history is recorded in order to get time-correlation between
the events. The peripheral can be configured via firmware to
generate an interrupt whenever the time difference between
two consecutive events overcomes a threshold. It is possible
to select which couple of events has to be considered and the
threshold can be either absolute or relative. In this last case
the bound is a fraction of the time distance between the two
preceding events. All the processing is performed inside the
DP, which is composed of two adders, one comparator and two
shifters. The DP works at the main core clock frequency in
order to read/store data from/to registers and memories, which
the microcontroller core can directly access without any timing
violation. The AE processing peripheral is highly firmware
configurable providing the following features:

• Selectable input clock source with a configurable
prescaler to allow for a wide range of use cases depending
on average/maximum event rate and needed time resolu-
tion;

• Recent history recording to provide the possibility of
implementing time-correlation based algorithms;

• Event-threshold setting on a per address-event basis to
tune the sensitivity, also on the run, for every different
input source;

which is largely adopted into low power application. It can
execute the code generated by Texas Instrument tools allow-
ing easy firmware upgrades. The core is connected to two
fully compatible firmware programmable custom peripherals.
Moreover all the features of a common microcontroller (like
GPIO, Timer, UART, I2C and so on) are still available. The
whole system is described in Verilog HDL to be both FPGA
and ASIC ready. Figure 1 shows the corresponding functional
block diagram.

The first module is the AE processing peripheral devoted to
receive and pre-process an input quasi-digital stream of evens.
Its aim is to manage in an optimized way the time-domain
information and to reduce the core workload. Figure 2 shows
the details of the AE processing peripheral which contains:
a timer unit and a processing unit. Both elements include a
Data-Path (DP) and a control unit, based on a Finite-State-
Machine (FSM). This duplex architecture allows to handle
the input with a different frequency than the microcontroller
core, in order to tune sampling resolution, without affect-
ing core performance and power consumption. The timer
FSM acquires events through a source-ready/destination-ready
handshake [12]. The timer unit produces 16-bit timestamps
with a free running counter and sends it to the processing unit
through a four-phase handshake protocol. The processing unit
is able to manage an event with a fixed maximum number of
addresses (256 as default). For each address the time distance
between contiguous events is computed and stored in an
internal memory to keep track of the last four. Thanks to this
strategy an history is recorded in order to get a time-correlation
between the events. The peripheral can be configured via
firmware to generate an interrupt whenever the time difference
between two consecutive events overcomes a threshold value.
It is possible to select which couple of events has to be
considered and the threshold can be either absolute or relative.
In this last case the bound is a fraction of the time distance
of the two preceding events. All the processing is performed
inside a datatpath, which is composed of two adders, one
comparator and two shifters. The DP works at the main core
clock frequency in order to read and store data from register
and memories directly accessible from microcontroller core
without any timing violation. The AE processing peripheral is
highly firmware configurable providing the following features:

• Selectable input clock source with a configurable
prescaler to allow for a wide range of use cases depend-
ing on average/maximum event rates and needed time
resolution;

• Recent history recording to provide the possibility of
implementing time-correlation based algorithms;

• Event-thresholds setting on a per address-event basis to
tune the sensitivity, also on the run, for every different
input source;

• Absolute or adaptive/relative event-threshold, with polar-
ity values to expand hardware pre-processing capabilities;

• Saturation arithmetic to avoid overflow errors.

The second peripheral integrated in the proposed MCU is

AE processing peripheral
processing unittimer unit

proc.
FSM

proc.
DP

m
em

or
y

in
te

rf
ac

e

per en
per we
per addr
per din
per dout

puc rst
irq aep

timer
FSM

aep srdy
aep drdy

timer
DP

aep din

clock
select mclkaep clk

main clock only domain
main clock or external one domain

Fig. 2: Address Event processing peripheral functional block
diagram with connections to the outside AER signal on the
left, to the openMSP430 core on the right.

the AE committing peripheral, designed to receive events from
the openMSP430 core and commit them out as AER-events as
soon as possible. This peripheral can work with two different
clock frequencies, similarly to the previous module, thanks to
a FIFO buffer.

The proposed architecture has been implemented on an
FPGA board based on a Xilinx Spartan3 XC3S1400A. The
whole developed system occupies 41% of available slices and
17 BRAMs (required by the main memory).

Moreover, both proposed solution and the original open-
MSP430 model have been synthesized on ASIC in order to
actually analyze benefits in term of power consumption. In
the following we will refer to the original openMSP430 MCU
as standard microcontroller and to the proposed solution as
custom.

In the standard microcontroller input/output and the time
information are managed by a GPIO and a Timer, respec-
tively. All the computation is performed by the core through
firmware/software code. The custom solution differs from the
original just by the presence of the specific modules previously
described, which are exploited to leverage the CPU from
computation. The synthesis is performed through Synopsys
Design Compiler, on a 32 nm technology. The standard solu-
tion occupies an area of 8973 GE (18257 μm2), with a total
static power of 24.27 mW and achieving a maximum main
clock frequency of 230 MHz. Meanwhile the custom MCU
reaches an area of 9537 GE (19391 μm2), static power of
25.48 mW, maximum speed 170 MHz. These results show that
the proposed solution does not cause relevant overhead in
terms of occupation, static power consumption and peak core
performance.

III. RESULTS

In this section results obtained with proposed solution are
compared with the ones got using a board equipped with a
real MSP430TM. In the simulation the real MCU is emulated

Fig. 2: Address Event processing peripheral functional block
diagram with connections to the outside AER signals (on the
left side) and to the openMSP430 core (on the right side).

• Absolute or adaptive/relative event-threshold, with polar-
ity values to expand hardware pre-processing capabilities;

• Saturation arithmetic to avoid overflow errors.

The second peripheral integrated in the proposed MCU is
the AE committing peripheral, which has been designed to
receive events from the openMSP430 core and to commit them
out as AER-events as soon as possible. This peripheral can
work with two different clock frequencies thanks to a FIFO
buffer.

The proposed architecture has been implemented on an
FPGA board based on a Xilinx R© Spartan3 XC3S1400A. The
whole developed system occupies 41% of available slices and
17 BRAMs (required by the main memory). Moreover, both
the proposed solution and the original openMSP430 model
have been synthesized on ASIC technology in order to actually
analyze the advantages offered by the proposed solution in
term of power consumption. In the following we will refer to
the original openMSP430 MCU as standard microcontroller
and to the proposed solution as custom.

In the standard microcontroller input/output and time in-
formation are managed by a GPIO and a timer, respec-
tively. All the computation is performed by the core through
firmware/software code. The custom solution differs from
the original one just for the presence of the custom pe-
ripherals described in the previous paragraphs, which are
exploited to leverage the CPU from computation. The syn-
thesis is performed through Synopsys Design Compiler R©,
on a 32 nm technology. The standard solution occupies an
area of 8973 GE (18257 μm2), with a total static power con-
sumption of 24.27 mW and achieving a maximum main clock
frequency of 230 MHz. Meanwhile, the custom MCU reaches
an area of 9537 GE (19391 μm2), a static power consumption
of 25.48 mW and a maximum speed of 170 MHz. These
results show that the proposed solution does not cause relevant
overhead in terms of occupation, static power consumption and
peak core performance.

(a) Normalized dynamic power.

(b) Absolute dynamic power.

Fig. 3: Total dynamic power (on z axis) varying period (T on
x axis) and signal/threshold ratio (∆t/threshold on y axis).

III. METHODS

In this section the method used for validation and result
generation is discussed. In the simulation the real MCU
is emulated by the original openMSP430. Clearly, the two
implementations are not equivalent in terms of technology
optimization; however, this analysis aims to show the advan-
tages offered by the proposed approach. For this reason only
dynamic power consumption and synchronous timing perfor-
mance are analyzed. In order to build a realistic environment
a deterministic quasi-digital signal has been applied to both
the original openMSP430 and the proposed microcontroller.
Its Pulse Position Modulation (PPM) model is as follows:

t2 − t1 = T + k · ∆t

2
k ∈ [−1, 1], (1)

where:
• T ranges from 20 μs up to 100 μs that means a carrier

frequency in the range 10÷50 kHz, with five equally
spaced frequency steps.

• ∆t ranges from 1 μs up to 40 μs, in four threshold/signal
ratio constant steps; this corresponds to a spike-based
signal triggered in a range 0÷80 % of input events.

• k is a pseudo-random number, in an uniform distribution.
Thanks to the firmware programmable structure, users can

develop different algorithms. In this work six algorithms
are considered as benchmarks. They differ in terms of pre-
processing thresholding method (absolute or relative) and post-
processing complexity. Indeed, the four history values can

be ignored (no filtering) or exploited to implement time-
correlation algorithms, namely, average or median filtering.

IV. RESULTS

Fig. 3a shows the power consumption normalized w.r.t.
the corresponding maximum value of the proposed architec-
ture in different configurations. In this analysis, we define
∆t/threshold as the best parameter to represent the amount
of significant information in an event-based signal. Indeed,
the signal/threshold ratio reflects the number of quasi-digital
events which trigger the neuromorphic output. The red upper
plane describes the standard architecture, while the blue lower
one the custom architecture. The event frequency increases
moving on the left side axis, the signal/threshold ratio is
presented on right side axis, instead. As it can be observed,
the power consumption in the custom microcontroller remains
approximately stable as long as there is not a significant
variation on the input signal (at ∆t/threshold equal to 1),
as opposite in the standard architecture the power consump-
tion increases exponentially. This behavior can be explained
considering that the original microcontroller always performs
the same number of operations every time a new event arises,
so the energy consumption depends primarily on the number
of events per unit of time (T). Differently, the AE processing
peripheral in the proposed architecture wakes the core only
when a significant input occurs, so keeping low the power
consumption when no relevant information is present.

It is worth noting that the total dynamic power consump-
tion in the proposed solution is lower than the one in the
original openMSP430 as highlighted in Fig. 3b. The factor
that leads to energy reduction is the presence of a dedicated
hardware I/O management unit with computational capability,
embedded into the custom peripherals. Since the better overall
performance of the custom microcontroller with respect to
the standard one is linked to its double clock structure, a
deep analysis on this aspect has been performed. The two
input clock sources can be varied according to the imposed
power budget. Indeed, the processor main clock affects the
dynamic power consumption with a factor of 0.64 μW/MHz
and changes linearly the maximum sustained event rate, i.e.,
the maximum number of events per time unit. The external
AE clock tunes the resolution and contributes with a factor

TABLE I: Performance of different solutions, in term of
main clock frequency (Fmclk), maximum event rate (ERmax),
minimum time resolution (Δtmin), average dynamic power
consumption (Pdyn), and average energy per event (EpE).

Fmclk ERmax Δtmin Pdyn EpE
solution [MHz] [kevent/s] [ns] [μW] [nJ/event]

openMSP430 20 116 50 45.5 1.90

pr
op

os
ed

nominal 20 571 50 20.9 0.95
min. pow. 4.1 117 50 8.3 0.40
max. res. 10 284 8 38.0 1.70
balanced 28 793 14 37.5 1.67
max. perf. 45 1300 50 37.2 1.66

TABLE II: Comparison with programmable synchronous event-acquiring/processing solutions.

[6] [7] [8] [9] [10]∗ [11] [17]† proposed
Core technology FPGA FPGA CPLD CMOS-180nm CMOS-130nm FPGA FPGA/CMOS-32nm
Event processing yes no no yes yes yes yes yes
Gate count [kGates] n.a. n.a. n.a. 19.2 n.a. n.a. 8.9 9.5
System clock [MHz] 100 20 30 100 200 75 20 4÷45‡
Max time resolution [ns] 50000 1000 33 10 n.a. n.a. 50 8
Max sustained event rate [Mevent/s] n.a. 1 5 5.1 0.16 0.58 0.12 1.3
Power consumption [mW] n.a. n.a. n.a. 300 1000 1500 24.3§ 25.5§

∗ Considering a single node (core) † Simulated on the given application
‡ Test setup § Total power from simulation test setup (static plus dynamic contributions)

of 0.22 μW/MHz. Therefore, improving the resolution is less
energy expensive than increasing the maximum event rate.

Table I highlights good results achieved by the proposed
solution. The first row contains the standard microcontroller
working at 20MHz; the others present different custom so-
lutions, which can be implemented by varying the system
clock frequency. At nominal frequency the custom MCU
shows a peak event processing-rate five times higher than the
standard MCU. Furthermore, it features less than 20 % of the
power consumed by the standard MCU to achieve the same
performance. If both solutions are constrained by an equal
energy budget either the input event-rate can be raised of one
order of magnitude or the resolution improved six times. With
the system reactivity approximated to the reciprocal of the
maximum event rate, the custom MCU shows also a response-
time improvement (up to 1020 % w.r.t. the standard one).

Table II shows a comparison between the proposed so-
lution and [6]–[11], [17]. It has been restricted to event-
driven acquiring/processing systems based on synchronous
hardware. As expected, every FPGA or CPLD solution can
not be fairly compared in terms of power. Considering the
ASIC solutions, the ratio between the power consumption and
the maximum event rate can be defined as a metric under
which evaluating the advantages of the proposed solution. The
presented microcontroller can handle a given maximum input
event rate consuming a total power three times lower than what
required by other solutions to reach similar performance.

V. CONCLUSION

The presented event-processing MCU, thanks to the inclu-
sion of custom peripherals, promotes energy saving (the power
consumption is more than halved), ensuring performance (the
peak processing rate can be increased tenfold), without losing
any advantage of a fully firmware-programmable commercial
architecture. Full source is available [18].

REFERENCES

[1] F. Rea, G. Metta, and C. Bartolozzi, “Event-driven visual attention for
the humanoid robot iCub,” Frontiers in Neuroscience, vol. 7, no. 234,
2013.

[2] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. Douglas, and
T. Delbruck, “A pencil balancing robot using a pair of AER dynamic
vision sensors,” in Circuits and Systems, 2009. ISCAS 2009. IEEE
International Symposium on, pp. 781–784, May 2009.

[3] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at
4% CPU load using event-based dynamic vision sensor,” Frontiers in
Neuroscience, vol. 7, Nov 2013.

[4] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses,”
Frontiers in Neuroscience, vol. 9, p. 141, 2015.

[5] C. T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, “Ulsnap:
An ultra-low power event-driven microcontroller for sensor network
nodes,” in Fifteenth International Symposium on Quality Electronic
Design, pp. 667–674, March 2014.

[6] R. George, C. Mayr, G. Indiveri, and S. Vassanelli, “Event-based softcore
processor in a biohybrid setup applied to structural plasticity,” in 2015
International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP), pp. 1–4, June 2015.

[7] E. Chicca, A. M. Whatley, P. Lichtsteiner, V. Dante, T. Delbruck,
P. D. Giudice, R. J. Douglas, and G. Indiveri, “A multichip pulse-
based neuromorphic infrastructure and its application to a model of
orientation selectivity,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 54, pp. 981–993, May 2007.

[8] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A 5
Meps $100 USB2.0 address-event monitor-sequencer interface,” in 2007
IEEE International Symposium on Circuits and Systems, pp. 2451–2454,
May 2007.

[9] M. Hofstatter, P. Schn, and C. Posch, “A SPARC-compatible general pur-
pose address-event processor with 20-bit 10ns-resolution asynchronous
sensor data interface in 0.18μm cmos,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, pp. 4229–4232, May
2010.

[10] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple,
and A. Brown, “Overview of the SpiNNaker system architecture,”
Computers, IEEE Transactions on, vol. 62, pp. 2454–2467, Dec 2013.

[11] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 22, pp. 2621–2628, Dec 2014.

[12] P. Motto Ros, M. Crepaldi, and D. Demarchi, “A hybrid quasi-
digital/neuromorphic architecture for tactile sensing in humanoid
robots,” in 2015 6th International Workshop on Advances in Sensors
and Interfaces (IWASI), pp. 126–130, June 2015.

[13] C. Bartolozzi, P. Motto Ros, F. Diotalevi, N. Jamali, L. Natale,
M. Crepaldi, and D. Demarchi, “Event-driven encoding of off-the-shelf
tactile sensors for compression and latency optimisation for robotic
skin,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sep 2017.

[14] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on, vol. 47, pp. 416–434, May
2000.

[15] P. Motto Ros, M. Crepaldi, C. Bartolozzi, and D. Demarchi, “Asyn-
chronous DC-free serial protocol for event-based AER systems,” in 2015
IEEE International Conference on Electronics, Circuits, and Systems
(ICECS), pp. 248–251, Dec 2015.

[16] A. Damilano, P. Motto Ros, A. Sanginario, A. Chiolerio, S. Bocchini,
I. Roppolo, C. F. Pirri, S. Carrara, D. Demarchi, and M. Crepaldi, “A
robust capacitive digital read-out circuit for a scalable tactile skin,” IEEE
Sensors Journal, vol. 17, pp. 2682–2695, May 2017.

[17] O. Girard, openmsp430, 1.16 ed., December 2007.
[18] S. Aiassa, P. Motto Ros, G. Masera, and M. Martina, “A Low Power

Architecture for AER Event-Processing Microcontroller: full source
(both HDL and code). [Online]. Available: http://personal.det.polito.it/
maurizio.martina/event.html,” June 2017.

