
21 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High Performance and Low Power Monte Carlo Methods to Option Pricing Models via High Level Design and Synthesis /
Ma, Liang; Muslim, FAHAD BIN; Lavagno, Luciano. - ELETTRONICO. - (2016), pp. 157-162. (Intervento presentato al
convegno 10th European Modelling Symposium on Mathematical Modelling and Computer Simulation 2016 tenutosi a
Pisa, Italy nel 28-30 Nov. 2016) [10.1109/EMS.2016.036].

Original

High Performance and Low Power Monte Carlo Methods to Option Pricing Models via High Level Design
and Synthesis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EMS.2016.036

Terms of use:

Publisher copyright

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2658755 since: 2018-04-05T21:17:06Z

IEEE

High Performance and Low Power Monte Carlo Methods to Option Pricing Models
via High Level Design and Synthesis

Liang Ma, Fahad Bin Muslim, Luciano Lavagno

Department of Electronics and Telecommunication

Politecnico di Torino

Turin, Italy

Email: {liang-ma, fahad.muslim, luciano.lavagno}@polito.it

Abstract—This article compares the performance and energy
consumption of GPUs and FPGAs via implementing financial
market models. The case studies used in this comparison are
the Black-Scholes model and the Heston model for option
pricing problems, which are analyzed numerically by Monte
Carlo method. The algorithms are computationally intensive
but not memory-intensive and thus well suited for FPGA
implementation. High-level synthesis was performed starting
from parallel models written in OpenCL and then various
micro-architectures were explored and optimized on FPGAs.
The final implementations of both models to several options on
FPGAs achieved the best parallel acceleration systems, in terms
of both performance-per-operation and energy-per-operation,
compared not only to the kernels on advanced GPUs but also
to the RTL implementations found in the literatures.

Keywords–Acceleration; High-level synthesis; GPU; FPGA;
Parallel computation; Pipelining; Unrolling;

I. INTRODUCTION

Complex financial models are commonly used to max-

imize returns on investments. They are particularly useful

when more and more investors and institutions are involved

and very different styles of options are introduced into the

derivative markets. Fund managers and investors not only

need proper models to estimate asset prices, but also to

execute them quickly in order to obtain timely and reliable

predictions [1]. Both the Black-Scholes model and Heston

model are popular models for asset prices, which are also

known as stock prices. The most significant feature of the

Black-Scholes model is its simplicity, since all the other

parameters are treated as constant. Instead, the Heston model

describes both the stock price and its volatility by stochastic

differential equations, therefore considering more parameters

than the Black Scholes model. As a result, it is able to reflect

the market characteristics more precisely [2].

The stochastic differential equations used by both the

models do not have any feasible analytical solution that can

be used for option pricing problems [3], especially when

considering non-standard (also known as “exotic”) options.

The most widely used technique to solve such problems is

numerical approach such as the Monte Carlo (MC) method.

Due to the fact that MC method requires very significant

computationalresourcestobeappliedtothesestochastic

process models, traditional CPU-based platforms are not

able to execute it fast enough for practical use. Hence several

kinds of hardware accelerators have been implemented in

order to obtain a high performance with a low energy cost

per computation.

Graphic processing units (GPUs) are commonly used as

accelerators for parallel computations. Their architecture

contains many Algorithm-Logic Units (ALUs) managed by

a single control unit. MC methods, which performs plenty

of independent simulations, can be executed on clusters of

CPUs and GPUs with excellent performance. However, it

has been shown that these platforms are not very efficient

concerning about the energy consumption [2], for financial

and for other kinds of applications. This issue has been ad-

dressed recently by using reconfigurable hardware platforms

as accelerators.

Field-programmable gate array (FPGA) is advantageous

with respect to GPUs because:

• It retains some SW-like runtime reconfigurability,

which makes it suitable for usage e.g. in data centers,

• It has dramatically lower power and energy consump-

tion than both CPUs and GPUs, because it uses a cus-

tomized hardware control unit, data-path and memory

architecture instead of fetching, decoding and executing

instructions.

The predominant design flow for FPGA and ASICs alike

is based on Register Transfer Level (RTL) models written

in a Hardware Description Language, which are then syn-

thesized, placed and routed. However, this design flow is

very time-consuming, because changes to the RTL in order

to modify performance and cost have to be painstakingly

coded manually and extensively verified for correctness. On

the other hand, the standard software development flow,

based on the principle of “write once, run anywhere” is

very appealing, e.g. of many algorithms written in C, C++

and OpenCL for CPUs and GPUs alike. Recent advances

in high-level synthesis (HLS) for software languages finally

have dramatically reduced the design and verification costs,

essentially eliminating the need to model the design at

RTL. HLS, on the other hand, promises the best of both

worlds: the high performance and low energy consumption

of FPGA hardware, and the flexibility and retargetability of

software. In particular, both Xilinx and Altera FPGAs can

be programmed by OpenCL models. The choice of GPU-

oriented languages like OpenCL or CUDA as the input to

HLS has two main motivations:

• They offer massive amounts of parallelism that can

be exploited in the context of HLS by unrolling or

pipelining the loops.

• They provide an explicit memory model with global

memory, shared memory and private memory that

matches performance and granularity of FPGA memory

(off-chip DRAM, on-chip SRAM and registers).

This paper describes the implementation and architectural

optimization of MC methods to accelerate the financial ap-

plications on GPU- and FPGA-based hardware accelerators.

The performance and energy consumption on both platforms

are compared and analyzed. The advantages of using HLS

for the FPGA design are further analyzed, discussed and

compared with manual RTL designs in the literatures.

II. RELATED WORK

On account of the fact that the option pricing problem

is one of the hot topics in financial market, it has been

investigated by many researchers theoretically or practically.

Stephen et al. [4] reported that the algorithms for analyz-

ing tranche credit derivatives could be executed on an FPGA

over 30 times faster than those on a multi-core processor.

In addition, they also showed that modeling the algorithms

in a high-level language reduced the design effort to about

one fourth. Christian et al. [2] implemented a MC method

to analyze European barrier option pricing problems on a

laptop CPU, a laptop GPU and an FPGA. They concluded

that the acceleration by both the GPU and the FPGA saved

time and energy. Furthermore, the FPGA offers a better

balance between energy and performance than the GPU.

Of course, the result of any comparison between GPU and

FPGA highly depends on the algorithms and the technology

node used to manufacture the devices. For instance, Anson

et al. [5] demonstrated that an FPGA outperformed GPU in

terms of both performance and energy, by implementing the

MC method to Asian option using the Heston model.

Several HLS techniques have been implemented as both

research and commercial tools in recent years. For example

Handel-C was described in [6] while THDL++ was dis-

cussed in [2]. In [1] the authors took advantage of a high-

level synthesis tool to generate one component of a system

for multi-level MC simulation.

A comparison between GPU and FPGA has also been

performed for several other algorithms, such as the k-Nearest

Neighbor in [7].

III. OPTION PRICING MODELS

A. Black-Scholes Model

The Black-Scholes model considers one risk-free asset

with a fixed interest rate and one risky asset, whose price is

subject to geometric Brownian motion as shown in (1)[8].

dS = rSdt+ σSdz (1)

where S is the stock price, r is the fixed interest rate, σ is

the constant volatility and z is a Wiener process.

According to Itô’s lemma [9], the analytical solution for

the stochastic differential equation (1) is shown in (2).

St+Δt = Ste
(r− 1

2σ
2)Δt+σε

√
Δt (2)

where ε ∼ N(0, 1), the standard normal distribution.

Apart from the analytical solution, a numerical solu-

tion (3) can be obtained by applying Euler discretization

to (1)[1][10] for Δt << 1.

St+Δt = St(1 + rΔt+ σε
√
Δt) (3)

(3) is commonly used in the literature for MC simulation

to avoid the exponent in (2). On one hand, the exponential

function requires more resources and time for the com-

putation. On the other hand, some majority commercial

HLS tools don’t even support the synthesis of exponential

function. However (2) gives more accurate result in case of

small amount partitions over time. Since the HLS tool (VI-

VADO HLS) used in this work can deal with the exponential

function, (2) has been implemented.

B. Heston Model

Volatility of a risky asset in the Heston model is no longer

treated as a constant value, but a stochastic process. Thus

(4) models the stock price and (5) models its volatility[10].

dS = rSdt+
√
V Sd(ρz1 +

√
1− ρ2z2) (4)

dV = κ(θ − V)dt+ σv

√
V dz1 (5)

In (4), z1, z2 are two Wiener processes, ρ is the correlation

factor between them, and
√
V is the volatility of the stock

price. In (5), θ is the long-run mean variance, κ is the speed

of mean reversion(the rate at which V reverts to θ) and σv

is the volatility (Standard deviation) of the volatility V .

For a short time Δt << 1, V can be assumed to be

constant, so that Itô’s Lemma can be applied to (4), which

is then simplified as in (1). The numerical solution for (5) is

also obtained by Euler discretization[10] with full truncation

scheme avoiding negative values under the square root [8].

The final solutions are shown in (6) and (7).

St+Δt = Ste
(r− 1

2V
+
t)Δt+

√
V +
t (ρε1+

√
1−ρ2ε2)

√
Δt (6)

Vt+Δt = V +
t + κ(θ − V +

t)Δt+ σv

√
V +
t ε1

√
Δt (7)

where ε1, ε2 ∼ N(0, 1) and V +
t = max(Vt, 0).

C. Options

The derivative market offers plenty of different mecha-

nisms (called “options”) to calculate the payoff of a contract.

The options are classified into different styles, such as vanilla

and exotic option, according to the payoff calculation.

1) European Vanilla Option: European vanilla option is

one of the simplest option. It can only be exercised at the

expiration date and thus its payoff price only depends on the

stock price at the expiration date and is computed by (8).

PCall = max{ST −K, 0} (8)

where T is the pre-set time of the option, ST is the stock

price at the expiration date and K is the strike price.

2) European Barrier Option: The European barrier op-

tion is exercised only if the stock price over the pre-set

time period remains within the pre-set barrier level(s). There

could be only one barrier (upper bound or lower bound)

or two barriers (bot upper and lower bounds) in a given

contract. For example, Su and Sd are the upper bound and

lower bound respectively. The option can be exercised only

if the stock price does not go beyond any of the two barriers.

So the call price is calculated as (9).

PCall =

{
max{ST −K, 0} ∀t ∈ (0, T) ⇒ Sd ≤ St ≤ Su

0 otherwise
(9)

3) Asian Option: The Asian option, which is also called

average value option, is an exotic option. The payoff price

depends on the average of the stock price over the time

period. (10) defines the call price by using the arithmetic

mean, while (11) defines the call price by using the geomet-

ric mean. (10) is implemented in this paper.

PCall = max{ 1
T

∫ T

0

Sdt−K, 0} (10)

PCall = max{e 1
T

∫ T

0
ln(S)dt −K, 0} (11)

IV. HARDWARE IMPLEMENTATION

A. Simulation Algorithm

1) Time Partitioning: Time partitioning is a necessary ap-

proach to deal with a time-dependent stochastic differential

equation. Taking Black-Scholes model as an example, there

are mainly three steps to do the computatioin.

• The time interval (0, T) is uniformly partitioned into

M steps and denoted as t0, t1, . . . , tM .

• M standard normally distributed independent random

numbers ε1, ε2 . . . , εM are generated.

• Calculate ST = StM starting from St0 by (2) or (3).

This simulation that computes ST from St0 is called one

“path” in option pricing problems. The total number of paths

is denoted by N in the following.

2) Random Number Generator: A key aspect of the

quality of the results of the MC method is the quality of

the random numbers that it uses. The normally distributed

random numbers in the simulation are generated by the

Mersenne-Twister (MT) algorithm followed by the Box-

Muller transformation. These algorithms have been broadly

implemented in the literature, e.g. in [1].

The overall algorithms for the Black-Scholes and the

Heston models are listed in Algorithm 1 and 2 respectively.

Algorithm 1 Black-Scholes model

Input: parameters for the stock and option

Output: payoff price

Initialization: Random number generators

for i = 1 to N do
for k = 1 to M do
U1, U2 ← MersenneTwist()
ε1, ε2 ← BoxMuller(U1, U2)
Stk+2

, Stk+1
← Price(Stk , ε1, ε2)

k+ = 2
end for
Poption[i] ← Option(St[],K)
i++

end for
return PCall = ave(Poption)

Algorithm 2 Heston model

Input: parameters for the stock, volatility and option

Output: payoff price

Initialization: Random number generators

for i = 1 to N do
for k = 1 to M do
U1, U2 ← MersenneTwist()
ε1, ε2 ← BoxMuller(U1, U2)
Stk+1

← Price(Stk , Vtk , ε1)
Vtk+1

← V olatility(Vtk , ε2)
k++

end for
Poption[i] ← Option(St[],K)
i++

end for
return PCall = ave(Poption)

3) Performance Metrics: One of the important metrics

for performance is the simulation time used to execute a

given computation. The entire simulation contains N paths

and each path is partitioned into M steps, hence the total

simulation time Ts is proportional to C = M ·N . The factor

C is called computational cost which is a key factor that

affects the performance of the simulation and the quality of

the results. In the following, performance will be reported

TABLE I
GPU PLATFORMS

Model Name f [MHz] Cores Power[W]

GeForce GTX 960 1178 1024 120

Quadro K4200 784 1344 108

TABLE II
FPGA PLATFORMS

Models and Parts BRAMs DSPs FFs LUTs

Virtex-7(xc7vx690t) 2940 3600 866400 433200

Virtex-5(xc5vfx70t) 296 128 44800 44800

Virtex-5(xc5vlx330t) 648 192 207360 207360

with normalization respect to C. As defined in (12), tc is

the time for computing one simulation step.

tc =
Ts

C
(12)

Ec = tc · Pd (13)

Another key characteristic of an implementation platform

is its energy consumption, or to be more precise the energy

consumed to perform a given computation (e.g. a simulation

step as shown in (13), where Pd is device power). Compared

to a GPU, an FPGA may not be as fast, due to e.g. the use of

an older process or a narrower and slower DRAM interface.

However, it is typically more energy-efficient, because it has

an application-specific control and data-path

In this paper, the power consumption of a GPU is esti-

mated by using both its data sheet and power profiling tools,

while for the FPGA it relies on the analysis capabilities of

the synthesis tool (e.g. Vivado from Xilinx).

B. Heterogeneous Platforms

Modern high-performance computing platforms are nor-

mally heterogeneous, i.e. they contain CPUs and accelerators

(e.g. GPUs or FPGAs). The basic architecture of such

a heterogeneous framework has also been depicted and

implemented in several other literatures such as in [7].

In a GPU, there are plenty of independent cores in order

to execute kernels in parallel and each core contains several

computing elements (ALUs) for SIMD (or SIMT) approach.

Apart from these, frequency and the memory (including

cache) sizes also affect the GPU performance. The GPU

devices used in this paper are listed in Table I.

The FPGA devices that are supported by the SDAc-

cel OpenCL synthesis tool that was used for this paper

are the Virtex7-series and Kintex7-series. To compare the

performance of such kernels designed via HLS with the

implementations from the literatures, the kernels are also

synthesized on the FPGAs, e.g. Virtex-5-series that were

used in those publications. The FPGA devices are presented

in Table II.

C. Algorithm optimization on Hardwares
1) GPU: In the algorithms of MC method, there are N

independent paths along time with identical inputs. The N
independent paths can be unrolled partially on GPUs. This

is realized by Nu (unroll factor) independent works of a

kernel and their parallel execution on GPU. Nu depends on

the characteristic of a GPU and is relatively small compared

to N = NuNs, where Ns is the number of paths executed

in sequential by each independent work item. The values of

global size and local work-group size have to be carefully

chosen in order to take the full advantages of a GPU. The

simulation time Ts is then proportional to NsM .
2) FPGA: The optimization of the algorithm on FPGA is

more tricky than that on GPU due to the flexible architecture

on an FPGA.
Firstly, partial unrolling of the outer-most loop is imple-

mented as on GPU. The unroll factor Nu depends on the

percentage of resources utilization of the rolled iterations

(Ns paths). However, the HLS tool does not support the

unrolling of out-most loop currently. So some techniques

have been taken to adapt the architecture of the algorithms

such as modifying the orders of the nested loops.
Secondly, pipelining of the inner-most loop is another

efficient way to accelerate algorithms on an FPGA. This

technique is able to increase the throughput of an algorithm.

The task is to reduce the initiation interval (II) between two

successive iterations. Hence each iteration can be finished

in few clock cycles (II cycles) on average. As can be seen

in Algorithm 1 and 2, every iteration contains two parts

of computation, one is the random number generation and

the other one is to update the stock price (and volatility in

Heston model) over time partitions.
The optimization of the first part concerns the algorithm

of random number generation. The critical problems in

the original MT algorithm are the memory accesses and

mathematical computation such as modulo. II = 7 on

Virtex-7-series FPGA at 100MHz for unoptimized algorithm

to generate one random number. In the optimization, the

critical computations are replaced by simple operations such

as +/- and the array used to store state values is partitioned

into two according to the memory access pattern in order to

double the throughput. The optimized algorithm achieves

II = 2 and generates two random numbers in parallel

in each iteration. It indicates that each Gaussian random

number is obtained in single clock cycle on average (II = 1
instead of 7).

Once the random number generation is optimized, the next

step is to deal with the second part. In each iteration of the

inner most loop, the stock price (and volatility) depends

on its value calculated in the previous iteration. Without

any modification to the architecture of the nested loops,

the II may go up to 30 clock cycles for Heston model

at the frequency 100MHz on Virtex-7-series FPGA due to

the complicated mathematical computation. This bottleneck

is removed by merging a portion of the outer loop (Ni

iterations out of Ns) into the inner loop since each iteration

in the outer loop is independent. By this technique, the stock

price (and the volatility) does not depend on the values

of previous Ni − 1 iterations any more because they are

on different paths. Of course, it increases the utilization of

BRAMs. In the end, the inner-most loop is pipelined with

II = 2 for both algorithms. So tc can be roughly estimated

by (14) and (15) for the two algorithms respectively.

tB.Scholes
c =

tclock
Nu

(14)

tHeston
c =

2tclock
Nu

(15)

where tclock is the clock period applied to an FPGA.

Finally, the algorithms can be further optimized by con-

trolling the IP cores in the synthesis in order to balance the

resource utilization and then increase the value of Nu. This

optimization is realized by the directives provided by the

HLS tool. It supports the implementation of an operations

such as multiplier by specific resources. For example, the

multiplication of two floating-point variables can be realized

fully by DSP or by Flip-flops (FFs) and Look-up tables

(LUTs). Especially it is essential for the low-end FPGA

chips with limited DSPs.

V. RESULTS

The execution time and energy consumption of the models

described above are compared for the various considered

platforms by providing all of them with the same input data

(e.g. initial stock price) and the same simulation parameters

(e.g. N and M).

A. European Vanilla Option

This section presents the results of implementing the

European vanilla option using both two models, and then

comparing them across platforms.

1) Black-Scholes Model: For the Black-Scholes model,

the simulation parameters and simulated results such as

time and energy per step are shown in Table III, where

“B” denotes Billion. Clearly, the GTX960 is better than the

K4200 for this application, in terms of both performance

and energy per time step. Compared to the GTX960, the

Virtex-7 has 1.71X speed and only consumes 9.8% of the

energy per step.

tclock = 6.08ns and Pd = 21.2W for the FPGA Virtex-

7. The resource utilization is 86% of the DSPs, 26% of

BRAMs, 34% of FFs and 70% of LUTs.

2) Heston Model: The results for the Heston model

are shown in Table IV, where “M” denotes Million. The

GTX960 in this case has better performance than the K4200

again. However, the K4200 consumes slightly less energy

per step than the GTX960. The Virtex-7 is also faster than

TABLE III
TIME AND ENERGY CONSUMPTION PER STEP, BLACK SCHOLES MODEL

Device N M Ts[s] tc[ns] Ec[nJ]

GTX960 16.4B 1 2.69 0.164 19.7

K4200 32.8B 1 6.66 0.203 21.3

Virtex-7 2.15B 1 0.205 0.0958 1.94

TABLE IV
TIME AND ENERGY CONSUMPTION PER STEP, HESTON MODEL

Device N M Ts[s] tc[ns] Ec[nJ]

GTX960 16.78M 1024 10.37 0.604 72.4

K4200 16.78M 1024 11.40 0.663 69.7

Virtex-7 33.55M 1024 8.11 0.236 4.14

TABLE V
EXECUTION TIME, ASIAN OPTION

Result FPGA Ts[s] BRAM DSP FF LUT

Article [5] V-5-330 18.3 3% 93% 62% 38%

This study V-5-330 7.64 8% 97% 12% 16%

both GPUs in each step computation again, by about 2.56X

and consumes only 5.9% of the GPU energy.

tclock = 7.53ns and Pd = 17.58W for the FPGA Virtex-

7. The utilization is 66% of the DSPs, 26% of BRAMs, 34%

of FFs and 50% of the LUTs.

B. Exotic Option

This section presents the results for two exotic options,

including a comparison with previously published FPGA

implementations.

1) Asian Option, Black-Scholes Model: For this model

evaluation, the same parameter values and FPGA platform

as [5] have been implemented in order to meaningfully

compare performance. Table V shows Ts and the resource

utilization. Even though the resource balancing has not been

applied to this system in this study, the HLS-based imple-

mentation is still about 2.4X as fast as the one presented

in [5], which modeled the algorithms in RTL.

The clock frequency fclock = 125MHz implemented

in this work and fclock = 200MHz in [5]. According

to the resource utilization and the clock frequency, one

can conclude that the FPGA power from this work is not

more than that from the literature [5]. Even if the device

powers of both works are assumed to be identical, the energy

consumption can be considered roughly proportional to the

execution time Ts. It means the parallel computation system

designed in this paper (even though not fully optimized by

IP core controlling) via HLS saves at least 58.3% energy of

the one designed in RTL.

2) European Barrier Option, Heston Model: The param-

eters for European barrier option by Heston model and the

TABLE VI
EXECUTION TIME, EUROPEAN BARRIER OPTION

Result FPGA Ts[s] BRAM DSP FF LUT

Article [2] V-5-70 4 9% 99% 36% 54%

Unopt. V-5-70 3.13 8% 99% 29% 44%

Opt. V-5-70 1.56 16% 95% 47% 90%

part of FPGA were also chosen identical to those from [2]

for the sake of comparison. The unoptimized implementation

in this work achieved 20% better performance than the one

reported in [2], which is also based on HLS. By using a

more aggressive IP cores control scheme, which reduces

the resource utilization for an acceleration unit, it is able

to increase the value of Nu, and thus improves the overall

speedup to about 2.56X with respect to that in the literature.

These results are shown in Table VI.

fclock = 100MHz for both designs in this work and

the literature. The resource usage of unoptimized system is

comparable to that in the literature. Since the utilization of

optimized system is no more than twice of the unoptimized

one, the power is assumed to be twice of the system in the

literature in the worst case. In total, the energy consumption

is roughly 78.1% of the system from literature.

VI. CONCLUSION

The Black-Scholes and Heston models of financial prod-

ucts are described and implemented in this article. The

results for several options are presented and compared for

a number of GPU and FPGA platforms, by analyzing the

time and energy consumption by each MC simulation step.

All models in this paper are coded in OpenCL/C++, to

allow direct comparison between GPU and FPGA imple-

mentations, and in order to exploit a high-level model

which still provides good control over the quality of the

implementation.

The comparison of performance and energy consumption

between GPU and FPGA corroborates previous results from

the literature. In particular, this paper shows that energy

per computation by using an FPGA can be from 5.9% to

9.8% (depending on the algorithm) as much as that by

using an GPU as an accelerator for financial models, while

performance can be from 1.71X to 2.56X as fast as the

GPUs. One can conclude that the Virtex-7 FPGA has a

better overall performance than the advanced GPUs in option

pricing problems, which is computation-bounded, rather

than memory-bounded. On the energy efficiency aspect, the

FPGA is 10X more frugal than the GPUs.

The implementations in this work are also significantly

better than those in previous works in the domain of FPGA

acceleration of financial models. For the Black-Scholes

model of the Asian option problem, 2.4X of the performance

and 41.7% of energy consumption are obtained compared

to a previous manual RTL design. For the Heston model of

the European barrier option, this paper has achieved 2.56X

of the performance and 78.1% of energy consumption of

a previous implementation designed via HLS. Overall, it

shows that HLS not only reduces the effort in system design,

but also achieves higher performance and lower energy

consumption than the traditional RTL design approach.

The random number generation algorithm implements

floating-point numbers and some complicated mathematical

functions such as sin/cos. It can be optimized in future to

reduce the resource utilization on FPGA. In addition, the

authors are also planning to explore other efficient numerical

methods, such as the multi-level MC method reported in [1].

ACKNOWLEDGMENT

The authors woud like to give thanks to Xilinx Inc.

for their support. This work is also partially supported by

the European Commission through the ECOSCALE project

(H2020-ICT-671632).

REFERENCES

[1] C. de Schryver, P. Torruella, and N. Wehn, “A multi-level monte
carlo fpga accelerator for option pricing in the heston model,” in
Design, Automation Test in Europe Conference Exhibition (DATE),
2013, March 2013, pp. 248–253.

[2] C. d. Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen,
A. Kostiuk, and R. Korn, “An energy efficient fpga accelerator
for monte carlo option pricing with the heston model,” in 2011
International Conference on Reconfigurable Computing and FPGAs,
Nov 2011, pp. 468–474.

[3] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, “Fpga-based
reconfigurable computing for pricing multi-asset barrier options,” in
Application Accelerators in High Performance Computing (SAAHPC),
2012 Symposium on, July 2012, pp. 34–43.

[4] S. Weston, J. T. Marin, J. Spooner, O. Pell, and O. Mencer, “Accel-
erating the computation of portfolios of tranched credit derivatives,”
in High Performance Computational Finance (WHPCF), 2010 IEEE
Workshop on, Nov 2010, pp. 1–8.

[5] A. H. T. Tse, D. B. Thomas, K. H. Tsoi, and W. Luk, “Dynamic
scheduling monte-carlo framework for multi-accelerator heteroge-
neous clusters,” in Field-Programmable Technology (FPT), 2010
International Conference on, Dec 2010, pp. 233–240.

[6] G. W. Morris and M. Aubury, “Design space exploration of the euro-
pean option benchmark using hyperstreams,” in 2007 International
Conference on Field Programmable Logic and Applications, Aug
2007, pp. 5–10.

[7] F. B. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar,
“Energy-efficient fpga implementation of the k-nearest neighbors
algorithm using opencl,” ANNALS OF COMPUTER SCIENCE AND
INFORMATION SYSTEMS, vol. 9, pp. 141–145, 2016.

[8] T. Odelman, Efficient Mont Carlo Simulation with Stochastic Volatil-
ity. Skolan för datavetenskap och kommunikation, Kungliga Tekniska
högskolan, 2009.

[9] X. Tian and K. Benkrid, “Design and implementation of a high
performance financial monte-carlo simulation engine on an fpga
supercomputer,” in ICECE Technology, 2008. FPT 2008. International
Conference on, Dec 2008, pp. 81–88.

[10] M. Broadie and Ö. Kaya, “Exact simulation of stochastic volatility and
other affine jump diffusion processes,” Operations Research, vol. 54,
no. 2, pp. 217–231, 2006.

