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Static and free-vibration analyses of dental prosthesis and
atherosclerotic human artery by refined finite element

models

E. Carrera D. Guarnera A. Pagani

Mul2, Department of Mechanical and Aerospace Engineering
Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Static and modal responses of representative bio-mechanical structures are investigated in this
paper by employing higher-order theories of structures and finite element approximations. Re-
fined models are implemented in the domain of the Carrera Unified Formulation (CUF), ac-
cording to which low- to high-order kinematics can be postulated as arbitrary and, eventually,
hierarchical expansions of the generalized displacement unknowns. By using CUF along with
the principle of virtual work, the governing equations are expressed in terms of fundamental
nuclei of finite element arrays. The fundamental nuclei are invariant of the theory approxi-
mation order and can be opportunely employed to implement variable kinematics theories of
bio-structures. In this work, static and free vibration analyses of an atherosclerotic plaque of
a human artery and a dental prosthesis are discussed. The results from the proposed method-
ologies highlight a number of advantages of CUF models with respect to already established
theories and commercial software tools. Namely, (i) CUF models can represent correctly the
higher-order phenomena related to complex stress/strain field distributions and coupled mode
shapes; (ii) bio-structures can be modelled in a component-wise sense by only employing the
physical boundaries of the problem domain and without making any geometrical simplification.
This latter aspect, in particular, can be currently accomplished only by using three-dimensional
analysis, which may be computationally unbearable as complex bio-systems are considered.

1 Introduction

Biomechanics plays a fundamental role in modern science and research. The application of
engineering tools in support of traditional medicine has been a success over the last decades.
As an example, the advent of non-invasive, high-resolution imaging like ultrasounds or magnetic
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resonance, together with the growth and the improvement of numerical modelling, filled the
gaps of in vivo tests difficulties.

The human body is a complex grouping of different sub-systems, each of which with its
own peculiarities and challenges from the modelling standpoint. Many works in the literature
proposed mathematical models for compliant bio-structures. Some difficulties related to me-
chanical properties of soft tissues were analyzed in the pionering text by Fung [1]. The same
author developed models to study the blood circulation and the growth of the bio-structures,
see [2] and [3]. More recently, Evans [4] analyzed the whole muscle-skeletal apparatus and, sub-
sequently, Hatze [5] proposed a set of control equations for the same system. In this context,
it is possible to find outstanding studies about the dynamic modelling of bones (Frost [6]) and
spine (Schultz [7]). Other works on the skeletal muscles focussed on the neural nature of the
stimulus and the fibrous constitution. Famous examples are those who led to Hill’s equation
[8] and the introduction of the cross-bridge Huxley’s theory [9]. Also, mathematical models of
the heart were developed along the past decades to understand the complex behavior of this
organ. The properties of cardiac fibers, for example, were studied in detail by Brady [10]. Many
other authors, on the other hand, wrote about the mechanical behavior of the myocardium,
see for example Edman and Nilsson [11] and Frank and Langer [12]. The same Fung, who is
considered one of the precursor of bio-mechanics, dedicated some research and papers to this
topic, presenting a mathematical formulation of the mechanical properties of the heart muscle
based on the sliding-element theory, see [13].

This paper focuses on two problems that are sufficiently documented in the literature, i.e.
the atherosclerotic plaque of a human artery and a dental implant. The atherosclerotic plaque
is a vascular disease linked to lipid accumulation with progressive lumen reduction; the eventual
plaque rupture may cause a thrombosis, which obstructs the blood flow leading to ischemia or
heart infarctions (Sakakura et al. [14]). Some remedies to this problem exist eventually, see
for example the balloon angioplasty (Holzapfel et al. [15]). Most of the knowledge about the
argument and the recent advances are available also due to the numerous structural analyses
conducted by researchers as mechanical tests (Lawlor et al. [16], Maher et al.[17]) as well as
the materials characterization, see Holzapfel et al. [18] and Balzani et al. [19]. Because of the
complexity of the problem and the advent of reliable numerical tools, structural models of the
atherosclerotic plaque and many other bio-structures make use of the Finite Element Method
(FEM). For instance, FEM was recently used for the axial characterization of the artery by Chai
et al. [20] and for the evaluation of the circumferential stress within the artery bio-materials
by Loree et al. [21]. Moreover, FEM was recently utilized to study patient-specific models of
plaques, see Tang et al. [22].

Structural analysis of dental prostheses also acquired interest during the last decades. Those
implants were introduced in the late 1960s and since then have been the object of many studies
and publications. Most of the mechanical studies outlined how the interface between implant
and bone is important (Geng et al. [23]), together with the exact evaluation of the loads. As
discussed by Piliar et al. [24], in fact, an overload can lead to fatigue failure of the prosthesis.
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On the other hand, Villancourt et al. [25] demonstrated that under-loading can cause atrophy.
The geometry of the implant was investigated in detail by Dilek et al. [26] and Chiapasco et al.
[27]. Recently, fatigue behavior was studied by Kayabasi et al.[28]. As for the atherosclerotic
plaque, FEM is the most used method since Wider et al. [29] utilized it for dental implants in
1976. FEM was also employed to analyze the influence of materials features by Van Oosterwyck
et al. [30] and to study the stress distribution in the tooth and within the bone.

Due to the complex geometry of bio-structures, most of the FEM models utilized in the
literature and in common practice make use of three-dimensional (3D) brick elements based on
elasticity. Although accurate they are, 3D finite elements are generally cumbersome from the
point of view of computational costs. This issue is more emphasized as complex systems are
considered, as for example in fluid-structure interaction analysis of biomedical applications. In
this case, it is a common practise to couple 3D compliant models of a region of interest (e.g., an
atherosclerotic plaque initiation within the cardiovascular system) with one-dimensional (1D)
models describing the remaining zones, see Formaggia et al. [31]. In this context, the present
paper aims at extending the use of higher-order 1D beam models with variable kinematics and
enhanced accuracy to the analysis of biomedical structures for reducing the computational costs
and avoiding complex coupling between physically inconsistent finite elements.

The mathematical models of the bio-structures discussed in this work are based on the
Carrera Unified Formulation (CUF), which was first introduced in the field of mechanics of
composite structures for plates and shells [32] and then extended to beams [33]. According
to CUF, 1D and 2D theories of structures can be formulated with ease by expressing the
displacement field as an arbitrary expansion of the generalized displacements. In this manner,
the governing equations, eventually in the form of finite element arrays, can be written in
terms of fundamental nuclei, see [34]. These nuclei are invariant of the theory approximation
order and can be utilized to formulate generally refined models. In the domain of 1D CUF
models, many progresses have been made in the last few years. For example, 1D CUF models
have been successfully extended for the analysis of composite beams from macro/meso- [35] to
micro-scale [36]; the component-wise analysis of aerospace [37] and civil engineering structures
[38]; rotordynamics [39]; and multi-field analysis [40], among others. Interested readers can
find more details about higher-order CUF beams and related applications in [41] along with a
comprehensive review of classical as well as modern 1D models.

Preliminary results about the use of CUF for the analysis of compliant artery were discussed
by Varello and Carrera [42], who utilized Taylor-like expansions of the three-dimensional dis-
placement field for static response analyses. In the proposed work, on the other hand, refined
beam models with component-wise capabilities are implemented by exploiting Lagrange expan-
sions of the displacements on the cross-section domain. Thus, static and free vibration analyses
of an atherosclerotic plaque and a dental implant are carried out. These Lagrange-based mod-
els highlight the possibility to describe local and complex stress/strain field distributions as
well as the modal characteristics of the structures under consideration accurately. The paper
is organized as follows: (1) first, CUF models are introduced as Taylor- and Lagrange-type
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Figure 1: Generic beam structures and related reference system.

expansions of the generic kinematics field; (2) then, the component-wise approach is briefly
outlined; (3) subsequently, the numerical results are detailed and discussed; and (4) finally, the
main conclusions are drawn.

2 Unified beam theory with higher-order kinematics

Consider a generic cross-section beam structure as in Fig. 1. Referring to the given Cartesian
coordinate system, the beam section Ω lays on xz-plane, whereas the length measures L along
the y axis. The three-dimensional displacement vector is given in the following:

u(x, y, z; t) =
{

ux uy uz

}T

(1)

For the sake of completeness, the stress σ and strain ε vectors are also introduced,

σ =
{
σxx σyy σzz σxz σyz σxy

}T

, ε =
{
εxx εyy εzz εxz εyz εxy

}T

Under the assumptions of small displacements and rotations, the strain components can be
expressed in terms of displacements as:

ε = Du (2)

whereD is a linear differential matrix. On the other hand, in the case of linear elastic materials,
stress and strain components are related each other by the Hooke’s law,

σ = Cε (3)

The components of matrices D and C, which contains the material coefficients, are not given
in this paper for brevity sake. However, interested readers can found them in Carrera et al.
[34]. It is intended that, in the case of isotropic materials, as in the case of this paper, the
material coefficients are functions of the elastic modulus E and the Poisson ratio ν.

4



2.1 Carrera Unified Formulation (CUF)

According to CUF, the kinematics of classical to higher-order beam theories can opportunely
degenerate into a hierarchical expansion of the generalized unknowns uτ , which are defined
along the 1D domain; i.e.,

u(x, y, z; t) = Fτ (x, z)uτ (y; t), τ = 1, 2, · · · ,M (4)

In Eq. (4), Fτ is a set of generic expansion functions over the cross-sectional domain and M
stands for the number of terms employed in the displacement field. In the notation proposed,
a repeated index denotes summation.

The choice of the functions Fτ and the parameter M determines the class and order (i.e.,
the accuracy and the computational costs) of the beam theory to be considered. Over the last
few years, several expansions have been employed for the formulation of CUF-based 1D models,
such as Taylor Expansions (TE), Lagrange Expansions (LE), Hierarchical Legendre Expansions
(HLE), and any combinations of thereof in a variable-kinematics sense. The detailed description
of these beam models is out of the scope of this paper. Interested readers can found further
details in the literature, see for example [33, 43, 44] for TE, [45, 46] for LE, [47, 48] for HLE,
and [49] for variable-kinematics theories. However, a brief discussion about TE and LE, which
are the models employed in this paper for the analysis of bio-structures, are given hereinafter
for completeness reasons.

One-dimensional TE models make use of McLaurin series polynomials xizj as Fτ cross-
sectional functions, with i and j positive integers. As an example, the second-order (N = 2)
TE beam model reads:

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)
uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)
uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(5)

In Eq. (5) the time parameter (t) is not shown for simplicity; this model has 18 generalized
displacement variables/unknowns (displacements and derivatives). It is interested to note that
classical beam models, such as Euler-Bernoulli Beam Theory (EBBT) and Timoshenko Beam
Theory (TBT), are particular cases of the linear (N = 1) TE expansion, according to which
Fτ = 1, x, z.

In the case of heterogeneous structures, thin-walled or complex cross-sectional domains,
the use of TE should be unsuggested. LE models make use of Lagrange polynomials sets as
Fτ functions to unlocalize the displacement variables over a discrete cross-sectional domain,
in a isoparametric sense. In the context of LE, beam theories with different orders can be
implemented depending on the choice of the Lagrange polynomials set employed to describe
the cross-sectional displacements. In fact, linear L3, bi-linear L4, or quadratic L9 beam theories
can be implemented with ease by using CUF. As an example, the LE quadratic beam model
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holds the following kinematics:

ux(x, y, z) = F1 ux1(y) + F2 ux2(y) + F3 ux3(y) + · · ·+ F9 ux9(y)
uy(x, y, z) = F1 uy1(y) + F2 uy2(y) + F3 uy3(y) + · · ·+ F9 uy9(y)
uz(x, y, z) = F1 uz1(y) + F2 uz2(y) + F3 uz3(y) + · · ·+ F9 uz9(y)

(6)

where ux1 , ux2 · · · , uz9 are the primary mechanical variables of the problem and they are pure
translational displacements. In this case, F1, · · · , F9 are the following quadratic Lagrange
polynomials:

Fτ = 1
4
(r2 + r rτ )(s

2 + s sτ ), τ = 1, 3, 5, 7

Fτ = 1
2
s2
τ (s

2 + s sτ )(1− r2) + 1
2
r2
τ (r

2 + r rτ )(1− s2), τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2), τ = 9

(7)

where r and s vary above the cross-sectional natural plane between −1 and +1, and rτ and
sτ represent the locations of the roots of the nine-node Lagrange polynomial set. According
to LE modelling, higher-order beam theories can be opportunely formulated by increasing the
polynomial order (e.g., cubic L16) or by using a combination of polynomial sets on the beam
cross-section to have a piece-wise refined displacement field (see [45]).

2.2 Finite element formulation for free vibration and static analyses

Independently of the choice of the cross-sectional expanding functions Fτ , the Finite Element
Method (FEM) can be employed to interpolate the generalized displacement variables along
the beam axis. One has:

uτ (y; t) = Ni(y)uτi(t), i = 1, 2, · · · , n (8)

where Ni(y) are the 1D shape functions (cubic four-noded Lagrange elements in this paper),
n is the number of nodes of the finite element employed, and i denotes summation. uτi is the
vector of the nodal generalized displacements.

The equations of motion in the case of undamped free vibrations are obtained in terms of
finite element arrays by using the principle of virtual displacements, which states that:

δLint = −δLine (9)

where Lint stands for the strain energy, Line is the work of the inertial loadings, and δ stands
for the virtual variation. The virtual variation of the strain energy is rewritten by using Eqs.
(2), (3), (4) and (8) to have:

δLint =

∫
V

δεTσ dV = δuT
sjK

τsijuτi (10)
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where V = Ω × L is the volume of the beam and Kτsij is the stiffness matrix of the unified
beam element in the form of 3× 3 Fundamental Nucleus (FN). The derivation of the FN of the
stiffness matrix is not repeated here for the sake of brevity, but it is given in [34]. However, the
following terms of the stiffness nucleus are given for clarity purpose:

Kτsij
xx =(λ+ 2G)

∫
L

NiNjdy

∫
Ω

Fτ,xFs,xdΩ +G

∫
L

NiNjdy

∫
Ω

Fτ,zFs,zdΩ

+G

∫
L

Ni,yNj,ydy

∫
Ω

FτFsdΩ

Kτsij
xy =λ

∫
L

Ni,yNj,ydy

∫
Ω

FτFs,xdΩ +G

∫
L

NiNjdy

∫
Ω

Fτ,xFsdΩ

(11)

where G and λ are the Lamé’s parameters and comma denotes partial derivatives. If Poisson ν
and Young E moduli are used, one has G = E

2(1+ν)
and λ = νE

(1+ν)(1−2ν)
. It can be demonstrated

that all the components of Kτsij can be derived from Eq. (11) by permutations.
The fundamental nucleus of the mass matrix can be easily found by substituting CUF and

FEM approximation into the expression of the virtual variation of the work of the inertial
loadings; i.e.,

δLine =

∫
V

ρ δuTü dV

= δuT
sj

∫
L

NiNjdy

∫
Ω

ρFτFsdΩ üτi = δuT
sjM

τsijüτi

(12)

where ρ stands for the density of the material, and ü is the acceleration vector. Given the Fτ
CUF expansions and the shape functions Ni, the 3×3 mass and stiffness nuclei, Mτsij and Kτsij,
can be expanded versus the indexes τ, s = 1, · · · ,M and i, j = 1, · · · , n to obtain the elemental
finite element arrays of the given refined beam element. Those matrices are thus assembled in
the classical way of FEM for the description of the global problem. Also, by assuming harmonic
displacements and according to Eq. (9), the free vibration analysis is reduced into a classical
eigenvalue problem of the form:

(−ω2
kM + K)uk = 0 (13)

where uk is the k-th eigenvector associated to the natural frequency ωk.
In the case of linear static response analysis, the principle of virtual displacements holds

δLint = δLext (14)

where Lext is the work of the external loadings. Upon substitution of CUF and FEM, the
following algebraic system in the form of FN is obtained:

Kτsijuτi = Psj (15)
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Figure 2: Component-Wise approach applied to biomedical structures.

In Eq. (15), Psj represents the variationally coherent load vector, see [34]. Expanding Eq. (15)
at element level by using aforementioned CUF index notation and assembling, the final algebraic
system of equations can be inherently formulated and solved.

2.3 The Component-Wise approach

The analysis of multi-component structures is complex in common practice. These structures
are made of different components, which are generally characterized by different scales and
geometries in order to accomplish the technical and nature requisites. In the biomedical sce-
nario, for example, skin, veins, arteries and capillaries as well as muscles are perfect examples
of multi-component systems. Generally, the modelling of multi-component structures requires
the adoption and the coupling of various mathematical models, even in the framework of finite
element method. As a consequence, artificial techniques are usually involved to connect, for ex-
ample, 1D, 2D and 3D finite elements that are kinematically inconsistent each other. This may
result in numerical and physical uncertainties, especially if higher-order models are employed
and in order to build sufficiently accurate models with reasonable computational resolution
times.

In this domain, the enhanced capabilities of LE models, when coupled with FEM, are of
particular interest for the analysis of multi-component structures. In recent works, in fact, it
was demonstrated that LE-CUF models can be implemented in a Component-Wise (CW) sense
to simulate complex structural assemblies in an efficient and geometrical/physical consistent
manner, see [35, 50, 37, 51, 38]. As an example, Fig. 2 shows the CW approach as applied to a
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Material Young Modulus E, GPa Poisson ratio ν
Ti-6Al-4V 110.00 0.32
Cobalt-Chromium alloy 220.00 0.30
Feldsphatic Porcelain 61.20 0.19
Gingiva 19.60× 10−3 0.30
Bone 14.70 0.30

Table 1: Mechanical properties of the materials used in the study of the dental implant.

dental prosthesis. According to CW, each component of the structure (i.e., implant, abutment,
porcelain, etc.), is modelled by higher-order LE beam finite elements. These finite elements,
by exploiting an LE approximation of the beam kinematics, make use of the physical surfaces
for describing the problem domain. In this manner, the geometrical characterization of the
structure is exact, and fictitious integration domains (e.g., beam axis in the case of classical
1D finite elements) are no more utilized. Moreover, because each component of the structure is
modelled with the same kinematics, coupling is straightforward and no artificial mathematical
links (e.g. multi-point constraints) are utilized.

The aforementioned properties of the CW modelling approach can be achieved, with the
available technology, only if 3D finite elements are used. By using higher-order CUF, instead,
enhanced geometrically-consistent models with low computational costs can be formulated in-
herently.

3 Numerical results

This section investigates the efficiency of the proposed formulation applied to the static and
modal analyses of a dental implant and an atherosclerotic plaque. As different they are, these
two analysis cases present some analogies, because they both are 1D problems in which one
dimension is bigger than the cross-sectional dimensions. This aspect makes the dental implant
and the atherosclerotic plaque significant to be studied by 1D higher-order models.

3.1 Dental implant

Dental prostheses have been largely investigated in several works over the last decades. These
works primarily provided guidelines and design rules for resistant and long-duration prostheses,
based on investigations about loading conditions and materials. This section, instead, will
provide and assess, from the mechanical standpoint, innovative models for the static and free
vibration analyses of this important bio-structure.

A cut-view of the addressed implant is shown in Fig. 3, where important dimensions are also
given. The prosthesis is made of the materials whose properties are given in Table 1. Namely,
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Figure 3: Dental implant. Dimensions in millimetres.

Ti-6Al-4V alloy is employed for implant fixture and abutment, cobalt-chromium alloy for metal
framework and feldsphatic porcelain for occlusal material. Table 1 also gives the mechanical
properties of the gingiva and bone, which are modelled in a second analysis case.

Figure 4 represents in detail the problem under consideration (whenever the implant, gingiva
and bone are considered together) and the boundary conditions employed. In contrast, for static
analyses, we consider, according to the literature, the bio-system undergoing a masticatory force
of 118.2 N in the angle of approximately 75◦ to the occlusal plane, see Fig. 5.

In the following sections, classical, higher-order TE and LE beam models are implemented
for static and free vibration analyses. In detail, Euler-Bernoulli Beam Theory (EBBT), Timo-
shenko Beam Theory (TBT) and up to the 16th-order refined TE models are considered. On
the other hand, LE models that make use of piece-wise quadratic kinematics (L9 polynomials)
on the beam cross-section are implemented in a CW sense. For all the CUF models, and if not
differently specified, 24 four-noded 1D beam elements are used along the y-axis providing con-
vergent solutions. CUF models are, thus, compared to 3D finite elements models implemented
by using the commercial tool MSC.Nastran.

3.1.1 Static analysis

In the first analysis case, the tooth undergoes cantilever boundary condition (the base is fixed)
and gingiva and bone are not considered. Table 2 shows the axial, uy, and transverse, uz,
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(a) (b)

Figure 4: Model of gingiva and bone (a) and representation of the boundary conditions (b).

Masticatory axis

Occlusal Plane

Mandibular Plane

Figure 5: Direction of the masticatory force.
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Model uAy × 102 uBy × 103 uCy × 103 uAz × 102 uBz × 102 uCz × 103 DOFs

Classical beam models
EBBT -0.797 0.910 -0.590 -4.760 -3.892 -3.410 219
TBT -0.797 0.910 -0.590 -4.825 -3.953 -3.590 365

Refined TE beam models
N=1 -0.797 0.910 -0.590 -4.825 -3.953 -3.590 657
N=4 -0.978 1.010 -0.780 -5.827 -4.780 -4.190 3285
N=8 -1.016 1.030 -0.780 -6.045 -4.955 -4.330 9855
N=12 -1.027 1.030 -0.800 -6.134 -5.029 -4.390 19929
N=16 -1.035 1.040 -0.820 -6.172 -5.061 -4.410 33507

Component-wise LE models
16LE -1.442 1.040 -0.440 -6.219 -5.099 -4.430 9903
36LE -1.028 1.030 -0.800 -6.127 -5.022 -4.370 26595

MSC.Nastran model
Solid -1.064 1.040 -0.830 -6.330 -5.190 -4.470 118368

Table 2: Displacements components (in mm) measured at three different points of the cantilever
implant.

displacement components of the structure subjected the masticatory force. The results are
given at different points over the problem domain and they are denoted with superscripts A,
B, and C. Point A is placed at the loaded cross-section in correspondence of the loading point
in the porcelain region; points B and C denote positions at y = 3.75 mm and y = 22 mm and
they are placed in the metal framework and in the implant fixture, respectively (see Fig. 3).
The table also gives the total number of degrees of freedom (DOFs) for each model considered.
In this analysis, particular attention is given to the capability of the LE, which are obtained
by using a CW piece-wise description of the kinematics by 16 and 36 L9 polynomials, and
refined TE models to provide good results in terms of displacement components. This aspect
is further underlined in Fig. 6, where the deformed configurations of the CW and the 3D FE
models are compared. The accuracy of the proposed solutions is also discussed in terms of
stress components. In detail, the compression and shear stresses, respectively σyy and σyz,
at two different points over the structure domain (points B and C as discussed before) are
measured and shown in Table 3. From these preliminary analyses it is clear that classical beam
models and lower-order TE are not able to describe properly the displacement/stress states of
the problem under consideration.

In the second analysis case of the investigation of the dental implant, the human jawbone,
constituted by bone and gingiva, is considered as shown in Fig. 4. The loading condition
remains unchanged with respect to the previous analysis case. However, in this case, only LE-
CW models are considered in the domain of CUF models for two main reasons: i) LE provides
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(a) CW model (b) MSC.Nastran Solid model

Figure 6: Deformed states of the cantilever implant subjected to the masticatory force.

Model σByy σCyy σByz σCyz
Classical beam models

EBBT -3.8742 -6.3379 -0.0010 -0.0016
TBT -3.8742 -6.3379 -0.9647 -1.6027

Refined TE beam models
N=1 -3.8742 -6.3379 -0.9647 -1.6027
N=4 -3.0357 -6.1978 -1.1452 -3.6212
N=8 -3.0178 -6.8915 -1.1334 -2.1038

Component-wise LE models
36LE -2.9558 -5.9619 -1.1363 -2.0221

MSC.Nastran model
Solid -3.0031 -7.0980 -1.1514 -2.2007

Table 3: Stress components (in MPa) measured at two different points of the cantilever implant.
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Model uDy × 104 uEy × 104 uFy × 104 uDz × 103 uEz × 104 uFz × 106 DOFs

52LE -4.040 -6.440 -1.620 -4.372 -6.480 -9.028 51879
Solid -4.050 -6.230 -1.630 -4.314 -6.070 -9.010 240900

Table 4: Displacements components (in mm) measured at three different points of the dental
implant with gingiva and bone.

Model σDyy σEyy × 103 σFyy σDyz σEyz × 103 σFyz × 103

52LE -2.02 -2.01 -0.42 -0.59 -2.26 5.81
Solid -1.97 -1.92 -0.42 -0.64 -2.19 5.46

Table 5: Stress components (in MPa) measured at three different points of the dental implant
with gingiva and bone.

accurate description of the mechanics and geometry as complex problems are addressed; ii) it
is possible to impose unconventional boundary conditions as LE expansions are used in the
formulation of beam theories. Some results in terms of displacements are proposed in Table 4.
Displacements are given at different locations over the problem domain. In particular, point
D is placed in the titanium abutment at y = 5.5 mm; E refers to a position in the gingiva at
y = 11.5 mm; and F is placed in the bone at y = 30.5 mm. Equivalently, at the same points,
Table 5 shows representative stress values according to the CUF-based beam model and the 3D
FEM model. For completeness reasons, the deformed configuration of the complete implant is
shown in Fig. 7. Furthermore, Fig. 8 gives the cross-sectional distribution of the axial stress
in correspondence to the bone region and at the structure mid-span, where the connection
between the implant and the bone is clearly visible.

This preliminary analyses suggest the following comments:

• Higher-order TE as well as LE models are able to correctly describe both the stress/strain
fields and the displacement behaviour of the dental prosthesis and in accordance with the
3D FE model.

• By using a non-local expansion of the problems unknowns by LE, in a CW sense, it is
possible to model unconventional boundary conditions and complex anisotropy by using
refined CUF models.

• The CW models are, thus, able to model efficiently, and with a minimum number of
degrees of freedom, complex dental systems including prostheses, gingiva, and bone.

• The simulation of the whole system is of fundamental importance to take into account
correctly the contribution of the boundary conditions in the mechanical behaviour of
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(a) CW model

5.8e-06

-2.3e-03

-5.5e-03

-8.7e-03

(b) MSC.Nastran Solid model

Figure 7: Deformed states of the dental implant with gingiva and bone.

(a) y = 11.5 mm (b) y = 30.5 mm

Figure 8: Cross-sectional stress distribution (σyy, MPa) at the implant/bone (a) and bone (b)
regions of the dental implant; CW model.
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Classical models Refined TE Component-wise LE MSC.Nastran

Mode EBBT TBT N=4 N=8 N=12 16LE 36LE Solid
1 3965.15 3923.86 3568.11 3504.73 3478.72 3475.14 3481.85 3425.49
2 3965.15 3923.86 3568.11 3504.73 3478.74 3475.14 3481.85 3425.49
3 32433.55 29938.09 16410.06 16121.71 16047.48 16036.42 16029.23 16110.40
4 32433.55 29938.09 27761.70 27345.98 27205.19 27188.46 27213.56 27057.82
5 42529.07 42529.07 27761.71 27345.99 27205.19 27188.46 27213.57 27057.84
6 103394.59 85576.67 40171.04 39745.53 39588.58 39614.69 39609.81 39358.11
7 103394.59 85576.67 80168.17 79180.83 78856.99 78768.19 78795.07 78669.59
8 171762.92 148591.54 80168.20 79180.86 78857.01 78768.19 78795.38 78669.62
9 188578.58 148591.55 91871.75 90542.57 90221.70 90141.91 90100.98 90526.15
10 188578.59 171762.92 138344.74 136721.92 136164.44 135990.48 135974.07 135398.00
11 286659.60 216227.25 138344.78 136721.97 136164.49 135990.48 135976.33 135398.00
12 288447.87 216227.26 161735.77 160105.42 159683.80 159503.76 159446.00 159640.60
13 288447.88 283319.15 164241.16 162841.80 162352.75 162369.15 162322.57 162038.70
14 373792.71 283319.15 199983.86 197202.74 196317.07 196338.53 196177.06 195249.20
15 488979.41 286659.60 207556.83 204387.10 203717.14 196338.53 196185.05 195249.20

Table 6: Natural frequencies (Hz) of the cantilever dental implant (see Fig. 6).

the implant. The refined beam models represent a good candidate to replace current
technology (3D FEM) for the enhanced analysis of this complex bio-structures.

3.1.2 Free vibration analysis

To further validate the proposed beam models and to fully characterize the dental implant
under consideration, free vibration analysis is carried out and discussed in this section. Table 6
quotes the first 15 natural frequencies from classical to higher-order and CW models. The
results, once again, are compared to those from a 3D finite element analysis. For the purpose
of clarity, the same natural frequencies are shown in an histogram form in Fig. 9. Furthermore,
some important mode shapes are depicted in Fig. 10. In detail, two flexural modes (Mode 1
and Mode 10) and two axial modes (Mode 3 and Mode 9) are depicted in this figure. Finally,
in order to give a quantitative comparison in terms of mode shapes from the present CW beam
models and 3D FEM analysis, the Modal Assurance Criterion (MAC) is employed and shown
in Fig. 11 in the form of matrix and for the case under analysis. The MAC is defined as a scalar
representing the degree of consistency (linearity) between one modal and another reference
modal vector (see [52, 46]) as follows:

MACij =
|φTAi

φBj
|2

φTAi
φAi

φBj
φTBj

(16)
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Figure 9: Natural frequencies of the dental implant vs. numerical model adopted.

(a) Mode 1 (b) Mode 3

(c) Mode 9 (d) Mode 10

Figure 10: Representative mode shapes of the dental implant; CW model.
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Figure 11: MAC matrix of the eigenvectors from traditional 3D FEM solution and 36LE CW
model.

where φAi
is the ith eigenvector of model A, whereas φBj

is the jth eigenvector of model B. The
modal assurance criterion takes on values from zero (representing no consistent correspondence),
to one (representing a consistent correspondence).

The following comments arise from the modal analysis of the dental prosthesis:

• Classical beam models, EBBM and TBT, are able to describe correctly the first bending
mode. Nevertheless, as shown in Fig. 9, they provide increasing inaccurate results as
higher frequencies are considered.

• Conversely, refined TE and CW CUF-based beam models can describe very accurately
the modal characteristics of the dental implant and in accordance with more complex 3D
solid models made of brick elements.

• In detail, as confirmed by the MAC analysis (Fig. 11), CW models present a enhanced
accuracy with respect to other beam models and in accordance to 3D analysis even in
terms of consistency of the mode shapes. In fact, it is clear that the mode shapes from
the CW model are perfectly equivalent to those from the solid model.

3.2 Atherosclerotic plaque

Another compelling case that demonstrates the capabilities of 1D-CUF models is the one con-
cerning the human external iliac artery with a pronounced atherosclerotic plaque. In particular,
a portion of an atherosclerotic artery with a significant lumen reduction is taken into account
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Figure 12: Cross-section of the atherosclerotic plaque.

in this section. Published literature shows that, starting from images captured during hrMRI
(high resolution magnetic resonance imaging) and from histological analysis, it is possible to
identify the section with its components [18, 19]. In this way, one can distinguish six different
materials for the artery (see Fig. 12): the adventititia (A), the calcification (C), the lipid pool
(LP), the fibrous cap (FC), the non-diseased media (M), and the fibrotic media (FM), which
is in fact the sum of fibrotic intima and diseased fibrotic media.

For representative purpose, the cross-section width of the problem considered hereinafter
is approximately 15 mm, as well as the height. As in the previous example, we present two
different cases of boundary conditions and loads. The first one considers a portion of an artery
with a length of 40 mm, clamped at the beam ends (y = 0 and y = L) and subjected to
an internal pressure of 180 mmHg. In the second analysis case, an axial asymmetric load is
applied and clamped-free boundary conditions are imposed to investigate the bending behaviour
of the structure. Three-dimensional solid models are implemented in MSC.Nastran to conduct
comparisons. These models are discretized with 382700 brick elements (398041 nodes) to give
1194123 DOFs. In this section high-order CUF models, TE and LE, are employed as well.
In this case, the structure is modelled with a one-dimensional mesh made of 10 B4 (cubic)
finite elements and an increasing value of beam theory orders are considered. The LE model’s
cross-section are, instead, discretized with 59 L9 and two L6 polynomials, for a total of 270
nodes. For the sake of completeness, the LE model discretization on the cross-section is shown
in Fig. 13. Tissue materials are modelled as linear isotropic; the isotropic properties of each
materials are the same as used in [18, 42] and are given in Table 7.
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Cross-sectional
Lagrangian
polynomial L9

Figure 13: LE model of the atherosclerotic plaque.

Tissue E [MPa] ν
Calcification 12 0.33
Lipid Pool 0.1 0.33
Fibrous Cap 2.4 0.33
Media 1 0.33
Fibrotic Media 5 0.33
Adventitia 2.5 0.33

Table 7: Materials properties of the atherosclerotic plaque.
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Solid

Figure 14: Distribution of the in-plane horizontal displacement component, ux, on the mid-span
cross-section. Comparison between TE (N = 4 to N = 20), LE, and MSC.Nastran Solid model.
Values in mm.

3.2.1 Static Analysis

The complexity of the problem is confirmed, in the case of the first loading scenario, by Fig. 14,
which shows the cross-sectional displacements distribution for various CUF beam models and
3D analysis. The thought heterogeneity of the atherosclerotic plaque is well described by the
refined models proposed, which highlight the deformability of the lipid pool and the fibrous
cap. In contrast, it is clear that the deformation in the calcification region is almost null. It is
obvious that, to detect high cross-section deformation with beam theories, refined kinematics
are needed but, still, 3D solution may be obtained. To confirm this aspect, Table 8 quotes the
maximum displacements within the media (M), the adventitia (A) and the fibrous cap (FC)
for the different models addressed. Furthermore, the total numbers of DOFs for each model
employed are shown in the same table. Table 9, on the other hand, lists static analysis results
in terms of stress components according to all models considered. Namely, the in-plane normal
stress component, σxx, and the shear, σxz, are given in Table 9 and measured at different points
in the atherosclerotic plaque domain. Some comments arise from the results outlined above:
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Model uMmax uAmax uFC
max DOFs

EBBT 0.0041 0.0041 0.0041 93

TBT 0.0093 0.0093 0.0093 155

N=1 0.5666 0.6210 0.3496 279

N=4 0.0538 0.0539 0.0262 1395

N=8 0.2019 0.1933 0.1232 4185

N=10 0.3088 0.2877 0.1710 6138

N=14 0.7065 0.6662 0.3862 11160

N=18 0.9213 0.8929 0.5552 17670

N=20 1.0294 1.0035 0.6211 21483

LE 1.0153 0.9581 0.7209 26730

Solid 1.0587 1.0488 0.7209 1194123

Table 8: Maximum horizontal displacement component, ux (mm), of the atherosclerotic plaque
subjected to internal pressure.

Model σxx σxz σxx σxz σxx σxz σxx σxz σxx σxz σxx σxz

FM M LP A FC C

N=4 2.683 0.101 1.379 0.000 0.011 0.000 -0.010 -0.225 3.984 0.045 1.077 1.522

N=8 0.279 -0.011 2.772 -0.185 -0.280 0.017 2.012 0.032 1.658 0.259 -2.607 1.252

N=10 -6.965 -0.203 -1.788 -0.181 0.164 0.059 1.720 -0.683 -1.120 0.088 2.866 0.379

N=14 -2.345 -0.057 -9.435 -0.098 -2.066 0.070 2.534 -1.726 -9.756 -0.408 1.936 0.709

N=18 -1.382 -0.232 -9.188 -0.160 -0.857 0.120 5.820 -1.441 -5.981 -0.482 3.985 -0.708

N=20 1.132 0.140 -4.668 -0.187 -1.150 0.118 4.870 -1.919 -4.424 -0.276 6.786 -1.332

LE -0.052 -0.025 -3.670 -0.546 -1.310 0.105 4.550 -1.750 -5.290 0.072 3.370 0.920

Solid -0.186 -0.014 -1.907 -0.246 -1.458 0.137 4.649 -1.635 -1.926 0.119 3.206 0.860

Table 9: In-plane normal, σxx, and shear, σxz, stress components (102 MPa) in correspondence
of each different material of the atherosclerotic plaque subjected to internal pressure.
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(a) N = 20 (b) LE
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(c) Solid

Figure 15: Axial stress σyy (MPa) distribution on the mid-span cross-section of the atheroscle-
rotic plaque subjected to clamped-free boundary conditions and forces along y.

Model σyy at (0,0) σyy at (15,0) uMmax uFC
max

EBBT 0.345 -0.090 12.574 12.574

TBT 0.345 -0.090 12.574 12.574

N=1 0.345 -0.090 12.574 12.574

N=4 0.322 -0.098 12.117 12.113

N=8 0.345 -0.089 11.983 12.149

N=10 0.331 -0.094 11.795 11.992

N=14 0.333 -0.084 11.447 11.848

N=18 0.327 -0.086 11.339 11.865

N=20 0.353 -0.088 11.304 11.862

LE 0.324 -0.080 11.245 11.704

Solid 0.340 -0.087 10.955 11.707

Table 10: Values of σyy (MPa) and ux (mm) for different points and materials of the section.

• Classical and low-order TE models are not able to identify correct values of stress and
displacements.

• Increasing the order of TE CUF models, it is possible to meet the accuracy of 3D analyses.

• LE model is able to reproduce the 3D solution with very low computational cost.

In a second load case, the structure is subjected to clamped-free boundary conditions.
An asymmetric and axial pressure distribution is applied all along the lipid pool and the
non-diseased media to simulate bending due to viscous forces along the y-axis. Accordingly,
Figure 15 shows the distribution of the σyy axial stress components over the cross-section of the
atherosclerotic plaque. Moreover, the same stress component is listed in Table 10 for various
points and along with maximum horizontal displacements. The following considerations can be
made:
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Mode Solid LE EBBT TBT N=1 N=4 N=8 N=10
1 133.63 134.12 246.26 170.22 164.04 155.92 141.34 139.44
2 138.06 138.85 259.15 174.24 170.15 147.86 146.53 144.32
3 235.41 236.73 - - 251.93 249.43 244.67 243.45
4 247.65 258.78 - - - - - 331.14
5 256.51 258.83 598.93 349.94 339.49 316.54 285.33 278.51
6 270.22 272.26 633.59 361.64 351.67 301.34 295.71 290.05
7 309.85 310.97 - - 373.61 368.84 356.66 349.72
8 311.76 325.77 - - - - - -
9 319.54 329.08 - - - 611.04 478.45 462.58
10 340.83 348.22 - - - - - -
11 342.64 354.95 - - - 617.55 501.94 478.91
12 385.71 390.33 - - - 644.86 434.66 414.72
13 387.44 396.67 - - - - - -
14 393.04 397.51 - - - - -
15 400.98 409.27 - - - - 585.31 547.56
16 425.57 440.64 - - - - - -
17 432.91 438.87 - - - 493.22 478.35 478.92
18 434.25 443.75 - - - 711.92 566.41 510.85
19 441.07 451.96 - - - - - -
20 442.76 448.23 - - - - - 535.37

Table 11: Natural frequencies (Hz) of the clamped-clamped atherosclerotic plaque.

• Classical and lower-order beam models, due to their intrinsic hypotheses, cannot detect
different values of displacement for different materials over the cross section.

• In the case of bending loading, refined CUF models are very reliable and in accordance
to 3D analysis. Moreover, the efficiency of these models is demonstrated as well.

3.2.2 Free-Vibration Analysis

The free-vibration analysis of the artery under clamped-clamped boundary conditions is pre-
sented as a final analysis case. The first 20 natural frequencies are shown in Table 11, where
the solutions from the proposed 1D models are compared to those from 3D FE analyses. For
representative reasons, selected mode shapes by 1D LE-CW model are also depicted in Fig. 16.
Finally, the MAC matrix between the present CW model and the 3D brick model is shown in
17, to further highlight the congruence of the analysis. According to those results, the following
remarks can be outlined:

• Classical and lower-order TE models can detect bending modes. Obviously, these 1D
models cannot deal with mode shapes that involve cross-section deformations.

• In contrast, the LE-CW model can perfectly reproduce 3D accuracy in terms of both
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(a) Mode 1 (b) Mode 4

(c) Mode 6 (d) Mode 18

Figure 16: Representative mode shapes of the atherosclerotic plaque; CW model.
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Figure 17: Modal Assurance Criterion (MAC) between 3D FEM solution and LE model.
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natural frequencies and vibration modes. Some small discrepancies of mode shapes are
noticed in high-frequency range, but this is justified by the enormous computational
efficiency of CUF versus 3D solution.

4 Conclusions

Static and free-vibration analyses of a dental prosthesis and an atherosclerotic human artery
have been investigated in this paper by using refined beam models. The adopted theories have
been derived from the Carrera Unified Formulation (CUF), which allows to obtain a generic
order beam theory in a compact and automatic way. Particular attention has been focused on
the capability of LE (Lagrange Expansion) models based on CUF to represent in an accurate
manner both the physical geometry and the kinematics of the problems under consideration in
an accurate manner. All the results discussed have been compared to those from the literature
and those obtained by using commercial finite element software tools. Some conclusions can
be summarized:

• Refined models are necessaries to deal with complex bio-structures and arbitrary geome-
tries.

• Component-wise approach based on LE helps us to overcome the necessity to combine
different kinematics (1D, 2D, and 3D) to analyze multi-component and heterogeneous
structures.

• The use of classical and lower-order beam models should be unsuggested for this class of
problems. Using low-order kinematics, even in a global-local sense, and in regions where
accurate analysis is not needed, may in fact result into wrong description of boundary
conditions and error growing in local zones that are described by enriched kinematics.

• 1D CUF models have be demonstrated to eventually present high level of accuracy with
low computational effort, when compared to 3D FEM models.

The results discussed encourage future use of the proposed models to more complex applications
including, for instance, non-linear material laws and fluid-structure couplings.
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