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The present paper proposes an approach that can be used to mix one-, two- and three-
dimensional refined models, derived using the Carrera Unified Formulation, to build
a variable kinematic model that is able to deal with the static analysis of complex
thin-walled structures. The adopted formulation, which only has displacements as
degrees of freedom, allows these models to easily be connected to each other, that is,
a variable kinematics model can be derived without ad hoc techniques. The refined
models used in the present paper ensure high accuracy and low computational costs.
The displacement continuity at the interface is guaranteed by the formulation, and no
stress singularities appear in the kinematic model transition. The Mixed Interpolation
Tensorial Component approach has been used, in a unified sense, for one-, two- and
three-dimensional models to avoid the shear locking effect. The accuracy of the present
approach has been confirmed by comparing the results with those from literature and
with those obtained using commercial Finite Element codes. The static response of a
reinforced panel and a section of an aircraft fuselage have been investigated to show
the capabilities of the present approach. The use of refined structural models makes
it possible to overcome the limits of classical structural models, and at the same time,

to reduce the computational costs.
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I. Introduction

The development of efficient numerical models for structural analysis has the aim of providing
accurate models with low computational costs. When thin-walled structures are considered, the
structure can be seen as an assembly of different components: panels, ribs and longerons. Each of
these components undergoes to different loads; panels are usually subject to shear stresses while
longerons and ribs undergo to normal stresses. The force method, proposed by Argiris and Kelsey
[2], exploited these assumptions to provide a solution to the elastic problem. The design approach
introduced by Bruhn [7] was based on this method. The need to deal with complex geometries
and the development of high-performance computers led to the introduction of the Finite Element
Method, FEM [45]. Dozens of books are available on this method and the one by Zienkiewics
deserves mentioning [49]. The FEM allows each structural component to be discretized into a
finite number of elementary elements, and each of these can be analyzed using one- (beams/rods),
two- (plates/shells) or three- (solids) dimensional elements. The kinematic assumptions of each
element are derived from classical structural theories, such as those proposed by Euler [26] or
Timoshenko [44] for the case of beams, or by Love [32], Reissner [38] and Mindlin [35] for the case
of plates/shells. Three-dimensional models can be used to directly solve the equation of elasticity
in their complete formulation, as shown by Argiris [1]. The accuracy of the results depends on
the number of elements used to discretize the domain and on their kinematic assumptions, which
means, an accuracy improvement requires an increase in computational cost. The use of solid
models is obviously the best choice to obtain accurate results, but when thin-walled structures
are considered, the use of three-dimensional elements requires a huge computational cost, that is,
a different approach must be used. When reinforced thin-walled structures are considered, some
approximate methods can be use. As an example, the reinforcements can be considered smeared
over the plate; these approaches are presented in the works by Luan et al. [33] and Edalat et al.
[24] but, in this case, the results do not provide detailed information about the behavior of each
component of the structure. More detailed models have been presented by Mustafa and Ali [37] and
Edward and Samer [25], who introduced some ad hoc finite element models that are able to deal

with reinforced structures. The use of one-, two- and three- dimensional elements in the same model



Displacements
discontinuity

Physical Model FEM Model Expected deformed FEM mdoel

Displacements and rotations
continuity

Fig. 1 Displacement discontinuities in a FEM model build using plate and beam elements.

can lead to a more efficient approach, which is able to provide accurate results with an acceptable
number of degrees of freedom, DOFs. Classical FEM models approximate the kinematics using
three displacements and three rotations at each node. This assumption is used for one- and two-
dimensional elements, while three-dimensional elements only consider the three displacements. Even
though, the unknowns of each finite element are expressed in a common manner, the coupling of these
models could lead to discontinuities in the displacement field, as shown in Figure 1. Appropriate
coupling techniques should be introduced to ensure an accurate solution. Surana [42, 43| proposed
an approach to couple three and two-dimensional elements. The connection between solid and shell
elements was also investigated by Liao et al. [31] and Cofer and Will [21]. The work by Gmiir and
Kauten [28] deals with the connection of solid isoparametric and super-parametric shell elements,
while the connection between one- and three-dimensional elements was investigated by Gmiir and
Schorderet [29]. McCune et al. [34] and Monaghan et al. [36] introduced a mixed-dimensional
coupling scheme, based on geometrical assumptions, while Garusi and Tralli [27] used a transition
element to develop solid-to-beam and plate-to-beam connections. Song and Hodges [41] used an
asymptotic approach to join beam and solid elements. A variational approach that is able to join
incompatible kinematics was introduced by Blanco et al. [6]. Davila [23] proposed a penalty method
to join solid and shell elements, while Shim et al. [40] used multi-point constraint equations to
force the congruence of the displacements at the interface of elements with different kinematics.
Robinson et al. [39] proposed an automated approach for the development of mixed dimensional

models starting from a Computer-Aided Design, CAD, model. Another technique used to derive
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Fig. 2 Displacement discontinuities in a FEM model build using plate, beam and rigid body
elements.

variable kinematic models is the Arlequin method which was first proposed by Ben Dhia [3], Ben
Dhia and Rateau [4]. The Arlequin method couples two models and uses the overlapping zone
where the transition is imposed. Classical FEM tools exploit special elements, the so-called Rigid
Body Elements (RBE), see Figure 2, to connect a single node to multiple nodes in order to avoid
discontinuities in the displacement field. This approach may lead to singularities in the stress field
because, referring to the example in Figure 2, the plate has to follow the beam kinematics at the
interface. This produces a constraint on the plate element that may create stress concentrations.
The limitations introduced by classical structural models, such as the rigid section assumption in
the case of beam models, can be overcome by refining the kinematic model, as shown in the review
of advanced beam models presented by Carrera et al. [17]. When a refined formulation is used, the
assumption of three displacements and three rotation in each node is not verified, in other words,
the coupling between models with different kinematics becomes more complex. Hoseini and Hodges
[30] proposed a technique to couple a beam mode, derived using a variable asymptotic approach
[47, 48], and a solid element. The introduction of the Carrera Unified Formulation (CUF), which
was proposed by the first author in Carrera [8, 9, 10] and which has recently been published in three
books, see Carrera et al. [11, 13, 15], provides a unified approach that is able to derive variable
kinematic models. CUF permits the equations of any refined 1D, 2D or 3D theory to be expressed
in terms of a few fundamental nuclei, FNs, whose forms do not formally depend on the assumptions
(type of functions or order) that have been used to describe the displacement field over the cross-

section (in one-dimensional models) and through the thickness (in two-dimensional models). Biscani



et al. [5] proposed using the Arlequin method to couple variable kinematics elements derived using
CUF. Carrera et al. [16] used the Lagrange multipliers to connect beam models derived with the
same tool. A first attempt to connect structural elements with different kinematics, without ad
hoc techniques, was firstly presented by Carrera and Zappino [19]. Subsequently the work proposed
by Carrera and Zappino [20], a companion paper to the present manuscript, presented a general
approach to build variable kinematic models, including one-, two- and three-dimensional elements,
for the free-vibration analysis of complex structures. The present work exploits the models presented
in the companion paper [20] and extends that approach to the static analysis of complex aeronautical
structures.

Because the static analysis requires an accurate evaluation of the stress field, the shear locking
correction has been improved using the Mixed Interpolation Tensorial Component approach, MITC.
This approach was extended to CUF two-dimensional models by Carrera et al. [12] and to one-
dimensional models by Carrera et al. [14]. The theoretical approach has been introduced in the first
part of the present work, where a unified formulation for any kinematic model has been presented.
A detailed comparison with classical FEM assembly approaches has been made to demonstrate the
limits of these methods and how a higher accuracy solution can easily be obtained using refined
models, such as the present ones. Several numerical results have been discussed and compared with

those token from literature and those obtained using commercial FEM tools.

II. Variable kinematic finite elements
This section presents the method used to derive a unified and compact formulation for a class
of finite elements with variable kinematics. The governing equations have been derived using the
theory of elasticity while the Carrera Unified Formulation has been used to derive refined models in
a compact and unified form. The numerical models have been exhaustively presented in detail in the
book by Carrera et al. [13]. In this manuscript, the key-features have been reported to show how,
the fundamental nucleus introduced by the Carrera Unified Formulation, is a direct consequence of

the classical equilibrium equations.



A. Preliminaries
The fundamental equations and the nomenclature used in the following pages are introduced in

this section. The displacement vector is denoted as follows:

u’ = (u$z7 Uy, uzz) (1)

where u,, u, and u, are the three components of the displacement vector expressed in the local
reference system.

The strain and stress vectors are defined as:

ET = (Ezzagyyagzzagmy;Ezzagyz)a (2)

= (UII) Oyy; 022y 0xy, Oxz, Uyz)- (3)

o
The relation between the strains and displacements can be written using the geometrical equation:

e = bu, (4)

where b is a differential operator, and its explicit form can be found in Carrera et al. [13]. Hooke’s

law permits the relation between stresses and strains to be derived:

o=0Cke, (5)

where C'is the stiffness coefficients matrix of the material. When an isotropic material is considered,



matrix C can be written using Lamé’s coefficients:

A+2G A A 0 00

A A+2G A 0 00

A A A+2G 0 0 O
C= (6)
0 0 0 G 00
0 0 0 0 GO
0 0 0 0 0G
where
E FE
Nee M a- (7)

1+v)(1—2v) 21+v)

where the symbol E denotes the Young’s modulus while v is Poisson’s ratio.

B. Strong form of the equilibrium equation
The static equilibrium of a three-dimensional body subjected to a system of forces can be written

for the three variations dug, du, and du,:

00zz 00z, 00y

Ouy : =g,

b ox + 0z * oy g
Doy, 0oy,  0oyy

oy : Oy 0z or (8)
do Oo Jdo

5 L zz zZr 2y _ 3

b 0z ox dy g

where g, gy, and g. are the body forces. These equations, which are discussed in detail in any
book regarding the Theory of elasticity, can be derived via kinematic assumptions, see da Silva [22],
as well as by using the Principle of the Virtual Displacements, as shown by Washizu [46] and by
Carrera et al. [13]. The solution of the elastic problem requires a stress field that is able to fulfill
Equation 8 to be defined.

The equilibrium equation, here written in stress terms, can also be expressed in displacements



terms. Equation 8 can be written in compact form as:
bu: blo=g 9)
Using Equation 5, the equilibrium equation assume the form:
bu: b'Ce=g. (10)
Finally, Equations 4 allows the equilibrium equation to be written in terms of displacements:

bu: b'Cbu=g. (11)
k

Matrix k is a 3 X 3 matrix, and it contains 9 differential operators,

k= |k ky ky. (12)

which, in explicit form, become:

ke =\ +2G) 0,0, + G 9,0, +G 9.0,

kry =(A+G) 0,0,

kp: =(A+ G) 0,0,

kye =N+ G) 0,0,

kyy =\ +2G) 9,0, + G 0,0, +G 9.0, (13)
ky. =(A+G) 0,0.

ke =(A+G) 0.0,

ko =(A+G) 0.0,

kez =(A+2G) 9.0.+ G 0,0, + G 8,9,



The symbol J, means a partial derivative with respect to x. The explicit form of the equilibrium
equations, in terms of displacements, can be found in the book by Carrera et al. [13]. Although
there are 9 terms in matrix k, only 2 terms have a different structure. Let us consider the following

two terms,

kpw =+ (A +2G) 030, + X 0.0, + X 9,0, (14)

kgy =+ A 0,0, + G 0,0, (15)

It is evident that the other components of matrix k can be obtained in a similar form as k. and kz,.
The elements on the diagonal have the form of k., and the terms k,, and k.. therefore have the
same form as k,, but with the indices permuted. The elements outside the diagonal come from a
permutation of the k., indices, and k., ky., kyz, k2o and k., can in fact be obtained by permuting

the indices in k.

C. Weak form of the equilibrium equation

When the equilibrium equations are written in term of displacements, see Equation 11, the
solution of the elastic problem requires a displacement field to be defined that is able to fulfill these
equations at each point of volume V of the body. The closed form solution of these equations can
only be obtained for simple geometries and boundary conditions. When complex problems have
to be investigated, it is necessary to use the weak form. In a generic three-dimensional case the

following can be written:

'LL(ZL',y,Z) = q)i(xvyaz)ui; (16)

where ®;(z,y, z) is a generic set of interpolating shape functions, while u; are the unknown coeffi-
cients. When, as is usual, Lagrange functions are used u; are the values of the displacements at the

nodes.



The virtual variation of the displacements can be denoted as:
ou(z,y,z) = ®(x,y, 2)0u;. (17)

The use of indexes i and j denotes summation. Using the principle of virtual work, it is possible to

write:
O0Lint = 0Lyt (18)

where L;,: denotes the internal work while L.,; stands for the external work. § is the virtual
variation. The explicit form of the internal work is obtained using the equations introduced in the

previous sections:
SLint = / selo dV (19)
\%

If the generic displacement field reported in Equation 16 is considered and, the stress and strains

are expressed according to Equations 4 and 5, the internal work becomes:

§Lint = 6u; < / @ijCb@idV> u; = u; kYu, (20)
14

kii

k¥ is the fundamental nucleus of the stiffness matrix, it is a 3 x 3 matrix and it has a fixed form.
It is possible to compare the first two terms of the fundamental nucleus obtained in strong
form, k, reported in Equation 15, and the first two terms of the fundamental nucleus, k%, derived

in Equation 20. The first term assumes the form:

kre = +(A+2G) 0y Oy +G dy Oy +G 0. 0,

k9 = +(A\+2G) /q)i,xq)j,zdv +G /¢i,yq)j7ydv +G /@i,zq)j,zdv
v v v
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while the second can be written as:

key= 4+X 0. 8, + G B, O

kD, = +X /V(I)j,mq)i,ydv + G /de,yq)i,wdv

Equations 21 and 22 show how the fundamental nucleus, in weak form, is closely related to the
strong form. Both the weak and strong forms are used to write an equilibrium equation, but only
the former is satisfied at each point of volume V', while the latter is written in integral form and

equilibrium is satisfied for mean quantities that originate from an integral of V.

D. Fundamental nucleus for 1D, 2D and 3D elements

The choice of the interpolating functions ®;(x,y, z) allows any kinematic assumption to be used
to derive a structural model. One-, two- and three-dimensional elements are considered in classical
Finite Element formulations. The next sections have the purpose of introducing these models in the
form of the fundamental nucleus. The use of the fundamental nucleus will be used to easily introduce

refined kinematic models that are able to overcome the limits of classical structural models.

1. Three-dimensional models
In the case of three dimensional models, the displacement field is approximated by only using

the shape functions introduced by the FEM. As a result,

u(m,y,z) = (I)i(.’L',y,Z)’U/i = Ni(‘rayaz)uia (23)

ou(x,y,z) = ®(x,y, z)0u; = Nj(z,y, 2)0u,, (24)

where i ranges between 1 and the number of the expansion terms. If Lagrange functions are used, i

ranges between 1 and the number of nodes of the element. In compact notation, the weak form of

11



the fundamental nucleus becomes

k9 =(\+2G) / N; 2N dV + G / N;.N;.dV + G / N;yN; ,dV (25)
1% 174 174
ki, =\ / N;yN;.dV + G / N; . N; ,dV (26)
174 1%

In the present paper, when the three-dimensional model has been considered in the analysis, 27

node iso-parametric solid elements have been used.

2. Two-dimensional models
The displacement field of a two-dimensional model can be written as the product of the fi-
nite element approximation on the reference surface, N;(x,y), and an expansion on the thickness

direction, F;(z),
u(m,y,z) = Ni(‘ray)FT(Z)uTi (27)

where F.(z) ranges between 1 and the number of terms of the expansion through the thickness.

The fundamental nucleus can be written as:

k754 :(/\+2G)/ N; »Nj dS dy/FTFsderG/ N;N,;d /FT,ZFS,Zdz+
Q h Q h
+G / N yN;,dQ dy / F.Fdz (28)
14 h

kTS =) / N; yN; .dQ dy / F,Fydz+G / N;.» N ,dQ dy / F,F.dz (29)
Q h Q h

The integral over volume V' can be written as the product of two contributions, that is, the integral
over the reference surface, €0, and the integral over the thickness, h.

In this work, a 9 node iso-parametric element has been used for the finite element formulation.
One-dimensional quadratic Lagrange functions have been used as the thickness function, F;(z).

More details about these models can be found in the book by Carrera et al. [13].

12



8.  One-dimensional models
One dimensional models are characterized by an FE approximation on the axis, N;(y), and an

expansion on the cross-section, F,(x, z),
u(:c,y,z) = Ni(y)F'r(xvz)un’- (30)

where F(z, z) ranges between 1 and the number of terms of the expansion over the cross-section.

Equations (14) and (15) can be written as

ETSU =(\ +2G) / N;N;dy / Fr o FypdA+G / NiN;dy / F, . F,.dA+
l A ! A
+G / N; yN; dy / F,F,dA; (31)
l A

koH =X / N, N;dy /A F,Fs,dA+ G / N;N; ,dy /A F, . FydA (32)
l l

The integral over volume V can be split into the integral over the cross-section, A, and the
integral along the beam axis, y. The models used in the analysis presented in this work have
been derived using 3- and 4-node beam elements. The cross-sectional displacement field has been
described using refined kinematics based on two-dimensional quadratic Lagrange functions, that is,
on the L9 elements. More details on these beam models can be found in the work by Carrera and

Petrolo [18].

E. Load vector evaluation
The formulation of the external loads can be derived using the Principle of Virtual Displace-
ments, in the same way as in the internal equilibrium equations. If only point loads are considered,

the external work can be written as:

§Ley = du’|gP, (33)

13



where P is the load vector applied to point (). The weak form of Equation 33 can be achieved by

introducing the displacement interpolation:

0Legt = 0u;®;(x,y,2)|QP, (34)

Equation 34 can be used to derive the load vector in the case of one-, two- or three-dimensional

models:

1D — §Leqr = dujs Fs(z, 2)|oN;(y)|oP; (35)
pis
2D — 0Leyt = 0ujs Fs(2)|oN,(x,y)|oP; (36)
pis
3D — 0Lyt = duj Nj(x,y, 2)|qP; (37)
— ————
pe

where p’® is the fundamental nucleus of the load vector.

F. Global stiffness matrix assembly

The fundamental nucleus can generally be written as k%™, where i and j are related to the
FEM approximation while 7 and s denote the indexes of the model expansion. When a solid model
is considered 7 and s disappear. The fundamental nucleus k%7¢ can be used as a brick of the
construction of the global stiffness matrix. Figure 3 show how the global stiffness matrix k& can be
obtained from the fundamental nuclei. The loops on indexes 7 and s, once the element and the
indexes 7 and j have been fixed, provide the matrix at the node level. The loops on 7 and j provide
the element matrix, and different elements can be assembled adding the stiffness of the shared
nodes. The procedure used for the assembly of the global stiffness matrix can be used to assemble
the fundamental nucleus of the load vector, p’*. More information on the assembly procedure of
structures generally oriented in space can be found in the companion paper written by Carrera and

Zappino [20].

14
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Fig. 3 Global stiffness matrix assembly procedure

PLATE P
physical surface

BEAM g !

physical surface

Fig. 4 Example of a model built using elements with different kinematics.

G. Variable kinematic model assembly

The coupling of elements with different kinematics may lead to inconsistency in the displacement
and stress fields. Figure 4 shows an example of a simple cantilevered structure and the FEM model
for the case in which this structure is investigated using a variable kinematic approach. Solid, plate
and beam elements are considered. A classical approach, the use of RBE elements, and the present

approach are described in detail in this section.

1. Classical FE model assembly with and without RBE connectors
The use of elements with different kinematics in the same model can produce local effects that
may lead to inaccurate results. Figure 5 shows the qualitative results of the problem shown in Figure

4. In this case no special techniques have been used to couple the elements with different kinematics,

15
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stress field
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Fig. 5 Classical FE model assembly without RBE connectors.

that is, displacement and rotation equivalence has only been imposed in the connected nodes. The
structure is subject to global bending deformation, but local effects may appear at the interface
between elements with different kinematic. The displacement field may not be continuous at the
interface between solid and plate models, because of the Poisson effect. The upper part of the solid
element undergoes traction while the bottom part undergoes compression. This creates restriction
and dilatation of the cross-section in the x-direction, respectively. The same behavior cannot be
predicted by the plate element, because the kinematic assumptions do not consider any deformation
through-the-thickness. As a consequence, o, appears at the interface in the solid element, while it
does not appear in the plate element.

A similar situation may appear at the interface between the plate and the beam element. In this
case, as shown in Figure 5, the beam model forces the cross-section to be undeformed and to follow
the rotation predicted at the central node, otherwise, the plate element may predict a deformed
cross-section. This may lead to a discontinuous displacement field and to an inconsistency in the
shear distribution. In fact, the beam model predicts a constant value, while the plate element may
predict a variable shear stress. Rigid Body Elements may be introduced to force the kinematics
of the more refined model to follow the kinematics of the lower-order model. Figure 6 shows an

example of this situation. When the displacement field is continuous at each interface the stress field

16
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Fig. 6 Classical FE model assembly using Rigid Body Elements.
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Fig. 7 Present variable kinematic model.

may show oscillations or a local concentration in the transition zone because of the new constraints.

2. Present approach

The refined models introduced in the present paper share a common feature, that is, they all
have only displacements as the degrees of freedom. This property allows models with different
dimensions to be combined by imposing the equivalence of the displacements at one or more nodes.

Figure 7 show the variable kinematic model, of the problem shown in Figure 4, obtained using

17



(a) 1D/2D (b) 1D/3D (c) 2D/3D

Fig. 8 Variable kinematic model assembling: the dashed line (- - -) shows the physical domain
while the solid line (—) denotes the mathematical domain. Circles (o) are used to represent
the nodes where the unknowns are defined.

the present approach. The capacity of refined plate models to predict the thickness deformation
prevents inconsistencies from arising at the solid /plate interface. The displacement and stress fields
are also continuous at the plate/beam interface, thanks to the use of higher-order beam models
that allow the cross-section to warp in- and out-of-plane. Figure 8 shows the general approach used
to assemble the elements, that is, a variable kinematic model assembling. Figure 8a shows how
a one-dimensional model can be coupled with a two-dimensional element. Figure 8b shows how a
one-dimensional model can be coupled with a three-dimensional element. Finally, a two-dimensional

model can be coupled with a solid element as shown in Figure 8c.

III. Numerical results

This section presents some numerical results obtained using the previously introduced variable
kinematic model. The first part is devoted to the assessment of the numerical approach. A simple
cantilevered beam has been considered, and one-, two- and three-dimensional models have been used
to build different numerical models. The second sample concerns the static analysis of a reinforced
panel, and, the third case considers the static analysis of a large part of an aircraft structure including
a part of the fuselage and the wing structure. The results have been compared with those from
literature, when available, while, a reference solution has been created for the other cases using the

commercial FEM MSC Nastran® code.
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Fig. 9 Reference system and geometry of the cantilevered beam.

A. Assessment of the variable kinematic model

This section considers a cantilevered beam subjected to a bending load. The geometry of the
structure, is shown in Figure 9. The beam has a length, L, equal to 8 m. The cross-sectional
dimensions are ¢ = 0.5 m and b = 1.5 m. The structure is clamped at y = 0 and a concentrated
load, P = 1000 N, is applied at the free end at the a = 0 and b = 0 points. An isotropic material is
used, and Young’s modulus, F, is considered equal to 70 GPa while the Poisson ratio, v, is equal to
0.35. The problem has been solved using different numerical models. Three models, with constant
kinematics have been considered. The first model, called 1D, was built using only one-dimensional
elements, in this case, 11 B4 elements were used along the beam axis while 6 L9 elements have been
used to describe the cross-sectional kinematics. Another model, named 2D, was built using 126
Q9 (a 21 x 6 element mesh) quadratic plate elements, and a quadratic approximation was assumed
through the thickness. Finally, a fully three-dimensional model, called 3D, was considered. The
solid model was built using 126 (a 21 x 6 x 1 elements mesh) quadratic hexaedronal elements.

Four variable kinematic models have also been considered. The details of these models are
reported in Figure 10. Figure 10a shows the model in which one- and two-dimensional elements
were used, that is the 1D/2D model, in which 66 Q9 plate elements and 6 B4 beam elements were
used. The model shown in Figure 10b, model 1D /3D, was built using 66 H27 solid elements and
6 B4 beam elements. Model 2D /3D, shown in Figure 10c, was built using 66 H27 solid elements
and 66 Q9 plate elements. Finally, a model that uses all three elements is presented as model

1D/2D/3D, see Figure 10d. In this case the model includes, 36 H27 elements, 36 Q9 elements and
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(c) 8D/2D Model (d) 8D/2D/1D Model

Fig. 10 Details of the variable kinematic models.

Model uy X 105 oy Tys
m Pa Pa
1D 1.767 37316 2064
2D 1.767 37251 2055
3D 1.767 37251 2055
3D/1D 1.767 37279 2065
3D/2D 1.767 37279 2065
2D/1D 1.767 37279 2065
3D/2D/1D 1.767 37279 2065
Song and Hodges [41] 1.776 37310 2056
Euler-Bernulli 1.734 37333 -
Timoshenko 1.782 37333 1333

Table 1 Vertical displacement, normal stress and shear stress evaluated with different models.

6 B4 elements.

The obtained results have been compared with those obtained using classical models, Euler-
Bernulli and Timoshenko beam models and with respect to the results presented by Song and
Hodges [41]. Table 1 reports the numerical results obtained using the previously introduced models.
The vertical displacement, u,, was evaluated at the tip in the point at x = 0 and z = 0. The axial
stress,oy,, was evaluated at y = 1 m, x = 0 and z = —b/2 while the shear stress,r,, was evaluated

at y =1m, x = 0 and z = 0. The results show that, as expected, all the considered models are
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Fig. 12 Axial and shear stress distribution evaluated along the beam axis.

able to provide accurate results. The use of refined beam models allows an accurate value of shear
stress to be obtained, and this result cannot be obtained using Euler-Bernulli or Timoshenko beam
models. Figure 11 reports the stress profiles evaluated along the z coordinate at y = 1 and at z = 0.
The axial stress, o, is reported in Figure 11a, while the shear stress o,., is reported in Figure
11b. All the considered models are able to accurately describe the stress distribution and are able
to provide a three-dimensional result. The axial distribution of the normal stress, oy,, is reported
in Figure 12a. All the models are able to describe the linear variation of o, and all the models can
predict the end-effect due to the constraint. The stress distribution is not affected by the kinematic
variation. The same conclusion can be drawn when shear stress is considered, see Figure 12b. Only
at the tip of the beam, where the load is applied, it is possible to see a slight difference in the results

due to local effects. Again in the case of shear stress, the kinematic variation does not produce any

significant effect.

21



7 = 15 RBE2
4p o0
'
{ O
(o} \}i
(a) 2D/1D Model (b) 8D/1D Model
]Z
2

(¢) 3D/2D Model

Fig. 13 Details of the variable kinematic models obtained using RBE elements.

B. Comparison with classical FEM models

The results obtained in the previous section have been compared with those obtained using the
classical tool available in the commercial FEM software MSC Nastran®. Figure 13 shows the three
considered models, all of which exploit rigid body elements to connect the elements with different
kinematics. Figure 13a shows a model created using beam and plate elements. The model shown
in Figure 13b uses solid and beam elements while the model shown in 13c was built using solid and
plate elements.

The axial stress, oy, and the shear stress, 7., evaluated along the beam axis are reported in
Figure 14. The results are compared with those obtained using the present 3D /2D /1D model. The
qualitative distribution of the axial stress, see Figure 14a, is described properly by all the models
although the models built using RBE elements all show local effects at the interface, due to the
jump in kinematics, while the present 3D/2D/1D model does not suffer from this phenomenon.
When shear stress is considered, see Figure 14b, the advantages of the present 3D/2D/1D models
are even more evident. The use of the present approach prevents local effects from arising at the
interface and the shear stress is evaluated correctly, even in the portion of the structure where beams

are used. The Timoshenko beam model, which is adopted in the commercial software, assumes a
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Fig. 14 Axial and shear stress profiles evaluated along the beam height at y =1 and = = 0.

constant shear distribution over the cross-section that produces an inaccurate result.

Figure 15 shows the shear stress distributions through the thickness of the beam just before
and after the models interface. The 2D/1D model is shown in Figure 15a. The results show that
the 2D elements overestimate the stress value while the beam elements provide a constant stress
value, in agreement with the Timoshenko model, that is, the stress continuity is not respected.
However, the results obtained using the present model match perfectly at the interface and are in
agreement with the reference solution obtained using a full 3D model. Figure 15b show the shear
stress distributions for the 3D/1D model. As in the previous case, the classical models are not able
to provide a continuous stress field. The solution obtained with the 3D /2D Nastran model, see 15c,
is the most accurate but it still shows a stress discontinuity while the present 3D /2D model provides
a continuous stress field.

These findings highlight the limits of the classical approaches when elements with different
kinematics have to be connected. The present variable kinematic models may be used to overcome
these limitations and to provide accurate results, without the need of additional elements, such as

the RBE

C. Reinforced panel analysis
The static analysis of a reinforced panel has been considered in this section. Figure 16 shows
the geometry of the panel and the dimensions of the stringers. The square panel has edges of

length L = 1 m, while the skin is 0.003 m thick. The panel is rounded off by a rectangular
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Plate element

Fig. 16 Reinforced panel geometry

reinforcement and has two stringers in the middle, one in the z direction and the other in the y

direction. The dimensions of the cross-section of the reinforcements are ¢ = 0.03 m and b = 0.01

m. An isotropic material with an elastic modulus of ' = 71.7 GPa and the Poisson ratio v = 0.3,

has been considered. The structure is clamped along the four edges. A point load has been applied
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Fig. 17 Reinforced panel deformed configuration.

at the top of the panel in the central point, and the force has a magnitude of 1000V in the negative
z—direction. Figure 16 shows the characteristics of the variable kinematic model. The plate elements
are used for the skin, and two non-uniform meshes are considered: the model named MESH]1 has a
7 X 7 elements mesh, while the model named MESH2 uses a mesh of 11 x 11 elements. A quadratic
expansion is used through the thickness of the panel. Quadratic beam elements have been used
for the reinforcements, and an L9 element is used over the cross-section. The number of beam
elements is related to the skin mesh; the larger the number of elements used over the skin, the
larger the number of elements used along the beam axis in order to ensure displacements continuity.
A 27-node solid element is used to connect the reinforcements to the skin at the cross-points. The
results have been compared with those of a solid model, solved using the commercial FEM MSC
Nastran® code. Figure 17 shows the deformed configuration of the panel, from the bottom point of
view. Details of the displacements are reported in Figure 18, where the vertical displacement of the
panel, evaluated along the central point of the reinforcement in the y-direction, is depicted. The
results show that both of the considered models are able to reproduce the results obtained using
the full three-dimensional model. The stress field has also been investigated. The axial stress is
reported in Figure 19. The results obtained using the variable kinematic models are in agreement
with the reference solution. Two stress concentrations can be seen close to the clamped point and
in the central part where the stringers are connected. The discontinuity of the stress is due to
the post-processing techniques that were adopted. The present paper derives the stresses from the

strains using Hook’s law in each point, while commercial codes usually average the values obtained
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in the Gauss points to ensure the continuity. Figure 20 shows the transversal shear stress evaluated
along the central point of the reinforcement in the y-direction. The small oscillations in the shear
stress value are due to the shear locking correction approach, in this case MITC approach, these
can be reduced refining the mesh as shown in the work by Carrera et al. [14]. The results are close
to the reference solution but they show some small oscillations. A higher number of beam elements
would be required to increase the accuracy. Figure 21 shows the von Mises stress field of the whole
structure. The results show the stress concentrations around the reinforcements that are subject to

the bending load. The higher solicitations are due to the axial stress, that is, the maximum von
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Fig. 21 von Mises stress overview evaluated using the MESH2 model (on the left) and the
reference three-dimensional model (on the right).

Mises stress can be found in the bottom part of the stringers that has the maximum values of o,.

D. Aircraft structure analysis

This section presents the analysis of a typical aircraft structure, performed using the previously
presented variable kinematic model. The structure is shown in Figure 22. It represents a part of a
fuselage and includes the wing connection. Ribs, longerons and a thin skin are present in the same
structure. The main dimensions of the structure are reported in Table 2. The entire structure is
considered to have been built in aluminum alloy, with a Young modulus equal to 71.7 M Pa and a

Poisson ratio equal to 0.3. The structures is considered clamped the middle plane of the fuselage,

27



Dimensions [m]
a= 3.000 d= 0.040 g = 0.224
b= 3.160 e= 1.080 h = 0.080
c= 6.000 f= 0.010 i =0.035

Table 2 Geometrical dimensions of the aircraft component.

[0- Longerons
O- Floor

Fig. 22 Aircraft structure considered.

xz = 0 m, and at both fuselage extremities, y = 0 m and y = 3.160 m. Two loads have been
placed at the wing tip, as shown in Figure 22; Fj is equal to 5000 N while F; has a magnitude of
2000 N. The whole fuselage structure has been modeled using one- and two-dimensional elements.
The fuselage is considered as a beam with a variable cross-section in order to consider the effects
of the ribs. Figure 23 shows some details of the cross-sectional mesh used in the models, 23 L9
elements have been used in the circumferential direction while 1 L9 element has been used through
the thickness of the skin and of the ribs. 3 L9 elements have been used for the fuselage deck. The
wing longerons are also considered as beams. The upper and lower skins of the wing are considered
as plate elements. Two models, derived using the present approach, have been considered: the first,
referred to as the present model and presented in Figure 24a, has a coarse mesh, while the present
refined model, see Figure 24b, has a more refined mesh and therefore a larger number of DOFs. The

results have been compared with a solid model derived using the commercial MSC Nastran ® code.
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Fig. 24 Details of the two models of the aircraft structure.

The displacement field evaluated using the present refined model is presented in Figure 25. The
loads create both bending and torsional deformation of the wing. Details of the displacement field
are shown in Figures 26 and 27. Figure 26 shows the vertical displacement, evaluated at the central
point of the frontal wing longeron. The results of both of the present models appear to be accurate,
compared with those of the reference model. The same behavior can be observed in Figure 27, where
the radial displacement, evaluated at the outer radius of the second rib, is shown. Again in this
case, the results of both the coarse and the refined present models are in agreement with those from
the reference solution. The analysis of the displacement field shows that a coarse mesh is enough to
reach an accurate solution. The stress field has also been analyzed. Figure 28 shows the axial stress

evaluated at the top of the frontal wing longeron. The results show that the present model is able
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Fig. 26 Vertical displacement evaluated at the center of the frontal wing longeron.

to describe the solution accurately, but only when a refined mesh is used. The coarse mesh, which
considers only two beam elements along the longheron, catches the general distribution, but can
introduce a large error locally. Figure 29 shows the transversal shear stress evaluated at the center
of the frontal wing longeron. The results obtained using the refined mesh are globally accurate, but
they show some small oscillations. Finally, the circumferential stress evaluated at the outer radius

of the second rib is presented in Figure 30. The results obtained using the present models are able
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Fig. 28 Assial stress evaluated at the top of the frontal wing longeron.

to accurately describe the stress distribution. A perfect matching can be seen along almost all of the
half circumference. Some small discrepancies appear close to the fuselage/wing connection where,
a complex three-dimensional stress field, is present. The use of three dimensional elements in this
part could lead to a perfect matching. From the results, it is possible to see that the model that uses
a coarse mesh is able to provide accurate results in terms of displacements but not in terms of stress

field. An accurate description of the stress field can only be achieved using a more refined mesh. In
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Fig. 30 Circumferential stress distribution evaluated at the outer radius of the second rib.

this case, the stresses are predicted accurately in both the wing and the fuselage structures.

IV. Conclusions
The present work presents the use of a refined variable kinematic model for the analysis of
complex structures such as reinforced thin-walled structures. The Unified Carrera Formulation has

been used to derive refined one-, two- and three-dimensional models in compact form. The use of
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a displacement-based kinematic approximation has allowed models with different kinematics to be
connected in order to obtain a variable kinematic model. Different structures have been considered
in order to highlight the capabilities of the present approach. The findings show that the present
model overcomes the limitations introduced by classical FEM models. It provides a much more
accurate description of the interface between elements with different kinematics. Such accuracy
cannot, be reached using classical FEM models, even if RBE elements are adopted.

The results of the analysis of a simple beam structure have shown the accuracy of the present model.
The results are not affected by the transition between different kinematics, and continuity of the
displacement and stress fields is guaranteed. The same accuracy has not been reached using classical
models, which showed local stress oscillations due to the kinematic variation.

The model was then used to analyses a reinforced panel. In this case, the variable kinematic model
was used to represent a complex structure. The capabilities of the present approach allowed the
geometry of the panel to be represented accurately, and in this way the accuracy of the three-
dimensional models was preserved where required, e.g. at the stringer intersection, while the beam
model properties were exploited in the reinforcements.

Finally, a complex aircraft structure has been considered. The obtained results show how the present
approach can be used to investigate complex structures. Accuracy of the results has been shown,
that is, the use of refined one- and two-dimensional models provides a three-dimensional stress field.
In short, the present approach allows refined structural models with different kinematics to be joined
together. The models obtained using this approach preserve the accuracy of the refined structural
models, but also make it possible to study complex structures, which usually requires classical FEM

models.
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