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A Multi-Dimensional Model for the Stress Analysis

of Reinfored Shell Strutures

Zappino Enrio

1

and Carrera Erasmo

2

MUL2
Team, Politenio di Torino, Corso Dua degli Abruzzi, 24, 10129 Torino, Italy.

The present paper proposes an approah that an be used to mix one-, two- and three-

dimensional re�ned models, derived using the Carrera Uni�ed Formulation, to build

a variable kinemati model that is able to deal with the stati analysis of omplex

thin-walled strutures. The adopted formulation, whih only has displaements as

degrees of freedom, allows these models to easily be onneted to eah other, that is,

a variable kinematis model an be derived without ad ho tehniques. The re�ned

models used in the present paper ensure high auray and low omputational osts.

The displaement ontinuity at the interfae is guaranteed by the formulation, and no

stress singularities appear in the kinemati model transition. The Mixed Interpolation

Tensorial Component approah has been used, in a uni�ed sense, for one-, two- and

three-dimensional models to avoid the shear loking e�et. The auray of the present

approah has been on�rmed by omparing the results with those from literature and

with those obtained using ommerial Finite Element odes. The stati response of a

reinfored panel and a setion of an airraft fuselage have been investigated to show

the apabilities of the present approah. The use of re�ned strutural models makes

it possible to overome the limits of lassial strutural models, and at the same time,

to redue the omputational osts.
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I. Introdution

The development of e�ient numerial models for strutural analysis has the aim of providing

aurate models with low omputational osts. When thin-walled strutures are onsidered, the

struture an be seen as an assembly of di�erent omponents: panels, ribs and longerons. Eah of

these omponents undergoes to di�erent loads; panels are usually subjet to shear stresses while

longerons and ribs undergo to normal stresses. The fore method, proposed by Argiris and Kelsey

[2℄, exploited these assumptions to provide a solution to the elasti problem. The design approah

introdued by Bruhn [7℄ was based on this method. The need to deal with omplex geometries

and the development of high-performane omputers led to the introdution of the Finite Element

Method, FEM [45℄. Dozens of books are available on this method and the one by Zienkiewis

deserves mentioning [49℄. The FEM allows eah strutural omponent to be disretized into a

�nite number of elementary elements, and eah of these an be analyzed using one- (beams/rods),

two- (plates/shells) or three- (solids) dimensional elements. The kinemati assumptions of eah

element are derived from lassial strutural theories, suh as those proposed by Euler [26℄ or

Timoshenko [44℄ for the ase of beams, or by Love [32℄, Reissner [38℄ and Mindlin [35℄ for the ase

of plates/shells. Three-dimensional models an be used to diretly solve the equation of elastiity

in their omplete formulation, as shown by Argiris [1℄. The auray of the results depends on

the number of elements used to disretize the domain and on their kinemati assumptions, whih

means, an auray improvement requires an inrease in omputational ost. The use of solid

models is obviously the best hoie to obtain aurate results, but when thin-walled strutures

are onsidered, the use of three-dimensional elements requires a huge omputational ost, that is,

a di�erent approah must be used. When reinfored thin-walled strutures are onsidered, some

approximate methods an be use. As an example, the reinforements an be onsidered smeared

over the plate; these approahes are presented in the works by Luan et al. [33℄ and Edalat et al.

[24℄ but, in this ase, the results do not provide detailed information about the behavior of eah

omponent of the struture. More detailed models have been presented by Mustafa and Ali [37℄ and

Edward and Samer [25℄, who introdued some ad ho �nite element models that are able to deal

with reinfored strutures. The use of one-, two- and three- dimensional elements in the same model
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Fig. 1 Displaement disontinuities in a FEM model build using plate and beam elements.

an lead to a more e�ient approah, whih is able to provide aurate results with an aeptable

number of degrees of freedom, DOFs. Classial FEM models approximate the kinematis using

three displaements and three rotations at eah node. This assumption is used for one- and two-

dimensional elements, while three-dimensional elements only onsider the three displaements. Even

though, the unknowns of eah �nite element are expressed in a ommon manner, the oupling of these

models ould lead to disontinuities in the displaement �eld, as shown in Figure 1. Appropriate

oupling tehniques should be introdued to ensure an aurate solution. Surana [42, 43℄ proposed

an approah to ouple three and two-dimensional elements. The onnetion between solid and shell

elements was also investigated by Liao et al. [31℄ and Cofer and Will [21℄. The work by Gmür and

Kauten [28℄ deals with the onnetion of solid isoparametri and super-parametri shell elements,

while the onnetion between one- and three-dimensional elements was investigated by Gmür and

Shorderet [29℄. MCune et al. [34℄ and Monaghan et al. [36℄ introdued a mixed-dimensional

oupling sheme, based on geometrial assumptions, while Garusi and Tralli [27℄ used a transition

element to develop solid-to-beam and plate-to-beam onnetions. Song and Hodges [41℄ used an

asymptoti approah to join beam and solid elements. A variational approah that is able to join

inompatible kinematis was introdued by Blano et al. [6℄. Dávila [23℄ proposed a penalty method

to join solid and shell elements, while Shim et al. [40℄ used multi-point onstraint equations to

fore the ongruene of the displaements at the interfae of elements with di�erent kinematis.

Robinson et al. [39℄ proposed an automated approah for the development of mixed dimensional

models starting from a Computer-Aided Design, CAD, model. Another tehnique used to derive
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Fig. 2 Displaement disontinuities in a FEM model build using plate, beam and rigid body

elements.

variable kinemati models is the Arlequin method whih was �rst proposed by Ben Dhia [3℄, Ben

Dhia and Rateau [4℄. The Arlequin method ouples two models and uses the overlapping zone

where the transition is imposed. Classial FEM tools exploit speial elements, the so-alled Rigid

Body Elements (RBE), see Figure 2, to onnet a single node to multiple nodes in order to avoid

disontinuities in the displaement �eld. This approah may lead to singularities in the stress �eld

beause, referring to the example in Figure 2, the plate has to follow the beam kinematis at the

interfae. This produes a onstraint on the plate element that may reate stress onentrations.

The limitations introdued by lassial strutural models, suh as the rigid setion assumption in

the ase of beam models, an be overome by re�ning the kinemati model, as shown in the review

of advaned beam models presented by Carrera et al. [17℄. When a re�ned formulation is used, the

assumption of three displaements and three rotation in eah node is not veri�ed, in other words,

the oupling between models with di�erent kinematis beomes more omplex. Hoseini and Hodges

[30℄ proposed a tehnique to ouple a beam mode, derived using a variable asymptoti approah

[47, 48℄, and a solid element. The introdution of the Carrera Uni�ed Formulation (CUF), whih

was proposed by the �rst author in Carrera [8, 9, 10℄ and whih has reently been published in three

books, see Carrera et al. [11, 13, 15℄, provides a uni�ed approah that is able to derive variable

kinemati models. CUF permits the equations of any re�ned 1D, 2D or 3D theory to be expressed

in terms of a few fundamental nulei, FNs, whose forms do not formally depend on the assumptions

(type of funtions or order) that have been used to desribe the displaement �eld over the ross-

setion (in one-dimensional models) and through the thikness (in two-dimensional models). Bisani
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et al. [5℄ proposed using the Arlequin method to ouple variable kinematis elements derived using

CUF. Carrera et al. [16℄ used the Lagrange multipliers to onnet beam models derived with the

same tool. A �rst attempt to onnet strutural elements with di�erent kinematis, without ad

ho tehniques, was �rstly presented by Carrera and Zappino [19℄. Subsequently the work proposed

by Carrera and Zappino [20℄, a ompanion paper to the present manusript, presented a general

approah to build variable kinemati models, inluding one-, two- and three-dimensional elements,

for the free-vibration analysis of omplex strutures. The present work exploits the models presented

in the ompanion paper [20℄ and extends that approah to the stati analysis of omplex aeronautial

strutures.

Beause the stati analysis requires an aurate evaluation of the stress �eld, the shear loking

orretion has been improved using the Mixed Interpolation Tensorial Component approah, MITC.

This approah was extended to CUF two-dimensional models by Carrera et al. [12℄ and to one-

dimensional models by Carrera et al. [14℄. The theoretial approah has been introdued in the �rst

part of the present work, where a uni�ed formulation for any kinemati model has been presented.

A detailed omparison with lassial FEM assembly approahes has been made to demonstrate the

limits of these methods and how a higher auray solution an easily be obtained using re�ned

models, suh as the present ones. Several numerial results have been disussed and ompared with

those token from literature and those obtained using ommerial FEM tools.

II. Variable kinemati �nite elements

This setion presents the method used to derive a uni�ed and ompat formulation for a lass

of �nite elements with variable kinematis. The governing equations have been derived using the

theory of elastiity while the Carrera Uni�ed Formulation has been used to derive re�ned models in

a ompat and uni�ed form. The numerial models have been exhaustively presented in detail in the

book by Carrera et al. [13℄. In this manusript, the key-features have been reported to show how,

the fundamental nuleus introdued by the Carrera Uni�ed Formulation, is a diret onsequene of

the lassial equilibrium equations.
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A. Preliminaries

The fundamental equations and the nomenlature used in the following pages are introdued in

this setion. The displaement vetor is denoted as follows:

u

T = (uxl
, uyl

, uzl) (1)

where ux, uy and uz are the three omponents of the displaement vetor expressed in the loal

referene system.

The strain and stress vetors are de�ned as:

εT = (εxx, εyy, εzz, εxy, εxz, εyz), (2)

σT = (σxx, σyy, σzz , σxy, σxz, σyz). (3)

The relation between the strains and displaements an be written using the geometrial equation:

ε = bu, (4)

where b is a di�erential operator, and its expliit form an be found in Carrera et al. [13℄. Hooke's

law permits the relation between stresses and strains to be derived:

σ = Cε, (5)

whereC is the sti�ness oe�ients matrix of the material. When an isotropi material is onsidered,
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matrix C an be written using Lamé's oe�ients:

C =























λ+ 2G λ λ 0 0 0

λ λ+ 2G λ 0 0 0

λ λ λ+ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G























(6)

where

λ =
Eν

(1 + ν)(1 − 2ν)
, G =

E

2(1 + ν)
. (7)

where the symbol E denotes the Young's modulus while ν is Poisson's ratio.

B. Strong form of the equilibrium equation

The stati equilibrium of a three-dimensional body subjeted to a system of fores an be written

for the three variations δux, δuy and δuz:

δux :
∂σxx

∂x
+

∂σxz

∂z
+

∂σxy

∂y
= gx

δuy :
∂σyy

∂y
+

∂σyz

∂z
+

∂σyx

∂x
= gy (8)

δuz :
∂σzz

∂z
+

∂σzx

∂x
+

∂σzy

∂y
= gz

where gx, gy, and gz are the body fores. These equations, whih are disussed in detail in any

book regarding the Theory of elastiity, an be derived via kinemati assumptions, see da Silva [22℄,

as well as by using the Priniple of the Virtual Displaements, as shown by Washizu [46℄ and by

Carrera et al. [13℄. The solution of the elasti problem requires a stress �eld that is able to ful�ll

Equation 8 to be de�ned.

The equilibrium equation, here written in stress terms, an also be expressed in displaements
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terms. Equation 8 an be written in ompat form as:

δu : bTσ = g (9)

Using Equation 5, the equilibrium equation assume the form:

δu : bTCε = g. (10)

Finally, Equations 4 allows the equilibrium equation to be written in terms of displaements:

δu : bTCb
︸ ︷︷ ︸

k

u = g. (11)

Matrix k is a 3× 3 matrix, and it ontains 9 di�erential operators,

k =











kxx kxy kxz

kyx kyy kyz

kzx kzy kzz











(12)

whih, in expliit form, beome:

kxx =(λ+ 2G) ∂x∂x +G ∂y∂y +G ∂z∂z

kxy =(λ+G) ∂x∂y

kxz =(λ+G) ∂x∂z

kyx =(λ+G) ∂y∂x

kyy =(λ+ 2G) ∂y∂y +G ∂x∂x +G ∂z∂z (13)

kyz =(λ+G) ∂y∂z

kzx =(λ+G) ∂z∂x

kzy =(λ+G) ∂z∂y

kzz =(λ+ 2G) ∂z∂z +G ∂x∂x +G ∂y∂y
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The symbol ∂x means a partial derivative with respet to x. The expliit form of the equilibrium

equations, in terms of displaements, an be found in the book by Carrera et al. [13℄. Although

there are 9 terms in matrix k, only 2 terms have a di�erent struture. Let us onsider the following

two terms,

kxx =+ (λ+ 2G) ∂x∂x + λ ∂z∂z + λ ∂y∂y (14)

kxy =+ λ ∂x∂y +G ∂y∂x (15)

It is evident that the other omponents of matrix k an be obtained in a similar form as kxx and kxy.

The elements on the diagonal have the form of kxx, and the terms kyy and kzz therefore have the

same form as kxx but with the indies permuted. The elements outside the diagonal ome from a

permutation of the kxy indies, and kxz, kyz, kyx, kzx and kzy an in fat be obtained by permuting

the indies in kxy.

C. Weak form of the equilibrium equation

When the equilibrium equations are written in term of displaements, see Equation 11, the

solution of the elasti problem requires a displaement �eld to be de�ned that is able to ful�ll these

equations at eah point of volume V of the body. The losed form solution of these equations an

only be obtained for simple geometries and boundary onditions. When omplex problems have

to be investigated, it is neessary to use the weak form. In a generi three-dimensional ase the

following an be written:

u(x, y, z) = Φi(x, y, z)ui, (16)

where Φi(x, y, z) is a generi set of interpolating shape funtions, while ui are the unknown oe�-

ients. When, as is usual, Lagrange funtions are used ui are the values of the displaements at the

nodes.
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The virtual variation of the displaements an be denoted as:

δu(x, y, z) = Φj(x, y, z)δuj. (17)

The use of indexes i and j denotes summation. Using the priniple of virtual work, it is possible to

write:

δLint = δLext (18)

where Lint denotes the internal work while Lext stands for the external work. δ is the virtual

variation. The expliit form of the internal work is obtained using the equations introdued in the

previous setions:

δLint =

∫

V

δεTσ dV (19)

If the generi displaement �eld reported in Equation 16 is onsidered and, the stress and strains

are expressed aording to Equations 4 and 5, the internal work beomes:

δLint = δuT
j

(∫

V

Φjb
TCbΦidV

)

︸ ︷︷ ︸

kij

ui = δuT
j k

ijui (20)

kij
is the fundamental nuleus of the sti�ness matrix, it is a 3× 3 matrix and it has a �xed form.

It is possible to ompare the �rst two terms of the fundamental nuleus obtained in strong

form, k, reported in Equation 15, and the �rst two terms of the fundamental nuleus, kij
, derived

in Equation 20. The �rst term assumes the form:

kxx = +(λ+ 2G) ∂x ∂x +G ∂y ∂y +G ∂z ∂z

kijxx = +(λ+ 2G)

∫

V

Φi,xΦj,xdV +G

∫

V

Φi,yΦj,ydV +G

∫

V

Φi,zΦj,zdV

(21)
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while the seond an be written as:

kxy = +λ ∂x ∂y + G ∂y ∂x

kijxy = +λ

∫

V

Φj,xΦi,ydV + G

∫

V

Φj,yΦi,xdV

(22)

Equations 21 and 22 show how the fundamental nuleus, in weak form, is losely related to the

strong form. Both the weak and strong forms are used to write an equilibrium equation, but only

the former is satis�ed at eah point of volume V , while the latter is written in integral form and

equilibrium is satis�ed for mean quantities that originate from an integral of V .

D. Fundamental nuleus for 1D, 2D and 3D elements

The hoie of the interpolating funtions Φi(x, y, z) allows any kinemati assumption to be used

to derive a strutural model. One-, two- and three-dimensional elements are onsidered in lassial

Finite Element formulations. The next setions have the purpose of introduing these models in the

form of the fundamental nuleus. The use of the fundamental nuleus will be used to easily introdue

re�ned kinemati models that are able to overome the limits of lassial strutural models.

1. Three-dimensional models

In the ase of three dimensional models, the displaement �eld is approximated by only using

the shape funtions introdued by the FEM. As a result,

u(x, y, z) = Φi(x, y, z)ui = Ni(x, y, z)ui, (23)

δu(x, y, z) = Φj(x, y, z)δuj = Nj(x, y, z)δuj, (24)

where i ranges between 1 and the number of the expansion terms. If Lagrange funtions are used, i

ranges between 1 and the number of nodes of the element. In ompat notation, the weak form of
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the fundamental nuleus beomes

kijxx =(λ + 2G)

∫

V

Ni,xNj,xdV +G

∫

V

Ni,zNj,zdV +G

∫

V

Ni,yNj,ydV (25)

kijxy =λ

∫

V

Ni,yNj,xdV +G

∫

V

Ni,xNj,ydV (26)

In the present paper, when the three-dimensional model has been onsidered in the analysis, 27

node iso-parametri solid elements have been used.

2. Two-dimensional models

The displaement �eld of a two-dimensional model an be written as the produt of the �-

nite element approximation on the referene surfae, Ni(x, y), and an expansion on the thikness

diretion, Fτ (z),

u(x, y, z) = Ni(x, y)Fτ (z)uτi (27)

where Fτ (z) ranges between 1 and the number of terms of the expansion through the thikness.

The fundamental nuleus an be written as:

kτsijxx =(λ+ 2G)

∫

Ω

Ni,xNj,xdΩ dy

∫

h

FτFsdz +G

∫

Ω

NiNjdΩ

∫

h

Fτ,zFs,zdz +

+G

∫

V

Ni,yNj,ydΩ dy

∫

h

FτFsdz (28)

kτsijxy =λ

∫

Ω

Ni,yNj,xdΩ dy

∫

h

FτFsdz +G

∫

Ω

Ni,xNj,ydΩ dy

∫

h

FτFsdz (29)

The integral over volume V an be written as the produt of two ontributions, that is, the integral

over the referene surfae, Ω, and the integral over the thikness, h.

In this work, a 9 node iso-parametri element has been used for the �nite element formulation.

One-dimensional quadrati Lagrange funtions have been used as the thikness funtion, Fτ (z).

More details about these models an be found in the book by Carrera et al. [13℄.
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3. One-dimensional models

One dimensional models are haraterized by an FE approximation on the axis, Ni(y), and an

expansion on the ross-setion, Fτ (x, z),

u(x, y, z) = Ni(y)Fτ (x, z)uτi. (30)

where Fτ (x, z) ranges between 1 and the number of terms of the expansion over the ross-setion.

Equations (14) and (15) an be written as

kτsijxx =(λ+ 2G)

∫

l

NiNjdy

∫

A

Fτ,xFs,xdA+G

∫

l

NiNjdy

∫

A

Fτ,zFs,zdA+

+G

∫

l

Ni,yNj,ydy

∫

A

FτFsdA; (31)

kτsijxy =λ

∫

l

Ni,yNjdy

∫

A

FτFs,xdA+G

∫

l

NiNj,ydy

∫

A

Fτ,xFsdA (32)

The integral over volume V an be split into the integral over the ross-setion, A, and the

integral along the beam axis, y. The models used in the analysis presented in this work have

been derived using 3- and 4-node beam elements. The ross-setional displaement �eld has been

desribed using re�ned kinematis based on two-dimensional quadrati Lagrange funtions, that is,

on the L9 elements. More details on these beam models an be found in the work by Carrera and

Petrolo [18℄.

E. Load vetor evaluation

The formulation of the external loads an be derived using the Priniple of Virtual Displae-

ments, in the same way as in the internal equilibrium equations. If only point loads are onsidered,

the external work an be written as:

δLext = δuT |QP , (33)
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where P is the load vetor applied to point Q. The weak form of Equation 33 an be ahieved by

introduing the displaement interpolation:

δLext = δujΦj(x, y, z)|QP , (34)

Equation 34 an be used to derive the load vetor in the ase of one-, two- or three-dimensional

models:

1D → δLext = δujs Fs(x, z)|QNj(y)|QP
︸ ︷︷ ︸

pjs

; (35)

2D → δLext = δujs Fs(z)|QNj(x, y)|QP
︸ ︷︷ ︸

pjs

; (36)

3D → δLext = δuj Nj(x, y, z)|QP
︸ ︷︷ ︸

pjs

; (37)

where pjs is the fundamental nuleus of the load vetor.

F. Global sti�ness matrix assembly

The fundamental nuleus an generally be written as kijτs
, where i and j are related to the

FEM approximation while τ and s denote the indexes of the model expansion. When a solid model

is onsidered τ and s disappear. The fundamental nuleus kijτs
an be used as a brik of the

onstrution of the global sti�ness matrix. Figure 3 show how the global sti�ness matrix k an be

obtained from the fundamental nulei. The loops on indexes τ and s, one the element and the

indexes i and j have been �xed, provide the matrix at the node level. The loops on i and j provide

the element matrix, and di�erent elements an be assembled adding the sti�ness of the shared

nodes. The proedure used for the assembly of the global sti�ness matrix an be used to assemble

the fundamental nuleus of the load vetor, pjs. More information on the assembly proedure of

strutures generally oriented in spae an be found in the ompanion paper written by Carrera and

Zappino [20℄.
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Node Element Structure

Fundamental nucleus
ij�s 

�,s

i,j

1 M

1 Nn

1 Ne

kxx kxy kxz

kzx kzy kzz

kyx kyy kyz k

Fig. 3 Global sti�ness matrix assembly proedure

Fig. 4 Example of a model built using elements with di�erent kinematis.

G. Variable kinemati model assembly

The oupling of elements with di�erent kinematis may lead to inonsisteny in the displaement

and stress �elds. Figure 4 shows an example of a simple antilevered struture and the FEM model

for the ase in whih this struture is investigated using a variable kinemati approah. Solid, plate

and beam elements are onsidered. A lassial approah, the use of RBE elements, and the present

approah are desribed in detail in this setion.

1. Classial FE model assembly with and without RBE onnetors

The use of elements with di�erent kinematis in the same model an produe loal e�ets that

may lead to inaurate results. Figure 5 shows the qualitative results of the problem shown in Figure

4. In this ase no speial tehniques have been used to ouple the elements with di�erent kinematis,
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Fig. 5 Classial FE model assembly without RBE onnetors.

that is, displaement and rotation equivalene has only been imposed in the onneted nodes. The

struture is subjet to global bending deformation, but loal e�ets may appear at the interfae

between elements with di�erent kinemati. The displaement �eld may not be ontinuous at the

interfae between solid and plate models, beause of the Poisson e�et. The upper part of the solid

element undergoes tration while the bottom part undergoes ompression. This reates restrition

and dilatation of the ross-setion in the x-diretion, respetively. The same behavior annot be

predited by the plate element, beause the kinemati assumptions do not onsider any deformation

through-the-thikness. As a onsequene, σxx appears at the interfae in the solid element, while it

does not appear in the plate element.

A similar situation may appear at the interfae between the plate and the beam element. In this

ase, as shown in Figure 5, the beam model fores the ross-setion to be undeformed and to follow

the rotation predited at the entral node, otherwise, the plate element may predit a deformed

ross-setion. This may lead to a disontinuous displaement �eld and to an inonsisteny in the

shear distribution. In fat, the beam model predits a onstant value, while the plate element may

predit a variable shear stress. Rigid Body Elements may be introdued to fore the kinematis

of the more re�ned model to follow the kinematis of the lower-order model. Figure 6 shows an

example of this situation. When the displaement �eld is ontinuous at eah interfae the stress �eld
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Fig. 6 Classial FE model assembly using Rigid Body Elements.

Fig. 7 Present variable kinemati model.

may show osillations or a loal onentration in the transition zone beause of the new onstraints.

2. Present approah

The re�ned models introdued in the present paper share a ommon feature, that is, they all

have only displaements as the degrees of freedom. This property allows models with di�erent

dimensions to be ombined by imposing the equivalene of the displaements at one or more nodes.

Figure 7 show the variable kinemati model, of the problem shown in Figure 4, obtained using

17



(a) 1D/2D (b) 1D/3D () 2D/3D

Fig. 8 Variable kinemati model assembling: the dashed line (- - -) shows the physial domain

while the solid line (�) denotes the mathematial domain. Cirles (◦) are used to represent

the nodes where the unknowns are de�ned.

the present approah. The apaity of re�ned plate models to predit the thikness deformation

prevents inonsistenies from arising at the solid/plate interfae. The displaement and stress �elds

are also ontinuous at the plate/beam interfae, thanks to the use of higher-order beam models

that allow the ross-setion to warp in- and out-of-plane. Figure 8 shows the general approah used

to assemble the elements, that is, a variable kinemati model assembling. Figure 8a shows how

a one-dimensional model an be oupled with a two-dimensional element. Figure 8b shows how a

one-dimensional model an be oupled with a three-dimensional element. Finally, a two-dimensional

model an be oupled with a solid element as shown in Figure 8.

III. Numerial results

This setion presents some numerial results obtained using the previously introdued variable

kinemati model. The �rst part is devoted to the assessment of the numerial approah. A simple

antilevered beam has been onsidered, and one-, two- and three-dimensional models have been used

to build di�erent numerial models. The seond sample onerns the stati analysis of a reinfored

panel, and, the third ase onsiders the stati analysis of a large part of an airraft struture inluding

a part of the fuselage and the wing struture. The results have been ompared with those from

literature, when available, while, a referene solution has been reated for the other ases using the

ommerial FEM MSC Nastran

R©
ode.
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Fig. 9 Referene system and geometry of the antilevered beam.

A. Assessment of the variable kinemati model

This setion onsiders a antilevered beam subjeted to a bending load. The geometry of the

struture, is shown in Figure 9. The beam has a length, L, equal to 8 m. The ross-setional

dimensions are a = 0.5 m and b = 1.5 m. The struture is lamped at y = 0 and a onentrated

load, P = 1000 N , is applied at the free end at the a = 0 and b = 0 points. An isotropi material is

used, and Young's modulus, E, is onsidered equal to 70 GPa while the Poisson ratio, ν, is equal to

0.35. The problem has been solved using di�erent numerial models. Three models, with onstant

kinematis have been onsidered. The �rst model, alled 1D, was built using only one-dimensional

elements, in this ase, 11 B4 elements were used along the beam axis while 6 L9 elements have been

used to desribe the ross-setional kinematis. Another model, named 2D, was built using 126

Q9 (a 21× 6 element mesh) quadrati plate elements, and a quadrati approximation was assumed

through the thikness. Finally, a fully three-dimensional model, alled 3D, was onsidered. The

solid model was built using 126 (a 21× 6× 1 elements mesh) quadrati hexaedronal elements.

Four variable kinemati models have also been onsidered. The details of these models are

reported in Figure 10. Figure 10a shows the model in whih one- and two-dimensional elements

were used, that is the 1D/2D model, in whih 66 Q9 plate elements and 6 B4 beam elements were

used. The model shown in Figure 10b, model 1D/3D, was built using 66 H27 solid elements and

6 B4 beam elements. Model 2D/3D, shown in Figure 10, was built using 66 H27 solid elements

and 66 Q9 plate elements. Finally, a model that uses all three elements is presented as model

1D/2D/3D, see Figure 10d. In this ase the model inludes, 36 H27 elements, 36 Q9 elements and

19



z

x

y

(a) 2D/1D Model

y

x

z

(b) 3D/1D Model

y

x

z

() 3D/2D Model

y

x

z

(d) 3D/2D/1D Model

Fig. 10 Details of the variable kinemati models.

Model uz × 105 σyy τyz
m Pa Pa

1D 1.767 37316 2064

2D 1.767 37251 2055

3D 1.767 37251 2055

3D/1D 1.767 37279 2065

3D/2D 1.767 37279 2065

2D/1D 1.767 37279 2065

3D/2D/1D 1.767 37279 2065

Song and Hodges [41℄ 1.776 37310 2056

Euler-Bernulli 1.734 37333 -

Timoshenko 1.782 37333 1333

Table 1 Vertial displaement, normal stress and shear stress evaluated with di�erent models.

6 B4 elements.

The obtained results have been ompared with those obtained using lassial models, Euler-

Bernulli and Timoshenko beam models and with respet to the results presented by Song and

Hodges [41℄. Table 1 reports the numerial results obtained using the previously introdued models.

The vertial displaement, uz, was evaluated at the tip in the point at x = 0 and z = 0. The axial

stress,σyy, was evaluated at y = 1 m, x = 0 and z = −b/2 while the shear stress,τyz was evaluated

at y = 1 m, x = 0 and z = 0. The results show that, as expeted, all the onsidered models are
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Fig. 11 Axial and shear stress pro�les evaluated along the beam height at y = 1 and x = 0.
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Fig. 12 Axial and shear stress distribution evaluated along the beam axis.

able to provide aurate results. The use of re�ned beam models allows an aurate value of shear

stress to be obtained, and this result annot be obtained using Euler-Bernulli or Timoshenko beam

models. Figure 11 reports the stress pro�les evaluated along the z oordinate at y = 1 and at x = 0.

The axial stress, σyy, is reported in Figure 11a, while the shear stress σyz , is reported in Figure

11b. All the onsidered models are able to aurately desribe the stress distribution and are able

to provide a three-dimensional result. The axial distribution of the normal stress, σyy, is reported

in Figure 12a. All the models are able to desribe the linear variation of σyy and all the models an

predit the end-e�et due to the onstraint. The stress distribution is not a�eted by the kinemati

variation. The same onlusion an be drawn when shear stress is onsidered, see Figure 12b. Only

at the tip of the beam, where the load is applied, it is possible to see a slight di�erene in the results

due to loal e�ets. Again in the ase of shear stress, the kinemati variation does not produe any

signi�ant e�et.
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Fig. 13 Details of the variable kinemati models obtained using RBE elements.

B. Comparison with lassial FEM models

The results obtained in the previous setion have been ompared with those obtained using the

lassial tool available in the ommerial FEM software MSC Nastran

R©
. Figure 13 shows the three

onsidered models, all of whih exploit rigid body elements to onnet the elements with di�erent

kinematis. Figure 13a shows a model reated using beam and plate elements. The model shown

in Figure 13b uses solid and beam elements while the model shown in 13 was built using solid and

plate elements.

The axial stress, σyy , and the shear stress, τyz, evaluated along the beam axis are reported in

Figure 14. The results are ompared with those obtained using the present 3D/2D/1D model. The

qualitative distribution of the axial stress, see Figure 14a, is desribed properly by all the models

although the models built using RBE elements all show loal e�ets at the interfae, due to the

jump in kinematis, while the present 3D/2D/1D model does not su�er from this phenomenon.

When shear stress is onsidered, see Figure 14b, the advantages of the present 3D/2D/1D models

are even more evident. The use of the present approah prevents loal e�ets from arising at the

interfae and the shear stress is evaluated orretly, even in the portion of the struture where beams

are used. The Timoshenko beam model, whih is adopted in the ommerial software, assumes a
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Fig. 14 Axial and shear stress pro�les evaluated along the beam height at y = 1 and x = 0.

onstant shear distribution over the ross-setion that produes an inaurate result.

Figure 15 shows the shear stress distributions through the thikness of the beam just before

and after the models interfae. The 2D/1D model is shown in Figure 15a. The results show that

the 2D elements overestimate the stress value while the beam elements provide a onstant stress

value, in agreement with the Timoshenko model, that is, the stress ontinuity is not respeted.

However, the results obtained using the present model math perfetly at the interfae and are in

agreement with the referene solution obtained using a full 3D model. Figure 15b show the shear

stress distributions for the 3D/1D model. As in the previous ase, the lassial models are not able

to provide a ontinuous stress �eld. The solution obtained with the 3D/2D Nastran model, see 15,

is the most aurate but it still shows a stress disontinuity while the present 3D/2D model provides

a ontinuous stress �eld.

These �ndings highlight the limits of the lassial approahes when elements with di�erent

kinematis have to be onneted. The present variable kinemati models may be used to overome

these limitations and to provide aurate results, without the need of additional elements, suh as

the RBE

C. Reinfored panel analysis

The stati analysis of a reinfored panel has been onsidered in this setion. Figure 16 shows

the geometry of the panel and the dimensions of the stringers. The square panel has edges of

length L = 1 m, while the skin is 0.003 m thik. The panel is rounded o� by a retangular
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Fig. 15 τyz pro�les at the models interfae, x = 0 and y = L/2.
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Fig. 16 Reinfored panel geometry

reinforement and has two stringers in the middle, one in the x diretion and the other in the y

diretion. The dimensions of the ross-setion of the reinforements are a = 0.03 m and b = 0.01

m. An isotropi material with an elasti modulus of E = 71.7 GPa and the Poisson ratio ν = 0.3,

has been onsidered. The struture is lamped along the four edges. A point load has been applied
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Fig. 17 Reinfored panel deformed on�guration.

at the top of the panel in the entral point, and the fore has a magnitude of 1000N in the negative

z−diretion. Figure 16 shows the harateristis of the variable kinemati model. The plate elements

are used for the skin, and two non-uniform meshes are onsidered: the model named MESH1 has a

7× 7 elements mesh, while the model named MESH2 uses a mesh of 11× 11 elements. A quadrati

expansion is used through the thikness of the panel. Quadrati beam elements have been used

for the reinforements, and an L9 element is used over the ross-setion. The number of beam

elements is related to the skin mesh; the larger the number of elements used over the skin, the

larger the number of elements used along the beam axis in order to ensure displaements ontinuity.

A 27-node solid element is used to onnet the reinforements to the skin at the ross-points. The

results have been ompared with those of a solid model, solved using the ommerial FEM MSC

Nastran

R©
ode. Figure 17 shows the deformed on�guration of the panel, from the bottom point of

view. Details of the displaements are reported in Figure 18, where the vertial displaement of the

panel, evaluated along the entral point of the reinforement in the y-diretion, is depited. The

results show that both of the onsidered models are able to reprodue the results obtained using

the full three-dimensional model. The stress �eld has also been investigated. The axial stress is

reported in Figure 19. The results obtained using the variable kinemati models are in agreement

with the referene solution. Two stress onentrations an be seen lose to the lamped point and

in the entral part where the stringers are onneted. The disontinuity of the stress is due to

the post-proessing tehniques that were adopted. The present paper derives the stresses from the

strains using Hook's law in eah point, while ommerial odes usually average the values obtained
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Fig. 18 Vertial displaement of the panel evaluated along the entral point of the reinfore-

ment in the y-diretion.
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Fig. 19 Axial stress evaluated at the stringer bottom at x = 0.5.

in the Gauss points to ensure the ontinuity. Figure 20 shows the transversal shear stress evaluated

along the entral point of the reinforement in the y-diretion. The small osillations in the shear

stress value are due to the shear loking orretion approah, in this ase MITC approah, these

an be redued re�ning the mesh as shown in the work by Carrera et al. [14℄. The results are lose

to the referene solution but they show some small osillations. A higher number of beam elements

would be required to inrease the auray. Figure 21 shows the von Mises stress �eld of the whole

struture. The results show the stress onentrations around the reinforements that are subjet to

the bending load. The higher soliitations are due to the axial stress, that is, the maximum von
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Fig. 20 Shear stress evaluated along the entral point of the reinforement in the y-diretion.

Fig. 21 von Mises stress overview evaluated using the MESH2 model (on the left) and the

referene three-dimensional model (on the right).

Mises stress an be found in the bottom part of the stringers that has the maximum values of σyy.

D. Airraft struture analysis

This setion presents the analysis of a typial airraft struture, performed using the previously

presented variable kinemati model. The struture is shown in Figure 22. It represents a part of a

fuselage and inludes the wing onnetion. Ribs, longerons and a thin skin are present in the same

struture. The main dimensions of the struture are reported in Table 2. The entire struture is

onsidered to have been built in aluminum alloy, with a Young modulus equal to 71.7 MPa and a

Poisson ratio equal to 0.3. The strutures is onsidered lamped the middle plane of the fuselage,
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Dimensions [m]

a= 3.000 d= 0.040 g = 0.224

b= 3.160 e= 1.080 h = 0.080

= 6.000 f= 0.010 i = 0.035

Table 2 Geometrial dimensions of the airraft omponent.

F1

F2

F1F2

Fig. 22 Airraft struture onsidered.

x = 0 m, and at both fuselage extremities, y = 0 m and y = 3.160 m. Two loads have been

plaed at the wing tip, as shown in Figure 22; F1 is equal to 5000 N while F2 has a magnitude of

2000 N . The whole fuselage struture has been modeled using one- and two-dimensional elements.

The fuselage is onsidered as a beam with a variable ross-setion in order to onsider the e�ets

of the ribs. Figure 23 shows some details of the ross-setional mesh used in the models, 23 L9

elements have been used in the irumferential diretion while 1 L9 element has been used through

the thikness of the skin and of the ribs. 3 L9 elements have been used for the fuselage dek. The

wing longerons are also onsidered as beams. The upper and lower skins of the wing are onsidered

as plate elements. Two models, derived using the present approah, have been onsidered: the �rst,

referred to as the present model and presented in Figure 24a, has a oarse mesh, while the present

re�ned model, see Figure 24b, has a more re�ned mesh and therefore a larger number of DOFs. The

results have been ompared with a solid model derived using the ommerial MSC Nastran

R©
ode.

28



Fig. 23 Details of the ross-setional mesh, both the skin and the ribs have been modeled

using L9 elements.

(a) Present model (b) Present re�ned model

Fig. 24 Details of the two models of the airraft struture.

The displaement �eld evaluated using the present re�ned model is presented in Figure 25. The

loads reate both bending and torsional deformation of the wing. Details of the displaement �eld

are shown in Figures 26 and 27. Figure 26 shows the vertial displaement, evaluated at the entral

point of the frontal wing longeron. The results of both of the present models appear to be aurate,

ompared with those of the referene model. The same behavior an be observed in Figure 27, where

the radial displaement, evaluated at the outer radius of the seond rib, is shown. Again in this

ase, the results of both the oarse and the re�ned present models are in agreement with those from

the referene solution. The analysis of the displaement �eld shows that a oarse mesh is enough to

reah an aurate solution. The stress �eld has also been analyzed. Figure 28 shows the axial stress

evaluated at the top of the frontal wing longeron. The results show that the present model is able
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Fig. 25 Three-dimensional displaement �eld.
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Fig. 26 Vertial displaement evaluated at the enter of the frontal wing longeron.

to desribe the solution aurately, but only when a re�ned mesh is used. The oarse mesh, whih

onsiders only two beam elements along the longheron, athes the general distribution, but an

introdue a large error loally. Figure 29 shows the transversal shear stress evaluated at the enter

of the frontal wing longeron. The results obtained using the re�ned mesh are globally aurate, but

they show some small osillations. Finally, the irumferential stress evaluated at the outer radius

of the seond rib is presented in Figure 30. The results obtained using the present models are able
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Fig. 27 Radial displaement evaluated at the outer radius of the seond rib.
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Fig. 28 Assial stress evaluated at the top of the frontal wing longeron.

to aurately desribe the stress distribution. A perfet mathing an be seen along almost all of the

half irumferene. Some small disrepanies appear lose to the fuselage/wing onnetion where,

a omplex three-dimensional stress �eld, is present. The use of three dimensional elements in this

part ould lead to a perfet mathing. From the results, it is possible to see that the model that uses

a oarse mesh is able to provide aurate results in terms of displaements but not in terms of stress

�eld. An aurate desription of the stress �eld an only be ahieved using a more re�ned mesh. In
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Fig. 29 Transversal shear stress evaluated at the entre of the frontal wing longeron.
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Fig. 30 Cirumferential stress distribution evaluated at the outer radius of the seond rib.

this ase, the stresses are predited aurately in both the wing and the fuselage strutures.

IV. Conlusions

The present work presents the use of a re�ned variable kinemati model for the analysis of

omplex strutures suh as reinfored thin-walled strutures. The Uni�ed Carrera Formulation has

been used to derive re�ned one-, two- and three-dimensional models in ompat form. The use of
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a displaement-based kinemati approximation has allowed models with di�erent kinematis to be

onneted in order to obtain a variable kinemati model. Di�erent strutures have been onsidered

in order to highlight the apabilities of the present approah. The �ndings show that the present

model overomes the limitations introdued by lassial FEM models. It provides a muh more

aurate desription of the interfae between elements with di�erent kinematis. Suh auray

annot be reahed using lassial FEM models, even if RBE elements are adopted.

The results of the analysis of a simple beam struture have shown the auray of the present model.

The results are not a�eted by the transition between di�erent kinematis, and ontinuity of the

displaement and stress �elds is guaranteed. The same auray has not been reahed using lassial

models, whih showed loal stress osillations due to the kinemati variation.

The model was then used to analyses a reinfored panel. In this ase, the variable kinemati model

was used to represent a omplex struture. The apabilities of the present approah allowed the

geometry of the panel to be represented aurately, and in this way the auray of the three-

dimensional models was preserved where required, e.g. at the stringer intersetion, while the beam

model properties were exploited in the reinforements.

Finally, a omplex airraft struture has been onsidered. The obtained results show how the present

approah an be used to investigate omplex strutures. Auray of the results has been shown,

that is, the use of re�ned one- and two-dimensional models provides a three-dimensional stress �eld.

In short, the present approah allows re�ned strutural models with di�erent kinematis to be joined

together. The models obtained using this approah preserve the auray of the re�ned strutural

models, but also make it possible to study omplex strutures, whih usually requires lassial FEM

models.
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