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A Multi-Dimensional Model for the Stress Analysis

of Reinfor
ed Shell Stru
tures

Zappino Enri
o

1

and Carrera Erasmo

2

MUL2
Team, Polite
ni
o di Torino, Corso Du
a degli Abruzzi, 24, 10129 Torino, Italy.

The present paper proposes an approa
h that 
an be used to mix one-, two- and three-

dimensional re�ned models, derived using the Carrera Uni�ed Formulation, to build

a variable kinemati
 model that is able to deal with the stati
 analysis of 
omplex

thin-walled stru
tures. The adopted formulation, whi
h only has displa
ements as

degrees of freedom, allows these models to easily be 
onne
ted to ea
h other, that is,

a variable kinemati
s model 
an be derived without ad ho
 te
hniques. The re�ned

models used in the present paper ensure high a

ura
y and low 
omputational 
osts.

The displa
ement 
ontinuity at the interfa
e is guaranteed by the formulation, and no

stress singularities appear in the kinemati
 model transition. The Mixed Interpolation

Tensorial Component approa
h has been used, in a uni�ed sense, for one-, two- and

three-dimensional models to avoid the shear lo
king e�e
t. The a

ura
y of the present

approa
h has been 
on�rmed by 
omparing the results with those from literature and

with those obtained using 
ommer
ial Finite Element 
odes. The stati
 response of a

reinfor
ed panel and a se
tion of an air
raft fuselage have been investigated to show

the 
apabilities of the present approa
h. The use of re�ned stru
tural models makes

it possible to over
ome the limits of 
lassi
al stru
tural models, and at the same time,

to redu
e the 
omputational 
osts.
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I. Introdu
tion

The development of e�
ient numeri
al models for stru
tural analysis has the aim of providing

a

urate models with low 
omputational 
osts. When thin-walled stru
tures are 
onsidered, the

stru
ture 
an be seen as an assembly of di�erent 
omponents: panels, ribs and longerons. Ea
h of

these 
omponents undergoes to di�erent loads; panels are usually subje
t to shear stresses while

longerons and ribs undergo to normal stresses. The for
e method, proposed by Argiris and Kelsey

[2℄, exploited these assumptions to provide a solution to the elasti
 problem. The design approa
h

introdu
ed by Bruhn [7℄ was based on this method. The need to deal with 
omplex geometries

and the development of high-performan
e 
omputers led to the introdu
tion of the Finite Element

Method, FEM [45℄. Dozens of books are available on this method and the one by Zienkiewi
s

deserves mentioning [49℄. The FEM allows ea
h stru
tural 
omponent to be dis
retized into a

�nite number of elementary elements, and ea
h of these 
an be analyzed using one- (beams/rods),

two- (plates/shells) or three- (solids) dimensional elements. The kinemati
 assumptions of ea
h

element are derived from 
lassi
al stru
tural theories, su
h as those proposed by Euler [26℄ or

Timoshenko [44℄ for the 
ase of beams, or by Love [32℄, Reissner [38℄ and Mindlin [35℄ for the 
ase

of plates/shells. Three-dimensional models 
an be used to dire
tly solve the equation of elasti
ity

in their 
omplete formulation, as shown by Argiris [1℄. The a

ura
y of the results depends on

the number of elements used to dis
retize the domain and on their kinemati
 assumptions, whi
h

means, an a

ura
y improvement requires an in
rease in 
omputational 
ost. The use of solid

models is obviously the best 
hoi
e to obtain a

urate results, but when thin-walled stru
tures

are 
onsidered, the use of three-dimensional elements requires a huge 
omputational 
ost, that is,

a di�erent approa
h must be used. When reinfor
ed thin-walled stru
tures are 
onsidered, some

approximate methods 
an be use. As an example, the reinfor
ements 
an be 
onsidered smeared

over the plate; these approa
hes are presented in the works by Luan et al. [33℄ and Edalat et al.

[24℄ but, in this 
ase, the results do not provide detailed information about the behavior of ea
h


omponent of the stru
ture. More detailed models have been presented by Mustafa and Ali [37℄ and

Edward and Samer [25℄, who introdu
ed some ad ho
 �nite element models that are able to deal

with reinfor
ed stru
tures. The use of one-, two- and three- dimensional elements in the same model
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Fig. 1 Displa
ement dis
ontinuities in a FEM model build using plate and beam elements.


an lead to a more e�
ient approa
h, whi
h is able to provide a

urate results with an a

eptable

number of degrees of freedom, DOFs. Classi
al FEM models approximate the kinemati
s using

three displa
ements and three rotations at ea
h node. This assumption is used for one- and two-

dimensional elements, while three-dimensional elements only 
onsider the three displa
ements. Even

though, the unknowns of ea
h �nite element are expressed in a 
ommon manner, the 
oupling of these

models 
ould lead to dis
ontinuities in the displa
ement �eld, as shown in Figure 1. Appropriate


oupling te
hniques should be introdu
ed to ensure an a

urate solution. Surana [42, 43℄ proposed

an approa
h to 
ouple three and two-dimensional elements. The 
onne
tion between solid and shell

elements was also investigated by Liao et al. [31℄ and Cofer and Will [21℄. The work by Gmür and

Kauten [28℄ deals with the 
onne
tion of solid isoparametri
 and super-parametri
 shell elements,

while the 
onne
tion between one- and three-dimensional elements was investigated by Gmür and

S
horderet [29℄. M
Cune et al. [34℄ and Monaghan et al. [36℄ introdu
ed a mixed-dimensional


oupling s
heme, based on geometri
al assumptions, while Garusi and Tralli [27℄ used a transition

element to develop solid-to-beam and plate-to-beam 
onne
tions. Song and Hodges [41℄ used an

asymptoti
 approa
h to join beam and solid elements. A variational approa
h that is able to join

in
ompatible kinemati
s was introdu
ed by Blan
o et al. [6℄. Dávila [23℄ proposed a penalty method

to join solid and shell elements, while Shim et al. [40℄ used multi-point 
onstraint equations to

for
e the 
ongruen
e of the displa
ements at the interfa
e of elements with di�erent kinemati
s.

Robinson et al. [39℄ proposed an automated approa
h for the development of mixed dimensional

models starting from a Computer-Aided Design, CAD, model. Another te
hnique used to derive
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Fig. 2 Displa
ement dis
ontinuities in a FEM model build using plate, beam and rigid body

elements.

variable kinemati
 models is the Arlequin method whi
h was �rst proposed by Ben Dhia [3℄, Ben

Dhia and Rateau [4℄. The Arlequin method 
ouples two models and uses the overlapping zone

where the transition is imposed. Classi
al FEM tools exploit spe
ial elements, the so-
alled Rigid

Body Elements (RBE), see Figure 2, to 
onne
t a single node to multiple nodes in order to avoid

dis
ontinuities in the displa
ement �eld. This approa
h may lead to singularities in the stress �eld

be
ause, referring to the example in Figure 2, the plate has to follow the beam kinemati
s at the

interfa
e. This produ
es a 
onstraint on the plate element that may 
reate stress 
on
entrations.

The limitations introdu
ed by 
lassi
al stru
tural models, su
h as the rigid se
tion assumption in

the 
ase of beam models, 
an be over
ome by re�ning the kinemati
 model, as shown in the review

of advan
ed beam models presented by Carrera et al. [17℄. When a re�ned formulation is used, the

assumption of three displa
ements and three rotation in ea
h node is not veri�ed, in other words,

the 
oupling between models with di�erent kinemati
s be
omes more 
omplex. Hoseini and Hodges

[30℄ proposed a te
hnique to 
ouple a beam mode, derived using a variable asymptoti
 approa
h

[47, 48℄, and a solid element. The introdu
tion of the Carrera Uni�ed Formulation (CUF), whi
h

was proposed by the �rst author in Carrera [8, 9, 10℄ and whi
h has re
ently been published in three

books, see Carrera et al. [11, 13, 15℄, provides a uni�ed approa
h that is able to derive variable

kinemati
 models. CUF permits the equations of any re�ned 1D, 2D or 3D theory to be expressed

in terms of a few fundamental nu
lei, FNs, whose forms do not formally depend on the assumptions

(type of fun
tions or order) that have been used to des
ribe the displa
ement �eld over the 
ross-

se
tion (in one-dimensional models) and through the thi
kness (in two-dimensional models). Bis
ani
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et al. [5℄ proposed using the Arlequin method to 
ouple variable kinemati
s elements derived using

CUF. Carrera et al. [16℄ used the Lagrange multipliers to 
onne
t beam models derived with the

same tool. A �rst attempt to 
onne
t stru
tural elements with di�erent kinemati
s, without ad

ho
 te
hniques, was �rstly presented by Carrera and Zappino [19℄. Subsequently the work proposed

by Carrera and Zappino [20℄, a 
ompanion paper to the present manus
ript, presented a general

approa
h to build variable kinemati
 models, in
luding one-, two- and three-dimensional elements,

for the free-vibration analysis of 
omplex stru
tures. The present work exploits the models presented

in the 
ompanion paper [20℄ and extends that approa
h to the stati
 analysis of 
omplex aeronauti
al

stru
tures.

Be
ause the stati
 analysis requires an a

urate evaluation of the stress �eld, the shear lo
king


orre
tion has been improved using the Mixed Interpolation Tensorial Component approa
h, MITC.

This approa
h was extended to CUF two-dimensional models by Carrera et al. [12℄ and to one-

dimensional models by Carrera et al. [14℄. The theoreti
al approa
h has been introdu
ed in the �rst

part of the present work, where a uni�ed formulation for any kinemati
 model has been presented.

A detailed 
omparison with 
lassi
al FEM assembly approa
hes has been made to demonstrate the

limits of these methods and how a higher a

ura
y solution 
an easily be obtained using re�ned

models, su
h as the present ones. Several numeri
al results have been dis
ussed and 
ompared with

those token from literature and those obtained using 
ommer
ial FEM tools.

II. Variable kinemati
 �nite elements

This se
tion presents the method used to derive a uni�ed and 
ompa
t formulation for a 
lass

of �nite elements with variable kinemati
s. The governing equations have been derived using the

theory of elasti
ity while the Carrera Uni�ed Formulation has been used to derive re�ned models in

a 
ompa
t and uni�ed form. The numeri
al models have been exhaustively presented in detail in the

book by Carrera et al. [13℄. In this manus
ript, the key-features have been reported to show how,

the fundamental nu
leus introdu
ed by the Carrera Uni�ed Formulation, is a dire
t 
onsequen
e of

the 
lassi
al equilibrium equations.
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A. Preliminaries

The fundamental equations and the nomen
lature used in the following pages are introdu
ed in

this se
tion. The displa
ement ve
tor is denoted as follows:

u

T = (uxl
, uyl

, uzl) (1)

where ux, uy and uz are the three 
omponents of the displa
ement ve
tor expressed in the lo
al

referen
e system.

The strain and stress ve
tors are de�ned as:

εT = (εxx, εyy, εzz, εxy, εxz, εyz), (2)

σT = (σxx, σyy, σzz , σxy, σxz, σyz). (3)

The relation between the strains and displa
ements 
an be written using the geometri
al equation:

ε = bu, (4)

where b is a di�erential operator, and its expli
it form 
an be found in Carrera et al. [13℄. Hooke's

law permits the relation between stresses and strains to be derived:

σ = Cε, (5)

whereC is the sti�ness 
oe�
ients matrix of the material. When an isotropi
 material is 
onsidered,
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matrix C 
an be written using Lamé's 
oe�
ients:

C =























λ+ 2G λ λ 0 0 0

λ λ+ 2G λ 0 0 0

λ λ λ+ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G























(6)

where

λ =
Eν

(1 + ν)(1 − 2ν)
, G =

E

2(1 + ν)
. (7)

where the symbol E denotes the Young's modulus while ν is Poisson's ratio.

B. Strong form of the equilibrium equation

The stati
 equilibrium of a three-dimensional body subje
ted to a system of for
es 
an be written

for the three variations δux, δuy and δuz:

δux :
∂σxx

∂x
+

∂σxz

∂z
+

∂σxy

∂y
= gx

δuy :
∂σyy

∂y
+

∂σyz

∂z
+

∂σyx

∂x
= gy (8)

δuz :
∂σzz

∂z
+

∂σzx

∂x
+

∂σzy

∂y
= gz

where gx, gy, and gz are the body for
es. These equations, whi
h are dis
ussed in detail in any

book regarding the Theory of elasti
ity, 
an be derived via kinemati
 assumptions, see da Silva [22℄,

as well as by using the Prin
iple of the Virtual Displa
ements, as shown by Washizu [46℄ and by

Carrera et al. [13℄. The solution of the elasti
 problem requires a stress �eld that is able to ful�ll

Equation 8 to be de�ned.

The equilibrium equation, here written in stress terms, 
an also be expressed in displa
ements

7



terms. Equation 8 
an be written in 
ompa
t form as:

δu : bTσ = g (9)

Using Equation 5, the equilibrium equation assume the form:

δu : bTCε = g. (10)

Finally, Equations 4 allows the equilibrium equation to be written in terms of displa
ements:

δu : bTCb
︸ ︷︷ ︸

k

u = g. (11)

Matrix k is a 3× 3 matrix, and it 
ontains 9 di�erential operators,

k =











kxx kxy kxz

kyx kyy kyz

kzx kzy kzz











(12)

whi
h, in expli
it form, be
ome:

kxx =(λ+ 2G) ∂x∂x +G ∂y∂y +G ∂z∂z

kxy =(λ+G) ∂x∂y

kxz =(λ+G) ∂x∂z

kyx =(λ+G) ∂y∂x

kyy =(λ+ 2G) ∂y∂y +G ∂x∂x +G ∂z∂z (13)

kyz =(λ+G) ∂y∂z

kzx =(λ+G) ∂z∂x

kzy =(λ+G) ∂z∂y

kzz =(λ+ 2G) ∂z∂z +G ∂x∂x +G ∂y∂y

8



The symbol ∂x means a partial derivative with respe
t to x. The expli
it form of the equilibrium

equations, in terms of displa
ements, 
an be found in the book by Carrera et al. [13℄. Although

there are 9 terms in matrix k, only 2 terms have a di�erent stru
ture. Let us 
onsider the following

two terms,

kxx =+ (λ+ 2G) ∂x∂x + λ ∂z∂z + λ ∂y∂y (14)

kxy =+ λ ∂x∂y +G ∂y∂x (15)

It is evident that the other 
omponents of matrix k 
an be obtained in a similar form as kxx and kxy.

The elements on the diagonal have the form of kxx, and the terms kyy and kzz therefore have the

same form as kxx but with the indi
es permuted. The elements outside the diagonal 
ome from a

permutation of the kxy indi
es, and kxz, kyz, kyx, kzx and kzy 
an in fa
t be obtained by permuting

the indi
es in kxy.

C. Weak form of the equilibrium equation

When the equilibrium equations are written in term of displa
ements, see Equation 11, the

solution of the elasti
 problem requires a displa
ement �eld to be de�ned that is able to ful�ll these

equations at ea
h point of volume V of the body. The 
losed form solution of these equations 
an

only be obtained for simple geometries and boundary 
onditions. When 
omplex problems have

to be investigated, it is ne
essary to use the weak form. In a generi
 three-dimensional 
ase the

following 
an be written:

u(x, y, z) = Φi(x, y, z)ui, (16)

where Φi(x, y, z) is a generi
 set of interpolating shape fun
tions, while ui are the unknown 
oe�-


ients. When, as is usual, Lagrange fun
tions are used ui are the values of the displa
ements at the

nodes.

9



The virtual variation of the displa
ements 
an be denoted as:

δu(x, y, z) = Φj(x, y, z)δuj. (17)

The use of indexes i and j denotes summation. Using the prin
iple of virtual work, it is possible to

write:

δLint = δLext (18)

where Lint denotes the internal work while Lext stands for the external work. δ is the virtual

variation. The expli
it form of the internal work is obtained using the equations introdu
ed in the

previous se
tions:

δLint =

∫

V

δεTσ dV (19)

If the generi
 displa
ement �eld reported in Equation 16 is 
onsidered and, the stress and strains

are expressed a

ording to Equations 4 and 5, the internal work be
omes:

δLint = δuT
j

(∫

V

Φjb
TCbΦidV

)

︸ ︷︷ ︸

kij

ui = δuT
j k

ijui (20)

kij
is the fundamental nu
leus of the sti�ness matrix, it is a 3× 3 matrix and it has a �xed form.

It is possible to 
ompare the �rst two terms of the fundamental nu
leus obtained in strong

form, k, reported in Equation 15, and the �rst two terms of the fundamental nu
leus, kij
, derived

in Equation 20. The �rst term assumes the form:

kxx = +(λ+ 2G) ∂x ∂x +G ∂y ∂y +G ∂z ∂z

kijxx = +(λ+ 2G)

∫

V

Φi,xΦj,xdV +G

∫

V

Φi,yΦj,ydV +G

∫

V

Φi,zΦj,zdV

(21)

10



while the se
ond 
an be written as:

kxy = +λ ∂x ∂y + G ∂y ∂x

kijxy = +λ

∫

V

Φj,xΦi,ydV + G

∫

V

Φj,yΦi,xdV

(22)

Equations 21 and 22 show how the fundamental nu
leus, in weak form, is 
losely related to the

strong form. Both the weak and strong forms are used to write an equilibrium equation, but only

the former is satis�ed at ea
h point of volume V , while the latter is written in integral form and

equilibrium is satis�ed for mean quantities that originate from an integral of V .

D. Fundamental nu
leus for 1D, 2D and 3D elements

The 
hoi
e of the interpolating fun
tions Φi(x, y, z) allows any kinemati
 assumption to be used

to derive a stru
tural model. One-, two- and three-dimensional elements are 
onsidered in 
lassi
al

Finite Element formulations. The next se
tions have the purpose of introdu
ing these models in the

form of the fundamental nu
leus. The use of the fundamental nu
leus will be used to easily introdu
e

re�ned kinemati
 models that are able to over
ome the limits of 
lassi
al stru
tural models.

1. Three-dimensional models

In the 
ase of three dimensional models, the displa
ement �eld is approximated by only using

the shape fun
tions introdu
ed by the FEM. As a result,

u(x, y, z) = Φi(x, y, z)ui = Ni(x, y, z)ui, (23)

δu(x, y, z) = Φj(x, y, z)δuj = Nj(x, y, z)δuj, (24)

where i ranges between 1 and the number of the expansion terms. If Lagrange fun
tions are used, i

ranges between 1 and the number of nodes of the element. In 
ompa
t notation, the weak form of

11



the fundamental nu
leus be
omes

kijxx =(λ + 2G)

∫

V

Ni,xNj,xdV +G

∫

V

Ni,zNj,zdV +G

∫

V

Ni,yNj,ydV (25)

kijxy =λ

∫

V

Ni,yNj,xdV +G

∫

V

Ni,xNj,ydV (26)

In the present paper, when the three-dimensional model has been 
onsidered in the analysis, 27

node iso-parametri
 solid elements have been used.

2. Two-dimensional models

The displa
ement �eld of a two-dimensional model 
an be written as the produ
t of the �-

nite element approximation on the referen
e surfa
e, Ni(x, y), and an expansion on the thi
kness

dire
tion, Fτ (z),

u(x, y, z) = Ni(x, y)Fτ (z)uτi (27)

where Fτ (z) ranges between 1 and the number of terms of the expansion through the thi
kness.

The fundamental nu
leus 
an be written as:

kτsijxx =(λ+ 2G)

∫

Ω

Ni,xNj,xdΩ dy

∫

h

FτFsdz +G

∫

Ω

NiNjdΩ

∫

h

Fτ,zFs,zdz +

+G

∫

V

Ni,yNj,ydΩ dy

∫

h

FτFsdz (28)

kτsijxy =λ

∫

Ω

Ni,yNj,xdΩ dy

∫

h

FτFsdz +G

∫

Ω

Ni,xNj,ydΩ dy

∫

h

FτFsdz (29)

The integral over volume V 
an be written as the produ
t of two 
ontributions, that is, the integral

over the referen
e surfa
e, Ω, and the integral over the thi
kness, h.

In this work, a 9 node iso-parametri
 element has been used for the �nite element formulation.

One-dimensional quadrati
 Lagrange fun
tions have been used as the thi
kness fun
tion, Fτ (z).

More details about these models 
an be found in the book by Carrera et al. [13℄.
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3. One-dimensional models

One dimensional models are 
hara
terized by an FE approximation on the axis, Ni(y), and an

expansion on the 
ross-se
tion, Fτ (x, z),

u(x, y, z) = Ni(y)Fτ (x, z)uτi. (30)

where Fτ (x, z) ranges between 1 and the number of terms of the expansion over the 
ross-se
tion.

Equations (14) and (15) 
an be written as

kτsijxx =(λ+ 2G)

∫

l

NiNjdy

∫

A

Fτ,xFs,xdA+G

∫

l

NiNjdy

∫

A

Fτ,zFs,zdA+

+G

∫

l

Ni,yNj,ydy

∫

A

FτFsdA; (31)

kτsijxy =λ

∫

l

Ni,yNjdy

∫

A

FτFs,xdA+G

∫

l

NiNj,ydy

∫

A

Fτ,xFsdA (32)

The integral over volume V 
an be split into the integral over the 
ross-se
tion, A, and the

integral along the beam axis, y. The models used in the analysis presented in this work have

been derived using 3- and 4-node beam elements. The 
ross-se
tional displa
ement �eld has been

des
ribed using re�ned kinemati
s based on two-dimensional quadrati
 Lagrange fun
tions, that is,

on the L9 elements. More details on these beam models 
an be found in the work by Carrera and

Petrolo [18℄.

E. Load ve
tor evaluation

The formulation of the external loads 
an be derived using the Prin
iple of Virtual Displa
e-

ments, in the same way as in the internal equilibrium equations. If only point loads are 
onsidered,

the external work 
an be written as:

δLext = δuT |QP , (33)

13



where P is the load ve
tor applied to point Q. The weak form of Equation 33 
an be a
hieved by

introdu
ing the displa
ement interpolation:

δLext = δujΦj(x, y, z)|QP , (34)

Equation 34 
an be used to derive the load ve
tor in the 
ase of one-, two- or three-dimensional

models:

1D → δLext = δujs Fs(x, z)|QNj(y)|QP
︸ ︷︷ ︸

pjs

; (35)

2D → δLext = δujs Fs(z)|QNj(x, y)|QP
︸ ︷︷ ︸

pjs

; (36)

3D → δLext = δuj Nj(x, y, z)|QP
︸ ︷︷ ︸

pjs

; (37)

where pjs is the fundamental nu
leus of the load ve
tor.

F. Global sti�ness matrix assembly

The fundamental nu
leus 
an generally be written as kijτs
, where i and j are related to the

FEM approximation while τ and s denote the indexes of the model expansion. When a solid model

is 
onsidered τ and s disappear. The fundamental nu
leus kijτs

an be used as a bri
k of the


onstru
tion of the global sti�ness matrix. Figure 3 show how the global sti�ness matrix k 
an be

obtained from the fundamental nu
lei. The loops on indexes τ and s, on
e the element and the

indexes i and j have been �xed, provide the matrix at the node level. The loops on i and j provide

the element matrix, and di�erent elements 
an be assembled adding the sti�ness of the shared

nodes. The pro
edure used for the assembly of the global sti�ness matrix 
an be used to assemble

the fundamental nu
leus of the load ve
tor, pjs. More information on the assembly pro
edure of

stru
tures generally oriented in spa
e 
an be found in the 
ompanion paper written by Carrera and

Zappino [20℄.

14
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kxx kxy kxz

kzx kzy kzz

kyx kyy kyz k

Fig. 3 Global sti�ness matrix assembly pro
edure

Fig. 4 Example of a model built using elements with di�erent kinemati
s.

G. Variable kinemati
 model assembly

The 
oupling of elements with di�erent kinemati
s may lead to in
onsisten
y in the displa
ement

and stress �elds. Figure 4 shows an example of a simple 
antilevered stru
ture and the FEM model

for the 
ase in whi
h this stru
ture is investigated using a variable kinemati
 approa
h. Solid, plate

and beam elements are 
onsidered. A 
lassi
al approa
h, the use of RBE elements, and the present

approa
h are des
ribed in detail in this se
tion.

1. Classi
al FE model assembly with and without RBE 
onne
tors

The use of elements with di�erent kinemati
s in the same model 
an produ
e lo
al e�e
ts that

may lead to ina

urate results. Figure 5 shows the qualitative results of the problem shown in Figure

4. In this 
ase no spe
ial te
hniques have been used to 
ouple the elements with di�erent kinemati
s,

15



Fig. 5 Classi
al FE model assembly without RBE 
onne
tors.

that is, displa
ement and rotation equivalen
e has only been imposed in the 
onne
ted nodes. The

stru
ture is subje
t to global bending deformation, but lo
al e�e
ts may appear at the interfa
e

between elements with di�erent kinemati
. The displa
ement �eld may not be 
ontinuous at the

interfa
e between solid and plate models, be
ause of the Poisson e�e
t. The upper part of the solid

element undergoes tra
tion while the bottom part undergoes 
ompression. This 
reates restri
tion

and dilatation of the 
ross-se
tion in the x-dire
tion, respe
tively. The same behavior 
annot be

predi
ted by the plate element, be
ause the kinemati
 assumptions do not 
onsider any deformation

through-the-thi
kness. As a 
onsequen
e, σxx appears at the interfa
e in the solid element, while it

does not appear in the plate element.

A similar situation may appear at the interfa
e between the plate and the beam element. In this


ase, as shown in Figure 5, the beam model for
es the 
ross-se
tion to be undeformed and to follow

the rotation predi
ted at the 
entral node, otherwise, the plate element may predi
t a deformed


ross-se
tion. This may lead to a dis
ontinuous displa
ement �eld and to an in
onsisten
y in the

shear distribution. In fa
t, the beam model predi
ts a 
onstant value, while the plate element may

predi
t a variable shear stress. Rigid Body Elements may be introdu
ed to for
e the kinemati
s

of the more re�ned model to follow the kinemati
s of the lower-order model. Figure 6 shows an

example of this situation. When the displa
ement �eld is 
ontinuous at ea
h interfa
e the stress �eld

16



Fig. 6 Classi
al FE model assembly using Rigid Body Elements.

Fig. 7 Present variable kinemati
 model.

may show os
illations or a lo
al 
on
entration in the transition zone be
ause of the new 
onstraints.

2. Present approa
h

The re�ned models introdu
ed in the present paper share a 
ommon feature, that is, they all

have only displa
ements as the degrees of freedom. This property allows models with di�erent

dimensions to be 
ombined by imposing the equivalen
e of the displa
ements at one or more nodes.

Figure 7 show the variable kinemati
 model, of the problem shown in Figure 4, obtained using

17



(a) 1D/2D (b) 1D/3D (
) 2D/3D

Fig. 8 Variable kinemati
 model assembling: the dashed line (- - -) shows the physi
al domain

while the solid line (�) denotes the mathemati
al domain. Cir
les (◦) are used to represent

the nodes where the unknowns are de�ned.

the present approa
h. The 
apa
ity of re�ned plate models to predi
t the thi
kness deformation

prevents in
onsisten
ies from arising at the solid/plate interfa
e. The displa
ement and stress �elds

are also 
ontinuous at the plate/beam interfa
e, thanks to the use of higher-order beam models

that allow the 
ross-se
tion to warp in- and out-of-plane. Figure 8 shows the general approa
h used

to assemble the elements, that is, a variable kinemati
 model assembling. Figure 8a shows how

a one-dimensional model 
an be 
oupled with a two-dimensional element. Figure 8b shows how a

one-dimensional model 
an be 
oupled with a three-dimensional element. Finally, a two-dimensional

model 
an be 
oupled with a solid element as shown in Figure 8
.

III. Numeri
al results

This se
tion presents some numeri
al results obtained using the previously introdu
ed variable

kinemati
 model. The �rst part is devoted to the assessment of the numeri
al approa
h. A simple


antilevered beam has been 
onsidered, and one-, two- and three-dimensional models have been used

to build di�erent numeri
al models. The se
ond sample 
on
erns the stati
 analysis of a reinfor
ed

panel, and, the third 
ase 
onsiders the stati
 analysis of a large part of an air
raft stru
ture in
luding

a part of the fuselage and the wing stru
ture. The results have been 
ompared with those from

literature, when available, while, a referen
e solution has been 
reated for the other 
ases using the


ommer
ial FEM MSC Nastran

R©

ode.
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Fig. 9 Referen
e system and geometry of the 
antilevered beam.

A. Assessment of the variable kinemati
 model

This se
tion 
onsiders a 
antilevered beam subje
ted to a bending load. The geometry of the

stru
ture, is shown in Figure 9. The beam has a length, L, equal to 8 m. The 
ross-se
tional

dimensions are a = 0.5 m and b = 1.5 m. The stru
ture is 
lamped at y = 0 and a 
on
entrated

load, P = 1000 N , is applied at the free end at the a = 0 and b = 0 points. An isotropi
 material is

used, and Young's modulus, E, is 
onsidered equal to 70 GPa while the Poisson ratio, ν, is equal to

0.35. The problem has been solved using di�erent numeri
al models. Three models, with 
onstant

kinemati
s have been 
onsidered. The �rst model, 
alled 1D, was built using only one-dimensional

elements, in this 
ase, 11 B4 elements were used along the beam axis while 6 L9 elements have been

used to des
ribe the 
ross-se
tional kinemati
s. Another model, named 2D, was built using 126

Q9 (a 21× 6 element mesh) quadrati
 plate elements, and a quadrati
 approximation was assumed

through the thi
kness. Finally, a fully three-dimensional model, 
alled 3D, was 
onsidered. The

solid model was built using 126 (a 21× 6× 1 elements mesh) quadrati
 hexaedronal elements.

Four variable kinemati
 models have also been 
onsidered. The details of these models are

reported in Figure 10. Figure 10a shows the model in whi
h one- and two-dimensional elements

were used, that is the 1D/2D model, in whi
h 66 Q9 plate elements and 6 B4 beam elements were

used. The model shown in Figure 10b, model 1D/3D, was built using 66 H27 solid elements and

6 B4 beam elements. Model 2D/3D, shown in Figure 10
, was built using 66 H27 solid elements

and 66 Q9 plate elements. Finally, a model that uses all three elements is presented as model

1D/2D/3D, see Figure 10d. In this 
ase the model in
ludes, 36 H27 elements, 36 Q9 elements and
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Fig. 10 Details of the variable kinemati
 models.

Model uz × 105 σyy τyz
m Pa Pa

1D 1.767 37316 2064

2D 1.767 37251 2055

3D 1.767 37251 2055

3D/1D 1.767 37279 2065

3D/2D 1.767 37279 2065

2D/1D 1.767 37279 2065

3D/2D/1D 1.767 37279 2065

Song and Hodges [41℄ 1.776 37310 2056

Euler-Bernulli 1.734 37333 -

Timoshenko 1.782 37333 1333

Table 1 Verti
al displa
ement, normal stress and shear stress evaluated with di�erent models.

6 B4 elements.

The obtained results have been 
ompared with those obtained using 
lassi
al models, Euler-

Bernulli and Timoshenko beam models and with respe
t to the results presented by Song and

Hodges [41℄. Table 1 reports the numeri
al results obtained using the previously introdu
ed models.

The verti
al displa
ement, uz, was evaluated at the tip in the point at x = 0 and z = 0. The axial

stress,σyy, was evaluated at y = 1 m, x = 0 and z = −b/2 while the shear stress,τyz was evaluated

at y = 1 m, x = 0 and z = 0. The results show that, as expe
ted, all the 
onsidered models are
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Fig. 11 Axial and shear stress pro�les evaluated along the beam height at y = 1 and x = 0.
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Fig. 12 Axial and shear stress distribution evaluated along the beam axis.

able to provide a

urate results. The use of re�ned beam models allows an a

urate value of shear

stress to be obtained, and this result 
annot be obtained using Euler-Bernulli or Timoshenko beam

models. Figure 11 reports the stress pro�les evaluated along the z 
oordinate at y = 1 and at x = 0.

The axial stress, σyy, is reported in Figure 11a, while the shear stress σyz , is reported in Figure

11b. All the 
onsidered models are able to a

urately des
ribe the stress distribution and are able

to provide a three-dimensional result. The axial distribution of the normal stress, σyy, is reported

in Figure 12a. All the models are able to des
ribe the linear variation of σyy and all the models 
an

predi
t the end-e�e
t due to the 
onstraint. The stress distribution is not a�e
ted by the kinemati


variation. The same 
on
lusion 
an be drawn when shear stress is 
onsidered, see Figure 12b. Only

at the tip of the beam, where the load is applied, it is possible to see a slight di�eren
e in the results

due to lo
al e�e
ts. Again in the 
ase of shear stress, the kinemati
 variation does not produ
e any

signi�
ant e�e
t.
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Fig. 13 Details of the variable kinemati
 models obtained using RBE elements.

B. Comparison with 
lassi
al FEM models

The results obtained in the previous se
tion have been 
ompared with those obtained using the


lassi
al tool available in the 
ommer
ial FEM software MSC Nastran

R©
. Figure 13 shows the three


onsidered models, all of whi
h exploit rigid body elements to 
onne
t the elements with di�erent

kinemati
s. Figure 13a shows a model 
reated using beam and plate elements. The model shown

in Figure 13b uses solid and beam elements while the model shown in 13
 was built using solid and

plate elements.

The axial stress, σyy , and the shear stress, τyz, evaluated along the beam axis are reported in

Figure 14. The results are 
ompared with those obtained using the present 3D/2D/1D model. The

qualitative distribution of the axial stress, see Figure 14a, is des
ribed properly by all the models

although the models built using RBE elements all show lo
al e�e
ts at the interfa
e, due to the

jump in kinemati
s, while the present 3D/2D/1D model does not su�er from this phenomenon.

When shear stress is 
onsidered, see Figure 14b, the advantages of the present 3D/2D/1D models

are even more evident. The use of the present approa
h prevents lo
al e�e
ts from arising at the

interfa
e and the shear stress is evaluated 
orre
tly, even in the portion of the stru
ture where beams

are used. The Timoshenko beam model, whi
h is adopted in the 
ommer
ial software, assumes a
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Fig. 14 Axial and shear stress pro�les evaluated along the beam height at y = 1 and x = 0.


onstant shear distribution over the 
ross-se
tion that produ
es an ina

urate result.

Figure 15 shows the shear stress distributions through the thi
kness of the beam just before

and after the models interfa
e. The 2D/1D model is shown in Figure 15a. The results show that

the 2D elements overestimate the stress value while the beam elements provide a 
onstant stress

value, in agreement with the Timoshenko model, that is, the stress 
ontinuity is not respe
ted.

However, the results obtained using the present model mat
h perfe
tly at the interfa
e and are in

agreement with the referen
e solution obtained using a full 3D model. Figure 15b show the shear

stress distributions for the 3D/1D model. As in the previous 
ase, the 
lassi
al models are not able

to provide a 
ontinuous stress �eld. The solution obtained with the 3D/2D Nastran model, see 15
,

is the most a

urate but it still shows a stress dis
ontinuity while the present 3D/2D model provides

a 
ontinuous stress �eld.

These �ndings highlight the limits of the 
lassi
al approa
hes when elements with di�erent

kinemati
s have to be 
onne
ted. The present variable kinemati
 models may be used to over
ome

these limitations and to provide a

urate results, without the need of additional elements, su
h as

the RBE

C. Reinfor
ed panel analysis

The stati
 analysis of a reinfor
ed panel has been 
onsidered in this se
tion. Figure 16 shows

the geometry of the panel and the dimensions of the stringers. The square panel has edges of

length L = 1 m, while the skin is 0.003 m thi
k. The panel is rounded o� by a re
tangular
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Fig. 15 τyz pro�les at the models interfa
e, x = 0 and y = L/2.
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Fig. 16 Reinfor
ed panel geometry

reinfor
ement and has two stringers in the middle, one in the x dire
tion and the other in the y

dire
tion. The dimensions of the 
ross-se
tion of the reinfor
ements are a = 0.03 m and b = 0.01

m. An isotropi
 material with an elasti
 modulus of E = 71.7 GPa and the Poisson ratio ν = 0.3,

has been 
onsidered. The stru
ture is 
lamped along the four edges. A point load has been applied
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Fig. 17 Reinfor
ed panel deformed 
on�guration.

at the top of the panel in the 
entral point, and the for
e has a magnitude of 1000N in the negative

z−dire
tion. Figure 16 shows the 
hara
teristi
s of the variable kinemati
 model. The plate elements

are used for the skin, and two non-uniform meshes are 
onsidered: the model named MESH1 has a

7× 7 elements mesh, while the model named MESH2 uses a mesh of 11× 11 elements. A quadrati


expansion is used through the thi
kness of the panel. Quadrati
 beam elements have been used

for the reinfor
ements, and an L9 element is used over the 
ross-se
tion. The number of beam

elements is related to the skin mesh; the larger the number of elements used over the skin, the

larger the number of elements used along the beam axis in order to ensure displa
ements 
ontinuity.

A 27-node solid element is used to 
onne
t the reinfor
ements to the skin at the 
ross-points. The

results have been 
ompared with those of a solid model, solved using the 
ommer
ial FEM MSC

Nastran

R©

ode. Figure 17 shows the deformed 
on�guration of the panel, from the bottom point of

view. Details of the displa
ements are reported in Figure 18, where the verti
al displa
ement of the

panel, evaluated along the 
entral point of the reinfor
ement in the y-dire
tion, is depi
ted. The

results show that both of the 
onsidered models are able to reprodu
e the results obtained using

the full three-dimensional model. The stress �eld has also been investigated. The axial stress is

reported in Figure 19. The results obtained using the variable kinemati
 models are in agreement

with the referen
e solution. Two stress 
on
entrations 
an be seen 
lose to the 
lamped point and

in the 
entral part where the stringers are 
onne
ted. The dis
ontinuity of the stress is due to

the post-pro
essing te
hniques that were adopted. The present paper derives the stresses from the

strains using Hook's law in ea
h point, while 
ommer
ial 
odes usually average the values obtained
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Fig. 18 Verti
al displa
ement of the panel evaluated along the 
entral point of the reinfor
e-

ment in the y-dire
tion.
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Fig. 19 Axial stress evaluated at the stringer bottom at x = 0.5.

in the Gauss points to ensure the 
ontinuity. Figure 20 shows the transversal shear stress evaluated

along the 
entral point of the reinfor
ement in the y-dire
tion. The small os
illations in the shear

stress value are due to the shear lo
king 
orre
tion approa
h, in this 
ase MITC approa
h, these


an be redu
ed re�ning the mesh as shown in the work by Carrera et al. [14℄. The results are 
lose

to the referen
e solution but they show some small os
illations. A higher number of beam elements

would be required to in
rease the a

ura
y. Figure 21 shows the von Mises stress �eld of the whole

stru
ture. The results show the stress 
on
entrations around the reinfor
ements that are subje
t to

the bending load. The higher soli
itations are due to the axial stress, that is, the maximum von
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Fig. 20 Shear stress evaluated along the 
entral point of the reinfor
ement in the y-dire
tion.

Fig. 21 von Mises stress overview evaluated using the MESH2 model (on the left) and the

referen
e three-dimensional model (on the right).

Mises stress 
an be found in the bottom part of the stringers that has the maximum values of σyy.

D. Air
raft stru
ture analysis

This se
tion presents the analysis of a typi
al air
raft stru
ture, performed using the previously

presented variable kinemati
 model. The stru
ture is shown in Figure 22. It represents a part of a

fuselage and in
ludes the wing 
onne
tion. Ribs, longerons and a thin skin are present in the same

stru
ture. The main dimensions of the stru
ture are reported in Table 2. The entire stru
ture is


onsidered to have been built in aluminum alloy, with a Young modulus equal to 71.7 MPa and a

Poisson ratio equal to 0.3. The stru
tures is 
onsidered 
lamped the middle plane of the fuselage,
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Dimensions [m]

a= 3.000 d= 0.040 g = 0.224

b= 3.160 e= 1.080 h = 0.080


= 6.000 f= 0.010 i = 0.035

Table 2 Geometri
al dimensions of the air
raft 
omponent.

F1

F2

F1F2

Fig. 22 Air
raft stru
ture 
onsidered.

x = 0 m, and at both fuselage extremities, y = 0 m and y = 3.160 m. Two loads have been

pla
ed at the wing tip, as shown in Figure 22; F1 is equal to 5000 N while F2 has a magnitude of

2000 N . The whole fuselage stru
ture has been modeled using one- and two-dimensional elements.

The fuselage is 
onsidered as a beam with a variable 
ross-se
tion in order to 
onsider the e�e
ts

of the ribs. Figure 23 shows some details of the 
ross-se
tional mesh used in the models, 23 L9

elements have been used in the 
ir
umferential dire
tion while 1 L9 element has been used through

the thi
kness of the skin and of the ribs. 3 L9 elements have been used for the fuselage de
k. The

wing longerons are also 
onsidered as beams. The upper and lower skins of the wing are 
onsidered

as plate elements. Two models, derived using the present approa
h, have been 
onsidered: the �rst,

referred to as the present model and presented in Figure 24a, has a 
oarse mesh, while the present

re�ned model, see Figure 24b, has a more re�ned mesh and therefore a larger number of DOFs. The

results have been 
ompared with a solid model derived using the 
ommer
ial MSC Nastran

R©

ode.
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Fig. 23 Details of the 
ross-se
tional mesh, both the skin and the ribs have been modeled

using L9 elements.

(a) Present model (b) Present re�ned model

Fig. 24 Details of the two models of the air
raft stru
ture.

The displa
ement �eld evaluated using the present re�ned model is presented in Figure 25. The

loads 
reate both bending and torsional deformation of the wing. Details of the displa
ement �eld

are shown in Figures 26 and 27. Figure 26 shows the verti
al displa
ement, evaluated at the 
entral

point of the frontal wing longeron. The results of both of the present models appear to be a

urate,


ompared with those of the referen
e model. The same behavior 
an be observed in Figure 27, where

the radial displa
ement, evaluated at the outer radius of the se
ond rib, is shown. Again in this


ase, the results of both the 
oarse and the re�ned present models are in agreement with those from

the referen
e solution. The analysis of the displa
ement �eld shows that a 
oarse mesh is enough to

rea
h an a

urate solution. The stress �eld has also been analyzed. Figure 28 shows the axial stress

evaluated at the top of the frontal wing longeron. The results show that the present model is able
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Fig. 25 Three-dimensional displa
ement �eld.
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Fig. 26 Verti
al displa
ement evaluated at the 
enter of the frontal wing longeron.

to des
ribe the solution a

urately, but only when a re�ned mesh is used. The 
oarse mesh, whi
h


onsiders only two beam elements along the longheron, 
at
hes the general distribution, but 
an

introdu
e a large error lo
ally. Figure 29 shows the transversal shear stress evaluated at the 
enter

of the frontal wing longeron. The results obtained using the re�ned mesh are globally a

urate, but

they show some small os
illations. Finally, the 
ir
umferential stress evaluated at the outer radius

of the se
ond rib is presented in Figure 30. The results obtained using the present models are able
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Fig. 27 Radial displa
ement evaluated at the outer radius of the se
ond rib.
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Fig. 28 Assial stress evaluated at the top of the frontal wing longeron.

to a

urately des
ribe the stress distribution. A perfe
t mat
hing 
an be seen along almost all of the

half 
ir
umferen
e. Some small dis
repan
ies appear 
lose to the fuselage/wing 
onne
tion where,

a 
omplex three-dimensional stress �eld, is present. The use of three dimensional elements in this

part 
ould lead to a perfe
t mat
hing. From the results, it is possible to see that the model that uses

a 
oarse mesh is able to provide a

urate results in terms of displa
ements but not in terms of stress

�eld. An a

urate des
ription of the stress �eld 
an only be a
hieved using a more re�ned mesh. In
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Fig. 29 Transversal shear stress evaluated at the 
entre of the frontal wing longeron.
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Fig. 30 Cir
umferential stress distribution evaluated at the outer radius of the se
ond rib.

this 
ase, the stresses are predi
ted a

urately in both the wing and the fuselage stru
tures.

IV. Con
lusions

The present work presents the use of a re�ned variable kinemati
 model for the analysis of


omplex stru
tures su
h as reinfor
ed thin-walled stru
tures. The Uni�ed Carrera Formulation has

been used to derive re�ned one-, two- and three-dimensional models in 
ompa
t form. The use of
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a displa
ement-based kinemati
 approximation has allowed models with di�erent kinemati
s to be


onne
ted in order to obtain a variable kinemati
 model. Di�erent stru
tures have been 
onsidered

in order to highlight the 
apabilities of the present approa
h. The �ndings show that the present

model over
omes the limitations introdu
ed by 
lassi
al FEM models. It provides a mu
h more

a

urate des
ription of the interfa
e between elements with di�erent kinemati
s. Su
h a

ura
y


annot be rea
hed using 
lassi
al FEM models, even if RBE elements are adopted.

The results of the analysis of a simple beam stru
ture have shown the a

ura
y of the present model.

The results are not a�e
ted by the transition between di�erent kinemati
s, and 
ontinuity of the

displa
ement and stress �elds is guaranteed. The same a

ura
y has not been rea
hed using 
lassi
al

models, whi
h showed lo
al stress os
illations due to the kinemati
 variation.

The model was then used to analyses a reinfor
ed panel. In this 
ase, the variable kinemati
 model

was used to represent a 
omplex stru
ture. The 
apabilities of the present approa
h allowed the

geometry of the panel to be represented a

urately, and in this way the a

ura
y of the three-

dimensional models was preserved where required, e.g. at the stringer interse
tion, while the beam

model properties were exploited in the reinfor
ements.

Finally, a 
omplex air
raft stru
ture has been 
onsidered. The obtained results show how the present

approa
h 
an be used to investigate 
omplex stru
tures. A

ura
y of the results has been shown,

that is, the use of re�ned one- and two-dimensional models provides a three-dimensional stress �eld.

In short, the present approa
h allows re�ned stru
tural models with di�erent kinemati
s to be joined

together. The models obtained using this approa
h preserve the a

ura
y of the re�ned stru
tural

models, but also make it possible to study 
omplex stru
tures, whi
h usually requires 
lassi
al FEM

models.
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