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Abstract Ultrasound is by far the most adopted method for safe screening and diagnosis in
the prenatal phase, thanks to its non-harmful nature with respect to radiation-based imaging
techniques. The main drawback of ultrasound imaging is its sensitivity to scattering noise,
which makes automatic tissues segmentation a tricky task, limiting the possible range of appli-
cations.

An algorithm for automatically extracting the facial surface is presented here. The method
provides a comprehensive segmentation process and does not require any human intervention
or training procedures, leading from the output of the scanner directly to the 3D mesh
describing the face. The proposed segmentation technique is based on a two-step statistical
process that relies on both volumetric histogram processing and 2D segmentation. The
completely unattended nature of such a procedure makes it possible to rapidly populate a
large database of 3D point clouds describing healthy and unhealthy faces, enhancing the diag-
nosis of rare syndromes through statistical analyses.
ª 2016, Elsevier Taiwan LLC and the Chinese Taipei Society of Ultrasound in Medicine. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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Introduction

The popularity of 3D ultrasound (US) scans (Figure 1) has
rapidly increased during recent years [1]. However, even
though it could provide information to physicians, its
importance as a diagnostic tool is somewhat limited in
prenatal imaging, as nowadays it is mainly used as a visu-
alization tool. On the other hand, it is self-evident that a
detailed 3D model of the fetus could play a crucial role in
prenatal diagnosis. For instance, the detection of dysmor-
phic features could be tackled by exploiting biometrics and
landmark identification on a 3D model of the fetus [2e9].
Algorithms and software exist for 3D US segmentation and
volume extraction, mainly based on region growing [10, 11]
or deformable models [12, 13], but human intervention is
requested, e.g., to choose the seeds or for pre/post-
processing. The algorithm by Feng et al. [14] is auto-
matic, but it requires a training stage before it can be
applied; moreover, its output is a coarse mesh.

The proposed method automatically extracts relevant
3D information of the fetuses face from a set of planar 2D
US slices, outputting a high resolution mesh of the facial
surface; this does not require any training step as it is not
based on machine learning techniques. To achieve the
maximum interoperability, the whole procedure has been
designed and tested with DICOM [16] files as input and a
triangular mesh in PLY [17] files as output. Although the
algorithm has been implemented using MATLAB�, it is easily
portable to any other language.

The main phases of the procedure are shown in Figure 2.

Methods

Preprocessing

The DICOM is initially imported as a stack of 2D planar sli-
ces. This can be done in any of the three coordinate di-
rections, as the algorithm does not depend on the position
of the fetus. Input stack I is a now an N-dimensional matrix
(3D in ultrasonography case) such that:

IðvÞZg; ð1Þ
where v Z (r,c,s) is a voxel, r,c,s are respectively row,
column, and slice indexes, and g is an integer value (0 � g �
Figure 1 Three examples of 3D ultrasound images exported from
2D images, although image quality is among the best achievable to
ð2N � 1Þ, where N is the image bit depth) representing gray-
scale.

US wave scattering damages the images by introducing a
type of noise called speckle [18]. In order to enhance seg-
mentation performance, noise is removed through filtering
in the first phase. Current state-of-the-art algorithms per-
forming this task are based on statistical analysis, inverse
PSF filtering, and log separation [19]. In our algorithm, a
standard 3D low-pass Gaussian filtering (or, alternatively, a
Laplacian of Gaussian to better preserve the edges) was
accurate enough for a preliminary speckles removal.
Nonetheless, the most effective image cleaning is done
after the extraction of the surface. After this preprocessing
step, the image improves in terms of quality and helps to
enhance the performance, although it is not yet clean
enough for achieving complete surface extraction.
Surface reconstruction through 3D histogram
processing

The most widely adopted method to extract a volume from
a point cloud relies on themarching cube algorithm [20]. To
extrapolate the facial surface, the detection (per each
DICOM slice) of the edges of the face itself would be
desirable.

Both volume and surface reconstruction are demanding
tasks, due to the coexistence of different tissues in the
same image (from both mom and fetus). Edge extraction is
even trickier when the fetuses head lays directly on the
mother’s uterus; in this scenario, the two tissues are
virtually merged from the US imaging standpoint. To face
this situation, a novel algorithm has been developed, based
on a statistical analysis of local and 3D histograms that
combine slice and volumetric processing.

Volumetric processing
As a first step, the algorithm processes the entire stack as a
whole, applying a star-shaped cubic kernel to each voxel of
the 3D array higher than a threshold gray-scale value t.

The kernel support is a subset of the stack. In particular,
for each voxel v Z (r,c,s), considering a side 2l þ 1 (with l
chosen by the user, in order to finely tune the result) and
the cube CvðlÞZf½r � l; r þ l� � ½c� l; cþ l� � ½s� l; sþ l�g
centered in v, the kernel Kv

l will be:
4DView by General Electric [15]. Given that these are rendered
day, they cannot be 3D-processed.



Figure 2 Scheme of the algorithm. The “Volumetric Processing” and “Slice Processing” blocks are repeated three times,
extracting the slices from the 3D volume along three perpendicular directions.
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Kv
l ði; j;kÞZ

�
Iði; j;kÞ ði; j;kÞ˛SvðlÞ3CvðlÞ

0 ði; j;kÞ˛CvðlÞnSvðlÞ ð2Þ

with:

SvðlÞZfði; j;kÞ˛CvðlÞ :
ðji� rjZjj� cj^kZsÞnðji� rjZjk� sj^jZcÞn

nðjj� cjZjk� sj^iZrÞnðji� rjZjj� cjZjk� sjÞn
n½ji� rj þ jj� cj þ jk� sjZmaxðji� rj; jj� cj; jk� sjÞ�g

ð3Þ

In other words, this is equivalent to extracting the voxels
belonging to the main diagonals of CvðlÞ, as well as those on
the diagonals of the three mid-planes of the cube (i.e., the
three coordinate planes passing through v) and on the
segments passing through v on the three coordinate axes.
The 0-centered kernel, with the default value of l Z 10, is
plotted in Figure 3.

The gray-scale histogram Hv of the kernel Kv
l will be

computed using the standard iterative formula:

Hv
�
Kv

l ði; j;kÞ
�
ZHv

�
Kv

l ði; j;kÞ
�þ 1; ði; j;kÞ˛SvðlÞ ð4Þ

starting from Hv Z 0. A local (per voxel) threshold value L
(v) is set to the (100 � p)th percentile of the histogram,
with p being an input parameter to be set by the final user.
Figure 3 The star-shaped kernel K0
10 used in the 3D histo-

gram processing (section 2.2.1), centered in 0. The blue stars
represent the points that are actually considered for the his-
togram computation; the black line is the side of the cube
(equal here to 2l þ 1 Z 21 voxels).
Thus, as an intermediate output, a new 3D array is pro-
duced, containing in each cell the local threshold value.

Slice processing
A second statistical analysis is then performed on a per-
slice basis, i.e., the volume segmentation is obtained via
individual segmentation of each 2D slice by means of a new
global thresholding technique [21]. All the local threshold
values lower than t are set to 0 and the slice histogram is
computed. The global slice threshold is set to
T ðsÞZM� �

sð2N � 1Þ�, where M is the brightest pixel
appearing at least once in the slice, s is the standard de-
viation of the computed histogram, N is the image bit
depth, and P$S represents the nearest integer function. The
volume to be extracted is then mapped into a new output
binary slice B (v), defined as

BðvÞZ
�

true IðvÞ � T ðsÞ
false otherwise

cvZðr;c; sÞ: ð5Þ

Each slice of the obtained binary volume represents a
“filled” level set of the facial surface (Figures 6c to 10c).
The algorithm is reported as pseudo-code in Appendix A.

Data fusion

Potentially, the model extracted after the second step is
robust and complete enough to recognize the shape of the
Figure 4 Rendering (produced with MeshLab [26]) of the
triangular mesh obtained by the algorithm. The input US is the
same as Figures 5 and 6 below.



Figure 5 3D printed version of the model shown in Figure 4.
The dash-dotted line represents the plane where the slices
shown in the next figures are extracted.
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fetuses face, but to enhance detection and improve the
accurateness we have added a data fusion [22] step to the
workflow. We repeat the previous 3D shape extraction from
all three directions by permuting the dimensions of the
DICOM stack, and combine the extracted surfaces evalu-
ating the logical AND of the three binary arrays. This
operation increases the robustness of the algorithm, as it is
Figure 6 Example of the output of the different steps. The seg
not likely that the artifacts generated by the processing
from a viewpoint would be the same as those generated by
changing the point of view. This is why the data fusion step
generates further noise removal and increased veracity.
Moreover, this kind of procedure heavily reduces the
number of false positives, i.e., edges that do not actually
belong to the desired surface.
Post-processing

After the data fusion, the output is fairly “clean”, but can
still be refined via post-processing. The three main opera-
tions that take place in this phase are described below.

Edge detection
As a first stage, the MarreHildreth Laplacian of Gaussian 2D
edge detection algorithm [23] is applied to each slice of the
fused stack to obtain another binary stack with a more
precise definition of the facial surface.

Island removal
The whole 3D image is further “cleaned” by removing the
isolated edges that are not connected to the main surface.
mentation of the surface of interest is excellent in this case.



Figure 7 Example of successful application of the algorithm. The efficacy of the data fusion step is self-evident.

Figure 8 Example of the successful application of the algorithm. The efficacy of the island removal is largely evident.
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To perform this task, the algorithm searches for all the 3D
c-connected components, together with their bounding
boxes. c is an input parameter chosen by the user, with a
default value of 26. Finally, only the connected compo-
nents belonging to the r bounding boxes with the largest
volumes are kept. The algorithm for island removal is re-
ported as pseudo-code in Appendix B.

Point cloud and mesh generation
In this phase, each true value in the 3D matrix represents a
point of the surface. Thus, the final 3D point cloud can be
obtained by simply looping over the 3D structure and
assigning the Cartesian coordinates to each non-zero
element, starting from an arbitrary origin. Finally, the
surface is reconstructed via the Poisson surface recon-
struction [24] algorithm, exploiting the publicly-available
pointCloud2rawMesh function [25]. The resulting vertices
and faces are written in the PLY file.
Results and discussion

From September 2012 to January 2013, 30 three-
dimensional volumes of 30 fetuses at 22e32 weeks’ gesta-
tion were acquired. Written consent was obtained from the
parents for publication of clinical details, clinical images,
and videos. Principles outlined in the Declaration of Hel-
sinki have been followed.



Figure 9 Example of the output of the different steps. In this case, the fetuses face is completely laid on the mother’s tissue
(clearly visible on the right part of (a)), and the segmentation does not work as expected.

Figure 10 Example of successful application of the algorithm.
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Among these acquisitions, five were selected and pro-
cessed for the purposes of the study. The remaining ones
were excluded due to high noise or practical “in-
conveniences” such as baby’s hands on face, or simply too
much inaccuracy in the scanning process.

The ultrasound equipment was a Voluson system (GE
Healthcare, Wauwatosa, WI, USA), with a RAB 4e8 (real
time 4D convex transducer probe). The GE RAB 4e8 has a
frequency range of 4 MHz to 8 MHz and is used for OB ap-
plications (Footprint 63.6�37.8 mm, FOV 70�, V 85��70�).

Indeed, the algorithm has been tested on five 3D US
scans. A rendered example of the resulting 3D model is
shown in Figure 4. To show the clarity of the output, this
model has also been 3D printed, as shown in Figure 5,
proving how this technology might enable alternative
business scenarios and applications, e.g., sales of the
printed 3D fetus face. The intermediate steps are shown in
Figures 6 to 10 (the rendered example corresponds to that
of Figure 6), reporting a 2D slice in each phase for each of
the five 3D US source scans. In all cases, the 2D slice cor-
responds to a transverse plane cutting the face at eye level,
as shown by the dash-dotted line in Figure 5. The regions of
interest are in the upper part of the surfaces where the
nose is clearly visible; the rear part of the fetuses heads are
instead full of noise (visible in the lower part of the im-
ages), and thus cannot be processed. However, please note
that this does not affect the validity of the proposed
method (e.g., it is visible also in the rendered examples
shown in Figure 1), as it is due to the US scattering noise.
Moreover, the surfaces of interest for the present work are
those on the front part of the head (i.e., the face), as the
final aim is to produce a large set of fetus face models for
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the statistical pre-birth detection of face dysmorphic fea-
tures [9].

Figure 6 shows the segmentation process; the effec-
tiveness of all the steps is well-rendered. The validity of the
proposed segmentation technique pointedly emerges in
Figure 6c. The data fusion step removes noise from the
regions of interest, i.e., in the back side, and the small
island in the lower right corner of the slice is easily
removed during post-processing.

In particular, the effectiveness of the data fusion step is
self-evident in the example given in Figure 7. Here the
main volume is properly extracted after the local 3D his-
togram procedure, but some of the mother’s tissue is still
visible on the right side of Figures 7a to 7c. On the con-
trary, the surface reconstruction from the other two
perpendicular directions, together with the data fusion
step, results in a complete elimination of all the unwanted
tissue (Figure 7d).

The example in Figure 8 shows the importance of the
island removal. Even though the dimensions are strongly
reduced, two portions of unwanted tissue survive to the
data fusion (in the upper left corner and in the center of
the frame, as shown in Figure 8d). These two islands
disappear after the last step; the suppression of the
upper one is of utter importance, as it stands above the
surface of interest. The only small island remaining, in
the lower left corner in Figure 8f, survives to this phase
because it is connected to the fetus in other slices. In this
sense, it is important to underline the strong connection
between the data fusion and the island removal. As seen
in this example, the reduction of the noisy effects ob-
tained by the former might be crucial for the success of
the latter.

In Figure 9, the algorithm does not perform as expected.
In this case the face is completely laid on the mother’s
tissue, as can be seen in Figure 9a, and the algorithm is not
able to cope with this situation. In fact, the mother’s tissue
is segmented together with the desired one and, even
though the profile is still evident, the extracted surface is
less meaningful. However, with a reduced manual post-
processing, the actual surface might still be extracted. In
addition, we notice that in this case the island removal also
fails, although an island is distinctly visible in Figure 9e; this
is due to the connection of that portion of the mother’s
tissue with the fetuses tissue in the bottom slices. Finally,
in Figure 10 another example of successful segmentation is
reported.

The procedure is completely automatic, enabling fully
unattended segmentation. This leads to the possibility of
creating a large database of 3D facial point clouds, like the
ones required for morphological studies through statistical
analyses, without the necessity of human intervention. This
kind of work has been already started [9]. Our tool is
applied to build the database for clustering faces into
healthy and unhealthy.

The algorithm works with standard protocols and file
format (DICOM as input and any mesh file format as output),
so it is completely platform-independent.

The algorithm is preliminary and might be refined, for
instance by acting on the kernel shape or on the post-
cleaning techniques (e.g., to obtain efficient cleaning also
in situations like the one in Figure 9d). The same idea may
also be extended to internal tissues segmentation to reach
a complete 3D model of the fetuses face and of other or-
gans (e.g., the heart). Furthermore, it can be extended to
other applications of US imaging and for working with
different 3D imaging techniques (CT or MRI), taking
advantage, in this case, of the absence of the speckle noise
effect.

Conclusions

An algorithm for facial automatic segmentation from 3D
fetal ultrasound scans has been developed. The stack of 2D
images is initially pre-processed, to remove speckle effects
for a more assisted segmentation. This is achieved through
a standard 3D Gaussian low-pass filtering.

The second step consists of the actual segmentation,
which is performed with a new two-steps statistical pro-
cessing, based on both 3D (volumetric) histogram process-
ing and 2D (per-slice) global thresholding. In the first stage,
an intermediate 3D structure is created, containing a local
threshold chosen on the basis of the histogram of a 3D
kernel. The histogram of each slice of this structure is then
computed to find a global gray-scale threshold per each
slice. The whole procedure is carried out three times,
“cutting” the input slices among the three coordinate axes;
the three binary masks are then fused together to reduce
the number of false positives.

The surface point cloud is extracted from the fused bi-
nary stack through edge detection. Then, it is further
“cleaned” by removing all the isolated edges not belonging
to the tissue of interest. Finally, the cloud is meshed using
the Poisson surface extraction procedure and saved in any
standard mesh format (.ply in our case).

The whole procedure can be executed unattendedly,
allowing the segmentation of large batches of 3D US
scans.
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