
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Integrating Software Engineering Key Practices into an OOP Massive In-Classroom Course: an Experience Report /
Torchiano, Marco; Bruno, Giorgio. - STAMPA. - (2018), pp. 64-71. (Intervento presentato al convegno Second
International Workshop on Software Engineering Education for Millennials tenutosi a Gothenburg, Sweden nel June 2)
[10.1145/3194779.3194786].

Original

Integrating Software Engineering Key Practices into an OOP Massive In-Classroom Course: an
Experience Report

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3194779.3194786

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2705287 since: 2019-02-25T11:26:25Z

ACM

Integrating Software Engineering Key Practices into an OOP
Massive In-Classroom Course: an Experience Report

Marco Torchiano
Politecnico di Torino

Torino, Italy
marco.torchiano@polito.it

Giorgio Bruno
Politecnico di Torino

Torino, Italy
giorgio.bruno@polito.it

ABSTRACT

Programming and software engineering courses in computer
science curricula typically focus on both providing theoretical
knowledge of programming languages and best-practices, and
developing practical development skills. In a massive course
– several hundred students – the teachers are not able to
adequately attend to the practical part, therefore process
automation and incentives to students must be used to drive
the students in the right direction.

Our goals was to design an automated programming assign-
ment infrastructure capable of supporting massive courses.
The infrastructure should encourage students to apply the
key software engineering (SE) practices – automated testing,
configuration management, and Integrated Development En-
vironment (IDE) – and acquire the basic skills for using the
corresponding tools.

We selected a few widely adopted development tools used
to support the key software engineering practices and mapped
them to the basic activities in our exam assignment manage-
ment process.

This experience report describes the results from the past
academic year. The infrastructure we built has been used for
a full academic year and supported four exam sessions for
a total of over a thousand students. The satisfaction level
reported by the students is generally high.

CCS CONCEPTS

• Applied computing → Education; • Software and
its engineering → Software configuration management and
version control systems; Integrated and visual development
environments; Object oriented development ; Software testing
and debugging ;

KEYWORDS

Object-Oriented Programming, Java, Automated Testing,
Configuration Management, Automated Grading

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5750-0/18/05. . . $15.00
https://doi.org/10.1145/3194779.3194786

ACM Reference Format:

Marco Torchiano and Giorgio Bruno. 2018. Integrating Software

Engineering Key Practices into an OOP Massive In-Classroom
Course: an Experience Report. In SEEM’18: SEEM’18:IEEE/ACM

International Workshop on Software Engineering Education for

Millennials , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/

3194779.3194786

1 INTRODUCTION

Software development eventually consists in delivering work-
ing code [3]. Computer science and the software-related part
of computer engineering should teach programming and on
top of that provide software engineering skills.

At Politecnico di Torino, Italy, the first course introducing
a “modern” programming language is the Object Oriented
Programming (OOP) course where the language of choice
is Java. For historical reasons the BSc degree in computer
engineering does not include a Software Engineering course,
therefore we decided to provide the basic Software Engineer-
ing knowledge in the OOP course.

The students attending the course are Millennials: they
were born before 1996. While previous programming courses
in the curriculum adopted paper-based exams, we opted for a
computer-based exam to leverage the technology familiarity
of “digital natives”.

The course, in addition to the Java language (version 8),
provides an introduction to UML [13], design patterns [9]
and basic software engineering practices. It basically follows
the indications provided in [1]. The three key practices that
we integrated in the course are:

∙ automated testing: represents a clear step from infor-
mally trying the program to a formalized and repeat-
able verification activity,

∙ configuration management: introduces a standard way
of versioning code and keeping a common shared repos-
itory,

∙ integrated development environment: provides basic
features supporting coding, e.g. code completion, lan-
guage specific presentation, automatic incremental build,
error highlighting, and automatic code refactoring [8].

Such practices are meant to develop software testing and
software configuration skills as recommended in SWECOM
1.0 [10]. Moreover, automated testing appears particularly
suited to responde to the Millennials’ need for frequent feed-
back [12].

https://doi.org/10.1145/3194779.3194786
https://doi.org/10.1145/3194779.3194786
https://doi.org/10.1145/3194779.3194786

SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden M.Torchiano and G.Bruno

A particularly tough challenge in the introduction of such
practices is represented by the size of the course: the largest
of the three parallel instances counts hundreds of newly
enrolled students (330 for a.y. 2017/18). The course is taught
in presence and offers practical sessions in the lab facilities
of the university. We can define it as a Massive In-Classroom
Course (MICC). A MICC, as opposed to a MOOC, exhibits
the following characteristics:

∙ the numbers are smaller than on-line courses, but still
large for regular university courses;

∙ while there are videolectures, they just record the lec-
tures held in classroom therefore they are neither pri-
marily designed nor optimized for autonomous fruition;

∙ the practical organization must enable anybody to
attend in person all the educational activities (both
lectures and labs);

∙ it is not necessarily open, although all materials for
the OOP course are freely available online.

This paper reports the experience in integrating a few key
software engineering practices in the OOP course by means of
specific technologies. In particular we show how the devised
solution was able to address both organizational and learn-
ing objectives. On one side, such technologies support the
management of assignments in the course, on the other side
they are required to perform essential tasks thus stimulating
the students to acquire the related basic skills.

First of all, section 2 presents the context of the course
and the detailed motivation that lead us to this course imple-
mentation. Then section 3 provides the details of how such
key SE practices have been realized in the course. After that,
section 4 discusses the educational implications, the main
issues encountered, and the lessons learned.

2 CONTEXT AND MOTIVATION

The Object-Oriented Programming course is located in the
second year of the Bachelor degree in Computer Engineering1

at Politecnico di Torino. The first year encompasses funda-
mental topics for all engineering disciplines (maths, computer
science, physics), the second year introduces general ICT and
computer engineering topics: circuit theory, algorithms and
data structures, object-oriented programming, and databases.
The third year focuses on more advanced topics, e.g. operating
systems, computer networks, communications, electronics.

The OOP course introduces Object-Oriented programming
using the Java programming language and provides basic
knowledge of software engineering. The main contents are:

∙ Basic OO features (1 ECTS2) including the OO par-
adigm, Java, classes and attributes, visibility, basic
types, and practical skills concerning the Eclipse IDE.

1Computer Engineering BSc. syllabus: https://didattica.polito.it/
pls/portal30/gap.a mds.espandi2?p a acc=2018&p sdu=37&
p cds=10&p lang=EN
2ECTS stands for European Credit Transfer and Accumulation System
and is a standard means for comparing the “volume of learning based
on the defined learning outcomes and their associated workload” for
higher education across the European Union

∙ Inheritance, interfaces, and advanced features (2 ECTS),
including functional interfaces, lambda expressions, ex-
ceptions, and generic types.

∙ Standard libraries (3 ECTS) including the Collections
framework, streams, files, dates, threads, and GUIs.

∙ Software Engineering principles (2 ECTS), including
the Software life cycle, UML, Design Patterns, Config-
uration management, Testing. The latter two subtopics
provide basic skills in Subversion3 and JUnit4.

The course consists of over 70 hours in the classroom, in-
cluding both lectures introducing the topics and live coding
sessions presenting and discussing programming assignment
solutions, and 20 hours in the lab dedicated to the develop-
ment of programming assignments. While one could argue
that the hours in the lab should be much more, this is not
practically possible since there are limited lab facilities that
are shared with several other courses, e.g. there are 20 repli-
cas of the basic Computer Science course with about 200
students each.

The OOP course is run in three replicas, two in Italian
and one in English, with 330, 270, and 115 enrolled students
respectively.

The exam process is sketched by the activity diagram
shown in Figure 1 and encompasses a few steps:

(1) the teacher prepares an initial project and uploads it;
(2) during the exam, the students develop a small program5

in two hours, while sitting in the lab;
(3) at the end of the exam the students must submit their

program;
(4) meanwhile, the teacher has prepared an acceptance

test suite;
(5) after the exam, the teacher assesses the functionality

of the program versus the test suite;
(6) the students have to fix or complete the program in

order to make it pass all the tests in the suite;
(7) the teacher grades the work done by the students.

The assignment consists of:

∙ a requirements document, usually made up of four
or five sections that are designed to be implemented
incrementally, because the features required in a sec-
tion make use of the ones defined in previous sections.
The requirements describe a set of classes and their
methods;

∙ an initial project, containing skeletal classes, i.e. classes
with the methods called by the tests but with minimal
bodies returning fixed values (e.g. null); the project
can be opened with the reference IDE and is syntacti-
cally correct;

∙ an example class, containing a main() method that
exercises the most relevant methods described in the
requirements. It is intended to clarify the requirements
and to provide the students with a basic testing tool.

3https://subversion.apache.org
4http://junit.org/junit4/
5A few examples of the required program are available
at: http://softeng.polito.it/courses/02JEY/exams/

https://goo.gl/UMEu4y
https://goo.gl/UMEu4y
https://goo.gl/UMEu4y

Integrating SE Key Practices into an OOP Massive In-Classroom Course SEEM’18, May 27-June 3, 2018, Gothenburg, SwedenActivity Diagram1 2018/02/05 powered by Astah
Activity Diagram1act

St
ud

en
t

T
ea

ch
er

Upload
Starting
Project

Upload acceptance
tests

Assess exam
and notify tests &
results

exam start

Checkout
initial
project

Commit
lab version

Checkout
lab version

Commit
home
version

Grade

Figure 1: Exam procedure

The evaluation is computed on the basis of the functional
compliance – both in terms of correctness and completeness –
of the program. Such an approch has been inspired by the
agile manifesto principle ”Working software is the primary
measure of progress” [3].

More in detail, the tests are packaged into a .jar file
containing both class files and source files. This is done to
avoid both unintended and malicious modifications to the
test suite.

In practice the grade is computed on the basis of two
indicators:

∙ Percentage of acceptance tests passed by the lab version
(𝑆),

∙ Code churn (𝑀) applied to make the program pass all
the tests.

Code churn [11] is the amount of added and modified lines
of code; it is a very simple measure of the quantity of code
modification.

The former indicator provides a coarse grained assessment
of the functional compliance from an end-user point of view,
the latter represents a fine grained evaluation and is a proxy
measure of the rework needed to fix defects (correctness) and
to complete unimplemented features (completeness).

The basic formula to compute the grade is:

𝐺𝑟𝑎𝑑𝑒 = 𝑐0 + 𝑐1 ·
(︂
𝑆 + (1− 𝑆)

𝑐2
𝑐2 +𝑀

)︂
Where the constants 𝑐0, 𝑐1 and 𝑐2 are adjusted case by

case based on the difficulty of the exam.
Given the above formula:

∙ when a large amount of modifications is applied the
grade is essentially defined by the percentage of tests
passed

∙ as the percentage of passed tests get lower the compo-
nent inversely proportional to the modifications gets a
higher weight.

An important aspect of this evaluation approach is that the
completeness and correctness of the program delivered in the
lab is evaluated by comparison. The reference program is the
fully working version submitted from home, after the exam;
it is a natural evolution carried out by the same student who

wrote it initially in the lab. A possible alternative would be
to use a predefined solution developed by the teacher as a
reference, but its adequacy could be low for the following
reasons:

∙ since there is no single solution for any given prob-
lem, the comparison with a predefined solution could
penalize different – possibly even better – solutions;

∙ the amount of work needed to complete the program
and to fix defects can reasonably be estimated only by
comparing the original one with the evolved version.

The approach also encourages the students to understand
the requirements, identify a design and then work on the
requirements, one by one, developing fully working code
(possibly just for a subset of the requirements) rather than
write a complete solution in a single big-bang, which typically
does not work.

The rationale behind such an approach is that, in real-
world terms, it is better to have a program that performs
correctly on a subset of requirements that a program that is
almost complete but crashes at the beginning and eventually
does nothing.

The above assessment method is fully automated and can
be applied to large numbers of delivered projects producing
objective and unbiased grades.

The current approach presented in this paper is an evolu-
tion of the one developed originally in 2003 and described
in [16].

The approach was updated in response to several chal-
lenges:

∙ the number of students enrolled raised significantly in
the latest years from around 200 per year to roughly 700
in the current academic year, making this course a real
Massive In-Classroom Course; therefore the solution
must be scalable and robust;

∙ the teaching staff is very limited: three teachers lec-
turing three parallel tracks (to fit lecture halls hosting
250 students at most), plus three teaching assistants
supporting the students in the labs;

∙ the lectures are video recorded and this encourages the
students to attend the course remotely. In particular
the students should be able to work autonomously on

SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden M.Torchiano and G.Bruno

their assignments – e.g. at home – due both to personal
reasons and to crowded labs; therefore the assignment
management framework must be based on tools that
can be easily installed on their PCs;

∙ the instruments and tools should enable the students
to acquire skills directly usable in a real-world set-
ting; therefore the tools should be widely adopted in
practitioner communities;

∙ the course content was extended to include basic SE
practices, so as to encourage the students to adopt or
at least become acquainted with basic software engi-
neering practices, i.e.:
– automated testing,
– configuration management,
– integrated development environment (IDE).

To better characterize the learning outcomes, we can refer
to taxonomies that describe curricula objectives in terms of
topics and levels of understanding. In particular, Bloom’s
taxonomy [2, 5] classifies learning achievements into six differ-
ent cognitive levels: knowledge, comprehension, application,
analysis, synthesis and evaluation. While the educational
goals in the programming part of the course clearly address
all the six levels of the taxonomy, the software engineering
part only addresses the lower levels of the taxonomy.

3 TECHNOLOGICAL PLATFORM

The technological solution we developed is based on a few
technologies that both implement software engineering best-
practices and cover a key role in the exam and assignment
management process described above.

The SE areas we decided to cover with technologies and
assignment related activities are:

∙ Automated Testing using JUnit
∙ Configuration Management using Subversion
∙ IDE as Eclipse

In addition we had to set for a robust method for au-
thentication and authorization to be used during exams. We
decided to use SVN authentication as the basic technology.

3.1 Automated Testing

Testing is a key technique for the Verification and Validation
phase in any software development process [14], in particular
automated unit testing has gained much attention in recent
years.

JUnit is the de-facto standard for writing automated tests
in Java [4]. While its original purpose was to write unit
tests, it is also widely used as the basis for UI testing and
end-to-end tests.

In our approach, JUnit is used to evaluate the functional
compliance of assignments. The basic measure is the pro-
portion of passed test cases. The JUnit execution report is
the standard feedback the students receive both when they
complete their lab assignments during the course and right
after the exam.

In terms of test automation, the main challenge is that
we need to test a huge number of programs. The peculiarity

Test	ClassLoader	
instance	

TestClass1	
TestClass1	

Bootstrap	
ClassLoader	
instance	

Project	ClassLoader	
instance	for	Project	n	

TestClass1	Project1	
Class1	

Project	ClassLoader	
instance	for	Project	1	

TestClass1	Project1	
Class1	

…	

Figure 2: Hierarchy of loaders used for testing.

is that while in a regular industrial setting we have large
test suites to be executed on a single program (or parts
thereof), in our course we have a single (small) test suite to
be run against several hundred similar programs that provide
different implementations of the same classes.

A technical obstacle is that – at least in theory – we ought
to start a new Java Virtual Machine (JVM) for every project,
load the tests and the classes making up the program, and
run the tests. Unfortunately the VM startup and class loading
are very heavy tasks.

The solution we devised to achieve a reasonable scalability
is to use a hierarchy of Java class loaders as shown in Figure
2.

Class loaders are classes responsible for finding and loading
classes whenever the VM needs them. A bootstrap class loader
is always present and it searches the classes in the predefined
classpath. Class loaders are generally organized in a delegation
hierarchy, so that if a specific class loader is not able to find
a class, recursively delegates the search to its parent. In our
approach a dedicated class loader class has been developed
to load the test classes from a given .jar file. In addition we
developed a project class loader that loads classes from the
project path; an instance is created for each project.

The test execution starts from this more specific class
loader; when a test class is needed it delegates the test class
loader to get it. Since test classes are common to all the
assignments, in most cases the test class loader finds them
in the cache. Such a solution has several advantages:

∙ the test classes are loaded only once by the test class
loader,

∙ any project specific class loader is isolated from the
others so that classes with the same name can be loaded
in the projects without any interference,

∙ overall a single VM can be used for testing several
projects.

Owing to this approach, testing projects can proceed at a
rate of two projects per second on a standard Ubuntu VM
with 4 cores and 8GB RAM. Each project typically counts
five to eight classes while the test suite includes 20 test cases
at least.

In terms of acquired skills and knowledge, the students
are not required to write tests – the main reason being the

Integrating SE Key Practices into an OOP Massive In-Classroom Course SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden

short time available for the exam, i.e. 2 hours – though they
must be able to: (i) import a test suite, (ii) run the tests, (iii)
understand the tests results, and (iv) identify the cause of
the test failures.

In particular, for the latter ability, the students have to
know what the assert statements mean, how an expected
exception is tested, and in general they must be able to read
a failure or error message, as well as to understand a stack
trace in order to locate the origin of a failure, and also to
interpret the test code to figure out the conditions that led
to the failure.

The implementation of the infrastructure includes 67 Java
classes for a total of 6700 LOCs.

3.2 Configuration Management

Subversion (Svn) is a widespread centralized version control
system [6]. Although its adoption has recently decreased in
favor of more modern distributed systems, such as git [15],
Svn is still widely used in industry and as far as our course
is concerned it is easier to use, thus less error prone, and
simpler to manage. In our approach Subversion is used to
give the assignments to the students as well as to collect their
implementations, and this takes place both during the course
and at the exam.

While Svn can support concurrent development with a
Copy-Modify-Merge approach, and can manage different
threads of execution using branches, the course makes use
only of the basic versioning features.

In practice the assignment life cycle is supported by Svn
as follows:

(1) the teacher commits an initial version of a Java project
together with an acceptance test suite to a master
repository,

(2) the initial project is committed to all student reposito-
ries by the teacher using a simple script,

(3) the students check-out the initial project and start
working on it,

(4) the students commit the results of their work to their
own repositories,

(5) the teacher checks out the latest version of the projects
available in the repositories and runs the tests on them.

The latter step is performed using the multiple classloaders
approach described in the previous sub-section.

The main challenges faced in customizing Svn for the
purpose of the course were as follows:

∙ the students must have isolated personal repositories,
so that no interference can occur by mistake;

∙ during the exam, the students must not be able to
access other students’ repositories, to avoid plagiarism;

∙ during the exam, the students must be able to access
their repositories as soon as the exam begins; therefore
the repositories must be created in advance;

∙ the students must not be able to keep working after
the exam deadline has elapsed.

The isolation can be obtained by means of a single repos-
itory containing one subfolder per student and adequate

permissions. Alternatively, one repository per student can be
created with the student having access to her own repository
only. While the former is more efficient, it is less isolated:
every time a student performs a commit, the revision number
is incremented for every other students too. For this reason,
even if it is more expensive we opted for the one repository
per student solution.

During the course, a student sharing his credential with a
colleague is generally not a problem and can foster collabora-
tion. But, such behavior must be prevented during the exam.
The solution is to create a new repository for each student
who signed up for the exam. Then each repository is popu-
lated with a copy of the initial project and the credentials for
the repositories are handed to the students at the beginning
of the exam.

The creation of an Svn repository, on our server, typically
takes 4-5 seconds, therefore the repositories must be created
in advance, at the beginning of the course and before each
exam session.

During the exam, students are allowed to commit their
projects as many times as they wish. At the end of the exam,
the teacher annotates the actual end time; only commits
performed before the end time are taken into account.

In addition Svn was used to make the tests available to
the students on a dedicated test repository. Sometimes errors
can be found in tests after the reports have been sent to the
students. By using Subversion we can update the test .jar
inside the repository and notify the students via email.

In terms of acquired skills and knowledge, the students
must learn a few basic tasks:

∙ performing the check-out of a project from a repository,
∙ performing the commit of a project to a repository.

In addition, during the course the students are encour-
aged to perform frequent commits when developing a project.
During the exam, they are invited to commit after implement-
ing each requirement and explicitly instructed that is safer
to commit 10 minutes before the deadline. The goal of the
course is to make the students familiar with the elementary
configuration management operations that are at the basis
of any workflow they will adopt in the future.

The management of the repositories has been implemented
using 16 scripts in bash and python, for a total of 910 and
827 LOCs respectively.

3.3 Java IDE

The usage of an IDE is often an implicit assumption when
writing code. In our course we opted for Eclipse6 because
historically it was one of the most widespread IDEs and due
to the fact that it is an open-source product.

The Eclipse Java IDE is the reference IDE that is taught
during the course. The configuration management and testing
tasks are performed by the students using the plug-ins for
this IDE.

Eclipse is installed in all labs and the students are encour-
aged to install it on their machines. We observe that while

6http://www.eclipse.org

SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden M.Torchiano and G.Bruno

Eclipse comes with a built-in JUnit plug-in, – oddly enough –
it has no default built-in plug-in for Subversion. Therefore
an additional plug-in (Subversive) has to be installed on top
of the default Java IDE.

4 DISCUSSION

4.1 Learning objectives

Table 1 reports the six taxonomy levels and the corresponding
capabilities addressed with respect to the three key SE areas
included in our course. In the table, the capabilities addressed
by the course are shown in bold, those partially addressed
in italic, and the others, not addressed, in a regular font.

The cognitive levels addressed are first needed in the lab
assignments the students have to perform during the course
and then they are required in the exam. Therefore we are
confident that the students passing the exam achieved those
levels to a good degree of completeness.

The Analyze level for configuration management is only
partly addressed because no concurrent development is used
in the course, therefore no conflict will take place: this is an
activity students learn in lectures but never experience in
practice. For this reason, the Evaluate level is not addressed
either.

The Create level is not addressed for any of the three key
areas. As to testing, writing tests is a time consuming activity
that cannot fit in the tight schedule (2 hours) allowed for the
exam. As far as configuration management is concerned, the
lack of concurrent development makes it impossible to apply
merge operations. Regarding the Java IDE, all assignments
start with students importing pre-defined Eclipse projects
from Svn, therefore the project set-up phase is not put into
practice.

Concerning the basic skills we observed one important
point: even though most students are able to perform correct
Svn operations, they tend to apply a minimalistic workflow.
Students are encouraged to perform a commit after complet-
ing each requirement section, nevertheless most of them tend
to perform fewer commits, just the barely minimum to abide
by the exam rules: a commit at the end of the exam session
and a commit after the session.

Given an assignment whose requirements contain 𝑟 sections,
the recommended process entails at least 𝑟 + 1 commits: one
for each requirement section plus one from home after the
exam. This is a very simple, though approximate, criterion
to identify compliant students.

We analyzed the number of commits performed by the
students on their exam repositories. Out of 1008 repositories
– corresponding to the bookings – we found that 25% of them
contained only the initially project and no student commit.
These are untouched projects: students that either booked
the exam but did not show up or decided to quit during the
exam.

Excluding the untouched projects, the distribution of the
number of commits for the students who actually attended
the exams is shown in Figure 3.

Table 2: Process compliant students

Session Students Dropout Compliant

June 2017 334 7.5% 44.3%
July 2017 258 6.6% 41.5%
Sept 2017 101 15.8% 22.8%
Jan 2018 63 0.0% 23.8%

All 756 7.7% 38.8%

There is a small percentage of students (7.7%) who per-
formed just 1 commit, i.e. they committed a version in the
lab during the exam but did not completed their programs
at home; they are the exam dropouts. A larger share of the
students (92.3%) performed at least two commits, i.e. one in
the lab and one from home.

Table 2 reports, for each exam session, the number of
touched repositories and the proportion of dropouts and
compliant students. We observe that overall 39% of students
complied with the recommended process. The first two exam
sessions – closely following the end of the course – exhibit a
higher compliance, 44% and 41% respectively.

4.2 Issues

The first instance of the course using the infrastructure de-
scribed above was given in a.y. 2016/17. The set-up was used
both during the course (from March to June 2017) and for
the exam sessions. We managed four exam sessions (June,
July and September 2017, and January 2018) for a total of
629 exams graded. Given the huge number of students we
encountered several problems.

We summarize here the main issues that emerged during
and after the exam sessions:

∙ Several students after checking-out realized that Eclipse
did not provide editing support (e.g. code completion).
This is typically due to the fact they did check-out the
whole repository and not just the folder containing the
Eclipse project; as a consequence, Eclipse is not able to
recognize the folder as a Java project and thus cannot
provide all Java-related supporting features.

∙ After the exam some students got a test report showing
many failures they could not find in their projects. The
cause for this lies in a late commit, i.e. a commit
performed after the exam deadline.

∙ After the exam, some students got no test reports
because the projects submitted contained errors that
prevented a successful compilation. Despite the invi-
tation issued 10 minutes before the end of the exam,
several students continued to work on the code rather
than checking the code for errors.

∙ Sometimes students get compilation errors they were
not able to see in the lab within their IDE. In our
experience this is due to a few causes:
– the Eclipse uses its own (incremental) compiler that

in a few cases – e.g. type inference for generic types

Integrating SE Key Practices into an OOP Massive In-Classroom Course SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Cognitive level and specific capabilities addressed for the key SE practices.

Level Testing Configuration Management IDE

Remember JUnit framework elements Svn operation Eclipse features

Understand Semantics of test methods

and assert statements

Semantics of commands Main tasks (e.g. compile,

run, etc.)

Apply Execute test suite Perform check-out and

commit

Develop and run

Analyze Understand test results Understand outcome of

operations

Understand error messages

Evaluate Identify failure causes Identify conflict causes Identify defects or problems

Create Write tests Merge conflicts Set-up a project

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Commits performed by Students

P
ro

po
rt

io
n

0%

5%

10%

15%

20%

7.7%

19.4%

15.3%

12.8%

10.6%

8.2% 8.2%

5.4%

3.8%
3.3% 2%

1.1%
0.5% 0.3% 0.3% 0.4% 0% 0% 0.1% 0.4% 0.1%

Figure 3: Distribution of student commits.

– behaves differently from the Oracle JDK compiler
we use to compile the project before testing;

– the Eclipse IDE, when suggesting imports in case of
undefined classes or interfaces, usually provides a list
of all compatible elements, e.g. for Collections it
includes of course the java.util.Collections class
as well as, e.g. com.sun.xml.internal.ws.policy.
privateutil.PolicyUtils.Collections. The latter
class is usually not present in a clean JDK installa-
tion and the corresponding import is marked as an
error during compilation.

∙ During the first exam session, the students in a lab
were not able to connect to the Svn repository. This
problem was caused by a misconfiguration in the web
proxy and firewall in just one lab.

As a side note, we also encountered some weird issues
unrelated to the topics covered in the course. A few students
in every exam session typically call for help because suddenly
the editor in Eclipse is overwriting their code instead of
inserting new characters: this is due to the fact that the
students inadvertently pushed the Ins button on the keyboard
thus switching from insert to overwrite mode. We speculate
that such magic Ins key problem is due to some students

being used to small factor laptop keyboards that do not have
a dedicated Ins key.

Another issue that emerged while discussing with colleages
is the suitability of the Eclipse IDE. In the last year the
Eclipse market share7 (40%) appears to be shrinking in favor
of IntelliJ IDEA (46%), which according to colleagues provide
a more modern and usable environment.

4.3 Lessons learned

We collected a number of critical issues that we intend to
overcome in the next version of the course.

Students are not able to use the basic tools: this
is particularly true for Subversion (as reported above) but
sometimes it happens they are not familiar with Eclipse or
even with the PCs available in the university lab. The lesson
we learned is that the countermeasure is to force or provide
incentives for the students to get familiar with the tools before
sustaining the exam. Currently the assignments proposed to
the students during the course are not mandatory. A possible
mitigation to this problem may be to give additional points in
the final grade if the students complete a specific assignment
that requires basic skills (e.g. Subversion).

7http://www.baeldung.com/java-in-2017

SEEM’18, May 27-June 3, 2018, Gothenburg, Sweden M.Torchiano and G.Bruno

The development environment might differ in part
from the testing environment: this is typically due to
the compiler (Eclipse own compiler vs. JDK javac), the class-
path (Eclipse Java project vs. clean JDK), or the operating
systems (Windows in the lab vs. Ubuntu for the test server).
The consequences of this issue can be significantly reduced
by implementing a simplified Continuous Integration [7] in-
frastructure. Every commit goes through compilation and
testing and the results are reported back to the students.
Such a feedback would enable the students to understand
what the problem is in the testing environment.

Students assume they can work in a new environ-
ment just because they used a similar one: several
students – because of the crowded lecture rooms and labs,
the availability of video recorded lectures, and the possibility
of performing assignments on their own PCs – tend not to
attend all lectures and labs. As a consequence, the day of
the exam turns out to be the first time they use the lab
equipment. The (presumed) tech savyness and confidence
of Millennials apparently bring them to overestimate their
knowledge.

However, forcing the students to work on their assignments
in the lab, would restrict their freedom, and possibly overload
both the facility and the teaching assistants. It is important
to make sure the environment the students re-create on
their machines is as close as possible to the lab environment.
This can be achieved by defining very well the reference
environment – IDE and JDK version – as well as ensuring
the latest version – the one that the students will download
most likely – is installed in the lab too.

Scalable and reliable automation requires a lot of
effort for the infrastructure: even if the three cornerstone
technologies are quite sound and mature, their usage in the
course is peculiar and requires dedicated workflows to be
designed as well as a suitable infrastructure to be developed.
For this course, during several years, over 10KLOC of code
were written mostly in Java but also in Python, Bash shell
and Html. The recommendation is to use existing tools as
far as possible but also to be prepared for a large effort in
infrastructure development.

Whenever you rely on a server, never underesti-
mate the network: we performed tests in two (out of six)
labs used for the exam, but not in the one that turned out
to have the issue. The recommendation is of course that
extensive testing must be performed in the field.

5 CONCLUSIONS

This paper presented a report on the experience in integrating
three key Software Engineering practices – automated test-
ing, configuration management, and integrated development
environment – into a large OOP course. The key practices
play a twofold role: first, they are instrumental to achieve a
set of educational goals, second, they are the cornerstones of
the infrastructure supporting assignment management both
during the course and at the exams.

The resources required to run the course consist in a linux
server hosting the Subversion repositories, the scripts, and
runnning the test correction procedure. In addition labs large
enough are required with PCs hosting the Eclipse IDE. All the
required software is open-source and the additional custom
software can be provided upon request.

The course, as reported, has been run once in a.y. 2016/17,
although it builds on almost 15 years of experience. The
anonymous student satisfaction questionnaires resulted in
90% students being overall satisfied for the educational part.
The global satisfaction level – also including the logistics – is
at 83%, mainly due to the crowded classes and labs.

For the next edition of the course we plan to put into
practice the lessons learned, the most important being the
introduction of a light-weight continuous integration feature.

Moreover for future editions we will have to consider a
possible evolution of the adopted technologies (e.g. IDE and
configuration mangement), taking into account both the ease
of use and the popularity.

REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013.

Computer Science Curricula 2013. Technical Report. ACM Press
and IEEE Computer Society Press.

[2] Lorin W Anderson, David R Krathwohl, P Airasian, K Cruikshank,
R Mayer, P Pintrich, James Raths, and M Wittrock. 2001. A
taxonomy for learning, teaching and assessing: A revision of
Bloom’s taxonomy. Longman.

[3] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim High-
smith, Andrew Hunt, Ron Jeffries, et al. 2001. Manifesto for agile
software development. (2001).

[4] Kent Beck and Erich Gamma. 1998. Test infected: Programmers
love writing tests. Java Report 3, 7 (1998), 37–50.

[5] Benjamin S Bloom et al. 1956. Taxonomy of educational objectives.
Vol. 1: Cognitive domain. New York: McKay (1956), 20–24.

[6] Ben Collins-Sussman, Brian Fitzpatrick, and Michael Pilato. 2004.
Version control with subversion. ” O’Reilly Media, Inc.”.

[7] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Contin-
uous integration: improving software quality and reducing risk.
Pearson Education.

[8] Martin Fowler and Kent Beck. 1999. Refactoring: improving the
design of existing code. Addison-Wesley Professional.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[10] IEEE-CS. 2014. Software Engineering Competency Model. Tech-
nical Report. IEEE Computer Society Press.

[11] T. M. Khoshgoftaar, E.B. Allen, N. Goel, A. Nandi, and J. Mc-
Mullan. 1996. Detection of Software Modules with high Debug
Code Churn in a very large Legacy System. In Proceedings of
International Symposium on Software Reliability Engineering.
364–371.

[12] Karen K. Myers and Kamyab Sadaghiani. 2010. Millennials
in the Workplace: A Communication Perspective on Millenni-
als’ Organizational Relationships and Performance. Journal
of Business and Psychology 25, 2 (01 Jun 2010), 225–238.
https://doi.org/10.1007/s10869-010-9172-7

[13] James Rumbaugh, Ivar Jacobson, and Grady Booch. 2004. Uni-
fied Modeling Language Reference Manual, The (2nd Edition).
Pearson Higher Education.

[14] Per Runeson. 2006. A survey of unit testing practices. IEEE
software 23, 4 (2006), 22–29.

[15] Travis Swicegood. 2008. Pragmatic version control using Git.
Pragmatic Bookshelf.

[16] Marco Torchiano and Maurizio Morisio. 2009. A Fully Automatic
Approach to the Assessment of Programming Assignments. In-
ternational Journal of Engineering Education 24 (4) (2009),
814–829.

https://doi.org/10.1007/s10869-010-9172-7

	Abstract
	1 Introduction
	2 Context and Motivation
	3 Technological platform
	3.1 Automated Testing
	3.2 Configuration Management
	3.3 Java IDE

	4 Discussion
	4.1 Learning objectives
	4.2 Issues
	4.3 Lessons learned

	5 Conclusions
	References

