
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deadline-Constrained Content Upload from Multihomed Devices: Formulations and Algorithms / Mellia, Marco; AJMONE
MARSAN, Marco Giuseppe; SAFARI KHATOUNI, Ali; Rejaie, Reza. - In: COMPUTER NETWORKS. - ISSN 1389-1286.
- STAMPA. - 142:(2018), pp. 76-92. [10.1016/j.comnet.2018.06.008]

Original

Deadline-Constrained Content Upload from Multihomed Devices: Formulations and Algorithms

Publisher:

Published
DOI:10.1016/j.comnet.2018.06.008

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2704216 since: 2018-06-18T09:11:29Z

Elsevier

Deadline-Constrained Content Upload from Multihomed Devices:
Formulations and Algorithms

Ali Safari Khatouni1∗, Marco Ajmone Marsan1,3 , Marco Mellia1 , Reza Rejaie2

1 - Politecnico di Torino, Italy
2 - University of Oregon, USA

3- Institute Imdea Networks, Spain

Abstract

This work originates from the practical requirements of video surveillance in public transport systems, where security cameras
store video onboard, and a central operator occasionally needs to access portions of the recordings. When this happens, the selected
video portions must be uploaded within a given deadline, using (multiple) wireless interfaces, with different costs (which correspond
to, e.g., tariffs). We study this video upload problem as a scheduling problem with deadline, where our goal is to choose which
interfaces to use and when, so as to minimize the cost of the upload while meeting the given deadline. Our study gives rise to
adaptive schedulers that require only a very coarse knowledge of the wireless interfaces bandwidth.

In this paper, we first assume an oracle has perfect knowledge about the available bandwidth of wireless interfaces at each time,
and we formulate an optimization problem to minimize the upload cost within the given deadline. Second, we propose greedy
oracle-based heuristics that perform very close to optimal, and that can provide a simple baseline for performance. Third, we
formulate a stochastic optimization problem, assuming only the knowledge of the distribution of available bandwidth, and, fourth,
we propose adaptive schedulers, that we simulate and also implement and test in a real testbed.

Simulation results demonstrate that our adaptive solutions can effectively leverage the fundamental trade-off between upload
cost and completion time, despite unpredictable variations in the available bandwidth of wireless interfaces. Experiments with real
mobile nodes provided by the MONROE platform confirm these findings.

Keywords: Adaptive scheduling; wireless network; multihomed devices; content upload; smart city

1. Introduction

Wireless technologies such as WiFi, 3G, 4G, and soon-to-
come 5G, provide access capacities up to hundreds of Mb/s.
Multihomed devices are commonly available, offering the
chance to transmit over different technologies and networks at
the same time. Yet, there are scenarios in which the amount of
data being produced and consumed challenges the bandwidth
offered by wireless networks.

In this paper, we look at one of those scenarios. Our interest
is motivated and inspired by the real needs of public transport
operators. Public transport vehicles (like buses or trains) are
equipped with multiple Mobile BroadBand (MBB) [1] inter-
faces, several onboard security cameras record videos. Those
must be uploaded to a security center where an operator occa-
sionally requests to watch selected portions of the videos. In
this scenario, continuous real-time video uploading is too ex-
pensive. Even if current MBB networks can offer capacities
up to 100 Mb/s, the number of vehicles and videos, the lim-
ited data quota, the performance variability along the route, and

∗Corresponding author
Email addresses: ali.safari@polito.it (Ali Safari Khatouni1),

marco.ajmone@polito.it (Marco Ajmone Marsan1,3),
marco.mellia@polito.it (Marco Mellia1),
reza@cs.uoregon.edu (Reza Rejaie2)

the need to check only parts of the videos, call for ingenious
upload strategies. Hence, videos are stored onboard, and, only
when an alarm is triggered, the security operator on duty re-
quests the specific portion of the video that must be uploaded
before a specified short deadline. The deadline normally is of
the order of a few minutes, depending on the urgency of the in-
cident. For instance, pickpocketing events can wait till the ve-
hicle returns to deposit. Instead, in case of health problems of
passengers, the security officer needs to access the video within
a short time, after obtaining all the required authorizations.

We model this problem as the scheduling of content upload
from multihomed mobile devices, where the content must be
delivered within a given deadline, while the cost must be min-
imized. The cost associated with each interface is defined ac-
cording to the nature of the problem. For example cost can cor-
respond to tariffs, energy consumption, data quota, or system
load. In our problem definition, cost is related to the monetary
cost of the data transmission on each technology.

Our problem differs from the classic problem of content up-
load using multihomed nodes [2, 3], where upload delay has
typically to be minimized, i.e., throughput maximized. Also,
no real time constraint exists in our case, thus making our prob-
lem different from video streaming, and somehow similar to
a delay tolerant scenario, albeit the hard deadline for delivery

Preprint submitted to Elsevier March 23, 2018

of the entire content (rather than individual packets) must be
met [4].

We assume that the mobile node is equipped with several
MBB interfaces, with different technologies, e.g., cheap but oc-
casionally available WiFi, more ubiquitous, but more expen-
sive, 3G, 4G, and soon-to-come 5G subscriptions, possibly of-
fered by different operators. The system has to decide i) which
interface(s) to use, ii) when to upload from such interface(s),
and iii) at which rate to upload (if there is available bandwidth).
Our goal is to minimize the total cost of the upload, while meet-
ing the deadline. A greedy solution that immediately starts up-
loading from all interfaces minimizes the upload time, ignoring
opportunities for cheap interfaces to become available in the
future, thus increasing upload cost. A trade-off clearly exists
between minimizing the total transmission cost or minimizing
the upload completion time.

In this paper, we propose and analyze a family of adaptive
schedulers that require only a very coarse knowledge of the
available bandwidth on wireless interfaces. We extend our work
in [5] by defining a more refined scheduler, and evaluating our
solution using a larger and recently collected dataset to evaluate
the dynamic algorithm proposed in [6]. In addition, We discuss
how to carefully tune the dynamic algorithm parameters, and
we provide a more extensive evaluation. Finally, we implement
and test the algorithms in a real testbed, provided by the MON-
ROE1 platform [7].

The main contributions of this paper are:

• Devising mathematical formulations of the deadline con-
strained content upload problem from multihomed terminals,
under different assumptions.
• Reporting extensive evaluations of the proposed solutions,
based on trace-driven simulations using recently collected
traces.

• Designing, implementing, testing, and evaluating a real im-
plementation of the proposed dynamic algorithm on deployed
mobile multihomed nodes.

The rest of this paper is structured as follows. We first
overview related works and we position our work with respect
to state-of-the-art solutions for similar problems (Sec. 2). Then,
we report on the collection of traces of content upload data rates
from mobile multihomed terminals, showing the unpredictabil-
ity of short-term variations in available bandwidth (Sec. 3) to
gain insight about the trade-off between cost and delivery time
over wireless channels. Next, we formulate and solve an ideal-
ized version of the problem, where an oracle has perfect knowl-
edge of the upload rate on each interface at each time. The
oracle can then schedule the upload in those time slots when
cheap connectivity is (expected to be) available, thus minimiz-
ing total cost (Sec. 4.1). We also introduce three simple greedy
heuristics, to show the effectiveness of intuitive approaches to
solve this problem (Sec. 4.2). Then, we formulate the video up-
load problem as a centralized scheduling problem, where the
upload rates of the available interfaces are random variables

1https://www.monroe-project.eu/

with known distribution. Solving such problem is computa-
tionally impractical (Sec. 4.3). Thus, we aim for a practical
solution that requires only a coarse knowledge of the available
bandwidth, and we design online, adaptive schedulers to ex-
plore the trade-off between cost and delivery time (Sec. 4.4).
Afterwards, we test the proposed algorithms in the real MBB
platform provided by the MONROE H2020 project (Sec. 6).
Finally, we conclude the paper (Sec. 7).

2. Related work

Mobile devices allow users to connect to multiple wireless
networks with possibly different technologies [8, 9, 10], obtain-
ing throughput values which depend on the terminal position,
the network coverage, the traffic load, the weather conditions,
etc. This makes the problem of scheduling transmissions over
multihomed [11] wireless interfaces both relevant and challeng-
ing. Several authors already published works which are close
to what we discuss in this paper. For example, Higgins et
al. [12] were among the first to face this problem. They tackle
a problem in this domain, and propose Intentional Networking,
that lets the application choose opportunistically the interfaces,
based on a label that expresses the application requirements.
They however target different problems such as real-time com-
munications, with no support for deadline.

We discuss related work by looking at three main dimen-
sions, which correspond to topics which have been widely in-
vestigated in the past: predictability of wireless network perfor-
mance, multipath TCP, and delay tolerant networks.

• Predictability of MBB performance: The performance of
wireless network services under uncertain network availability
has been previously investigated by several authors. Deng et
al. [13] investigate the characterization of multihomed systems
considering WiFi vs. LTE in a controlled experiment. They
show that LTE can provide better performance than WiFi, also
exhibiting large variability on both short and long time scales.
Rahmati et al. [14] present a technique for estimating and learn-
ing the WiFi network conditions from a fixed node. Rathnayake
et al. [15] demonstrate how a prediction engine can be capable
of forecasting future network and bandwidth availability, and
propose a utility-based scheduling algorithm which uses the
predicted throughput to schedule the data transfer over multi-
ple interfaces from fixed nodes. These works heavily rely on
channel performance predictions, and consider scheduling at
the packet-level, i.e., choosing which packet to send through
which interface, to maximize the total throughput.

Our work differs from those, since we deal with moving ve-
hicles, and this exacerbates the unpredictability of the network
performance, as shown by several authors. For instance, Riiser
et al. [16] collected 3G mobile network traces from terminals
onboard public transport vehicles around the city of Oslo (Nor-
way). Similarly, Chen et al. [17] measured the throughput of
both single-path and multi-path data transport in 3G, 4G, and
WiFi networks. In both cases, variability is much higher than
for fixed nodes. Lee et al. [18] showed that mobile data of-
floading through WiFi can reduce the energy consumption of

2

the mobile device, Bychkovsky et al. [19] presented the con-
nectivity characteristic of WiFi for a mobile device traveling
in a city. Similarly, Safari et al. [20] ran large scale download
measurements in MBB networks. They show MBB networks
are much more complex than wired networks, because of many
factors which clutter the picture.

Given this difficulty in predicting the characteristics of MBB
networks, we collected traces, and we used them to run trace-
driven evaluations in realistic scenarios.

•Multi-path TCP: A number of recent works focus on multi-
path TCP (MPTCP) [2, 21], and look at the design of packet
schedulers and congestion control algorithms. The goal of the
authors normally is to maximize throughput, or equivalently to
minimize upload time (rather than to minimize the total cost
of uploading a given content within a specified deadline, as we
do). Nikravesh et al. [3] thoroughly investigate the performance
gains and the costs of mobile MPTCP by means of traffic mea-
surements, and present the MPFLEX software architecture. Wu
et al. [22] propose a framework for video streaming, but do
not consider the cost associated with interfaces or a deadline
for video upload, see also [23, 24, 25]. Lim et al. [26, 27]
introduce an energy-aware variant of MPTCP which aims to
reduce energy consumption with respect to standard MPTCP.
They however consider download transfers, do not consider any
deadline, which makes their work different from ours. Han et
al. [28] show the fact that MPTCP implies unnecessary use of
cellular interfaces in case of available bandwidth on WiFi in
multihomed system. They present MP-DASH, a network inter-
face preference-aware multi-path framework for DASH video
streaming. Its performance is highly dependent on the choice
of the DASH algorithm. This work is different from ours be-
cause it focuses on real-time streaming solution.

• Delay tolerant networks: Delay Tolerant Network (DTN)
solutions for content upload try to find the way to deliver the
content by maximizing the device-to-device transmission [29,
30, 31] or maximizing the use of WiFi [32, 33]. The data de-
livery has no deadline, and the main problem is the creation
of the time-varying network topology to guarantee the deliv-
ery. Yetim et al. [32] illustrate the benefit of the delay tolerant
approach to save energy by sending more data over WiFi in-
terface. However, their approach does not support change in
cost and deadline. On the contrary, we rely on MBB to offer
connectivity with associated cost, and devise approaches to use
interfaces so as to minimize cost while delivering the content
before the deadline.

• Deadline scheduling: Previous works did consider schedul-
ing under a fixed deadline, but they assumed that network per-
formance is perfectly known. Zaharia et al. [34] presented an
optimal scheduler over multiple network interfaces, and pro-
posed approximations which can be implemented with lim-
ited resources in mobile phones, or PDAs. They assumed the
cost and bandwidth of each interface to be constant. Moo-
Ryong et al. [35] also proposed an algorithm for video upload
from smartphones with two MBB interfaces. They focus on
energy-delay trade-off. These works differ from ours, since

Figure 1: A sample of collected traces for each technology

they assume MBB interface availability and capacity are known
(which we consider not realistic). We do not assume any a pri-
ori knowledge of available capacity.

3. Characterization of mobile traces

We first present some recent mobile traces that we collected
from vehicles, with the dual purpose to show how unpredictable
the available bandwidth is, and to run realistic performance
evaluation using trace-driven simulations; indeed, a credible
evaluation of the proposed algorithms calls for realistic data
about available upload bandwidth from public transport vehi-
cles. Previous studies collected traces of MBB network data
rates, e.g., Chen et al. [17] and Riiser et al. [16]. However, these
traces are not very recent, hence they exhibit lower bandwidth
values than the ones that we commonly experience over today’s
wireless networks. Lutu et al. [36] collected a large set of recent
traces for MBB from public transport vehicles. However, they
primarily focus on the transfer of relatively short files (4 MB)
that is less likely to effectively utilize the available bandwidth,
and to represent its variations over a longer time scale (minutes
vs. seconds). We thus resolved to collect our own traces by
using mobile terminals onboard private and public vehicles, or
carried by walking users.

3.1. Trace collection methodology

All traces were collected in the city of Torino in Italy in 2016,
and refer to three technologies (WiFi, 3G, and 4G), and dif-
ferent mobile network operators. During trace collection, the
MBB networks were in normal operating conditions (and un-
aware of our tests). Our terminals (both Android and iOS smart-
phones) accessed the mobile networks to upload data to a server
on campus. We used both TCP and UDP.

We used a hybrid method in the trace collection process: dur-
ing each experiment, the mobile terminal runs iperf2 2 in the

2https://iperf.fr/iperf-doc.php

3

Figure 2: CDF of throughput for multiple traces and technologies

upload direction for 600 seconds while tcpdump 3 captures
packets at the server. Using the packet trace, we compute the
throughput in each second of the experiment. The number of
repetitions of active measurements is critical to make sure that
enough samples are collected for a sound estimation of the dis-
tribution of the throughput of each technology. It is important
to note that repetitions cover different times of the day and dif-
ferent days of the week. We repeated the experiment on the
same driving routes for at least 5 times, during different days.

In total, we collected 40 traces for each of the three differ-
ent mobile network operators in Italy (namely TIM, Wind, and
Vodafone), with the objective of obtaining multiple samples
of the upload throughput in MBB networks. Traces are col-
lected in mobile scenario, the speed of vehicles were in range of
[0,70]km/h, most of them collected in three routes with length
[2,5]km. For WiFi, we considered the open WiFi community
"WoW-Fi" offered by Fastweb customers that share their ADSL
or FTTH home networks via the access gateway.4 We make the
collected traces available for researchers5.

3.2. Trace characterization
We now present evidences of unpredictability of throughput,

which makes the scheduling of content upload a challenging
task. Fig. 1 shows a sample of the temporal evolution (x-axis)
of the upload rate (y-axis) for WiFi (red), 3G (blue), and 4G
(black) interfaces, collected when using UDP and TCP. For
each trace, we compute the upload throughput considering time
intervals of 1 second. Starting times of traces have been re-
aligned for ease of visualization. Fig. 2 presents the Cumula-
tive Distribution Functions (CDF) of the per second upload rate
for multiple randomly selected traces. Figures 1 and 2 indicate
that WiFi offers upload throughputs which are very variable in

3http://www.tcpdump.org/
4http://www.fastweb.it/adsl-fibra-ottica/dettagli/

wow-fi/. Mobile phones automatically authenticate using IEEE 802.1x with
no action needed from the user.

5http://tstat.polito.it/traces-MBB-speedtest.shtml

Table 1: Throughput statistics

interface mean standard deviation 80-th percentile max min
WiFi 0.77 Mb/s 2.06 0.57 11.56 0
3G 2.23 Mb/s 1.29 3.44 5.23 0
4G 26.92 Mb/s 13.50 39.47 51.74 0

Table 2: |Tht −Tht−1 | statistics

interface mean standard deviation 80-th percentile max min
WiFi 0.30 Mb/s 0.89 0.24 9.45 0
3G 0.39 Mb/s 0.44 0.63 3.84 0
4G 2.02 Mb/s 2.98 2.93 47.14 0

time, with a behavior that is almost ON-OFF. Upload rates are
limited to less than 10 Mb/s. This is due to the limited coverage
of the WiFi network, and to the upload bottleneck of ADSL or
FTTH access technologies. The 3G technology provides upload
rate values which are invariably lower than 5 Mb/s, with signif-
icant short-term variability, but, thanks to the extensive cover-
age, no long periods of close-to-zero available bandwidth were
observed. The behavior using the 4G interfaces exhibits even
higher variability, with rates one order of magnitude higher than
3G (up to 50 Mb/s). We do not observe any significant differ-
ences when using TCP or UDP, since the unpredictable changes
in the rate are mostly due to sudden changes in the access link
than to congestion along the path.

Table 1 shows, as a summary of the statistics for the three
technologies, the average, standard deviation, 80-th percentile,
maximum, and minimum of the observed per second upload
rate. Table 2 reports the same statistics, but considering the
absolute difference of throughput in two consecutive time slots.
In a nutshell, measurements indicate that it is not realistic to
assume the exact value of the future available bandwidth, as
also claimed by Nikravesh et al. [37].

4. Problem formulations and algorithms

Although we just claimed that assuming to know the future
available bandwidth is not realistic, we start by considering this
case, since it provides a baseline for performance evaluation.
As a second step, we present a stochastic formulation of the
problem, that assume only the probability distribution of the
available bandwidth is known. Finally, we propose dynamic
schedulers that adapt their choices based only on the past values
of available bandwidth.

4.1. Optimal solution with perfect bandwidth knowledge
We assume an oracle has perfect knowledge about the band-

width of all interfaces at all times. We consider time slots, with
slots of duration ∆T . The time slot duration is such that the
available bandwidth over all interfaces can be assumed constant
for one time slot.

We model the scheduling problem using a directed graph
G1 = (N, E), where N is the set of nodes and E = {(i, j) | i, j ∈
N } is the set of edges. Referring to Fig. 3, the leftmost node in
G1 represents the video source, i.e., the vehicle. The second
group of nodes represents the video files to be uploaded. Each
video k = 1, . . . , K (2 videos in the example) is of volume Vk ,
and can be uploaded through different interfaces. The system

4

has T time slots to complete the upload, represented by the third
group of nodes. Each node in this group represents a given in-
terface and time slot. For ease of visualization, nodes referring
to the same interface (2 interfaces in the example) are grouped
in a box. The number of available time slots (5 in the example)
represents the deadline to be met. The rightmost node repre-
sents the sink, i.e., the server receiving the videos.

Edges in E are labeled by a cost ci, j and a bandwidth ri, j .
The label of edge (i, j) is denoted (ci, j, ri, j). The source node
is connected to each video node. Edges exiting from the source
node have zero cost, and bandwidth equal to the video file size
in bits. Edges from video nodes to time slot and interface nodes
are characterized by the cost per bit of using such time slot and
interface (ci, j), and the maximum flow that can be supported by
such time slot and interface (ri, j) in bits/s. This model allows
videos to have different deadlines. Indeed, each video is con-
nected only to the slots it can use. nodes representing time slots
and interfaces are connected to the sink with an edge with zero
cost, and bandwidth equal to the time slot bandwidth.

We assume that there is enough bandwidth to successfully
upload all videos, and that any interface can be shared between
any video at any time slot, i.e., video content is fluid, and can
be split arbitrarily.

4.1.1. Minimum cost flow problem model
We model this problem as a Minimum Cost Flow Problem

(MCFP) [38], in which we look for the maximum flow that the
network can carry, with the minimum total cost. The objec-
tive function in (1) presents the total upload cost, which must
be minimized. Expression (2) forces flow conservation con-
straints. It states that the sum of incoming flows at all nodes
(except source and sink) is equal to the sum of outgoing flows,
i.e., flow cannot be created or disappear at intermediate nodes.
The flow on every edge is non-negative, and it cannot exceed
the rate ri, j , see (3). Expression (4) forces the total flow exiting
from the source node to be greater or equal to the sum of all
requested videos, i.e., all videos must leave the source.

Table 3: Variables definition for MCFP

variable definition
t Time slot index ∈ [0 . . .T]
∆T Duration of time slot
T Number of time slots before the deadline
K Number of videos
I Number of interfaces
N Total number of nodes in the graph

ri, j Available bandwidth on edge from node i to node j
f i, j Amount of data scheduled from node i to node j
ci, j Cost associated to edge from node i to node j

min
∑

(i, j)∈E

ci, j f i, j∆T (1)

∑
(i, j)∈E

f i, j =
∑

(l,i)∈E

f l,i ∀i ∈ Nandi, j, l , Source, Sink (2)

0 ≤ f i, j ≤ ri, j ∀(i, j) ∈ E (3)

slot1

slot2

slot3

slot4

slot5

slot1

slot3

slot2

slot5

slot4

SOURCE SINK

V2

V1

Interfaces

Videos

(0,2)

(0,4)

(10,6)

(8,4)

(12,8)

(14,10)

(10,6)

(2,0)

(4,0)

(2,2)

(2,2)

(2,2)

(0,6)

(0,4)

(0,8)

(0,10)

(0,6)

(0,0)

(0,0)

(0,2)

(0,2)

(0,2)

Figure 3: An example to represent the MCFP model with 2 videos, deadline
equal to 5 time slots, and 2 interfaces∑

(Source, j)∈E

fSource, j ≥
∑
i

Vi (4)

The MCFP problem can be solved using well known and
efficient approaches, like the one in [39], with complexity
of O(m log n(m + n log n)) on networks with n nodes and m
arcs. As depicted from graph G1 n and m are equal to n =
K + (I ∗ T) + 2 and m = (K + 1)(I ∗ T) + K . In this work, we
use the CPLEX [40] solver.

4.2. Heuristic approaches with full knowledge
In order to have simpler alternatives for the computation

of the (quasi) optimal solution in the case of perfect band-
width knowledge, we consider three simple and intuitive greedy
heuristics:

i) Greedy-in-time (GT) - This algorithm uploads all videos
through all interfaces as soon as possible. It minimizes the
upload time, greedily uploading as much data as possible
through all available interfaces. The video with closest
deadline is transmitted first, as soon as any interface has
an available slot to upload (part of) the video.

ii) Greedy-in-rate (GR) - This algorithm sorts time slots ac-
cording to decreasing transmission rate, and schedules
transmission through the highest-rate time slots. If rates
are equal, earlier time slots are preferred.

iii) Greedy-in-cost (GC) - This algorithm sorts time slots ac-
cording to increasing cost, and schedules transmission

5

Figure 4: Example to show how greedy approaches can perform worse than the
optimal solution

through the cheapest time slots. If costs are equal, earlier
time slots are preferred.

All heuristics stop when expression (4) is met, i.e., all videos
are uploaded. The first greedy algorithm guarantees that the
transfer is completed as soon as possible (this makes it simi-
lar to MPTCP solutions), while the second one minimizes the
number of time slots to use. Both approaches disregard the up-
load cost. Only the third algorithm explicitly considers the cost
of using different interfaces at different times.

Assume T is the number of time slots, I is the number of
interfaces, and K is the number of videos. The GT algorithm
only needs the temporal ordering of slots, which is given, so
that complexity is O(1). The GC algorithm needs the ordering
of time slots according to cost, so that complexity is O(T ∗ I∗K)
(which depends on the video and the interface), and then ac-
cording to time. The GR algorithm needs the ordering accord-
ing to slot bandwidth, and time, so that complexity is O(T ∗ I).

To show that greedy approaches can produce a solution
which has suboptimal cost, we use a very simple example with
only 1 available interface, and 2 videos to be uploaded, of sizes
V1 = V2 = R∆T . The slot costs are presented in Fig. 4, with
blue dotted and red solid lines for V1 and V2, respectively. The
costs of V1 and V2 are different (e.g., to represent priorities), and
change over time (e.g., due to different tariffs at different time
of day). This can describe a scenario with congestion-based
pricing. Available bandwidth varies according to the green
dashed line. The two videos have the same deadline equal to
6∆T . Each video can be uploaded in one time slot with rate
equal to R bits/s, or 2 time slots with rate R/2. We can easily
compute the total cost, considering the greedy heuristics and
the optimal solution. By assuming that A < B and C > 2, we
have:

1. GT - The two videos are uploaded in the first two time
slots (either one slot per video, or sharing the slot band-
width), without considering the cost of slots. The total
cost is 2CX R∆T .

2. GR - The two videos are uploaded in the first two time
slots, which have highest rate, without considering the cost
of slots. The total cost is 2CX R∆T .

3. GC - Since the upload of V2 has the lowest cost in the third
and fourth time slots, which have rate R/2, the upload of
V2 is scheduled in those slots. The cost for the upload of V1
is equal to CX in all slots except the ones that are allocated
to the upload of V2. The first slot is chosen because of
the high rate. The total cost is CX R∆T + 2X R∆T/2 =
(C + 1)X R∆T .

4. Optimal solution - The solution based on MCFP schedules
the upload of V1 in the third and fourth time slots, and the
upload of V2 in the fifth and sixth time slots. The total cost
is (X + A)R∆T + (X + B)R∆T = (2X + A + B)R∆T .

We conclude that the total cost for GT and GR is C times higher
with respect to the optimal solution. Instead, the cost for GC
is (C + 1)/2 times higher with respect to the optimal solu-
tion where (A + B) → 0. By means of this example we have
shown that greedy algorithms can generate solutions with pos-
sibly much higher cost than the optimal solution, even in very
simple cases.

4.3. Multistage stochastic model

Since assuming the perfect knowledge of the available band-
width on all interfaces in all time slots is not realistic, we next
look at a case with reduced information. We consider the avail-
able bandwidth of interface i in slot t, Ri,t as a random variable,
denoting the realization of Ri,t with ri,t . From frequent large-
scale measurements, it can be possible to estimate the probabil-
ity distribution of Ri,t , although this requires great effort. Nat-
urally, the values ri,t are known for past slots, as data are trans-
mitted over the interfaces. Uncertainty in data can be modeled
through multistage stochastic models, as follows:

Given the distribution of Ri,t , we model the scheduling prob-
lem using a series of directed graphs G2(t) = (N, E), where N
is the set of nodes and E = {(i, j) | i, j ∈ N } is the set of edges.
As before, we assume time is slotted, with slot duration ∆T . K
videos, each of volume Vk, k = 1, · · · , K , have to be uploaded
through I interfaces. The number T of available slots represents
the deadline. Edge (i, j) in E is labeled by two values: a cost,
and a bandwidth, denoted ci j,t and ri j,t at time t, respectively.
Fig. 5 illustrates the graph G2(t) at time t = 0. A source node
is connected to the K nodes representing videos. Edges exiting
from the source node have zero cost, and bandwidth equal to the
video file size in bits. Each video node is then connected by a
directed edge to I nodes, each representing an interface. These
edges are labeled by the cost per bit of using an interface (ci j,t)
at time t, and the maximum bandwidth that can be supported at
time slot t (ri j,t) in bit/s.

Last, interface nodes are connected to a sink node, with an
edge with zero cost, and bandwidth equal to infinity. Only after
making a decision for the data to send over an interface at time
t, the actual bandwidth ri j,t is known. The quantity bi,t repre-
sents the amount data in buffer at node i because the bandwidth
was lower than expected at previous time slots. Therefore, the

6

Source

V2

Int2

Int1

V1

Int3

Sink

𝒃𝐬𝐨,𝟎 =

𝒌=𝟏

𝑲

𝒗𝒌

𝐛𝒗𝟏,𝟎 = 𝟎

𝒃𝒗𝟐,𝟎 = 𝟎

𝒃𝒊𝟏,𝟎 = 𝟎

𝒃𝐢𝟐,𝟎 = 𝟎

𝒃𝐢𝟑,𝟎 = 𝟎

𝒃𝐬𝐢,𝟎 = 𝟎

Figure 5: Stochastic model representation at time t = 0

buffer occupancy evolves over time based on decisions made in
previous time slots.

Table 4: Variables definition for MSMCFP model

variable definition
t Time slot index ∈ [0 . . .T]
T Number of time slots
K Number of videos
I Number of interfaces

bi,t Amount of data in buffer at node i at time t
ri j,t Available rate from node i to node j at time t
f i j,t Scheduled data from node i to node j at time t
xi j,t Transmitted data from node i to node j at time t

The quantity xi j,t represents the amount of successfully
transmitted data at time slot t on edge i j. Table 4 summarizes
the variables used to formulate the problem. Using the graph
G2(t), the problem of minimizing the total cost C to deliver all
videos can be solved as a Multistage Minimum Cost Flow Prob-
lem (MSMCFP), in which we look for the maximum flow that
the network can carry, with the minimum total cost.

The objective function in (5) presents the expected value
of the total cost over the deadline, which must be minimized,
while (6) forces the real flow passing from node i to node j to
be the minimum between what is scheduled f i j,t and the actual
bandwidth of the interface ri j,t at time t. Expression (7) states
that flow cannot appear/disappear at intermediate nodes at any
time, the data being either transmitted or stored in buffers. The
flow on every edge must be non-negative, and it cannot exceed
rate ri j,t , as dictated by (8). Expressions (9) and (10) force the
total flow exiting from the source node and entering in the sink
node to be equal to the sum of all video sizes. Expressions (11),
(12), and (13) indicate the state of buffers at any time t.

min C =
T∑
t=0
E
{ ∑

(i j)∈E

xi j,tci j,t∆T
}

(5)

xi j,t = min(f i j,t, ri j,t) ∀i j, t (6)

bi,t+1 = max *.
,
bi,t +

∑
j:(j,i)∈E

x ji,t −
∑

j:(i, j)∈E
xi j,t, 0+/

-
∀i j, t (7)

0 ≤ f i j,t ≤ ri j,t ∀(i j) ∈ E, t ∈ {0 . . .T } (8)

T∑
t=0

∑
j:(Source, j)∈E

xSource, j,t =
K∑
i=1

Vi (9)

T∑
t=0

∑
i:(i,Sink)∈E

xi,Sink,t =
K∑
i=1

Vi (10)

bi,T = 0 ∀i, i , Sink and bSink,T =
K∑
i=1

Vi (11)

bi,0 = 0 ∀i, i , Source and bSource,T =
K∑
i=1

Vi (12)

bi,t ≥ 0 ∀i, t (13)

To solve the MSMCFP problem, we need to obtain ac-
curate estimates of the probability distribution for the band-
width of each interface. This requires, as we already noted in
Sec. 3, large-scale measurements at different times in all pos-
sible places, which is unrealistic. In addition, no off-the-shelf
solver is available to solve multistage stochastic problems; the
problem can be solved only by searching through all possible
scenarios, which requires the exhaustive exploration of a tree
of realizations of depth T , with nodes of degree I, i.e., a com-
plexity O(IT). This means that this more realistic option, which
only assumes the availability of probabilistic information about
the bandwidth available on interfaces, is not viable because of
the solution complexity. This means that the only feasible op-
tion to solve the video upload problem is to design adaptive
heuristics.

4.4. Dynamic heuristic

Given the complexity of solving the MSMCFP problem, we
designed an adaptive algorithm that is inspired by schedulers
for P2P video streaming proposed by Magharei et al. [41]. The
dynamic of variations for individual connection as well as the
design goals in our problem are however different from those
in [41]. We only assume the knowledge of the long-term aver-
age throughput of each interface. This information serves as a
reference to assess the feasibility and the pace of progress for
meeting the specified deadline.

We consider slotted time, where ∆T denotes the duration of
a single slot. At the beginning of each slot, the scheduler com-
putes the amount of data to transmit on each interface using
the observed throughput in recent past slots. It updates the ex-
pected rate on each interface based on the overall pace of upload
progress during the recent slots, and schedules the transmission
of a portion of the data, giving preference to cheaper interfaces.
During the slot, data is transmitted according to the actual net-
work state. At the end of the slot, the scheduler checks whether
the amount of transmitted data is smaller than expected. If this
happens, the unsent data, denoted by Le f tB, is greater than
zero. Le f tB is the sum of the amounts of data remaining in
all the interfaces’ buffers at the end of the time slot. When
Le f tB < 0, the system is behind the expected schedule, and
the scheduler needs to recover in the future. We consider two

7

policies for recovery: i) aggressively recovering during the next
slot, ii) conservatively (i.e., optimistically) recovering across all
the remaining slots before the deadline. Let t be the current time
slot. Bt represents the expected data rate at which the system
should transmit during slot t. At the upload start, we estimate
B0 = V/T , being V =

∑K
k=1 vk the total data volume size, and T

the deadline. At the end of each time slot, the system computes
Le f tB, the total amount of scheduled data that was not possible
to transmit due to a lack of bandwidth in that slot.

To help the scheduler, each interface i maintains the expected
rate r̂ti based on the actual transmission bandwidth rti . If
the interface i was active in period t (rti > 0) and congested
(Le f tBi > 0), r̂ti is updated using an Exponentially Weighted
Moving Average (EWMA) algorithm with α coefficient:

r̂t+1i =

αr̂ti + (1 − α)rti if rti > 0 and Le f tBi > 0
Max(r̂ti, rti) if rti > 0 and Le f tBi = 0
r̂ti otherwise

(14)

The rationale of expression (14) is to avoid the estimated
bandwidth to converge to small values when an interface is not
being used, or used at a rate lower than the maximum available
bandwidth, i.e., when the interface bandwidth is not fully uti-
lized. Indeed, data is transmitted at the expected rate and the
actual available bandwidth of the interface is unknown. Thus,
we avoid decreasing the estimated rate of those interfaces that
are not fully utilized. This happens because the algorithm is
not greedy, and interfaces are partially used in a demand-driven
fashion.

Algorithm 1 presents the pseudo code for adaptive schedul-
ing. After initialization, the algorithm loops over time slots un-
til the deadline is reached, or all the data have been uploaded
(line 4). To minimize cost, interfaces are prioritized for data
transmission from the least to the most expensive (line 5). At
the beginning of each time slot t, the system has to schedule
data for transmission (line 6). Vt represents the amount of video
data to transmit at time t. Vt = Bt∆T when considering the most
expensive interface, otherwise, Vt = (β + 1)Bt∆T . β ∈ R+ is
a parameter that controls the optimism of the scheduler. When
β = 0, the scheduler tries to upload the content at the minimum
rate which guarantees to complete the upload within the dead-
line. When β > 0, the system is more optimistic, and the sched-
uler tries to utilize any excess bandwidth, so as to deliver more
data, and stay ahead of schedule. This increases the chance of
completing the upload before the deadline, even if the avail-
able bandwidth drops below the expected value in the future. In
other words, the parameter β allows pushing extra data into the
interface buffer to efficiently use the excess bandwidth of cheap
interfaces. By forcing β = 0 for the most expensive interface6,
we avoid any extra load on that interface, in order to minimize
its use and the overall cost of upload (line 8). The amount of
data scheduled on interface i at time t is the minimum between
Vt and the estimated expected rate r̂ti∆T (line 13). line 14 com-
putes any leftover of video still to schedule on more expensive
interfaces.

6When costs change over time, the algorithm adapts β consequently.

Algorithm 1 Adaptive Scheduler

1: procedure ADAPTIVESCHEDULER(α, β, policy)
2: r̂0i ← Interface average rates
3: B0 ← V/T # minimum rate to meet the deadline at time

t=0
4: for (t = 0; t < T && V > 0; t + +) do
5: SortInterfaceByCost()
6: procedure PUSH DATA TO BUFFERS
7: for (i = 1; i ≤ I && Vt > 0; i + +) do
8: if cost(i) < maxcost then
9: Vt = (β + 1)Bt∆T

10: else
11: Vt = Bt∆T
12: end if
13: Vti = min(Vt, r̂ti∆T)
14: Vt = max(Vt − Vti, 0)
15: end for
16: end procedure
17: UploadAndWaitForSlotEnd()
18: procedure CHECK DATA IN BUFFERS
19: V = V −

∑I
i rti∆T

20: for (i = 1; i ≤ I; i + +) do
21: Le f tBi = Vti − rti∆T
22: if rti > 0 && Le f tBi > 0 then
23: r̂t+1i ← αr̂ti + (1 − α)rti
24: else if rti > 0 && Le f tBi = 0 then
25: r̂t+1i ← Max(r̂ti, rti)
26: else
27: r̂t+1i ← r̂ti
28: end if
29: end for
30: end procedure
31: Le f tB =

∑I
i Le f tBi

32: if Le f tB > 0 then
33: if policy == Aggressive then
34: # update minimum rate to meet the deadline

at time t=t+1
35: Bt+1 = B0 + Le f tB
36: else
37: Bt+1 = Bt + Le f tB/(T − t)
38: end if
39: end if
40: end for
41: end procedure

The data in the buffer is transmitted over all interfaces
(line 17). At the end of each slot, the algorithm updates
the amount of remaining data that must still be transmitted
(line 19), and updates the transmission rate (line 21), and the
expected rate (line 22-27).

If the aggregate transmission rate is smaller than expected,
data is accumulated in Le f tB. When this happens, the system
has to recover by increasing the amount of data to schedule for
transmission Bt+1. If the aggressive recovery policy is selected,
the scheduler tries to recover in the immediately following slot

8

Figure 6: Scheduling process over time and recovery strategies

(line 35). If instead the conservative recovery policy is selected,
the scheduler spreads the left-over data over all the remaining
slots until the deadline, which leads to a higher average trans-
mission rate in remaining slots (line 37).

Fig. 6 illustrates the evolution of the upload process over
time. At each ∆T , the algorithm schedules the amount of data
to be uploaded Bt . At the end of the third time slot, the actual
amount of transmitted data is lower than expected, due to a drop
in bandwidth. The system reacts by updating the expected rate
for future slots, and trying to either recover in the immediately
upcoming slot (aggressive policy, red line), or in the remaining
slots before the deadline (conservative policy, blue line).

5. Trace-driven simulations

5.1. Simulation setup

We first describe the simulation setup that we used to run
experiments, aiming at the performance evaluation of different
schedulers, at the identification of suitable parameter values,
and at the exploration of trade-offs between performance and
complexity. We consider a scenario where 2 videos must be up-
loaded from a vehicle equipped with one node with 3 different
network interfaces, each one using a different technology: 3G,
4G, and WiFi. As we already mentioned, we base our experi-
ments on the traces presented in Sec. 3. Since public transport
vehicles repeatedly follow a fixed path, we loop the traces as
many times as necessary to reach the deadline. To allow for
some randomness (inherent in wireless bandwidth availability,
due to varying network conditions), we select a random combi-
nation of traces for each simulation run, and we choose a ran-
dom starting point for each trace.

The video upload deadline T is chosen in the order of a few
minutes. The time slot duration is the only parameter for which
domain knowledge can offer a compelling choice: ∆T must be
coherent with the time scale of changes in bandwidth at the dif-
ferent interfaces. Using large values for ∆T decreases the abil-
ity of the scheduler to adapt to bandwidth changes in a timely
manner, whereas having very small values results in unneces-
sary oscillations and lower bandwidth utilization. The traces
collected for WiFi, 3G, and 4G show bandwidth changes on a

scale of seconds. For this reason, we choose for ∆T a value
equal to 1 second. 7

The cost associated with each interface is an input to the
scheduler, and can be chosen according to the end user con-
straints and the specific context of the application; it can be de-
rived from either tariffs, or energy consumption, or data quota,
or system load, or a combination of those. In our context, the
node is onboard a bus, and always plugged; therefore, we as-
sume that energy consumption is not crucial. Considering that
the proposed adaptive scheduler is a lightweight application,
we do not consider system load to define the cost. We thus use
the monetary cost associated to the cost per bit on each inter-
face (hence with each technology). Considering the end user
fees for data transmission over different technologies (and in-
cluding flat as well as variable fees). Arbitrarily, we assume
the cost assigned with each interface to be 2, 4, and 8 (Mb)−1,
respectively, for WiFi, 3G, and 4G. Note that we assume that
costs are the same for all videos, but the scheduler can cope
with costs that are different for each video. This feature can
be exploited, together with the selection of different deadlines,
when videos have different urgency. In our previous work [5]
we also considered a larger scenario with 10 interfaces and 5
videos, but we omit it here for the sake of brevity.

Videos have size equal to 62.5 MB (V = 125 MB in total),
corresponding to about 5 minutes of 1080p video. The simu-
lation time (which corresponds to the deadline T) varies in the
range of [100,1000] seconds. We repeat each experiment 100
times with a random combination of traces as input, and we
measure the average and the confidence interval for the follow-
ing two metrics: i) time to complete the upload; and ii) cost of
the upload.

5.2. Perfect knowledge centralized scheduler results
We start by considering the case of perfect knowledge of

available bandwidth in future slots, and by comparing the per-
formance of the MCFP to the one of the greedy heuristics. We
use the IBM ILOG CPLEX Optimization Studio 12.6.0.0 [40]
Solver Engine to find the optimal solution of the MCFP formu-
lation, while the greedy heuristics are implemented in Python.
Experiments were run on the high performance computing clus-
ter hpc@polito.8 Intuition suggests that, for growing values
of the deadline, performance should improve, since schedulers
have more opportunities to trade cost against delay. In addi-
tion, we can expect that schedulers force the upload completion
times to be close to the deadline, waiting for any cheap slot ap-
pearing toward the end of the available time interval (given the
perfect knowledge of available bandwidth in future slots).

Fig. 7 reports results for the average upload cost (together
with confidence intervals) versus the upload deadline (ex-
pressed in number of time slots) for the greedy heuristics and
the optimal solution. As expected, the GR algorithm incurs the
highest upload cost, followed by GT. Both algorithms are insen-
sitive to the deadline value, since they do not consider cost. On

7We explored ∆T values in {1, 2, 5, 10} s. Results are omitted for the sake
of brevity.

8http://www.hpc.polito.it

9

Figure 7: Cost for perfect knowledge centralized results

the contrary, the GC algorithm and the optimal solution provide
cost values which decrease for growing deadline, thus meeting
our expectation. Quite interesting is the fact that the GC algo-
rithm provides results that are marginally higher than those of
the optimal solution. We also analyzed the average total upload
time for all algorithms, finding that the optimal solution pro-
duces upload times very close to the deadline. The same hap-
pens for the GC and GR algorithms, that also leverage the possi-
bility to choose on multiple slots when the deadline is large. On
the contrary, the GT algorithm yields very short upload comple-
tion times, as expected.

The two main conclusions that we can draw from this first
set of results are: i) it is possible to reduce cost by effectively
utilizing available bandwidth, despite substantial variations in
available wireless bandwidth over time; ii) GR performs worse
than GT, since the latter provides lower cost and lower com-
pletion times; iii) GC achieves practically the same cost and
completion times as the optimal solution.

5.3. Dynamic heuristic scheduler results

We now consider the realistic case where no a priori knowl-
edge of available bandwidth is available. For the scheduler per-
formance analysis, we implemented a custom simulator using
Python. The simulator models the upload of K (K = 2 in our
results) videos from a mobile vehicle equipped with WiFi, 3G,
and 4G interfaces (one each in our results). Traces are used to
emulate the actual available bandwidth at any time slot.

5.3.1. Dynamic heuristic scheduler parameters
For starters, we investigate the scheduler parameter setting,

to better understand the effect of parameter values on perfor-
mance. The two scheduler parameters are α and β. The param-
eter α gets values in [0, 1] and drives the EWMA estimation of
available bandwidth in future slots. The parameter β controls
the amount of extra data (in addition to the estimated available
bandwidth) pushed in all interface buffers, except the most ex-
pensive one, as described in Sec. 4.4. β takes values in [0, 30].

Figure 8: Percentage of completed uploads and cost versus α with T = 300 s
and β = 1

Figure 9: Percentage of completed uploads and cost versus β with T = 300 s
and α = 0.1. Trying to push more data than expected has positive benefits on
the aggressive algorithm, but dramatic effects on the conservative algorithm

For some combinations of parameters, the upload of the
video may not terminate within the specified deadline due to
the improper scheduling strategy. We thus use these metrics to
evaluate the performance of the scheduler: i) the total cost of
the upload, ii) the probability of completing the video upload
within the deadline, and iii) the amount of time after the dead-
line to complete the upload. Our objective is to achieve a very
high completion probability with a very low cost.

5.3.2. Parameter setting
We first investigate the impact of α, which determines the

timescale of the rate estimation for each interface. Fig. 8
presents the percentage of completed uploads (dotted lines - left
y-axis) and their total cost (solid lines - right y-axis) as a func-
tion of α for different recovery approaches. Notice how perfor-
mance is rather insensitive to the value of α. Recalling that α
drives the EWMA estimation of the r̂ti , we can conclude that
it does not have considerable impact on the proposed adaptive
scheduler. This holds true also for all considered β not reported

10

0 20 40 60 80 100
Time [s]

0.5

1

1.5

R
a
te
 [
M
b
/s
]

Expected

Experienced

Actual

(a) 3G with β = 0

0 20 40 60 80 100
Time [s]

0.5

1

1.5

R
a
te
 [
M
b
/s
]

Expected

Experienced

Actual

(b) 3G with β = 5

Figure 10: The aggressive scheduler operation with β = 0 (upper), β = 5
(lower), and α = 0.1

here for the sake of brevity. That is, even a very coarse estima-
tion of the link available bandwidth is sufficient to achieve our
goals. In the following, we fix α = 0.1.

The choice of β is less intuitive. To illustrate this, Fig. 9
shows the percentage of completed uploads (dotted lines - left
y-axis) and their total cost (solid lines - right y-axis) as a func-
tion of β. We clearly see that β has a significant impact on
performance. Fig. 9 indicates that the aggressive recovery al-
gorithm (red curves) is less sensitive to β (lines are almost flat),
which means that aggressively recovering is more important
than optimistically spreading extra data across remaining time
slots. The blue curves show that the conservative approach does
not work properly with large values of β. The rate of delivery
required to catch up may never become available, thus missing
the deadline. Indeed, increasing β makes the system try to op-
timistically send more data through cheaper interfaces with the
aim to reduce the overall upload cost. However, due to insuffi-
cient bandwidth across the remaining slots, the gap between the
expected and the actual pace of progress of the upload (Le f tB)
keeps increasing. Therefore, the conservative recovery strategy
is unable to catch up and meet the deadline. Notice how the
chance to meet the deadline suddenly decreases for increasing
β, with most uploads failing for β > 5. In the following, we fix
β = 1.

To further illustrate the effect of β on the performance of the
scheduling algorithm, Fig. 10 shows the evolution of the upload
rate over the 3G interface versus time during an experiment,
with β = 0 and β = 5, respectively. The green (dashed line)
is the available bandwidth, the red (dashed line) is the EWMA

of available rate, and the blue (solid line) is the experienced
rate. The closer the blue curve is to the green curve, the more
the system is able to exploit the available bandwidth. Fig. 10
clearly proves that the choice β = 0 lets a large fractions of
the actual available bandwidth on 3G go unused. This forces
the scheduler to use the expensive 4G interface. Setting β >
0 makes the system more optimistic, and prone to send more
data than the current bandwidth estimation would allow. This
increases the utilization of the 3G interface and hence reduces
the load on the (expensive) 4G interface.

5.3.3. Impact of the deadline
We now look at the influence of the deadline on perfor-

mance. Fig. 11 shows the percentage of completed uploads
(top plot) and their total cost (bottom plot), for values of T ∈
[100, 1000] s, with β = 1, and α = 0.1. As we can expect,
longer deadlines imply higher percentages of completed up-
loads, and lower costs. Looking in more detail at the percentage
of completed uploads, we see that the aggressive version of the
algorithm (red curve) consistently outperforms the conservative
version (blue curve). As previously observed, the latter suffers
in scenarios where bandwidth becomes scarce when approach-
ing the deadline.

To appreciate the performance of the adaptive scheduler with
respect to the total upload cost, we compare it against the
straightforward GT heuristic, that uploads all data as fast as
possible, and (as we already saw) provides overall costs very
close to the optimal solution. On average, the GT scheduler
completes the upload in 33 s, with a cost of 7.5 k units. Adap-
tive schedulers reduce the cost to about 4 k units with conser-
vative recovery and to about 5 k units with aggressive recovery,
with savings of about 46%, and 33%, respectively. In general,
the distance of the cost curves from the curve of the perfect
knowledge case is quite small for very short deadlines, and re-
mains within about 20-25% for longer deadlines. The former
effect is due to the limited choice that short deadlines leave to
the scheduler. The latter effect is a clear indicator of the good
performance of our adaptive scheduling algorithm.

Fig. 11 shows that the conservative recovery algorithm yields
lower costs, but higher percentage of missed deadlines, with re-
spect to the aggressive recovery algorithm. It is interesting to
see by how much the deadline is missed by the conservative
recovery algorithm, i.e., how many more time slots the sched-
uler needs, to complete the video upload. Fig. 12 reports per-
centiles of the upload completion time, normalized to the dead-
line. Box-and-whiskers plots show the 90th, 80th, 20th and
10th percentiles of the upload time, for conservative (blue) and
aggressive (red) recovery policies, respectively. Average values
are represented by dots. Values larger than 1 show the fraction
of extra time slots needed to complete the video upload. We
can observe that about 10% more time slots in the case of the
conservative recovery policy would allow almost 90% of suc-
cessful schedulings, even in the case of tight deadlines.

While Fig. 12 considers all simulated schedulings, Fig. 13
consider only those that fail to meet the deadline, and re-
ports the number of time slots needed to complete the upload,

11

Figure 11: Percentage of completed uploads (top) and cost (bottom) versus
deadline T , with β = 1 and α = 0.1

Figure 12: Distribution of final upload time over deadline versus deadline, with
β = 1 and α = 0.1

again with box-and-whiskers plots. Results show that for dead-
lines longer than 5 minutes (300 time slots), about 90% of the
schedulings complete within a delay of half a minute (30 slots).

Figure 13: Distribution of final upload time over deadline versus deadline, with
β = 1 and α = 0.1 for schedulings that do not meet the deadline.

5.3.4. Hybrid algorithm
The fact that i) the conservative recovery algorithm achieves

lower costs, and ii) the aggressive algorithm guarantees higher
chances to meet the deadline, motivates a hybrid approach that
tries to combine the strengths of the two approaches. In partic-
ular, we suggest to use the conservative approach in the initial
part of the scheduling, while switching to the aggressive ap-
proach when getting closer to the deadline. Intuitively, at the
beginning of the scheduling, the hybrid algorithm tries to de-
crease the cost by using a conservative recovery. The choice of
β = 1 allows to push extra data into cheaper interfaces, avoid-
ing the most expensive one. To prevent accumulating too much
unsent data, and taking the risk of missing the deadline, the hy-
brid algorithm switches to the aggressive recovery policy when
approaching the deadline.

We evaluate the performance of this hybrid approach, by us-
ing the conservative recovery for the first 90% of slots, and then
switching to the aggressive recovery algorithm in the remaining
10% of slots. The green line in Fig. 11 shows that this hybrid
algorithm achieves very high completion probability with very
competitive cost (only about 15% higher than the oracle). This
shows that the hybrid approach can properly leverage the trade-
off between cost minimization and and upload time, even under
unpredictable variations in available bandwidth.

5.3.5. Impact of available bandwidth variability
The proposed adaptive scheduler exploits the long-term av-

erage of the available bandwidth, together with an EWMA, to
predict the available bandwidth in future slots. The effective-
ness of this strategy clearly depends on the variability of the
available bandwidth. It is thus important to investigate what is
the acceptable variance range for performance to be good. To
this end, we add variance to the available bandwidth measured
in our traces, by letting each sampled available bandwidth value
rt,i become a random variable with uniform distribution in the
range [rt,i (1 − X), rt,i (1 + X)], with parameter X in [0,1]. The
resulting variance added to the sampled available bandwidth
value rt,i is:

12

Figure 14: Effect of variation on interface available bandwidth, with deadline
= 300, β = 1, and α = 0.1

σ2
rt, i
=

X2r2
t,i

3
(15)

Fig. 14 shows the percentage of completed uploads (dashed
line - left y-axis) and their upload time (solid line - right y-axis)
for the hybrid algorithm, versus X , with deadline 300 s, β = 1,
and α = 0.1. The reported values are the averages of 100 rep-
etitions including the ones that failed to meet the deadline. Re-
sults indicate that the scheduler behaves well up to X = 0.5. A
variance increases, the percentage of completed upload within
the deadline can drop by 30%. Interestingly, moderate vari-
ance helps the algorithm to both reduce the cost and meet the
deadline. Because, β > 0 lets the algorithm to exploit extra
bandwidth on cheap interfaces. Conversely, when X increases
over 50%, the unpredictability of the system reduce the perfor-
mance. Notice that the average completion time remains close
to the deadline.

6. Experimental evaluation

In this section we describe the design, implementation, and
test of our adaptive scheduler in multihomed nodes deployed on
vehicles in the framework of the MONROE H2020 project.

6.1. Experimental setup
We first discuss the experimental setup and the engineering

choices adopted in the implementation of the adaptive sched-
uler.

6.1.1. Protocol issues
At the experiment start, the mobile node (the video sender)

registers into the central office node (the video receiver). For
this, the sender initiates a TCP connection that is used for sig-
naling, and waits for a request from the central office node. In
case of disconnection, the sender re-registers itself. This choice
simplifies the connection handling, e.g., avoiding NAT (Net-
work Address Translation) traversal issues, commonly encoun-
tered in today’s MBB networks [20, 42]. For the video upload,

Figure 15: Internal architecture of the adaptive scheduler implementation

the choice of the transport protocol can affect both the perfor-
mance of the scheduler, and the actual implementation com-
plexity.

In the experiment scenario, TCP would need some applica-
tion mechanisms to manage connections (one for each inter-
face), which may be complex in our mobile scenario, especially
for the WiFi interface, which has to reopen a connection each
time it joins a new hotspot. TCP also complicates the sender
buffer management, since data can be stored in the sender TCP
buffer with no knowledge of how much has been actually de-
livered to the receiver side. This is an issue during transition
phases, e.g., when switching the assigned packet from one inter-
face to another one, since an assigned packet to an interface is
pushed into its buffer and is not accessible. UDP on the contrary
offers a datagram and unreliable service, with accurate delimi-
tation of messages. This gives us the freedom to push data into
the interfaces with tighter control, letting the scheduling algo-
rithm decide the sending rate for each interface. However, UDP
offers no guarantee on the delivery of messages. For this, we
need to add an Automatic Repeat reQuest (ARQ) protocol [43].

In our prototype, we opt for UDP as transport protocol, and
we implement a selective repeat ARQ protocol, with acknowl-
edgements that report information on the received messages us-
ing a bitmap of 10,000 elements. Acknowledgements are gen-
erated every second, and sent on the TCP signaling channel.
Acknowledgements also carry information to accurately com-
pute the actual rate at the receiver side for each interface. The
receiver calculated the data rate for each interface every sec-
ond by using the information obtained from packet header. The
header contains information about the node, video, interfaces,
and data offset.

6.1.2. MONROE platform
MONROE is an H2020 project that has developed an open

platform which allows researchers to run experiments on MBB
networks in Europe. MONROE nodes are deployed in 4 coun-
tries (Italy, Norway, Spain, and Sweden), and include both sta-
tionary and mobile nodes, the latter traveling on vehicles like
buses, trains, and trucks. MONROE lets users run custom ex-

13

Figure 16: Experiment design

periments, identified through open calls. Each MONROE node
has two MBB interfaces with subscriptions which are different
in each country, as well as a WiFi interface.

Each node runs a stripped down version of Debian Linux,
with a Docker 9 setup that allows experimenters to deploy their
experiment by selecting the desired nodes and the experiment
time by using a centralized experiment scheduler. The MON-
ROE experiment scheduler automates the container distribution
on the selected nodes, runs the experiment, and collects results.

Our video upload scheduler was designed and implemented
in a Docker container, deployed by the MONROE experiment
scheduler, and run over the selected mobile MONROE nodes.

6.1.3. Experiment architecture
Fig. 15 illustrates the internal architecture of the adaptive

video upload scheduler implemented in the MONROE plat-
form. The left side represents the sender (the public transport
vehicle which uploads the video). The sender is equipped with
multiple MBB interfaces. The right side represents the receiver
(the security center) that requests the specific content with a
given deadline. A TCP connection is used as a control chan-
nel to register the node, request the content, and send update
and control messages. Update messages contain the upload rate
computed at the receiver, as well as acknowledgements carry-
ing the bitmap of the received segments to implement the ARQ
protocol. The control connections consume about 1% of the
video upload bandwidth.

Fig. 15 illustrates the control flow (TCP) and data flow
(UDP) using blue and black arrows, respectively. The adaptive
scheduler module runs the video upload scheduling algorithm
and pushes data into interface buffers. The MUX module stores
packets for each video on disk, while the sliding window mod-
ule keeps track of all the packets that were already received.
Since the adaptive scheduler module at the sender side needs

9https://www.docker.com/

the information about the experienced interface rate, every ∆T
the controller module sends update messages and a bitmap of
the missing packets (implementing a selective repeat ARQ pro-
tocol).

Fig. 16 shows the communication workflow in our experi-
ment. All the connections are initiated from the sender. At the
beginning, the sender starts a TCP connection (on a reliable in-
terface - MPTCP could be used here) as control channel. After
the TCP three-way handshake, the sender registers itself with
an HELLO message. The HELLO message contains informa-
tion about the available interfaces and videos. If the server rec-
ognizes the client, it replies with an OK message. If the TCP
connection fails at any time, the client starts a new TCP con-
nection.

The server can request a specific video portion by issuing a
GET message with a specific chunk ID. Then, the sender starts
sending UDP messages on selected interfaces to upload data
according to the hybrid adaptive video upload scheduler. The
receiver replies with UPDATE messages to report the last time
slot data rate, and the bitmap of received messages. If for any
reason the UPDATE message does not arrive at the end of each
time slot, the sender assumes all packets of the previous slot are
delivered successfully and keeps sending messages. With the
next UPDATE message, the bitmap will arrive, possibly miss-
ing messages will be retransmitted, and rate adjusted. Messages
are 1,000 Byte long. With selective acknowledgements carry-
ing the status of the last 10,000 messages, we have an equivalent
window of 10 MB. Since ACKs are sent every second, this lets
us reach a data rate equal to 80 Mb/s. 10

6.2. Experimental results

We started our experimental analysis by using stationary
nodes with three interfaces: 2 MBB interfaces, named op0 and
op1, and 1 Ethernet wired connection, which was used to em-
ulate a WiFi connection 11 by using the Linux traffic control
tool12 to limit the bandwidth and impose random (1%) packet
loss. We assumed that the interface costs change over time, to
be able to illustrate and evaluate the behavior of the video up-
load scheduling algorithm.

Fig. 17 shows all interface upload rates (solid lines, left y-
axis) and costs (dashed lines, right y-axis) versus time in sec-
onds. The dotted line in Fig. 17a shows the available bandwidth
of the WiFi interface (emulated on the Ethernet connection). In
the interval [35,65] seconds we simulate a period of lack of
coverage to see if the scheduler is going to use more expen-
sive interfaces. Fig. 17b shows that op1 is selected to support
the transmission of data that cannot make it through the WiFi
interface. The cost of the interfaces op0 and op1 changes af-
ter 50 seconds, and the adaptive scheduler switches to the now
cheaper interface to upload data. This proves that the video up-
load scheduler operates as expected.

108*1000*10000=80Mb/s
11At the time of the experiment campaign, the MONROE nodes were not yet

incorporating a WiFi interface
12http://lartc.org/manpages/tc.txt

14

(a) WiFi (b) op1 (c) op0

Figure 17: Adaptive scheduler experiment on a stationary MONROE node

Figure 18: Cost comparison of GT-100 (GT), AS-100 (AS), and AS-200 (AS2)
in MONROE node traveling on public transport vehicle in 6 iterations

We next present results obtained by running experiments on
mobile MONROE nodes equipped with two 4G MBB interfaces
and one WiFi interface. We compare the results obtained with
the hybrid video upload scheduler against those obtained with
the GT heuristic, which is the only heuristic that can schedule
the video content with no a priori knowledge of the interface
available bandwidth.

We compare the total cost of the GT (GT-100) algorithm,
and of the adaptive scheduler (AS-100) with deadline of 100
s, and of the adaptive scheduler (AS-200) with deadline of
200 s. In order to allow the reader to get a quantitative view
of the scenarios experienced by the tests, consider that RTT,
available bandwidth, and Received Signal Strength Indicator
(RSSI) were measured in the ranges [40, 120] ms, [0, 80] Mb/s,
and [−30,−100] dBm, respectively. The tests for GT-100, AS-
100, and AS-200 were run back to back with 20 seconds idle
time (batch of experiment), repeating each experiment 6 times.
Fig. 18 shows the total costs (y-axis) for the three schedulers in
6 batch of experiments (x-axis). We can see that AS-100 (AS)
obtains solutions about 30% cheaper than GT-100 (GT), while
completing the upload within the deadline. As expected, AS-
200 (AS2) uploads the video with 40% lower cost with respect
to AS-100 (AS).

7. Conclusions and outlook

In this paper, we considered the practical problem of video
surveillance in connected public transport vehicles, where secu-
rity videos are stored onboard, and a central operator sometimes
requests to watch portions of the videos. At these requests,
the selected video must be uploaded within a given deadline,
by using the wireless network interfaces available on the vehi-
cle, considering interfaces have different associated costs. The
video upload goal is to minimize the total cost of the upload
while meeting the deadline.

To identify an effective solution to our problem, we explored
several aspects. In order to obtain a benchmark, we first con-
sidered the case where an oracle has perfect knowledge about
available bandwidth of wireless links; we formalized the cor-
responding optimization problem and proposed greedy heuris-
tics. Second, we looked at the case where the distribution of the
available bandwidth on wireless interfaces is known; we de-
fined the corresponding stochastic optimization problem, then
we found that its solution is computationally extremely costly.
We thus explored a family of adaptive scheduling algorithms
that require only a coarse knowledge of the available bandwidth
on wireless interfaces. Results show that our adaptive schedul-
ing approach can effectively leverage the fundamental trade-
off between the total video upload cost and the video delivery
time, despite unknown short-term variations in throughput on
wireless links. Finally, we implemented and tested our adap-
tive algorithm in the platform for wireless network experiments
provided by the MONROE H2020 project.

We believe, there are particular aspects of the algorithm can
be evaluated more deeply. Firstly, we plan to compare the per-
formance of the proposed adaptive scheduler with MP-DASH
and other open source video adaptive scheduler. Secondly, the
parameters can be define by dynamic approach instead of in
advance tuning. Thirdly, the cost also can be modeled for the
general multihomed MBB devices.

Acknowledgements

This work was funded by the MONROE H2020 project (grant
agreement no. 644399). Computational resources were pro-
vided by hpc@polito, which is a project of Academic Comput-

15

ing within the Department of Control and Computer Engineer-
ing at the Politecnico di Torino.

References

[1] M. Ergen, Mobile Broadband - Including WiMAX and LTE, 1st ed.
Springer Publishing Company, Incorporated, 2009.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Rfc 6182 -
architectural guidelines for multipath tcp development,” 2011.

[3] Nikravesh, A. and Guo, Y. and Qian, F. and Mao, Z. M. and Sen, S., “An
in-depth understanding of multipath tcp on mobile devices: Measurement
and system design,” ser. MobiCom ’16. New York, NY, USA: ACM,
2016, pp. 189–201.

[4] K. Fall, “A delay-tolerant network architecture for challenged internets,”
ser. SIGCOMM ’03. New York, NY, USA: ACM, 2003, pp. 27–34.

[5] Safari Khatouni, A.; Ajmone Marsan, M. and Mellia, M., “Delay toler-
ant video upload from public vehicles,” ser. SmartCity’16. INFOCOM
Workshop, 2016, pp. 213–218.

[6] A. S. Khatouni, M. A. Marsan, M. Mellia, and R. Rejaie, “Adaptive
schedulers for deadline-constrained content upload from mobile multi-
homed vehicles,” in 2017 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), June 2017, pp. 1–6.

[7] Alay, Ö; Lutu, A.; Peón-Quirós, M.; Mancuso, V.; Hirsch, T.; Evensen,
K.; Hansen, A.; Alfredsson, S.; Karlsson, J.; Brunstrom, A.; Safari Kha-
touni, A.; Mellia, M.; Ajmone Marsan, M.;, “Experience: An open plat-
form for experimentation with commercial mobile broadband networks,”
in The 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom 2017), October 2017.

[8] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’12.
New York, NY, USA: ACM, 2012, pp. 225–238. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307658

[9] Huang, Junxian and Qian, Feng and Gerber, Alexandre and Mao,
Z. Morley and Sen, Subhabrata and Spatscheck, Oliver, “A close
examination of performance and power characteristics of 4g lte
networks,” in Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 225–238. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307658

[10] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smartphones,”
in Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 165–178. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814452

[11] B. M. Sousa, K. Pentikousis, and M. Curado, “Multihoming
management for future networks,” Mobile Networks and Applications,
vol. 16, no. 4, pp. 505–517, Aug 2011. [Online]. Available:
https://doi.org/10.1007/s11036-011-0323-5

[12] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson, “Intentional networking: Opportunistic exploitation
of mobile network diversity,” in Proceedings of the Sixteenth Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’10. New York, NY, USA: ACM, 2010, pp. 73–84. [Online].
Available: http://doi.acm.org/10.1145/1859995.1860005

[13] Deng, S. and Netravali, R. and Sivaraman, A. and Balakrishnan, H., “Wifi,
lte, or both?: Measuring multi-homed wireless internet performance,” ser.
IMC ’14. New York, NY, USA: ACM, 2014, pp. 181–194.

[14] Rahmati, A. and Zhong, L., “Context-for-wireless: Context-sensitive
energy-efficient wireless data transfer,” ser. MobiSys ’07. New York,
NY, USA: ACM, 2007, pp. 165–178.

[15] Rathnayake, U.; Petander, H. and Ott, M., “Emune: Architecture for
mobile data transfer scheduling with network availability predictions,”
Springer US, 2012-04.

[16] Riiser, H.; Vigmostad, P.; Griwodz, C. and Halvorsen, P., “Commute path
bandwidth traces from 3g networks: Analysis and applications,” ser. MM-
Sys ’13. New York, NY, USA: ACM, 2013, pp. 114–118.

[17] Chen, Y.; Nahum, E. M.; Gibbens, R. J.; Towsley, D. and Lim, Y., “Char-
acterizing 4g and 3g networks: Supporting mobility with multi-path tcp,”
UMass Amherst Technical Report, Tech. Rep., 2012.

[18] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
How much can wifi deliver?” IEEE/ACM Transactions on Networking,
vol. 21, no. 2, pp. 536–550, April 2013.

[19] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden,
“A measurement study of vehicular internet access using in situ
wi-fi networks,” in Proceedings of the 12th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’06.
New York, NY, USA: ACM, 2006, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/1161089.1161097

[20] Safari Khatouni, A.; Mellia, M.; Ajmone Marsan, M.; Alfredsson, S.;
Karlsson, J.; Brunstrom, A.; Alay, Ö; Lutu, A.; Midoglu, C.; Mancuso,
V.;, “Speedtest-like measurements in 3g/4g networks: the monroe expe-
rience,” in 29th International Teletraffic Congress - ITC29, September
2017, pp. 4–8.

[21] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath TCP,” in 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). San Jose, CA: USENIX Association, 2012, pp. 399–412. [Online].
Available: https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/raiciu

[22] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming high-quality
mobile video with multipath tcp in heterogeneous wireless networks,”
IEEE Transactions on Mobile Computing, vol. 15, no. 9, pp. 2345–2361,
Sept 2016.

[23] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili,
and D. Towsley, “A measurement-based study of multipath tcp
performance over wireless networks,” in Proceedings of the 2013
Conference on Internet Measurement Conference, ser. IMC ’13. New
York, NY, USA: ACM, 2013, pp. 455–468. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504751

[24] Q. Peng, M. Chen, A. Walid, and S. Low, “Energy efficient multipath
tcp for mobile devices,” in Proceedings of the 15th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, ser. MobiHoc
’14. New York, NY, USA: ACM, 2014, pp. 257–266. [Online].
Available: http://doi.acm.org/10.1145/2632951.2632971

[25] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y.
Zhao, and H. Zheng, “Energy and performance of smartphone
radio bundling in outdoor environments,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW ’15.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2015, pp. 809–819. [Online].
Available: https://doi.org/10.1145/2736277.2741635

[26] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens, and
E. Cecchet, “Design, implementation, and evaluation of energy-aware
multi-path tcp,” in Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT ’15.
New York, NY, USA: ACM, 2015, pp. 30:1–30:13. [Online]. Available:
http://doi.acm.org/10.1145/2716281.2836115

[27] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and R. J.
Gibbens, “How green is multipath tcp for mobile devices?” in
Proceedings of the 4th Workshop on All Things Cellular: Operations,
Applications, & Challenges, ser. AllThingsCellular ’14. New
York, NY, USA: ACM, 2014, pp. 3–8. [Online]. Available: http:
//doi.acm.org/10.1145/2627585.2627596

[28] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “Mp-dash: Adaptive
video streaming over preference-aware multipath,” in Proceedings
of the 12th International on Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’16. New York,
NY, USA: ACM, 2016, pp. 129–143. [Online]. Available: http:
//doi.acm.org/10.1145/2999572.2999606

[29] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan,
“Cellular traffic offloading through opportunistic communications: A
case study,” in Proceedings of the 5th ACM Workshop on Challenged
Networks, ser. CHANTS ’10. New York, NY, USA: ACM, 2010, pp. 31–
38. [Online]. Available: http://doi.acm.org/10.1145/1859934.1859943

[30] B. Han, P. Hui, and A. Srinivasan, “Mobile data offloading in
metropolitan area networks,” SIGMOBILE Mob. Comput. Commun.

16

Rev., vol. 14, no. 4, pp. 28–30, Nov. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1942268.1942279

[31] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and V. Conan, “Relieving
the wireless infrastructure: When opportunistic networks meet guaran-
teed delays,” in 2011 IEEE International Symposium on a World of Wire-
less, Mobile and Multimedia Networks, June 2011, pp. 1–10.

[32] O. B. Yetim and M. Martonosi, “Adaptive delay-tolerant scheduling for
efficient cellular and wifi usage,” in Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, June 2014, pp. 1–7.

[33] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wifi,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 209–222. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814456

[34] Zaharia, M. A. and Keshav, S., “Fast and optimal scheduling over multiple
network interfaces,” University of Waterloo, Tech. Rep., 2007.

[35] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger,
and M. J. Neely, “Energy-delay tradeoffs in smartphone applications,”
in Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 255–270. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814459

[36] Lutu, A.; Raj Siwakoti, Y.; Alay, Ö; Baltrūnas, Džiugas and Elmokashfi,
Ahmed, “The good, the bad and the implications of profiling mobile
broadband coverage,” Computer Networks, 2016.

[37] Nikravesh, A.; Choffnes, D. R.; Katz-Bassett, E.; Mao, Z. M.; Welsh,
M., Mobile Network Performance from User Devices: A Longitudinal,
Multidimensional Analysis. Springer International Publishing, 2014, pp.
12–22".

[38] Ahuja, R. K.; Magnanti, T. L. and Orlin, J. B., Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[39] J. Orlin, “A faster strongly polynomial minimum cost flow algorithm,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’88. New York, NY, USA: ACM, 1988, pp.
377–387. [Online]. Available: http://doi.acm.org/10.1145/62212.62249

[40] “IBM ILOG CPLEX Optimization Studio 12.6.0.0.” [Online]. Avail-
able: http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.6.
0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html

[41] Magharei, N. and Rejaie, R., “Adaptive receiver-driven streaming from
multiple senders,” Multimedia Systems, vol. 11, no. 6, pp. 550–567, 2006.

[42] S. Triukose, S. Ardon, A. Mahanti, and A. Seth, “Geolocating ip ad-
dresses in cellular data networks,” in Passive and Active Measurement,
N. Taft and F. Ricciato, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 158–167.

[43] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A
Systems Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

17

