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Free vibration analysis of locally damaged aerospace tapered
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A. Vigliettia, E. Zappinoa,b, E. Carreraa

aMUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino
bCorresponding Author, email: enrico.zappino@polito.it

Abstract

This work presents the free vibration analysis of tapered aircraft structures made of composite

and metallic materials, with reference to global and local damage. A refined one-dimensional

model, developed in the framework of the Carrera Unified Formulation, has been used to provide

a detailed description of structures. Multi-component aeronautical structures have been modeled

adopting Lagrange polynomials to evaluate the displacement field over the cross-section. Each

component has been described through the component-wise approach, with its own geometrical

and mechanical characteristics. The effects of localized damage have been investigated, thanks

to the accuracy of the layer-wise models adopted. The model has been assessed by comparing

the results with classical FE models. The results show that the present approach provides an

accurate solution for the free vibration analyses of complex structures and is able to predict the

consequences of a global or local failure of a structural component. The computational efficiency

and the accuracy of the model used in this work can be exploited to characterize the dynamic

response of complex composite structures considering a large number of damage configurations.

Keywords: CUF, One-dimensional model, tapered beam, Composite material, Failure

1. Introduction1

Aeronautical structures are composed of several components that distribute the loads they2

undergo. An increasing number of aeronautical parts are made of composite materials for weight3

saving purposes. It is clear that, given the multi-component nature of these kinds of structures,4

if one component fails, the stress distribution and the structural behavior changes according to5

the entity of the damage. The knowledge of these effects is a crucial point in the design process6

to increase the structural reliability and the safety factor. Moreover the timely damage detec-7

tion of damage is important for maintenance programs. Several nondestructive tests, such as8

ultrasounds or the magnetic field test, already exist. However, an estimation of the location of9
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the damage is required to increase the efficiency of these methods. The presence of the damage10

affects the dynamic response of a structure, and the variations in the frequencies and modal11

shapes can be used to detect structural damage. Several works on this kind of damage detection12

have been proposed. Zhang et al.[1] and Capozzucca [2] proposed analyses of damaged compos-13

ite beams, studying vibration behavior. The work of Wang [3] used an FE method to detect14

damage in wind turbine blades considering variations of the modal shape curvatures. Nguyen [4]15

proposed a study on the detection of damage in which calculating the modal shapes were cal-16

culated using three-dimensional beam elements. Pollayi and Yu [5] investigated the mechanical17

behavior of a damaged rotor and wind turbines using beams, on the basis of the geometrically18

nonlinear 3-D elasticity theory and the variational asymptotic beam sectional analysis (VABS).19

Pérez et al. [6] adopted a different approach and performed extensive experimental analyses20

on the vibration of damaged laminates. The presence of damage and the characteristics of the21

damage can be estimated by referring to a database that includes information on the natural22

frequencies and model shapes of a wide spectrum of damaged cases, using accurate measurements23

of the real structure. This database can only be achieved through mathematical model analyses24

because a great deal of experimental proofs is not recommended because of time and money con-25

straints. These models should be able to provide very accurate displacement and strain/stress26

fields. Damage introduces local and non-classical effects, which cannot always be detected by27

the conventional FE models that are used in the aeronautic field. A three-dimensional analysis28

is required to provide accurate results, but this can lead to huge computational costs. In this29

work, an advanced beam model based on the Carrera Unified Formulation is proposed to deal30

with damaged structures in order to obtain accurate results, but with low computational costs31

expressed in terms of Degrees of Freedom (DOFs). Classical theories, such as the Euler-Bernoulli32

beam model [7] or the Timoshenko beam model [8], are not suitable for damage detection. In33

the last few years, many works have been proposed to extend the application of one-dimensional34

models to any geometry, boundary condition or, mechanical complexity. In the aeronautical35

field, for aerodynamic reasons, particular shapes such as tapered shape or twist angle, are used.36

These factors increase the structural complexity and, as a result, more complex models are re-37

quired. Tapered shapes are considered in this work. In this way, if the beam axis is placed in38

the y-axis direction, the bending stiffness EI(y) changes along the axis. The classical approxi-39

mation introduced to deal with such geometries is a step-by-step approach, which involves the40

subdivision of the structure into several rigidly prismatic beams with different cross-sections.41

The approximation is improved by increasing the number of subdivisions. Analytical methods,42
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[8][9] are used to introduce the shear stress of a tapered beam. After the introduction of the FE43

method, several works have been proposed. A modified stiffness matrix for tapered components44

has been proposed by Just [10]. This work uses modified displacement functions which consider45

the variations in the proprieties of the sections. Brown [11] presented a stiffness matrix formula-46

tion for a linearly tapered beam, while Schreyer [12] proposed a beam theory for tapered beams,47

in which the shear strain is considered Many works have been proposed about aeronautical struc-48

tures in the framework of the Carrera Unified Formulation. In the present 1-D CUF model, the49

displacement field over the cross-section is described through expansion functions. This feature50

allows the model to deal with arbitrary geometries, materials, and boundary conditions. After51

the first models, which were based on Taylor expansions, Lagrange polynomials were introduced.52

In this way, multi-component structures can be modeled through ad-hoc formulations of each53

component (Component-Wise approach) [13]. Some of the works about this approach and its54

capability in the aerospace field are those of [14][15] and [16]. The work of [17] deals, through the55

CW approach, with different prismatic structures made of an isotropic material; several several56

types of damage were considered. The frequencies were evaluated for each case and the modal57

shapes were compared using MAC (Modal Assurance Criterion)[18]. This criterion has already58

been employed in the civil field (damaged bridges) by Salawu and Williams [19]. The extension59

of the models to tapered structures has been proposed in [20] and [21].60

In this work some aircraft structures with a tapered shape are analyzed using a 1-D CUF61

model, considering different types of damage. The paper is organized as follows. A first part62

concerns the one-dimensional model: the theory, finite element solution and model of the damage63

are presented. Subsequently, several results are discussed and, finally, the main remarks are64

presented.65

2. Refined one-dimensional models formulation66

The damage detection through free vibration analyses requires models with three-dimensional67

capabilities able able to deal with complex local phenomena. Here, the Carrera Unified Formu-68

lation is presented to develop a one-dimensional refined model able to deal with this topic. After69

some preliminaries, the basis and the advantages of the CUF are presented in this section, finally,70

the damage modeling approach is introduced.71
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Preliminaries72

At first, it’s necessary to define the work space of this formulation. Two frames are used to73

achieve the model of a structure. The first frame (xG, yG, zG) is the global coordinate system of74

the three-dimensional space. The beams formulation is derived at the local level, respect a second75

frame (x, y, z). y is the local beam axis and x, z represent the plane of the beam cross-section.76

The beam model derived at the local level can be arbitrary placed in the space using rotations77

and translations. These frames are shown in Figure 1a.78

xG

x
zG

yG

y

z

(a) Beam Coordinate frames.

Z=1

2

 

3

y

X

(b) Material Coordinate frames.

Figure 1: Reference frames.

The reference system (1, 2, 3) is the material reference system. The local displacement vector79

is expressed as:80

u
T (x, y, z) = {ux uy uz} (1)

The stress vector σ and the strain one ǫ are achieved as:81

σ
T (x, y, z) = {σxx, σyy, σzz , τxy, τxz, τyz} (2)

ǫ
T (x, y, z) = {ǫxx, ǫyy, ǫzz, ǫxy, ǫxz, ǫyz} (3)

The strain vector is defined with the following linear strain-displacement relation:82

ǫ = bu (4)

where b is a differential operator (a 6 × 3 matrix). The components of this matrix can be83

found in the book by Carrera et al. [22].84
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Hook’s law provides the stress vector defined with the following equation:85

σ = Cǫ (5)

where C is the 6 × 6 material coefficient matrix. It’s a symmetric matrix, then Cij = Cji.86

C changes the components respect the kind of considered material. A anisotropic material87

which has a different behavior in any direction, is composed of 21 independent coefficients.88

Instead, if the proprieties are the same along three perpendicular planes, the material is defined89

as orthotropic material and the coefficients become nine components. In this case, the matrix C90

is defined as:91

C =





























C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





























(6)

The matrix are composed by 12 terms, but due to the symmetry of the matrix, C12 = C21,92

C13 = C31 and C23 = C32. For this reason the matrix is reduced to 9 components. With this93

type of material, the preferential direction of the material should be defined. For this reason,94

a third reference system is introduced referred to the material. This frame is figured in 1b.95

An example of an orthotropic material is a fiber-reinforced layer. This layer lies on the plane96

23 which is parallel to the plane xy. The axis 1 is aligned with the z-axis. Considering the97

axis 3 as the fiber direction, this one can be rotated with an angle of θ respect the y-axis. A98

positive counterclockwise rotation is considered. The present formulation allows the material99

to be oriented in an arbitrary direction to achieve particular lamination. As a consequence the100

transformation matrix T is introduced:101

C =





























cos2θ sin2θ 0 0 0 sin2θ

sin2θ cos2θ 0 0 0 −sin2θ

0 0 1 0 0 0

0 0 0 cosθ −sinθ 0

0 0 0 sinθ cosθ 0

−cosθsinθ cosθsinθ 0 0 0 cos2θ − sin2θ





























(7)
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A transformed material stiffness matrix is introduced and it is expressed with the following102

form103

C̃ = TCT
T (8)

This is the new stiffness matrix to be introduced in the Hooke’s law.104

σ = C̃ǫ (9)

If the material has the same behavior in all directions, it is a isotropic material. Over any105

direction, the material provides the same behavior. In this case, there is no need to define106

a material reference system and a rotation matrix. The performance of the material can be107

described with only one value of the Poisson ratio and of Young’s modulus. These assumptions108

lead to have109

C11 = C22 = C33 C12 = C13 = C23 C44 = C55 = C66 (10)

The explicit forms of C terms can be found in the books by Tsai [23] or Reddy [24].110

Cross-sectional approximation111

The 1-D Carrera Unified Formulation (CUF) introduces the displacement field u as the112

product of two contributions, one over the cross-section and one along the beam axis:113

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2 . . .M, (11)

where uτ is the displacement vector, Fτ represents an expansion used to approximate the114

behavior of the beam cross-section and M is the number of the expansion terms. Depending on115

the used expansion, different classes of CUF model have been developed in the year, and two116

main classes have emerged. A first class uses the Taylor expansion as Fτ (x, z). Considering the117

TE model (TE: Taylor expansion) of the first order, the displacement field of the term ux, for118

example, is expressed as follow:119

ux = ux1
+ xux2

+ zux3
(12)

The TE models can be deepened in [25]. The second class of CUF model uses the Lagrange120

polynomials to describe the cross-section through high-order elements. These model, using an121
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isoparametric formulation, allow us to built different multi-node elements in the natural domains.122

In this way, the model can describe the cross-section geometry without introducing approxima-123

tions in the real domain. The model used in this paper employs this expansion. Several sets of124

Lagrange polynomial exist, but in this work, in order to improve the accuracy, the nine-point set125

(L9) have been adopted. Other sets are for example L4 elements or L3 elements. More detail126

can be found in [26]. These functions, introducing as unknowns only translational displacements,127

have the following forms:128

Fτ =
1

4
(r2 + r ∗ rτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ =
1

2
s2τ (s

2 + ssτ )(1− r2) +
1

2
r2τ ((r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1− s2) τ = 9

(13)

where r and s can be a value beetween −1 an +1 and rτ and sτ are the coordinates of the nine129

points in the natural coordinate frame. In this way, considering the L9 element, the formulation130

of the displacement becomes:131

ux = F1ux1
+ F2ux2

+ F3ux3
. . .+ F9ux9

uy = F1uy1
+ F2uy2

+ F3uy3
. . .+ F9uy9

uz = F1uz1 + F2uz2 + F3uz3 . . .+ F9uz9

(14)

where uxb1
. . . uxb9

represent the components x of the displacement field of each node of the132

L9 element.133

r

s

(a) L9 element in the natural
coordinate system.

x

z

(b) Four assembled L9 elements in the
beam reference frame.

Figure 2: L9 elements.
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Figure 2 shows on the left the L9 element in the natural reference system. Carrera and Petrolo134

[27] has demonstrated as the accuracy can be increased by using several L-elements in order to135

have a better refinement of the cross-section. The L-elements can be assembled as indicated on136

the right of figure 2.137

Finite Element formulation138

In order to solve the one-dimensional problem, the Finite Element model is used. The shape139

functions Ni are introduced to approximate the displacement over the beam axis (y) and then140

the vector u can be written as141

u(x, y, z) = Fτ (x, z)Ni(y)qτi (15)

where qτi is the nodal displacements vector.142

The B3 elements (elements with three nodes) are adopted in this work and the index i143

indicates the node of the beam element. The shape functions can be arbitrarily chosen; the144

shape functions used in this work are reported in [22].145

The governing equations can be obtained using the PVD (Principle of Virtual Displacements).146

The term δ denotes the virtual variation.147

δLint = −δLine (16)

The two members of 16 are respectively the variation of the strain energy and the variation148

of the work performed by the inertial loads. The internal work can be written as follow:149

δLint =

∫

V

δǫTσdV (17)

The terms showed in 17 are already known. Expanding the inertial work the following form150

is obtained:151

δLine =

∫

V

δuTρüdV (18)

where ρ is the density of the material and ü is the acceleration vector.152

From 17 and 18 the stiffness matrix K and the mass matrix M are achieved in terms of153

fundamental nucleus (FN ), a 3x3 block with fixed form. Its components are reported in [17]. A154
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complete description of the FN derivation and its use to achieve the global matrices are presented155

in [22].156

For the sake of clarity, the form of the stiffness FN is now presented. Introducing the Hooke’s157

law and the geometrical relations, the internal work can be expressed in function of the shape158

functions, the expansion used for the cross-section and the properties of the material.159

δLint = δqT
sj

∫

V

Nj(y)Fs(x, z)b
T
CbFτ (x, z)Ni(y)dV qτi (19)

The integral is the stiffness FN kijτs Each term of the fundamental nucleus has a fixed form.160

Equation 20 shows the extended formulation of two terms of the fundamental nucleus. The other161

terms can be obtained by the permutation of the indexes. The global stiffness matrix can be162

achieved varying the indexes i,j,τ and s.163

kτsijxx =(λ+ 2G)

∫

l

NiNjdy

∫

A

Fτ,xFs,xdA+G

∫

l

NiNjdy

∫

A

Fτ,zFs,zdA

+G

∫

l

Ni,yNj,ydy

∫

A

FτFsdA;

kτsijxy =λ

∫

l

Ni,yNj,ydy

∫

A

FτFs,xdA+G

∫

l

NiNjdy

∫

A

Fτ,xFsdA;

(20)

Each beam can be arbitrary oriented in the space, the rotations and translation can be applied164

at each fundamental nucleus, as shown in [28], in order to write the global matrices in the global165

reference system. In this way, by imposing the congruence of the displacements in some nodes166

defined by the geometry, a complex structure can be obtained. More details can be found in [28]167

where the assembly procedure has been also described.168

Knowing the form of K and M , the 16 can be rewritten as follows:169

Mü+Ku = 0 (21)

This is the undamped dynamic problem. Considering harmonic solutions and using the170

classical eigenvalue problem, the natural frequencies ωk can be obtained.171

(−ωk
2
M +K)uk = 0 (22)

where uk is the kth eigenvector.172

9



Damage model description173

In this work the damage has been introduced through a degradation of the material properties174

in a localized area. The following formulation has been used:175

Ed = d× E, with 0 ≤ d ≤ 1 (23)

where E is Young’s modulus of the undamaged material. Ed is the modulus of the deteriorated176

material while d is the damage level. For d = 1 the material is undamaged while for d = 0 the177

material is completely damaged, intermediate values can be used. Considering an orthotropic178

material, the terms E22, E33, G12, etc, are degraded in the same way. Thanks to the capabilities179

of the present model, the damage can be introduced in the problem at different levels, as shown180

in Figure 3. Considering a tapered panel with two stringers the damage can be introduced at the181

component level, as in the case of a damaged stringer. Otherwise the damage can be introduced182

at the layer level, as in the case in which just one layer collapses or, eventually, the damage can183

be reduced only in a local area. In this case the degradation of the material has been included184

locally. This approach can reproduce the situation in which just a small part of the structure is185

damaged as in the case of local impacts. These concepts are more clear through the picture 3186

which represents the damage.187

3. Numerical Results188

The following results refer to all the damage situations that can be investigated using the189

present model: a component failure, a layer failure and local damage. Moreover, a complex190

structure has been investigated to demonstrate the capabilities of the present approach in the191

analysis of real configurations.192

3.1. Three stringer reinforced panel193

The reinforced structure shown in Figure 4a is considered. There are two panels with different194

tapered shapes, which are reinforced by three square cross-section stringers. The panels are made195

of a composite laminate, which has 4 layers lamination of 0◦/90◦/90◦/0◦. The longitudinal axis196

of the material, in the case of θ = 0◦, coincides with the yG axis. The composite material197

is a CFRP: Carbon Fiber Reinforced Polymer with the following proprieties: ELL = 50 GPa,198

ETT = EZZ = 10 GPa, G = 5 GPa, Poissons’s ratio ν = 0.25 and density of 1700 kg/m3. ELL199

refers to the fiber direction. The reinforcements are made of an aluminum alloy. The Young200
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Local damage

Layer damage

Complete damage
E

dxE

Figure 3: Different damage configurations: at a component level (stringer), at a layer level and at a local level.

Modulus is equal to E = 71.7 GPa and ν is equal to 0.3. The alloy has a density of 2810 kg/m3.201

The dimensions of the structures are: L = 2, h1 = 0.48, h2 = 0.98, h3 = 0.2 and h4 = 0.4. All202

the dimensions are expressed in meters. The stringers have a square cross-section with an area203

equal to 0.0016 m2. The central stiffener is parallel to the yG axis.204

h
3

L

h4

h
1

h
2

xG

yG

zG

(a) 3-stringer panel

y

(b) FEM description

Figure 4: Three stringer reinforced panel: model description.

The reinforcements are described with six 4-node beam elements placed along the length of205

the component, and the square cross-section is described with three L9 elements.206
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The panel is described using 3-node beam elements over the thickness of each layer. The207

tapered shape of the panel (the cross-section of the local beam) is made up of L9 elements (9× 5208

for the top panel and 9× 4 for the bottom one). Figure 4b shows the details of the model. The209

panel is represented by a cross-sectional mesh of 5 × 3 L9 elements. More details about this210

approach used to describe composite panels can be found in [20] and [21].211

3.2. Undamaged Panel212

The undamaged panel has been investigated to assess of the model. The results have been213

compared with those obtained using different models built using the commercial Nastran code.214

The first model is a solid one (3D), while the second one uses shell elements for the panels and215

beams for the stringers (1D-2D). Table 1 shows the first 15 frequencies obtained for the different216

models. The first six columns report the classical theories and TE CUF Models. A step-modeling217

approach was used for these models to approximate the tapered shape. Twenty beam elements218

were adopted to discretize the structure. The solid model, which can can be considered as the219

reference model, was built using HEX8 solid elements. This approach leads to the very high220

number of degrees of freedom, even when only one element is used through the thickness of each221

lamina The component-wise model which is based on a Lagrange polynomial expansion (the LE222

Model) is reported in the eighth column.223

Classical theories are only able to identify the first frequency that is the first bending mode.224

TE 3ed and 4th order models can detect the first two bending modes, but they fail to consider225

shell-like behavior. The LE model model provides comparable frequencies with those of the226

3D Nastran model. Figure 6a presents a comparison of the modal shapes for the present LE227

model and the solid model. The MAC (Modal Assurance Criterion) was used to correlate the228

modal shapes that ware obtained using different models. MAC values equal to 1 mean that the229

two analyzed modal shapes correspond. The picture shows that the current LE model is able230

to detect all of the first 15 modes whit a good correlation value if compared with the modes231

obtained using the solid model.232

The Nastran 1D-2D model was also considered since this modeling approach is widely used233

in the aeronautical field. Sensible errors emerged, with respect to the the reference 3D values.234

The related MAC graph shows the difficulty this model has in detecting the modal shapes at235

higher frequencies. These differences are due to the approximations introduced to the connections236

between the stringer and the panel. This phenomenon was discussed in detail in the work by237

Cavallo et al.[29]. Figure 5 shows the first ten modal shapes of the studied structure.238
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Taylor step-wise models LE model Nastran Models

EBBT TBT N=1 N=2 N=3 N=4 1D-2D 3D

DOF’s 63 105 189 379 630 945 13167 38300 179700

f1 8,63 8,63 8,63 7,83 7,61 7,52 7,14 7,08 7,14

f2 53,46 53,46 53,46 30,42 29,09 28,11 7,89 7,83 7,96

f3 150,29 150,29 150,29 48,57 47,18 46,49 12,31 11,51 13,58

f4 274,84 274,84 274,78 98,01 91,47 86,20 13,02 12,58 14,53

f5 298,15 298,15 298,15 136,84 132,82 127,89 18,02 16,57 20,49

f6 501,70 501,70 490,30 204,73 185,90 135,12 23,75 21,67 26,62

f7 679,45 679,45 501,70 254,51 188,72 175,55 28,44 25,7 30,26

f8 766,74 766,74 603,79 271,89 241,32 202,38 32,54 26,98 32,99

f9 785,99 785,99 785,26 361,31 262,50 233,22 36,07 31,67 38,43

f10 1100,92 1100,92 766,73 458,16 296,29 257,21 41,33 34,7 42,35

f11 1496,35 1496,35 1100,89 575,28 328,73 307,68 46,97 41,06 46,73

f12 1513,93 1513,93 1181,44 588,61 426,39 370,59 47,57 43,28 47,80

f13 1713,54 1713,54 1494,67 602,32 447,16 425,21 49,62 45,28 50,10

f14 2017,58 2017,58 1513,87 702,43 522,09 490,40 50,85 46,43 50,85

f15 2018,81 2018,81 1736,34 727,94 585,97 541,10 52,98 48,92 54,18

Table 1: First 15 frequencies of the 3-stringer composite panel obtained using different models.

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 (e) Mode 5

(f) Mode 6 (g) Mode 7 (h) Mode 8 (i) Mode 9 (j) Mode 10

Figure 5: First 10 modal shapes evaluated using the LE model.
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Figure 6: Correlation of the modal shapes of the undamaged structure evaluated using different models.

In conclusion the present assessment shows that the here adopted LE model is able to provide239

a comparable accuracy with that of solid models, with a marked reduction in the computational240

costs. Therefore, the present LE model has been used in the following sections to investigate241

damaged structures.242

3.3. Damaged Panel243

In this section, several types of damage have been considered. The first part concerns a244

component that is completeld damaged. First the upper reinforcement was considered damaged.245

The free-vibration characteristics were evaluated and compared with those of the undamaged246

case. Then, the same process was applied to the top panel, the central stiffener and the bottom247

panel,one by one. These damage cases are presented in Figure 7. In the second part, the damage248

was considered at the layer level. An external and an internal layer were considered damaged in249

order to evaluate the worst case. Local damage was therefore introduced and the effects due to250

its position were investigated. Three different levels of degradation, d, were considered for each251

damage case: d = 0.9, d = 0.5 and d = 0.1. In the last case, the damaged components only had252

the 10% of the original stiffness.253

3.3.1. Stiffened panel with a damaged component254

In this section, the damage has been considered at the component level. Figure 7 shows the255

four considered cases.256
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Figure 7: Damage at the component level: The considered cases.

Undamaged Case 1 Case 2 Case 3 Case 4
d=0 d=0.9 d=0.5 d=0.1 d=0.9 d=0.5 d=0.1 d=0.9 d=0.5 d=0.1 d=0.9 d=0.5 d=0.1

f1 7.14 6.88 5.37 2.96 6.06 6.35 5.03 7.13 7.00 3.95 7.14 7.13 7.09
f2 7.89 7.81 7.71 7.66 7.77 7.52 7.42 7.86 7.72 5.47 7.89 7.89 7.87
f3 12.31 12.30 12.24 11.65 12.27 12.01 11.01 11.84 8.99 6.78 12.12 10.64 8.57
f4 13.02 13.02 13.00 12.76 12.96 12.77 12.49 12.84 12.22 7.54 12.84 12.64 12.61
f5 18.02 18.01 17.95 15.25 18.01 17.95 16.25 17.12 13.25 8.07 18.01 17.98 17.95
f6 23.75 23.74 23.62 17.73 23.74 23.65 18.07 22.56 16.98 9.21 23.75 23.72 18.99
f7 28.44 28.41 27.97 23.30 28.42 28.15 23.50 27.02 20.29 10.43 28.43 28.42 23.07
f8 32.54 32.49 31.39 28.22 32.50 31.68 28.20 30.93 23.20 11.43 32.54 32.54 23.71
f9 36.07 36.05 34.39 32.20 36.06 35.16 32.48 34.24 25.56 12.90 36.07 36.07 27.35
f10 41.33 41.05 36.47 36.09 41.10 36.14 35.85 39.5 29.87 13.53 41.33 41.06 28.43
f11 46.97 45.39 42.16 40.44 45.72 42.20 41.19 46.59 35.04 15.69 46.82 41.82 31.96
f12 47.57 47.27 47.22 42.55 47.46 47.40 42.82 46.92 37.20 16.73 47.51 46.86 32.54
f13 49.62 49.57 49.52 47.14 49.37 48.90 47.27 47.53 44.67 20.07 49.60 47.46 36.06
f14 50.85 50.03 50.01 49.49 49.71 49.65 48.75 49.5 46.06 21.92 49.97 49.44 36.83
f15 52.98 52.92 52.71 50.00 52.88 52.62 49.47 50.85 46.67 22.03 52.96 49.78 41.29

Table 2: First 15 frequencies of the 3-stringer composite panel for different damaged components.

The components that were considered damaged are: the upper stringer, case 1; the upper257

panel, case 3; the central stringer, case 2; and finally the bottom panel, case 4.258

Table 2 reports the frequencies obtained from a free-vibration analysis in which the three259

values of damage, d, were applied for each damage configuration. The diagrams shown in Figure260

8 are used to show the variations in the frequencies at each damage level considering the four261

considered cases. Figure 9 shows the correlation factor, MAC, of the modal shapes for different262

damage levels.263

Figure 8 shows the variations in the frequencies when the upper stringer is considered as the264

damaged component, that is, for the case 1. The results show that a damage magnitude d = 0.9265
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does not induce a large variation in the frequency values. When a damage level of d = 0.5 or266

d = 0.1 is considered, a general reduction of the frequency values appears. Second, third and267

fourth frequencies seem to be affected slightly by the damage, and this can be explained by268

looking at the modal shapes in Figure 5. These modes show a notable deformation in the panel269

area, that is, the damage to the stringer did not produce a strong variation of the response. The270

correlation between the modal shapes of the undamaged and damaged structures can be observed271

in Figures 9a, b and c . The MAC value shows that, when a low level of damage (d = 0.9) is272

considered, only the higher modes present variations. Figure 9a shows that the modes 11 and273

12 are not closely correlated to those of the intact structure. When the damage level becomes274

larger, the modes at lower frequencies can also be affected, as shown in Figure 9b, where the 9th275

mode is clearly not correlated to the modes of the damaged structure. At the maximum damage276

level, d = 0.1, the first modes also show a small correlation value and they may present some277

switch in the order in which they appear.278

Case 2 introduces damage to the central stringer. The frequencies show a similar behavior279

to those of the previous case, as can be seen in Figure 8. The modes at higher frequencies are280

affected more for low values of damage, as shown in Figures 9d and 9e, while, for a high damage281

level, the first modes also show a poor correlation to the undamaged structure, Figure 9f.282

The last two cases introduce damage to the two panels. In these cases, the damage has a283

great influence on the frequency values because it changes the shell-like modes of the panel, as284

shown in Figure8. A low damage level in the upper panel may produce a strong variation in285

the higher frequencies, as shown in Figure 9g. An increase in the damage of this component286

produces a drop in the frequency values and their modal shapes completely lose the correlation287

with respect to the undamaged structure, as shown in Figures 9h and 9i.288

The consequences of damage in the lower panel are not as severe as in the previous case,289

Figures 9j and 9k, but when a high level of deterioration is considered, Figure 9l, several modes290

of the damaged structure lose their correspondence with those of the intact structure.291

3.3.2. Failure at the layer level292

Figures 10a,b and c show the cases in which a single layer fails. In this case, refined models293

that are able to provide a layer-wise description are mandatory to describe the damage accurately.294

Table 3 shows the first 15 frequencies considering the three damage levels for each considered295

case. As in the previous cases, the variations in the frequencies have been reported using the296

histograms shown in Figure 11.297
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Figure 8: Frequency variations due to different damage conditions.

Cases 5a and 5b consider the failure of an external and an internal layer, respectively. The298

results reported in Figure 11 show that the failure of the external layer, case 5a, is more critical299

and produces a larger variation in the natural frequencies. The analysis of the MAC correla-300

tion, reported in Figure 12, points our that a reduction of 50% of the external panel integrity,301

Figure 12b, can have a remarkable effect on the higher modes, while 90% of failure, Figure 12c,302

completely changes the dynamic response of the structure. When an internal layer fails, more303

damage is required to change the modal shapes; in fact only when the properties of the panel are304

reduced by 90%, Figure 12e, is the correlation poor for higher modes. In both cases the first two305

modes and frequencies are not affected by the damage because they are governed by the stiffness306

of the stiffeners.307

The third case considers the failure of the two external layers. Considering a damage level of308

d = 0.9, the frequencies are reduced slightly, but the higher modal shapes show some variations,309

as can be seen in the correlation reported in Figure 12g. The increase in the damage causes a310

drop in the frequency values and the modal correlation only shows values close to unity for few311

modes. When 90% of the layer properties have been lost, see Figure 12i, only the first mode can312

be compared with that of the intact structure.313

3.3.3. Local damage314

In this section, the damage has been considered localized in a small area of the upper panel315

of the structure. Figure 14a shows the 45 areas where the failure has been considered. A316

damage value of d = 0.1 was applied to all of the four layers of the considered area. Figure 13317

shows the variations in the first eight natural frequencies when the failure appears in one of the318
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(a) Case 1 d=0.9
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(b) Case 1 d=0.5
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(c) Case 1 d=0.1
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(d) Case 2 d=0.9
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(e) Case 2 d=0.5
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(f) Case 2 d=0.1
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(g) Case 3 d=0.9
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(h) Case 3 d=0.5
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(i) Case 3 d=0.1
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(j) Case 4 d=0.9
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(k) Case 4 d=0.5
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(l) Case 4 d=0.1

Figure 9: Correlation between the intact and the damaged structures.
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(a) Case 5a (b) Case 5b (c) Case 6

Figure 10: Damaged component cases.

Undamaged Case 5a Case 5b Case 6

d=0 d=0.9 d=0.5 d=0.1 d=0.9 d=0.5 d=0.1 d=0.9 d=0.5 d=0.1

f1 7.14 7.14 7.12 7.09 7.14 7.13 7.10 7.14 7.09 6.93

f2 7.89 7.88 7.84 7.79 7.88 7.85 7.80 7.87 7.79 7.70

f3 12.31 12.17 11.29 9.83 12.24 11.85 11.15 12.01 10.22 7.73

f4 13.02 12.94 12.75 12.51 12.98 12.85 12.75 12.88 12.61 10.16

f5 18.02 17.69 16.10 13.66 17.89 17.28 16.34 17.37 14.50 12.37

f6 23.75 23.32 21.15 17.49 23.59 22.77 21.47 22.89 18.92 13.33

f7 28.44 27.93 25.51 21.57 28.23 27.23 25.75 27.44 22.96 16.14

f8 32.54 32.02 29.58 24.99 32.26 30.87 28.73 31.50 26.77 18.90

f9 36.07 35.29 31.34 26.28 35.92 35.20 34.16 34.54 27.67 20.67

f10 41.33 40.71 37.56 31.17 41.06 39.66 37.40 40.09 33.95 21.84

f11 46.97 46.92 42.31 32.79 46.95 46.85 46.06 46.77 36.89 25.37

f12 47.57 47.33 45.87 39.48 47.49 47.11 46.73 47.74 41.74 27.60

f13 49.62 48.59 46.83 41.45 49.48 48.75 47.54 47.02 46.65 30.30

f14 50.85 49.87 48.16 46.65 49.99 49.76 48.74 49.70 47.21 35.21

f15 52.98 52.14 50.19 46.67 52.64 51.08 50.05 51.39 49.75 35.67

Table 3: First 15 frequencies of the 3-stringer composite panel considering different failure cases at the layer level.
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Figure 11: Frequency variation for different failure cases at the layer level.

45 considered areas. This histogram shows that local damage to the panel has only a limited319

influence on the first frequencies, but can affect the frequencies at higher values. The results320

highlight which areas of the panel are more sensitive to failure, e.g., failure in panels 11, 12 or321

13 has a greater impact on the eighth frequency that failure in area 6; on the other hand failure322

in panel 27 mainly involves the sixth frequency.323

These results can be used to detect the position of damage from variations in the natural324

frequencies. The results have been elaborated in the colored maps reported in Figure 14. A map325

has been introduced for each natural frequency, in which the colors represent the variations in326

frequency values when failure is applied in that area. The darker the color is, the stronger the327

variation in the frequency value. The parameter, f∗, is reported in Equation 24.328

f∗ =
f

(fd − f)max

(

fd − f

f

)











fd = damaged frequency

f = undamaged frequency

(24)

A value equal to 1 (black color) denotes the area that produces the maximum decrease in fre-329

quency.330

These maps can be used to locate damage from variations in the natural frequencies. If a331

drop in the first frequency appears, it is possible to presume that the failure is locate in area332

9, as shown in Figure 14b. According to the same approach, a variation in the third frequency333
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(a) Case 5a d=0.9
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(b) Case 5a d=0.5
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(c) Case 5a d=0.1
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(d) Case 5b d=0.9
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(e) Case 5b d=0.5
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(f) Case 5b d=0.1
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(g) Case 6 d=0.9
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(h) Case 6 d=0.5
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(i) Case 6 d=0.1

Figure 12: Correlation between the structures with intact and damaged panel layers.
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suggests damage in area 21 or 22, see Figure 14d, while a reduction in the fifth frequency denotes334

failure in area 25.335

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

F
R

E
Q

U
E

N
C

IE
S

 [
H

z]

DAMAGED SECTION

Mode 8 Mode 7 Mode 6 Mode 5 Mode 4 Mode 3 Mode 2 Mode 1

Figure 13: Variations in the first 8 frequencies for different local failures.

3.4. Wing-box structure336

An example of a complex aeronautic structure is considered in this section. A multi-component337

tapered wing-box has been analyzed, Figure 15 shows its geometry. The wing has a length of338

L = 5 m. The tapered shape modifies the chord which changes from a value of R1 = 1.48 m339

to a value of R2 = 0.782 m. The wing-box thickness is constant, and it is equal to H = 0.208340

m. The spar is composed of two spar caps and a spar web with a thickness of tw = 3 mm. The341

spar caps have dimensions equal to a = 8 mm, b = 5 mm, c = 20 mm and d = 45 mm. The342

spars are made of aluminum alloy which has the same proprieties as the previously mentioned343

material. The skin is a 4-layer laminate made of CFRP, and it has a thickness of ts = 4 mm.344

The mechanical proprieties of the CFRP are equal to those used in the previous case. There are345

three ribs made of aluminum, which are placed at Y r = 1, 6666667 m. Their thickness is equal346

to ts. The central spar is aligned with the YG-axis.347

For the sake of brevity, only the effects of six different failures have been considered for the348

first bending and first torsional modes. A solid Nastran solid model, with more than 400000349

DOFs, was used for validation purposes. The LE model used six 4-node beam elements, along350

the length of the spar-caps and one 3-node beam element placed over the thickness to describe351

each web and each layer of the skin. The same layout was used for the ribs. Figure 16 shows352
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Figure 14: Damage influence maps. For each frequency the map shows the area which, if damaged, has the
greatest effect on that frequency value.
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Solid LE Model
DOFs >400000 42468
1st B 9.57 9.58
1st T 38.54 39.40

Table 4: Assessment of the present model. First bending mode, 1st B. First torsional mode, 1st T.

Top Spar Caps failure Complete Spar failure
Undamaged Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

1st B 9.58 9.35 9.3 0 9.35 8.96 8.87 9.01
1st T 39.40 38.91 39.15 39.18 35.70 37.73 37.67

Table 5: Different Conditions of damaged spars with a damage level of d = 0.1.

the orientation of the local frame for each component, where y identifies the beam axis. The353

model has 42468 DOFs. Table 4 shows the results obtained using the present model and the354

solid model built using the commercial Nastran code. The results show the accuracy of the355

present model, even when complex structures are considered. Moreover, the LE Model provides356

accurate results, but only uses a fraction of the DOFs required by the Solid model which, in357

order to respect the geometrical aspect ratio limitation, requires a huge number of elements for358

the analysis of thin-walled structures.359

The first three damaged configurations, cases 1 to 3, only consider the failure of the top caps360

of each spar. Cases 4 to 6 consider the complete failure of the spar, that is, both the caps and361

web were considered damaged. All six cases consider a damage parameter, d, equal to 0.1.362

Table 5 shows the frequencies obtained from the analyses of the six configurations. The first363

bending frequency is almost unaffected by the failure of the caps but it show a decrease when364

the frontal and the central spars are damaged. The failure of the central spar, case 5, produces365

a drop in the first bending frequency of 7.4%.366

An analysis of the modal shapes shows more details about the effects of the failure. Figure367

17a presents the modal shapes of the first bending mode, considering the tip section of the wing.368

The damage located in the caps of the first spar reduces the torsional effect due to the tapered369

shape. On the other hand, case 3 increases this effect. The effects of the damage on the whole370

spar are more significant, as shown in Figure 17b. In this case, it can be observed that the371

failure of the first spar changes the torsion angle. This could be of great interest when coupling372

phenomena are present, e.g., in aero-elastic phenomena.373

As expected, when the first torsional mode is considered, the critical component is the first374
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Figure 17: Influence of damage on the 1st bending mode.
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Figure 18: Influence of damage on the 1st torsional mode.
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spar. The failure of this element produces a strong reduction in the torsional stiffness, because of375

the reduction in the strength of the frontal closed cell. The Case 4 failure introduces a decrease376

of 9.4% in the frequency value. Figure 18 shows the effects on the modal shape at the tip of the377

wing. The damage of the whole spar introduces sensible effects, particularly for case 4 and case378

6.379

4. Final Remarks380

In this work, the capabilities of an advanced one-dimension model have been exploited to381

study the dynamic response of damaged composite structures. This model introduces a three-382

dimensional description of the structure with no geometrical approximations and a deformable383

cross-section of the beam. These features allow a quasi-3D solution to be obtained and make384

the models able to deal with non-classical and local effects due to global and local failure of a385

complex composite structure. The failure of the structure has been considered by introducing386

degradation of the material properties, thus the stiffness in the damaged area is reduced. The387

present model has been used to study the variations in the natural frequencies of a structure that388

has suffered from the failure of a single component, the failure of one or more layers or the failure389

of a small area of a panel. The Modal Assurance Criteria, MAC, has been used to evaluate the390

variations in the modal shapes. The following remarks can be made concerning the results:391

• In all the considered cases the present model has been able to accurately predict the natural392

frequencies and the modal shapes, with a reduction in the computational costs, compared393

with solid models.394

• The component-wise approach allows the failure of a single component to be introduced.395

• The layer-wise model used in the present work makes it possible to consider the damage396

of each single layer, and thus to evaluate the consequences on the natural frequencies and397

modal shapes.398

• The analysis of a local failure and the derivation o a database of possible scenarios could399

lead to the fast detection of failure on the basis of variations in the natural frequency.400

• The present approach can easily be extended to complex structures, such as wing boxes.401

In short, thanks to its efficiency and accuracy, the present model can be used to characterize the402

behavior of complex structures when they suffer from failure at different levels. The present re-403

28



sults could be used to derive future approaches for the health monitoring of composite structures404

or their maintenance procedure.405
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