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Abstract

Permanent magnet synchronous machines (PMSMs) provide several advantages

compared with induction machine, such as higher power and torque density, and

better dynamic response. Among PMSMs, Surface-mounted permanent magnet

(SPM) machine has simple rotor configuration and easy control strategy due to its

isotropic characteristics.

Plenty of publications have illustrated the fundamentals and the design meth-

ods of SPM machines. Based on these, this dissertation presents new design

methods for SPM machines. Both design methods are comprehensively illus-

trated. The presented design methods are embedded into a machine design

platform available online.

One of the new methods is an automatic design procedure using multi ob-

jective optimization algorithm, whose principle is to combine multi objective

differential evolution (MODE) optimization with finite element analysis (FEA) to

obtain the machine with the best trade-off among the targeted objectives, like

maximum torque, minimum torque ripple, good flux weakening capability, etc.

Two cases are reported by using such automatic design method, one for a SPM

machine with concentrated winding (CW-SPM) and the other with distributed

windings (DW-SPM), respectively. The CW-SPM machine is designed for traction

application. In this case, design equations, magnetic FEA, multi objective op-

timization, simplified structural and thermal co-design are presented. Torque

and power profiles of the designed machine are reported. The losses and effi-

ciency map are also presented. The other case is the DW-SPM machine capable

of low cogging torque thanks to the automatic design procedure. Dependent on

demagnetization limit and optimal magnet span calculation, the magnet bounds

in optimization process are obtained. The cogging torque and maximum torque

waveforms of three different machines on Pareto front are shown, which are ob-
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tained by MODE optimization and FEA simulations. One optimum machine is

selected as the best trade-off machine among PM volume, torque and cogging

torque behaviors.

Besides the automatic design process, the other design method called para-

metric design for SPM machines is reported. The parametric design provides a

very effective and concise solution for SPM machine design on the machine per-

formance calculation. Three steps of parametric design development are shown.

For each step, design flowcharts and examples are presented. Firstly, a parametric

design plane is established based on rotor split ratio x and per unit magnetic load-

ing b. All the sizing equations, torque and power factor calculation are functions of

x and b. An example for designing a CW-SPM machine for traction application is

reported. Later the parametric design plane is modified into the x and lm/g plane,

the latter parameter being the magnet-airgap length ratio, since lm/g directly

relates to the airgap flux density distribution. The comprehensive design process

of SPM machines using the parametric plane (x, lm/g ) is described. A prototype

is built and verified the validity of the design process. Then, a general design

approach based on accurate steel loading for both DW and CW SPM machines

is proposed. By using subdomain model during the design process, the stator

sizing equations are improved by considering the only one most loaded slot pitch

rather than the entire pole pitch. Five different cases of SPM machines are ana-

lyzed to get the precise flux quantities passing through the most loaded tooth. A

comprehensive parametric design flowchart for SPM machines is addressed. The

steel loading on each tooth and yoke are measured by FEA and compared with

target steel loading B f e at open load condition, which shows good agreements

with analytical cases. Finally, the designs are also tested at the respective rated

currents.The presented methods give insightful and effective means in the SPM

machine design.
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Chapter 1

Background and Objectives

1.1 Preface

The most of the electrical energy is generated from electrical machines from

primary energy resources and renewable sources. And more than half of the

total electrical energy is consumed by electrical machines [1–4]. Affected by the

greenhouse emission effect, the fossil fuels have to be substituted. Electrical

machine is a very promising alternative to replace the use of fossil resources

in many aspects, including transportation, industrial application, etc. . . [5–7].

Electrical machines are divided into AC and DC machines, in terms of different

current input. Considering AC machines, induction machine and synchronous

machine are separated according to rotating mechanism. When the rotor is

magnetized either from a DC current or Permanent magnet (PM), the relevant

synchronous machines are called wounded, or PM synchronous machine (PMSM),

respectively [8–11]. The classification of electrical machine is presented in 1.1,

and the characters of different electrical machines are reported in Table 1.1.

PM materials with high energy product have been developed in their magnet

energy product properties during last half century [12]. NeFeB magnets are able

to contain higher maximum energy product, more robust against the operating

temperature and improved magnetization behaviors [13, 14].

Benefited from the improvement of the PMs, PMSMs have been significantly

developed since 1950s. Although induction motors are prevailed in industrial ap-

plications, PMSMs have become competitive alternatives, since they can improve
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Table 1.1 Characters of different electrical machines

Machine type Advantage Disadvantage

Induction machine Simple and robust

structure

Relatively low efficiency

PMSMs
High torque density and

efficiency

Magnets retention

problem

Good dynamics Low inductance

Synchronous reluctance
High saliency Low power factor

Simple control strategy Complex rotor designs

Switched reluctance High speed Serious torque ripple

and noise

Flux switching machine High torque density and

robust rotor structure

Complicated in

manufacture and more

PM quantity

BLDC High speed and

reliability

Electronic commutation

is needed

both steady-state and dynamic performances, compared with induction motors

[15]. Efficiency is highly increased since PMSMs have no excitation loss and wind-

ings on the rotor. Power and torque densities are also increased, compared with

current excited machines [16–18]. Thanks to the improved performance of the

recent permanent magnet materials, such machines exhibit high efficiency and

high torque density[27, 28]. Among PMSMs, SPM machines have simple rotor

geometry. Meanwhile, compared with other PMSMs or synchronous reluctance

(SyR) machine [29–31], the control strategy for SPM machines is also concise due

to its isotropic geometry.

In terms of application aspects, PMSMs have been used in electric powertrains

[19, 20], direct-drive home applications [21], servo motors in industry [22], and

aerospace actuators [23].

Nonetheless, the PM materials might be demagnetized irreversibly, resulting

from the thermal issue and excessive current loading [24]. A powerful cooling

system should be used to keep the machine temperature under control. Moreover,

mitigating PM losses should also be considered in the design process of PMSMs
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Fig. 1.4 ∆x definition for flux barriers

In [88, 89], a comprehensive research on multi-objective optimization algo-

rithms (MOOAs) for automatic design of SyR motors was presented. Three MOOAs

were analyzed and compared in terms of both motor performance and compu-

tational time. Compared with genetic algorithm (GA), simulated annealing (SA)

means, differential evolution (DE) turns out to have the best results considering

both convergence time and repeatability.

Fig. 1.5 Effect on ∆x

By applying MODE in automatic design process of SyR motors, the perfor-

mance on combinations of stator slots and flux barrier numbers was studied [90].
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A general design guideline was proposed in choosing optimal slots and barriers

numbers to get best trade-off between the losses and torque ripple.

Fig. 1.6 Fluid barrier shape

Later, a new flux barrier shape called “fluid barrier” rotor geometry was intro-

duced in [91]. Three degrees of freedom were used to define each barrier. The

proposed rotor geometry 1.6 improved the torque performance, compared with

“3U” shape SyR machines.

Considering stator winding configuration, a non-conventional fractional slot

winding type was introduced [92]. The presented winding type made it more

convenient to manufacture without losing torque and power characters, com-

pared with the distributed windings. The traditional distributed winding (DW),

concentrated winding (CW) and the non-conventional winding layouts in SyR-e

are presented in Fig. 1.7.
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(a) (b)

(c)

Fig. 1.7 Winding definition in SyR-e, (a) DW; (b) CW; (c) non-conventional fractional slot

Apart from electromagnetic performance, structural analysis was first intro-

duced into SyR-e in [93]. The steel material effect on strcutural performance was

studied. Two different lamination materials were studied and compared in both

magnetic characteristics and yield strength. By means of MODE, FEA and multi-

physics validations, the machine performance at high speed was demonstrated.

Better efficiency can be obtained by a lower level steel material on magnetic

performance when the machine was beyond a specific speed. To improve the

structual robustness, the shape of end rotor barrier was optimized in [94]. Both

electromagnetic and mechanical performances were studied.

In [95], a design method targeting on maximum power density at high speed

for SyR machine was presented. It presented that the targeted SyR machine

output power increased with rotational speed up to 70 krpm. Beyond the speed,

the structural limit will in turn degrade the power performance.
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minimum cogging torque and maximum torque at rated current, the automatic

design is used to get optimum trade-off machine among the Pareto front. The

torque and cogging torque performance are reported and validated by FEA.

Besides the automatic design procedure, a parametric design procedure is

also introduced for SPM motors in Chapter 4. The development of the parametric

design is illustrated in three successive steps. At the beginning, the parametric

plane is established on the rotor split ratio and magnetic loading factor. Then in

order to make the parametric plane more insightful,the rotor and magnet-airgap

length factor are used in place of magnetic loading to build the design plane. After

that, more accurate sizing equations are embedded into the design process by

applying subdomain analytical model. The whole design development will be

discussed in Chapter 4. For each stage, the detailed flowchart is presented . Design

examples are also obtained and validated by FEA. A DW-SPM machine prototype

is built and tested experimentally. The detailed experiment procedure and output

is also illustrated.

The conclusion is presented in Chapter 5. In addition, the future research on

SPM machine design is also discussed.



Chapter 2

Surface-mounted Permanent Magnet

Synchronous Machine

2.1 Introduction

In general, PM brushless machines are divided into two main parts: DC brushless

machines (BLDC) and PMSMs. In this chapter, the main types of PMSMs are

reviewed. Then the fundamentals of SPM machines are illustrated. Based on the

winding configuration, the two dominant conventional types, distributed winding

and concentrated winding, are described.

2.2 Permanent Magnet Synchronous Machine

PMSMs can be an alternative for induction machine in industry since its higher

torque, power density, and efficiency. Based on the relative positions of stator and

rotor, two main categories are defined, i.e. inner rotor and outer rotor, respectively.

In this section, several popular inner rotor types of PMSMs are addressed.

Depends on the arrangement ways of PMs on the rotor, several types of PMSMs

are built. Some popular rotor configurations are reported in Fig. 2.1.
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2.2.1 Surface-mounted Permanent Magnet Synchronous Machine

Surface-mounted permanent magnet synchronous machine is defined that the

magnets are fixed on the rotor surface, shown in Fig. 2.1a. Since no geometry

modification is needed in the rotor core, this rotor configuration is the simplest

one among the PMSMs during the manufacturing process. With the help of PMs

directly working at airgap interface, it produces the airgap flux density as high as

possible [35–37].

Nonetheless, when the PMs are exposed directly at airgap, the demagnetization

risk is increased, because the magneto-motive force (mmf) effect generated by

stator current directly acts on the PMs [38, 39].

In terms of drives, the inductance variation between d and q is relatively small,

there is no reluctance contribution to the torque production. The control of SPM

machines is simplified. The details are described in the later sections.

2.2.2 Surface Inset Permanent Magnet Synchronous Machine

Fig. 2.1b presents a surface inset PM (SIPM) machine, which has a uniform

cylindrical surface of the rotor. In this type of machine, the airgap length is

constant along the rotor circumference. SIPM machines not only have reliable

rotor structure than SPM machines, but also gains saliency effect due to the

anisotropy between d and q axises. The saliency generates reluctance torque and

hence, improves both the power density and constant speed range [40–42].

Except the uniform airgap length, unequal airgap length SIPM machine is

introduced to obtain high saliency ratio. In this case, the airgap length at q axis is

shorter than d axis. By this way, q -axis inductance Lq is increased while d -axis

inductance Ld is reduced. therefore the saliency ratio Lq /Ld can be improved.

Large reluctance torque and wide speed range are achieved. The relevant geome-

try is reported in Fig. 2.1c. Extended airgap length at d axis also can reduce the

demagnetization risk because the mmf drop at airgap is increased [43].
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2.2.3 Interior Permanent Magnet Synchronous Machine

Except surface PM rotor shapes, Fig. 2.1d-e report two interior PMSMs with the

PMs embedded in the rotor lamination in radial and circumferential orientations,

respectively. Compared with SPM and SIPM machines, interior PM (IPM) ma-

chines are mechanically robust and can be used in high speed applications. The

radial type IPM machines (Fig. 2.1d) have flux barriers at rotor core. The flux

barriers result in decreasing mutual flux linkages Ld q and Lqd . The weight of the

rotor is also reduced thereby diminishing rotor inertia. The circumferential IPM

rotor, also known as spoke type (Fig. 2.1e), can obtain higher airgap flux density.

However, large quantity of PMs will increase the cost of the machine [44–46].

IPM machines significantly improves the saliency ratio when multi layers

are used in the rotor (shown in Fig. 2.1f), [47–49]. Therefore, the flux weaken-

ing performance is better than SPM machines[36, 50]. On the other hand, the

manufacturing becomes more complex.

2.3 Fundamentals of SPM Machines

The fundamentals of SPM machines are reviewed in this section, including mag-

net material, airgap flux density, induced voltage(emf), Armature current density,

torque, power and power factor (PF). The synchronous inductance of SPM ma-

chines is also calculated.

2.3.1 Permanent Magnet Material

Magnet materials were used in electrical machine since the middle of last century

[51, 52]. The material characteristic has been rapidly developed since then by

using rare-earth material. A typical demagnetization B−H characteristic of NdFeB

PM, located at the second quadrant, is presented in Fig.2.2. The PM magnetic flux

density is given as,

Bm = Br +µ0 ·µr ·H (2.1)
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(a)

(b)

Fig. 2.5 Bg waveform for slotless SPM machines, (a) parallel, (b) radial

However, due to the slot effect, the flux density always drops at the slot opening

area. Then the average flux density Bg _av g is reduced per pole [57, 4]. Carter

coefficient kc is introduced to calculate the reduction resulting from slot effect on

Bg _av g . The effective airgap length is increased by kc ,

g ′ = kc · g (2.2)

Here kc is obtained by the slot opening width,

kc =
τs

τs −τs ·kso ·γ′
(2.3)
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τs =
π ·Di s

6 ·p ·q
(2.5)

Where Di s is the stator inner diameter, p is the number of pole pairs, and q

is the number of slots per pole per phase. In addition, the Carter coefficient is

also defined as the ratio of the maximum flux density Bg _max to the average flux

density Bg _av g [58, 59],

kc =
Bg _max

Bg _av g
(2.6)

By introducing kc to account for Bg reduction on slot effect, then Bg _av g is

calculated as,

Bg _av g =
lm

lm + g ·µr ·kc
(2.7)

From the equation above, It shows that the magnet length lm has a significant

effect on the magnitude of Bg , when g is invariable. Bg _av g results calculated from

(2.7) and FEA results are shown in Fig. 2.7. In the calculation, the airgap length

g = 1mm as a reference value.

Fig. 2.7 Bg _av g results comparison between (2.7) and FEA
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Here L is the machine length. Substituting (2.10) into (2.9), then the induced

emf can be achieved as,

Em =
4

π
·kw ·Ns ·Di s ·Bm ·ωm · sin

αm

2
(2.11)

Where ωm is the mechanical angular speed of the machine.

2.3.4 Torque and Power

The electromagnetic torque of PMSMs has one magnet component and one

reluctance component,

T =
3

2
·p

[

λm · iq +
(

Ld −Lq

)

· id · iq

]

(2.12)

Where id and iq are the current in d and q axis respectively. λm is the PM

flux linkage. The second portion (term with Ld -Lq ) is the reluctance contribution,

which is none in the SPM case, since the inductance Ld and Lq are identical.

Normally, the current of SPM machines is fixed on q axis at low load condition.

Then (2.12) is modified as,

T =
3

2
·p ·λm · iq (2.13)

λm is achieved by

λm = τp ·L ·kw ·Ns ·Bg 1 (2.14)

τp is the pole pitch, and calculated as,

τp =
Di s ·π

2p
(2.15)

From (2.13), the torque is in proportional to the PM flux linkage and the

machine current. Then the output power is obtained as,

P = T ·ωm (2.16)
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2.3.5 Maximum Current Limit

While fed with stator current on q axis, the PM flux density Bm increases on the

leading edge of the magnet and drops on the opposite edge. The maximum mmf

on the airgap derived from stator current is [16, 60],

Fp1 =
3

2

4

π

kw ·Ns

2p
· Is (2.17)

The peak flux density Bg ,Is produced by phase current acting alone is

Bg ,Is =
3

2

4

π

µ0 ·kw ·Ns

2p ·µr ·kc · g
· Is (2.18)

To prevent demagnetization at any current angle, the operating magnet flux

density must be more than the knee point Bd :

Bm −Bg ,Is ≥ Bd (2.19)

WhereBm is the PM flux density at open load condition. Combining (2.7),

(2.18) and (2.19), the maximum allowed current is calculated,

Imax =
2pπ

6µ0 ·kw ·Ns
·
(

Br · lm −Bd · g ′) (2.20)

2.3.6 Synchronous Inductance

The inductance of the isotropic synchronous machine consists of magnetizing

inductance Lm , slot leakage inductance Ls , tooth tip inductance Lt i p , and end

winding leakage inductance. In 2D FEA simulation, end winding effect is neglected.

The calculation on Lm , Ls and Lt i p are illustrated in this section.

2.3.6.1 Magnetizing Inductance

The PM flux linkage λm is shown in (2.14) at no load condition. Similarly, when

the machine is fed with current, the current flux linkage is obtained [61, 62],
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Here h4 is the slot length, b4 is the slot width. In terms of slot opening region,

the magnetic permeance factor is,

σ1 =
h1

b1
(2.25)

Where h1 is the slot opening height, b1 is the slot opening width. Then the slot

inductance Ls is obtained,

Ls =
12

6 ·p ·q
·µ0 ·L ·Ns

2 · (σ1 +σ4) (2.26)

2.3.6.3 Tooth Tip Leakage Inductance

The tooth tip leakage inductance is decided by the magnitude of leakage flux

flowing in the airgap outside the slot opening region [4, 65, 66]. The tooth tip

leakage inductance Lt is decided by another permeance factor;

kt =σt ·
5
(

g ′

b1

)

5+4
(

g ′

b1

) (2.27)

Where σt is a factor referring to the arrangement of coils. Then Lt is achieved

as,

Lt =
12

6 ·p ·q
·kt ·µ0 ·L ·Ns

2 (2.28)

2.4 Windings

The torque of PMSMs is produced by the iteration between a PM flux and a stator

mmf, which is generated from armature current in PMSMs. The current frequency

is synchronized to the rotor electrical frequency. The mmf resulting from one coil

concentrated is rectangular distribution along the relevant slots where the two

coil sides locate. However, the harmonic content is abundant in rectangular mmf

distribution. Additional losses rather than excess torque are produced by the mmf

harmonics. Therefore, minimizing the stator mmf harmonics is a key factor to











Chapter 3

Automatic Design Using

Optimization Algorithms

This chapter mainly illustrates the automatic design process for SPM machines by

using multi-objective optimization algorithm. Two design cases are described, one

for traction application using the CW-SPM machine and the other for DW-SPM

machine capable of low cogging torque.

In terms of traction appliction, the optimizaiton targets are the maximum

toruqe and flux weakening capability. For the DW-SPM machine case, the targets

are set as the cogging and rated torque performance.

3.1 Automatic Design for Traction Application

Part of the work described in this chapter has been previously published in [98].

3.1.1 Design Background

Electrical machines design is a complex, multi-objective engineering challenge

whose typical goals are maximizing the output torque, minimizing losses, mass,

cost, torque ripple, etc... Magnetic aspects play the central role in the design, but

many other non-secondary aspects make this a multi-physical problem and a

kaleidoscopic challenge. Recent efficiency standards [99] demand for accurate
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loss evaluation and thermal-magnetic co-design. Today’s demanding applica-

tions like the more electric aircraft [100] or vehicle powertrains [101–103] ask for

high compactness, transient operation in a variety of operating points, and high

efficiency in all operating conditions. A number of non-magnetic aspects must

be taken into account, such as structural co-design for high-speed operation

[104, 105], sustainable iron and PM losses [106], flux weakening capability, tran-

sient overload capability, and high efficiency in a large operating region [107], as

said. The multi-objective design problem is thus becoming complicated more and

more. Fortunately, the growing complexity of application requirements is backed

by an even stronger growth of artificial intelligence and available computational

resources. This case study illustrates an automatic design procedure for CW-SPM

machines, integrated in a machine design environment SyR-e, linked with FEA

engine FEMM.

The traction machine of an electric vehicle (EV) is one of the most challenging

application design wise. Its mission contains a multitude of transient operating

points, defined by the different possible driving cycles of the vehicle. The PMSMs

applied to EVs are the CW-SPM machines and the IPM machines. Previous work

compared CW-SPM and IPM machines to the IM in EV application [36]. This study

uses the traction machines presented in [36] as the benchmark for two new de-

signs made in SyR-e. The machine considered here is the CW-SPM machine. The

automatic design procedure, based on MODE and FEA, for the sake of accurate

performance evaluation [87, 108]. After the design part, both machines are FEA

characterized in detail, including the study of iron and PM losses, the determi-

nation of the control trajectories like the MTPA law and the flux-weakening law.

The limits of the torque – speed envelope given the power converter will be put in

evidence, alongside calculated efficiency maps, as final performance indicators

against the reference machines of [36]. All operations presented in the study can

be repeated by the reader using online resources of SyR-e, with the only exception

of iron and PM loss evaluation, for now delegated to commercial software [109].

The main contributions of this study are:

1) to provide comprehensive design procedures for CW-SPM machines for

traction, where most of key aspects are taken into account.
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2) Such design strategies take advantage of shortcuts purposely intended for

traction machines, such as the goal function that summarizes flux weakening

capability in one FEA simulation.

3) The consequence of 2) is that no extensive optimization covering multi-

ple operating points in the torque versus speed plane was required to obtain

satisfactory performance and high efficiency.

3.1.2 Design Conditions for Traction Machines

When dealing with a vehicle powertrain, it is not easy to extract a single operating

condition as the only reference for magnetic and thermal design. The typical

torque versus speed envelope of an EV traction drive is reported in Fig. 3.1. It has

a large constant power speed range, dictated by the power converter and battery

limits. Besides maximizing torque at low speed, the designer must fulfill the power

target at maximum speed, in flux weakening operation. Two key design points

summarize the magnetic design:

• Point U (110 Nm, 4,000 rpm, stands for up-hill) in Fig.3.1 represents worst

case climbing conditions.

• Point F (39 kW, 12,000 rpm, stands for flat) represents the power required to

run the vehicle at its maximum speed.

Both design conditions refer to quasi-continuous operation, intending that

both situations can be prolonged in time for more than one thermal time constant,

even if this is not strictly specified by driving cycle used for this vehicle (NEDC:

new European driving cycle [110]). Point U defines the rated torque, whereas

point F defines the flux weakening speed range of the drive.
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Fig. 3.1 Torque versus speed requirements of an electric vehicle

The steady state model of a PMSM is briefly reviewed:

vd q = Rsid q + jωλd q (3.1)

λd q =

[

Ld 0

0 Lq

]

· id q +

[

λm

0

]

(3.2)

Where vd q , id q and λd q respectively are the voltage, current and flux linkage

vectors in rotor coordinates dq, Rs is the phase resistance, and ω is the rotor

speed in electrical degree [rad/s]. The electromagnetic torque (2.13) has only one

magnet component λm .

Target torque is defined after point U. Point F dictates that flux weakening

capability is sufficient. It means that the machine is able to reach the required

power at maximum speed under maximum voltage constraint. A powerful met-

ric of flux weakening capability of a PMSM is its characteristic current:

ich =
λm

Ld
(3.3)
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(a)

(b)

Fig. 3.3 Torque (a) and power (b) versus speed profiles supplied with characteristic current,

under constrained voltage

3.1.3.1 Design Input

With reference to the machine’s ratings reported in Table 3.1, the slot-pole combi-

nation is constant in this study and the initial design inputs are:

• Stack dimensions D, L and airgap length g.

• PM remanence Br and peak flux density in steel B f e .

• Thermal loading k j .

• Tooth length lt and Tooth width wt .

• magnet length lm and magnet angular span αm
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The number of turns Ns is set to an initial value and adjusted in the final stages

of the design according to the specified voltage and speed ratings.

The thermal loading k j [W /m2] is expressed in the form of copper loss per

stack surface:

k j =
copper loss

πDL
=

(6Ns I )2

kcu

ρ
· L

lend+L
·2πD · Asl ot s

(3.5)

Where ρCu is the copper resistivity, kCu is the slot fill factor. Asl ot s is the total

slot areas, lend is the end-turn length, and I is the amplitude of current.

After defining the size and winding type, the allowed electric loading As [A/m]

is indirectly obtained by the thermal loading (3.5),

As =
6Ns I

2π · (r + lm)
(3.6)

The product Ns I together is proportional to
p

k j according to (3.5), and also

contributes to electric loading As .

Thermal loading k j , instead of As , is used here because it contains information

both on stator and rotor quantities, whereas the electric loading refers to the rotor

size only. Moreover, k j is more intimately related to the copper temperature.



3.1 Automatic Design for Traction Application 39

Table 3.1 Machine data

Unit motor in [36] present motor

Converter phase voltage V pk 173

Converter current A pk 360

Stack length mm 170

Steel grade M250-35A

PM grade BMN-42SH

Copper temperature ◦C 150

Rotor temperature ◦C 130

Pole pairs 2

Rated current A ≥192A

Torque at base speed Nm 120

Base speed ωbase rpm about 4000

Power target at max. speed W 50000 (point F)

Max. speed ωmax rpm 12000

Stator outer diameter mm 216

Number of slots 6

Stator bore diameter mm 124 128

Airgap mm 0.7 1

Copper fill factor 0.4 0.55

Number of turns 23 24

Torque at 360 A Nm 150 164

Characteristic current A pk 193 198

Phase resistance at 130 ◦C Ω 0.026 0.02

Magnet mass kg 1.35 2.17
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Fig. 3.4 Automatic design flowchart for the CW-SPM machines
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Large quantities of individuals evaluations are used to ensure adequate candi-

date models can be obtained to form the Pareto front of Fig. 3.6. On the Pareto

front, one gets nearly zero λd .1800 is chosen as the final solution (green marker).

Fig. 3.6 Pareto front of CW-SPM design optimization

The FEA calculated power envelope of design candidate is presented in Fig.

3.7.

Fig. 3.7 Power profile of CW-SPM machines
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The figure shows that changing the number of turns modifies the height of

the power plateau and not the nominal torque. From (3.7), k j is proportional the

combination of Ns I . As given the key input k j , Ns is inversely proportional to

machine current, which is directly relates to maximum power. In turn,

N ′
s

Ns
=

Pch

P ′
ch

(3.7)

Fig. 3.8 Temperature result for CW-SPM under repeated NEDC conditions

3.1.3.3 Non Magnetic Aspects

A simplified thermal model integrated into SyR-e estimates the copper tempera-

ture given the loading condition k j [W /m2]. This model is based on radial heat

transfer between stator copper and housing. Axial effect is neglected (2D model).

Housing temperature is set. The steady-state copper temperature is estimated

after the loading factor k j , the total stator slot area, slot filling factor and housing

temperature [111]. The user can immediately check if the considered k j is com-

patible with the target copper temperature. In this research, the target copper

temperature was 130 ◦C. Finally, copper and magnet temperatures are verified us-

ing a lumped parameter transient thermal model available in Infolytica/Motorsolve

[112], with reference to the selected driving cycle. Made up of 4 ECE and 1 EUDC
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cycles, the NEDC driving cycle has been repeated six times in two hours through

the test, with the coolant temperature at 60 ◦C and flow rate at 10 l i ter /mi n. The

temperature result for CW-SPM is reported in Fig. 3.8.

3.1.4 Results

The final structures of both machines are shown in Fig.3.9. Compared with pre-

vious machines [36], the magnets (grey parts) are both radially and axially seg-

mented into 5 parts, respectively. PMs are thicker than the one in [36] to prevent

irreversible demagnetization. Conversely, the cost of magnet is higher.

(a) (b)

Fig. 3.9 Motor structures: (a) benchmark CW-SPM; (b) present CW-SPM

As mentioned before, the final metric of this study are torque and power curves,

as well as efficiency maps. Firstly, flux linkage maps (λd ·λq ) of two machines are

evaluated off-line via SyR-e over a current domain as large as 360A × 360A in id ,iq .

Afterwards, torque maps are calculated by (2.12).

Based on these maps, the MTPA control law is obtained, valid at low speed.

When voltage limit is met, the current vector is further rotated for flux weakening

Fig.(3.2). Another script available in SyR-e builds the flux weakening control law,

including the MTPV trajectory and minimization of total loss for each torque and

speed combination.
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3.1.4.1 Torque and Power Curves

Fig. 3.10 shows the torque curve of the machine. The CW-SPM machine have

a torque at maximum current condition that is markedly higher than the corre-

sponding one in [36], which demonstrates an increase of the transient capability

of the powertrain. This is true also at maximum speed, where present machines

get higher torque (50 N m) than those of benchmark machines (39 N m). Dealing

with the power curves of Fig. 3.11, the present CW-SPM machine shows similar

power curves in characteristic current conditions, having very similar values of

Ich .

Fig. 3.10 Torque curve at their characteristic current and at maximum inverter current,

considering the maximum voltage limit
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Fig. 3.11 Power curve at their characteristic current and at maximum inverter current,

considering the maximum voltage limit

3.1.4.2 Loss and Efficiency Maps

Fig. 3.12 Efficiency map
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Fig. 3.13 Power loss at specific points of the new machine, and comparison with the

benchmark machine

Power losses are FEA evaluated through MagNet/Infolytica, including core, PM,

and copper losses. Simulations are repeated over the machine current domain at

a single speed value. Then, frequency is adapted to the different speed conditions

using the modified Steinmetz approach described in [113], using the coefficients

of the magnetic steel in use. Fig. 3.12 shows the efficiency map of the designed

machine.

Burdened by high PM loss, the high-speed efficiency of the CW-SPM machine

is that much high. Loss details are reported in Fig. 3.13, for operating points U and

F. Compared to the efficiency map reported in [36], efficiency distributions are

similar to the ones of the respective benchmark machine. Both present designs

show an increase of peak efficiency (97% versus 96%). This is related to the better

torque per copper loss factor of both new design, as put in evidence by the loss

split of Fig. 3.13.

The magnets of the CW-SPM machine are segmented both axial and radial

wise (5 segments per direction) for diminishing eddy current loss. Nevertheless,

the machine is still burdened by high magnet loss at high speed (point F). In

addition, copper loss grows from point U to point F, due to the significant power

loss de-excitation current component. Compared to the benchmark CW-SPM

machine, although copper loss is lower for the same operating point, total loss

at point F is the same, due to augmented magnet loss. Higher magnet loss come
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from the larger magnet volume of the new design (+59%, see Table 3.1), mainly

related to the augmented airgap (1.0 mm instead of 0.7 mm).

3.1.5 Design Summary

The study presents an automatic design approach for the design of CW-SPM

machines for traction. The design tool used in the study consists of Matlab scripts

available online and includes design equations, magnetic FEA, multi objective

optimization, simplified structural and thermal co-design. The CW-SPM machine

example accounts for automatic design capability of SyR-e, based on MODE

optimization. Besides providing comprehensive design procedures for CW-SPM

machines for traction, the study suggests new design methodologies, such as

the goal function λ(d .180◦) that summarizes flux weakening capability in one FEA

simulation. Torque and power profiles of designed machine are reported. The

losses and efficiency map are also illustrated.

3.2 Automatic Design of a DW-SPM Machine

Part of the work described in this chapter has been previously published in [114].

3.2.1 Design Background

The cogging torque of SPM machines, which results from interaction between

PM edge and stator slot openings causing vibration and noise, is a significant

issue for high performance requirements [9]. Many methods have been developed

for reducing cogging torque [115], for example, rotor skewing, magnet shifting or

shaping, applying notches in stator teeth, etc. Each method has its own merits and

drawbacks. In terms of skewing, although it effectively diminishes cogging torque,

it also reduces the torque output of the machine and increases the manufacturing

cost [116]. Similarly, magnet shaping can decrease the interaction between mag-

net and stator teeth, at the risk of reducing the fundamental airgap flux density,

and therefore average output torque.
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3.2.2 Design Flowchart

3.2.2.1 Rotor Geometry

In order to define the shaping degree of the PMs, one more factor β is added. It is

defined as the length at PM ends, in p.u of the magnet length lm . The relevant rotor

geometry is shown in Fig.3.14. The detailed geometry analysis will be discussed in

next chapter.

3.2.2.2 Design Input

The main machine ratings of the selected design example are reported in Table 3.2.

MODE and FEA methods are utilized to optimize PM shape giving optimal magnet

flux linkageλm and cogging torque Tcog at open load condition. By applying (2.13),

the torque output is obtained from the product of λm and maximum current iq .

The cross-saturation effect is neglected. Therefore, by evaluating λm and Tcog at

open load condition, the torque performance at rated condition can be estimated.

The optimization inputs are: lm , αm and β. The stator geometry is not changed

in this study. Other cost functions considered off-line after the optimization are the

distance from the demagnetization limit and the mass of the PMs. The procedure

of optimization process is shown in Fig. 3.15.

To prevent fracture in manufacturing process, the PM ends should not be

too thin. Besides the manufacturing issues, the PMs must be protected against

demagnetization by having adequate minimum length β · lm . The maximum

armature magnetoforce (mmf) per pole is defined as [60]. Since the current is

fixed on q axis, then (2.17) can be modified as,

Fp1 =
3

2

4

π

kw Ns

2p
iq (3.8)

Assuming that the iron has infinite permeability and all the mmf drop happens

at the airgap, the maximum airgap flux density produced by current alone at the

magnet’s edges is,

Bgi q
=

Fp1µ0

g

4

π

µ0kw Nsiq

2p[lm(ξ= αm

2
)+µr kc g (ξ= αm

2
)]

(3.9)





52 Automatic Design Using Optimization Algorithms

The B-H curve and the relationship (4.32) are graphically associated in Fig.

4.19. In this study, Bd is 0.1 T and the maximum allowed current Imax is 26 A.

Moreover, Fig. 3.16 represents the relationship among maximum allowed current

and β, with lm as a parameter. The figure illustrates that the maximum current is

proportional to the shaping factor β when lm is fixed. For this design, acceptable

values of β are above 0.33.

For magnets having constant length the magnet span αm giving minimum

cogging torque is as [118],

αm

τp
=

N −m1

N
+m2 (3.11)

Table 3.2 Main parameters of target machine

Parameters Unit Values

Number of slots 36

Pole pairs 3

Stator inner diameter 120 mm

Stator outer diameter 175 mm

Stack length 110 mm

Minimum airgap length 1 mm

Slot opening ratio 0.3

Maximum current 26 A

Maximum speed 1000 rpm

Number of turns per phase 120

Torque target Nm 56

Peak cogging torque limit Nm 1
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mutual effect between PM edge and slots less acute than that in uniform thickness

PM case. Based on that, in order to achieve more possible solutions, m2 has been

increased to 0.05. Since larger αm generate higher torque, it is convenient to set

m1 = 1. In this study, the range of PM span is set as 0.83τp to 0.88τp . After defining

the bounds of PM shape, the MODE procedure will automatically optimize the

torque and cogging torque performance.

3.2.3 Results

As mentioned beforehand, the stator geometry in this study is fixed. According

to [117], MODE is more efficient to get desired results in terms of the number

of machine candidates. The bounds setting of magnet parameters are shown in

Table 3.3.

Table 3.3 Limit of search space for optimization

Main parameter lm β αm

Bounds (GS) [5, 7] [0.24, 1 ] [150, 159]

GS-optimum

(Motor 0)
6.89 0.55 155.7

Bounds (LS) [6.54, 7] [0.52, 0.57] [150, 159]

LS-optimum

(Motor 2)
6.95 0.57 158

Units mm p.u. elt. degree
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Table 3.4 Analytical and FEA results comparison on magnet edge

Bm(ξ= αm

2
)

[T ]

Bg ,s

[T ]

Bmi n

[T ]

Motor 1
Analytical 0.63 0.23 0.4

FEA 0.65 - 0.49

Motor 2
Analytical 0.55 0.2 0.35

FEA 0.61 - 0.46

Motor 3
Analytical 0.33 0.14 0.19

FEA 0.39 - 0.31

The detailed cogging torque waveforms of three machines over two slot pitches

are presented in Fig. 3.20. The zero rotor position is defined as the line where the

PM center aligned with the tooth center as the same position shown in Fig. 3.19.

Although the cogging torque performance of Motor 3 is the best solution among

the Pareto front, the torque production is considerably lower than others. The

red model is chosen as the optimal solution to be a prototype since it can achieve

the maximum torque target (56 Nm) with relatively low cogging torque. The

torque waveforms for the three machines over an entire period under maximum

current condition are presented in Fig. 3.21. The average torque outputs from

FEA are matched with the analytical results obtained from (1). Moreover, it also

illustrates that the torque ripples of the three machines have the same trend of

their cogging torque results. The torque ripple has been reduced while the edge

length of magnet becomes shorter (from Motor 1 to Motor 3). Considering the

cost, a larger amount of magnets is used in Motor 1. Compared with Motor 1,

Motor 2 is also the cost-optimal one, shown in Fig. 3.19.
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3.2.4 Design Summary

This study presented a design procedure to optimize the PM shape of rounded

SPM machines to find an optima trade-off between torque and cogging torque

behaviors. Both torque and cogging torque calculation through magnet shaping

method is analyzed. Dependent on demagnetization limit and optimal magnet

span calculation, the magnet bounds in optimization process are obtained. The

cogging torque and maximum torque waveforms of three different machines

on Pareto front are shown, which is obtained by MODE optimization and FEA

simulations. One optimum machine is selected as the best trade-off machine

among PM volume, torque and cogging torque behaviors.



Chapter 4

Parametric Design Procedure for

SPM Machines

Besides automatic design procedure, SyR-e also includes another effective ma-

chine design method, which is called parametric design procedure. The whole

development process of parametric design procedure for SPM motors is addressed

in this chapter. This machine design method for SPM motors has been developed

in three following steps.

The parametric design procedure is based on a parametric design plane, which

at the beginning, it is established based on (x,b). The two parameters x and b

represent the rotor split ratio and magnetic loading factor, respectively. A CW-SPM

motor is designed via this process for traction application. The whole flowchart is

presented in Section 4.1.

Later in order to simplify and make the parametric plane more useful and

insightful, (x,b) plane is modified into (x, lm/g ) plane. The later parameter lm/g

is the magnet-airgap length ratio, addressing the airgap flux density magnitude

directly. Moreover, SPM motors with profiled PM shape can be also created by the

parametric design method. The related design process is describes in Section 4.2.

At the first and second steps, the sizing equations on teeth width and length

are referring to the average airgap flux density along one pole pitch produced by

PMs. Then, more accurate sizing equations are embedded into the design process

by applying subdomain analytical model. The current sizing equations are only
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considering the flux density passing into the most loaded tooth in one slot pitch.

The detailed analysis is given in Section 4.3.

4.1 Parametric Design Procedure Based on (x,b) Plane

Part of the work described in this chapter has been previously published in [120].

4.1.1 Design Background

This study aims at simplifying the design approach by using the nominal power

factor (PF) of the machine as the metrics for achieving an optimal trade-off be-

tween starting torque and flux weakening capability.

A parametric design approach is introduced, inspired to the general design

approach used in [81] for machines with high numbers of poles. Torque and PF

at rated current loading are evaluated in the (x,b) parametric plane, where x is

the rotor / stator split and b is per unit magnetic loading. The (x,b) plane thus

represents a continuum of machines with different rotor and stator geometries,

all within the same stack envelope. A parametric plane established based on rotor

split ratio x and per unit magntic loading b is obtained since (x,b) can quickly get

access to the trade-off between torque and PF.

Among all solutions, the one with PF equal to 1/
p

2 and maximum torque is

selected, being the one with the highest torque among the ones with infinite flux

weakening capability, as shown in the study. The characteristic current condition

is the pivot of this analysis: all advisable designs will have the nominal current

equal to their characteristic current [50].

4.1.2 Design Procedure

This study uses two key design specifications for the design of the electric motor

for traction: 1) nominal torque, under the base speed, and 2) nominal power at

maximum speed. The key design parameter is the characteristic current of the

PMSM, as all investigated designs will respect the condition of having the nominal

current equal to the characteristic current:
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Ich =
λm

Ld
= In (4.1)

Such design condition turns into an asymptotically flat power versus speed

profile in voltage and current limited conditions, shown in Fig. 4.1 (a).

Pnmax = Pch =
3

2
Vmax · Ich (4.2)

The base speed is where flux weakening starts, i.e. when the inverter voltage

limit kicks in. Base speed is not an explicit design input in this analysis, as it comes

as a consequence of the two key design goals of torque and power, as said. At base

speed, output power is:

Pbase = Tn ·ωbase =
Pch
p

2
(4.3)

The proposed design flowchart targets power curves of the kinds depicted in

Fig. 4.1: the continuous curve refers to strict respect of (4.1), whereas the sharper

power curve in dashes is obtained imposing In > Ich by design (in the example

Ich is same as before and In is 170% of Ich . In this second case the starting torque

is higher, the power profile sharper, and this can be useful, if required by the

application.
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(a)

(b)

Fig. 4.1 Torque and power versus profiles under characteristic current and limited in-

verter voltage conditions. Two designs are reported: one with rated current equal to Ich

(continuous line) and rated current greater than Ich (dashed line)

4.1.2.1 Nominal PF as the Metrics of the Flux Weakening Range

When the SPM machine is fed with its characteristic current, the vector diagram

is the one in Fig. 4.2. Neglected the stator resistance voltage, when the current

vector aligned to the q axis , the (nominal) power factor is equal to 1/
p

2 [50].
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Fig. 4.2 Vector diagram of the CW-SPM machine with Ich applied on the q axis

The flux weakening trajectories of the vectors are shown, with the current vec-

tor rotated counter-clockwise and the flux linkage trajectory eventually collapsing

into the origin, producing the ideal power versus speed curve described above

(Fig. 4.1). Therefore, the design condition (PF )n = 1/
p

2 gives important insights

on the flux weakening capability of one motor design. The design of a CW-SPM

machine having a PF = 1/
p

2 at rated torque, condensates the twofold design

specs (torque at low speed and power at high speed) into a single operating point,

easy to define (current on the q axis). Roughly speaking, the torque target will

define the machine size, given the cooling capacity, then the PF = 1/
p

2 condi-

tion will guide the trade-off between PM flux linkage and armature inductance

optimizing the flux weakening properties of the machine. In turn:

(PF )n =
1
p

2
→ Ich = In (4.4)

(PF )n <
1
p

2
→ Ich < In (4.5)

Designing the machine after condition (4.4) produces torque and power pro-

files like the ones in Fig. 4.1 (continuous). Designing after (4.5) produces the

profiles represented with dashed lines.
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4.1.2.2 Design Input

The two design goals are torque at standstill and power at maximum speed, in

nominal current conditions. With reference to the machine’s ratings reported in

Table 4.1, the parameters defined offline, prior to the design are:

• Stack dimensions D , L and airgap length g .

• Pole pairs p, and winding type q .

• PM remanence Br and peak flux density in steel B f e .

• Thermal loading k j .

The value of k j is selected from typical values for the type of cooling in use and

verified with the help of a thermal network. A value of 12.1 [kW /m2] was chosen

here, considered typical of water cooling in automotive environment.

4.1.2.3 Parametric Design Plane (x,b)

The torque-PF design plane is defined after the two normalized design factors x

and b:

x =
r + lm

R
(4.6)

b =
Bg 1

B f e
(4.7)

The definition is reported in Fig. 4.3. Here Bg 1 is obtained from (2.8). The

former is easily defined as the rotor/stator split ratio, being r the rotor radius and

R the stator outer radius. The latter factor b is the ratio of the airgap peak of the

fundamental flux density Bg 1 and the iron peak flux density B f e .

The airgap flux density Bg (assumed to be constant under each pole) and the

peak of the fundamental are related through the shape factor (kb), defined as in

[127]:
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Table 4.1 Ratings of the CW-SPM motor

Machine type Unit CW-SPM

Pole pairs (p) 2

Stator slots 6

Torque target Nm 120

Maximum speed rpm 12000

Power target at max. speed kW 45

Stator diameter (D) mm 216

Motor Length (L) mm 170

Copper Loss W 1400

thermal loading (k j ) kW /m2 12.1

Airgap mm 1.5

Copper filling factor 0.55

Steel grade M250-35A

Steel loading (B f e ) T 1.5

PM type BMN-38EH

Remanence (Br ) T 1.02 T at 150 0C

Converter voltage V pk 173

Converter current A pk 360

Rotor temperature 0C 150

Winding temperature 0C 150

Where αm is the magnet pole arc expressed in electrical radians, defined in

Fig. 4.4. In this research, αm is set to 5/6π, for simplicity.
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4.1.2.4 Torque and PF Expressions

Torque and PF are expressed in terms of the two parameters x,b, using analytical

expressions mutated mostly from [60, 16], reviewed in the following. At low speed

the current vector is controlled on the q axis, in quadrature with the PM flux

linkage (λm , along the d axis). Therefore torque is:

T =
3

2
·p ·λm · iq =

3

2
·p ·λm · I (4.12)

Where I is the current amplitude. The magnet flux λm expressed in terms of x

and b is:

λm =
π ·Di s/2 ·L ·Ns ·B f e

p
(3) ·p

·x ·b (4.13)

The current amplitude is a function of the loading factor, the dimensions and

the number of turns:

iq = I =
1

Ns

√

k j ·
kcu

ρ

L

L+Lend
·2πD · Asl ot s (4.14)

Where Asl ot s is dependent on both x and b: when x becomes larger, the stator

area turns to smaller, which means Asl ot s is lower. The same is valid for b: a larger

b means thicker teeth and yoke, so smaller slots. lend in (4.14) is the length of the

end turns, that is dependent on x,

lend = 2lt +

(

Di s + lt

2

)

π

p
(4.15)

With the current on the q axis, then PF is defined as:

PF = cos(ϕ) =
λm

√

λ2
m + (Lq · iq )2

(4.16)

Where Lq = Ld = Ls , for SPM motor, can also be expressed as a function of x

and b. The inductance consists of magnetizing inductance Lm [60], slot leakage
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Fig. 4.6 Flowchart of the design procedure for traction motors
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4.1.2.5 Design Flowchart

The airgap length is lower-limited by mechanical design considerations [60]. The

number of pole pairs is set to two in order to limit the iron and PM losses at high

speed. The choice of q = 0.5 is compatible with p = 2, because other effective

fractional slot combinations (e.g. q = 2/5,2/7) would require p > 2 and thus higher

rotational loss.

From the aggregate of the inputs, the T(x,b) - PF (x,b) design plane is built.

The region 0.7 < PF < 0.71 is the target design area, around the condition PF =
p

2. Within this region, the higher torque producing capability can be read from

T (x,b).

Three feasible designs are selected and analyzed further (motors 1 to 3 indi-

cated in Fig. 4.6). The adopted design software (Syr-e [34]) runs the x,b procedure

and can build the FEA model of any motor seamlessly. A comparison between

model and FEA is reported in Table 4.2, showing pretty good agreement. Satura-

tion plays a role in these machines, but do not harm the accuracy of the model.

The fulfillment of the torque target can be FEA verified at this moment or at the

end. If the target torque is not met, either the stack size (D,L) or the loading (k j )

should be modified and the process iterated.

After the torque target is met, the tuning of the output power to the target

comes very easily through the design of the number of turns Ns . As shown in (3.5),

the loading input k j determines the Ampere-turns product Ns I altogether, but

not the number of turns and neither the current alone. Therefore, Ns is adjusted

so that the motor current equals the nominal value coming from (4.1) and (4.2).

In = Pnmax/
3

2
Vmax (4.18)



4.1 Parametric Design Procedure Based on (x,b) Plane 73

Table 4.2 Comparison between estimated and FEA results

Motor Number 1 2 3

(x,b) (0.363, 0.585) (0.385, 0.57) (0.404, 0.55)

Structure

lm 11.54 9.41 8

Model FEA Model FEA Model FEA

Torque 139.6 129.5 141.2 131.1 143 131.3

PF 0.705 0.71 0.706 0.707 0.71 0.701

4.1.2.6 Demagnetization Limit

Magnet thickness must be lower and upper limited to avoid the risk of demagneti-

zation, on the one side, and excess of PM loss, on the other side. If PMs are too

thin they tend to demagnetize early with load, whereas if they are too thick the

eddy current loss increase without any torque or power output advantage.

The flux density of PM Bm is assumed to be equal to Bg . Therefore,

Bm ≈ Bg =
Br

kb +kb ·kc · ·µr ·
g

lm

(4.19)

From (4.7), (4.8) and (4.19), the ratio lm/g determines the airgap flux density

and the loading of the magnet. It is:

lm/g = kc ·µr /(
Br

B f e ·b −1
) (4.20)

If lm/g is limited between 3.5 and 6.5, this turns into a limitation of the range

of b, according to (4.20). With Br = 1.02T . This turns into:
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1.02
kc µ̇r ·B f e

3.5
+B f e

< b <
1.02

kc µ̇r ·B f e

6.5
+B f e

(4.21)

4.1.3 Results

4.1.3.1 Design Examples

Three designs were chosen from the (x,b) plane of Fig. 4.5, they are shown in

Table 4.2. Comparison between model and FEA results is reported in the table.

Motor 3 was selected as the best candidate because:

• it has the highest torque forecast.

• It has the largest x value, therefore the biggest rotor, and the shortest teeth

and, ultimately, less copper and shorter end connections. Moreover, it eases

thermal exchange from copper to coolant.

• The volume of magnet is the smallest among the three.

The FEA calculated power and torque envelopes of Motor 3 are presented

in Fig.4.7. It is shown how the number of turns Ns modifies the height of the

power plateau and not nominal torque. The Ampere-turns product Ns I , coming

from the design input k j is the same, so torque is the same. As Ns decreases, the

characteristic current, characteristic power, and base speed all grow (Fig. 4.7). The

power requirement is met here when the number of turns decreases from 48 to 40

(45 kW ).
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4.1.3.2 Power and Torque Envelopes

(a)

(b)

Fig. 4.7 Power (a) and torque (b) profiles of Motor 3, for same k j [W /m2] and different

number of turns
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Fig. 4.8 Power profile for Motor 3

Fig. 4.9 Loss map and torque profile of Motor 3

Although the over-load capability is nearly none, the losses from over-load con-

dition are much higher than those from characteristic or below characteristic

conditions (Fig. 4.9). The over-load losses may be more than double the losses

from characteristic condition.
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Fig.4.10 reports the FEA calculated efficiency map of the final design. Segmen-

tations (5×5) are applied for PMs in both circumferential and axial directions to

reduce the eddy current effects on PMs. The motor achieves high efficiency over a

large proportion of the operating area. Nevertheless, burdened with heavy losses,

the efficiency drops under over-load condition or in high speed operating region.

Fig. 4.10 Efficiency map of Motor 3

4.1.4 Design Summary

A straightforward design approach is presented, for CW-SPM machines for traction

applications. The (x,b) design plane is introduced, to match torque requirement

and the key design condition of power factor equal to 1/
p

2. All designed machines

have infinite speed flux weakening range. The illustrated design method for

CW-SPM machines simplifies the design process, compared with general design

procedures. The model used for the parametric design is FEA validated with

success. Design equations are comprehensively provided in this research. FEA is

also used to characterize the final design and to get to torque/power profiles.
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4.2 Parametric Design Procedure Based on (x, lm/g )

Plane

Part of the work described in this chapter has been previously published in [128].

4.2.1 Design Background

This research proposes a new parametric design method for SPM motors with

distributed windings. A new parametric design plane, built on rotor-stator radius

split and magnet-airgap length ratio lm/g , is introduced. Compared with per unit

magnetic loading b, lm/g is more direct to define the airgap flux density, reported

in Fig. 4.12 in next subsection. Moreover, the range span of lm/g can easily difine

the magnet quantity, which also direct relates to the cost.

During the design process, the machine torque capability and power factor

(PF) at rated current condition are represented on the parametric plane. The key

geometric quantities of the candidate machine are found by selecting the desired

torque and PF performance point on the plane. A two-dimensional machine

model will be automatically built, ready for FEA verification. In addition, the new

method is also suitable for motors with modified PM shape [132] by introducing a

magnet shaping factor, resulting in the possibility of torque ripple and cost opti-

mization. The demagnetization limit at the edges of PMs is analyzed. Besides, PM

quantity is also considered to decrease the cost. The parametric design procedure

simplifies the machine design process for SPM motors, including rounded PM

shape, covering abundant magnetic calculations.

The torque smoothness is essentially demanded when the electrical machines

are used in precise motion control application [116]. In [131], magnet shaping

method was introduced as an effective solution to reduce the torque fluctuation.

However, while the magnet length drops at the PM edge, the demagnetization risk

is reversely surged. The decrease of electric loading due to the demagnetization

issue is not considered in the PM shaping models in [133–135]. In this study, a

magnet shaping factor is introduced to define the PM ends length, which is also a

straightforward insight to the maximum electric loading against demagnetization

task. In addition, the new parametric design method is also suitable for motors

with modified PM shape [132], resulting in the possibility of torque ripple and cost
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optimization. The demagnetization limit at the edges of PMs is analyzed. Besides,

PM quantity is also considered to decrease the cost.

The new parametric design procedure simplifies the machine design process

for DW-SPM motors, skipping abundant magnetic calculations. The proposed

design method is integrated in machine design software available online, which

contains sizing equations, structural analysis, thermal estimation and magnetic

static FEA.

In this research, a comprehensive parametric design flowchart is presented.

Four SPM motors are designed via the presented parametric method. Two of

them have standard radial PMs, and the other two have rounded profiled shapes,

respectively. The demagnetization issue of rounded profiled motor is considered.

The motor performance results are validated through FEA simulations. Exper-

imental results are presented and compared with FEA outputs for one of the

optimized designs. The detailed experimental procedure is also addressed. The

main contributions of this research are as follows:

1). The design procedure based on the parametric design plane and related

design equations.

2). The accurate description of the machines with profiled magnets.

3). The unified approach to profiled and non-profiled radial magnets, within

the same framework, including the demagnetization study.

4.2.2 Design Procedure

4.2.2.1 Machine Specification

This study uses the same stack dimensions and slots-poles combinations as the

previous work [132]. The key specifications are reported in Table 4.3.
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Table 4.3 Ratings of the DW-SPM machine

Machine type Unit DW-SPM

Pole pairs (p) 3

Stator slots 36

Stator diameter (D) mm 175

Motor Length (L) mm 110

thermal loading (k j ) kW /m2 9.1

Mimimum airgap mm 1

Copper filling factor 0.532

Steel grade M600-50A

Steel loading (B f e ) T 1.6

PM type NdFeB 32 MGOe

Remanence (Br ) T 1.16 T at 20 0C

Rated current A 25

Number of turns per phase (Ns) 120

4.2.2.2 Rotor Geometry

Conventionally, the PM length is kept uniform at the airgap. When output torque

smoothness is required, the magnet outer profile can be modified as ‘rounded’ to

reduce the magnet length at ends. The cross section view of an SPM rotor with

rounded magnets is reported in Fig.4.11. The outer profile of the PM is rounded

shaped and follows the set of parameters defined in the figure. lm is the maximum

magnet length at the center of the pole (along with d axis), r is the rotor core

radius, β is the magnet length at the magnet edge, in p.u. of lm . When β equals to

1, the magnet length at edge equals lm and the PM shape becomes uniform. αm

is the magnet angular span, ξ is the rotor angular coordinate, starting from the

magnet center line, g (ξ) is the airgap length function of ξ and rc is the radius of

the outer rounded magnet profile. After defining the magnet parameters (αm , lm

and β), the magnet length distribution lm(ξ), g (ξ), rc and central position O′ of

rounded profile are calculated.
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Then substituting (4.24) into (4.25), the airgap length function is then calcu-

lated as,

g (ξ) = Di s/2− (r + lm − rc )cosξ−
√

r 2
c + ((r + lm)sinξ− rc sinξ)2 (4.26)

Combining equations (4.24) to (4.26), the airgap flux density expression Bg (ξ)

can be expressed as,

Bg (ξ) =
[(r + lm − rc )cosξ− r +

√

r 2
c + ((r + lm)sinξ− rc sinξ)2] ·Br

(1−kcµr )(r + lm − rc )cosξ− r + kcµr Di s

2 + (1−kcµr )

√

r 2
c + ((r + lm)sinξ− rc sinξ)2

(4.27)

Three cases of airgap flux density distribution Bg (ξ) waveforms are reported

in Fig. 4.13. The analytical results are presented in continuous lines and the circle

marked points represent the FEA results. It can be seen that the analytical results

agree with the FEA results along with the PM areas. Nonetheless, influenced by

fringing effect, in the regions without PMs, the flux density cannot vanish, as

indicated by the FEA results. The proposed mathematical model (4.27) assumes

the airgap flux density to be zero off the magnet pole, with minor effect on torque

and PF prediction.

The fundamental component’s amplitude Bg 1 is obtained by Fourier transform

of the analytical flux density distribution Bg (ξ) over one pole pair. The magnet flux

linkage λm is evaluated considering the fundamental component of the airgap

flux density and neglecting higher order harmonics. Then λm is calculated by

(4.28).

λm =
2
(

r + lm + g
)

LNskw Bg 1

p
(4.28)
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As β decreases, both fundamental and subharmonics are reduced. The spec-

trum of three Bg situations on different β are reported in Fig.4.14

Fig. 4.14 Bg spectrum of different β

4.2.2.4 Design Input

The slot-pole combination is constant in this study and the initial design inputs

are:

• Number of pole pairs p.

• Number of slots per pole per phase q .

• Stack dimensions D , L and airgap length g .

• PM remanence Br and peak flux density in steel B f e .

• Thermal loading k j .

4.2.2.5 Parametric Design Plane (x, lm/g )

The torque-PF design plane is defined after the two key factors of SPM motor, x

and lm/g . x is defined as the split ratio of the machine, shown in (4.6).
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selected according to the desired torque and PF output. After one point is picked

from the plane, one motor model will be automatically built, on the basis of the

equations described above. FEA validation follows, to verify whether the motor is

in line with the specified performance. The detailed design flowchart is reported

in Fig. 4.17.

After FEA validation at rated current condition, if the torque result is not

adequate for the target, stack size or thermal loading can be improved to increase

the torque generation. Meanwhile, if the torque ripple is still high, reducing β or

finding better PM angular span αm is needed. Then the process is repeated.

The PM ends should not be too thin to prevent fractures in the manufacturing

process and demagnetization. The PM ends are vulnerable to demagnetization

risk, compared with PM center both for their reduced length and for the effect

of the stator current aligned with the q axis, whose magneto motive force (mmf)

has the peak value in the area of minimum magnet thickness. Therefore, the edge

length must be lower constrained by means of the parameter β. The maximum

airgap flux density produced by current alone at the magnet’s edges is,

Bg ,i q =
Fp1µ0

g

4

π

µ0kw Nsiq

2p[lm(ξ= αm

2
)+µr kc g (ξ= αm

2
)]

(4.31)

To protect the PMs, they must be designed so that the flux density (4.31) is

equal or larger than the minimum allowed flux density of the PMs Bd , correspond-

ing to the knee point of the magnet demagnetization curve. Hence,

Bm(ξ=
αm

2
) ≥ Bg ,i q +Bd (4.32)
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ripple has been significantly reduced, compared with uniform PM length motors.

It is emphasized that the nominal rated current of Motor 3 from the design plane

is 33 A, however, due to the demagnetization limit, the maximum allowed current

cannot beyond 26 A. At the same current level with Motor 4 (iq = 25A), the torque

output of Motor 3 is limited. The demagnetization validation process is skipped

during the design procedure for uniform PM shape motors. The torque waveforms

of four motors over one entire electric period at each nominal rated or allowed

current condition are presented in Fig.4.22.

Table 4.5 Comparison between parametric and FEA results

lm/g = 4.5 Torque [Nm] PF iq [A] Torque ripple [Nm]

β= 1

x = 0.55
plane 61 0.96 28 -

FEA 58 0.96 28 5.5

x = 0.67
plane 52 0.98 19 -

FEA 50 0.99 19 5.3

β= 0.33

x = 0.55
plane 59 0.93 33 -

FEA 43 0.96 25 1

x = 0.67

plane 55 0.96 25 -

FEA 52.3 0.96 25 1.8

exp. 52.2 0.95 25 3.9

Motor 4 was selected as the motor candidate since it has much better torque

ripple performance at rated current condition and lower PM quantity (i.e. cost)

compared with uniform PM thickness machines (Motor 1 and Motor 2); and it is

more robust to demagnetization risk and it has less copper quantity (so, lower

cost), compared with Motor 3.
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4.3 Parametric Design Procedure Based on Subdomain

Model

4.3.1 Design Background

Analytical calculation on airgap flux distribution of PMSMs has been highly devel-

oped during last decades [129]. An analytical model for magnetic field solution

for the slotless SPM machine is introduced in [137]. The interaction effect be-

tween the pole transitions and slot openings is included in [138, 139]. Accurate

subdomain models for magnetic field calculation for SPM motor through scalar

and vector potential distributions methods based on 2-D model are presented

[140, 141]. According to vector potential distribution model, winding losses at no

load condition are calculated in [142, 143].

In order to reduce the cogging torque of SPM machines, magnetic field dis-

tributions with subdomain model of shaped magnet model of SPM machines

are also shown in [135, 144, 145]. Beside magnet shaping method, analytical so-

lution on auxiliary and skewed slots are also introduced [146, 147]. Except SPM

machines, subdomain model is also applied to surface inset permanent magnet

machine in case that high saliency and wide speed range are pursued [148, 43].

In view of the design process of the SPM machines, a general design approach

for SPM machines has been illustrated in [81]. A parametric design technique

for SPM machines with both distributed and concentrated windings has been

proposed in [120, 128]. In these papers, a parametric design plane, built on rotor-

stator radius split and magnet-airgap length ratio, are introduced. During the

design process, the machine torque capability and PF at nominal rated current

condition are represented on the parametric plane. The key geometric quantities

of the candidate machine are found by selecting the desired torque and PF per-

formance point on the plane. Then, a 2-D machine model will be automatically

built, ready for FEA verification. In the parametric design process, steel loading

B f e is set at initial step to define stator sizing, including tooth width and stator

yoke length.

The analytical solution for the SPM machines is used on computing airgap

flux distribution on the existed motor models. This study focuses on combin-

ing parametric design process with subdomain models and implementing the
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analytical model in the design process to increase the steel loading accuracy on

both stator teeth and yoke, in return, improving both stator sizing accuracy and

motor efficiency. The new method highly increases the accuracy of the parametric

plane without consuming redundant time. Both CW and DW SPM machines with

different pole-slot combinations are discussed and validated by FEA. The design

procedure can be easily followed and repeated on SyR-e.

4.3.2 Design Procedure

4.3.2.1 Airgap Flux Model

In [60], a simplified formula to get the maximum airgap flux density of a slotless

machine is expressed as,

Bg =
lm/g

lm/g +µr
Br (4.33)

From the expression, it can be seen that the airgap flux density distribution is

mainly dependent on the magnet-airgap length ratio lm/g .

An improved slotless SPM model has been illustrated in [137], for both parallel

and radial magnetization. In this model, the airgap flux density distribution Bg

along one pole pair is introduced. Base on magnet-airgap length ratiolm/g , the

calculated maximum airgap flux densities are accurate, for both simplified and

improved models, compared with FEA results, shown in Fig. 4.28.
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∂2 Az2

∂r r 2
+

1

r r

∂Az2
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+

1
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∂2 Az2

∂ξ2
= 0 (4.36)

∂2 Az3

∂r r 2
+

1

r r

∂Az3

∂r
+

1

r r 2

∂2 Az3

∂ξ2
= 0 (4.37)

∂2 Az4

∂r r 2
+

1

r r

∂Az4

∂r
+

1

r r 2

∂2 Az4

∂ξ2
=−µ0 Ji (4.38)

Where Ji is the current density of the i th slot, Mξ and Mr are the tangential

and radial components of the PM magnetization, r r and ξ are radial and circum-

ferential position of the rotor. The expressions on Mξ and Mr are given in [140].

Through the periodic boundary of the machine, the general solution to vector

potentials in each subdomain is governed as,

Az1 =
∑

k

[

A1

(

r r

Rm

)k

+B1

(

r

Rr

)−k
]

cos(kξ) +
∑

k

[

C1

(

r r

Rm

)k

+D1

(

r

Rr

)−k
]

sin(kξ) +A1p

(4.39)

Az2 =
∑

k

[

A2

(

r

Rs

)k

+B2

(

r r

Rm

)−k
]

cos(kξ) +
∑

k

[

C2

(

r r

Rs

)k

+D2

(

r

Rm

)−k
]

sin(kξ)

(4.40)

Az3i =
∑

n

D3i

[

G3

(

r r

Rsb

)En

+

(

r r

Rt

)−En
]

cos

(

En

(

ξ−
bsa

2
−ξi

))

+ A3p (4.41)

Az4i =
∑

m

[

C4i

(

r r

Rt

)Fm

+D4i

(

r r

Rs

)−Fm
]

cos

(

Fm

(

ξ−
boa

2
−ξi

))

+ A4p (4.42)

Here Rs , Rm Rsb and Rt are stator inner, rotor outer slot bottom and slot open-

ing radii, A1p , A3p and A4p are the particular solutions of the vector potential

expressions. A1-D1, A2-D2, D3i , C4i and D4i are the coefficients to be decided by
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the continuous boundary conditions on each interface between adjacent subdo-

mains [140]. k, n and m are the harmonic orders. bsa and boa are slot and slot

opening angles, respectively. En , Fm and G3 relate to bsa and boa and calculated

as,

En = nπ/bsa (4.43)

Fm = mπ/boa (4.44)

G3 = (Rt /Rsb)En (4.45)

By applying the continuous flux density and magnetic field intensity boundary

conditions between PM and airgap subdomains, continuous flux density and

vector potential boundary conditions among airgap, i th slot opening and i th

slot subdomains, the magnetic field potential can be solved [140]. The radial and

tangential components of Bg are given as,

Bg r =
1

r

∂Az2

∂ξ
=

∑

k

Br sk sin(kξ)+
∑

k

Br ck cos(kξ) (4.46)

Bg t =−
∂Az2

∂r
=

∑

k

Bξsk sin(kξ) +
∑

k

Bξck cos(kξ) (4.47)

Then the magnitude of airgap flux density is calculated as,

Bg m0 =
√

Bg r
2 +Bg t

2 (4.48)

Where Br sk , Br ck , Bξck
and Bξsk

are coefficients and presented as.

Br sk =−
k

r

[

A2

(

r

Rs

)k

+B2

(

r

Rm

)−k
]

(4.49)

Br ck =
k

r

[

C2

(

r

Rs

)k

+D2

(

r

Rm

)−k
]

(4.50)
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Bξck =−
k

r

[

A2

(

r

Rs

)k

−B2

(

r

Rm

)−k
]

(4.51)

Bξsk =−
k

r

[

C2

(

r

Rs

)k

−D2

(

r

Rm

)−k
]

(4.52)

Then Bg r and Bg t waveforms over one pole for a DW-SPM motor (p = 2,q = 2,

lm = 5 mm, g = 1 mm) are shown in Fig. 4.30 (black curves).

Since the slot effect is already taken into account in the subdomain model for

one given magnet length lm0, then the airgap flux density expression relating to

other magnet lengths can be obtained from the given Bg t0 and Bg r 0 by applying

(4.33),

Bg r1 =
lm1

(

lm0 + g ur

)

lm0

(

lm1 + g ur

) ·Bg r0 (4.53)

Bg t1 =
lm1

(

lm0 + g ur

)

lm0

(

lm1 + g ur

) ·Bg t0 (4.54)

Where Bg r 0 and Bg t0 is the radial and tangential flux density distribution

referring to lm0. lm1 = 6mm is the magnet length to be considered. The waveforms

comparisons on Bg r 1 and Bg t1 between calculated ones (4.53), (4.54), and FEA

results are shown in Fig. 4.30.

It can be seen that the calculated Bg r 1 and Bg t1 have a good agreement with

FEA results over the entire pole pitch. Therefore, the other Bg r and Bg t referring

to all lm/g domain can be achieved by combining only one subdomain solution

results (Bg r 0 and Bg t0) and (4.53)- (4.54).
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1) DW-SPM: One PM pitch τP M contains more than two slots pitch τs for the

DW-SPM motors. In this case, the tooth width wt relates to the average flux density

passing into the most loaded slot pitch Bτs_avg. Then wt can be given as,

wt =
Bτs _av g

Bt
·τs (4.55)

Where Bt is the desired steel loading for the tooth. In terms of yoke sizing, it is

assumed that all the flux produced by PMs entering into stator yoke, then ly is,

ly =
BP M_av g

By
·
τP M

2
(4.56)

Here BP M_av g is the average flux density produced by PMs, and By is the

needed yoke loading. For both Bτs _av g and BP M_av g , they are the mean magni-

tudes coming from the superposition of each radial and tangential components.

The corresponding geometry definition is given in Fig. 4.31. The relevant flux

densities distribution is reported in Fig. 4.32.
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4.3.2.4 Design Input

The pole-slot combination should be defined first, other the initial design inputs

are:

• Stack dimensions D , L and airgap length g .

• PM remanence Br and peak flux density in steel B f e .

• Thermal loading k j .

• PM span angle αm and kso .

In this study, both tooth loading and stator yoke loading are equal to B f e , i.e.

Bt = By = B f e . The number of turns per phase Ns is set to an initial value and

adjusted in the final stages of the design according to the specified voltage and

speed ratings.

The definitions of k j , torque and PF expressions are kept as same as the ones

in last section.

From the analysis in Section II.B, the airgap flux density distribution Bg di-

rectly refers to the magnet on airgap ratio lm/g . Therefore, x and lm/g together

determine the PM flux linkage λm , shown in (4.28).

Then Bg 1 is re-calculated as the peak of fundamental content of radial com-

ponent Bg r , reported in Fig. 4.32,4.34, 4.35 ,4.38 and 4.39. For the entire lm/g

domain, Bg 1 can be achieved by the Fourier transform of each Bg r distribution

over one pole pair, according to (4.46) and (4.53).

4.3.2.5 Design Flowchart

After one point is picked from the plane, one motor model will be automatically

built, on the basis of the sizing equations described above. FEA validation follows,

to verify whether the motor is in line with the specified performance. The detailed

design flowchart is reported in Fig. 4.41.

After FEA validation at rated current condition, if the torque result is not

adequate for the target, stack size or thermal loading can be improved to increase

the torque generation. Then the process is repeated.
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4.3.3 Design Examples and Results

In this research, both DW and CW machines with different slot-pole combinations

are validated by FEA. Results on steel loading, PM flux linkage, torque and PF of all

the models are obtained from FEA and compared with analytical models. Both Bg r

and Bg t are calculated along the central circumference of airgap. The distinction

flux densities between the middle of airgap and tooth shoe faces are neglected.

The instruction on selecting model on the parametric plane is illustrated in detail.

The relationships among efficiency, torque capability and steel loading are studied.

The common specifications are given in Table 4.6.

Table 4.6 Common ratings of motor models

Parameters Units DW CW

Stator outer diameter (D) mm 175

Length (L) mm 110

Copper loss W 550

Thermal loading (k j ) kW/m2 9.1

Airgap length (g ) mm 1

Steel grade (g ) M250-35A

Steel loading (B f e ) T (pk) mm 1.4

PM grade NdFeB 32 MGOe

PM remanence (Br ) T 1.16

Number of turns per phase (Ns) 120 40

Copper filling factor 0.432 0.55

Three DW-SPM machines are tested (case 1), and other seven CW-SPM ma-

chines divided into four cases that corresponds to Section 4.3.2.3. The pole-slot

number, PM span, and slot opening ratio are reported in the table for each model.

D , L and k j are set as invariant for the all models, shown in Table 4.6.
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4.3.3.1 Steel Loading

In the study, the desired B f e is chosen as 1.4 T for all the models. The steel is ‘M250-

35A’, whose knee point towards nonlinear portion is around 1.4 T. A simplified

linear steel model is used in subdomain model analysis, therefore higher B f e will

make the sizing imprecise.

Bt and By are the maximum measured flux densities on the tooth and yoke at

θt position, respectively. From the FEA results of all the models, the errors of both

Bt and By are controlled less than 3.5 %. It proves that the sizing equations on wt

and ly are suitable for all DW and CW models at open load conditions.

4.3.3.2 Torque and PF Results

At no load condition, λm is calculated by (4.28), which has a good agreement with

FEA results for all the models, shown in Table 4.7. The nominal rated current i0 is

obtained via (4.14) and used as the input current of FEA simulations. For DW-SPM

motors, both torque and PF from FEA results are matched with analytical ones.

In terms of CW-SPM motors, the results on torque and PF from the parametric

planes are in accordance with FEA output when the pole number is small, e.g. case

4 (p = 2, q = 0.5). Conversely, when p increases, FEA results on torque become less

than the analytical ones (Case 2a, 4, and 5). Cross-saturation occurs and decreases

the torque level at x = 0.5 condition, since the electric loading As is considerable

and the core is saturated when the motors are fed with i0. Severe saturation drags

down the machine efficiency and also heats up the machine soon, which should

be avoided in the design. In the parametric design process, higher x selection is

recommended when the machine has multi poles. The parametric procedures of

Case 2 and 3 are duplicated to design a better machine without saturation. The

parametric plane of both cases are reported in Fig. 4.42 and Fig.4.44, respectively.

The relative four motor structures are presented in Fig. 4.43 and Fig.4.45 .
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Table 4.7 Comparison between parametric method and FEA results

lm/g = 5 Case p q αm kso

T [Nm] PF λm[V s]
i0 [A] Bt [T] By [T]

Plane FEA Plane FEA Calculated FEA

x = 0.5

1 2 2 160 0.3 47 46 0.94 0.94 0.596 0.594 26 1.39 1.41

1 2 3 160 0.3 49 48 0.94 0.95 0.61 0.609 27 1.42 1.39

1 3 2 160 0.3 59 58 0.94 0.94 0.42 0.42 31 1.42 1.38

2a 5 2/5 130 0.25 86 78 0.75 0.74 0.072 0.072 159 1.41 1.42

3a 7 2/7 170 0.3 102 91 0.73 0.67 0.057 0.056 170 1.4 1.38

4 2 0.5 150 0.3 53 53 0.88 0.88 0.16 0.16 109 1.41 1.41

5 7 4/7 150 0.3 78 71 0.89 0.74 0.044 0.044 168 1.4 1.45

x = 0.7
2b 5 2/5 130 0.25 74 73 0.95 0.95 0.102 0.102 97 1.4 1.38

3b 7 2/7 170 0.3 94 93 0.95 0.92 0.081 0.081 110 1.43 1.4
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The similar process can be duplicated in Case 3. By using larger rotor, the

saturation effect disappears at rated current condition. The torque of case 3b is

even higher than the saturated Case 3a, shown in Table 4.7.

4.3.3.3 Efficiency

The efficiency comparisons at 1,000 rpm for both Case 2 and Case 3 are reported

in Fig. 4.46 and Fig.4.47. The input currents for both Case 2a and 2b are 97 A (the

nominal rated current for case 2b). Both torque and efficiency are improved from

2a to 2b. The same trend can be also found in the two models of Case 3 (Fig. 4.47).

It turns out that besides increasing PF, bigger rotor also improves both torque and

efficiency. Furthermore, less copper quantity is used due to the smaller slots.

Fig. 4.46 Torque and efficiency comparison between Case 2a and 2b
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Fig. 4.47 Torque and efficiency comparison between Case 3a and 3b

4.3.4 Design Summary

This study presents a parametric design method for both DW and CW SPM ma-

chines. A general design approach based on subdomain model is proposed. By

using subdomain model, a Torque-PF parametric plane is established. The stator

sizing equations are obtained by considering the most loaded flux pass in one slot

pitch. Five different cases of SPM machines are analyzed to get the precise flux

quantities passing through the most loaded teeth.

A comprehensive parametric design flowchart for SPM machines is addressed.

By using the parametric method, motor models are built according to each sizing

situation. The steel loadings on each tooth and yoke are measured and compared

with target B f e at open load condition, which show good agreements for all the

cases.

Then the models are also tested at each nominal rated current. Two models are

in highly saturated status. Then the design process is repeated to obtain motors

with better efficiency and torque performance. The presented method gives an

insightful and effective means in SPM machine design.



Chapter 5

Conclusion, and Future Work

5.1 Conclusion

This dissertation has presented two new design methods for SPM motors. Both

design methods are comprehensively illustrated. Dealing with the automatic

design using multi objective optimization method for the CW-SPM machines, the

principle of using MODE algorithm to get Pareto front during the optimization

process is introduced. Obtaining best trade-off machine among the optimization

targets from the Pareto front is followed.

Two cases are reported by using automatic design method, each for CW-SPM

and DW-SPM machine, respectively. In terms of CW-SPM machines for trac-

tion application, design equations, magnetic FEA, multi objective optimization,

simplified structural and thermal co-design are presented. Besides providing

comprehensive design procedures for CW-SPM machines for traction, the re-

search suggests new design methodologies, such as the goal function λ(d .180ř) that

summarizes flux weakening capability in one FEA simulation. Torque and power

profiles of designed machine are reported. The losses and efficiency map are also

presented.

Considering a DW-SPM capable of low cogging torque, an automatic design

procedure to optimize the PM shape of rounded SPM motors to find an optima

trade-off between torque and cogging torque behaviors is reported. Both torque

and cogging torque calculation through magnet shaping method is analyzed.

Dependent on demagnetization limit and optimal magnet span calculation, the
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magnet bounds in optimization process are obtained. The cogging torque and

maximum torque waveforms of three different motors on Pareto front are shown,

which is obtained by MODE optimization and FEA simulations. One optimum

motor is selected as the best trade-off machine among PM volume, torque and

cogging torque behaviors.

The other design method called parametric design for SPM machines is re-

ported. The parametric design provides a very effective and concise solution for

the SPM machine design without losing precision. Three steps of parametric

design development are reported. For each step, both design flowcharts and

examples are shown.

At the initial stage, a (x,b) design plane is introduced, and a straightforward

design approach for traction is presented. The design plane is to match torque

requirement and the key design condition of power factor equal to 1/
p

2. All

designed machines have infinite speed flux weakening range. The illustrated

design method for CW-SPM machines simplifies the design process, compared

with general design procedures. The model used for the parametric design is FEA

validated with success.

After that, a parametric design plane based on (x, lm/g ) for DW-SPM machines

has been presented. The presented method applies to magnets of radial shape and

also to rounded shape magnet, for cogging and torque ripple minimization. Based

on that, the detailed design flowchart is illustrated. Two motor models for each

uniform and nonuniform airgap length are selected as examples and validated

by FEA simulation results, showing good agreement with estimated performance.

One qualified rounded motor is built and tested, with rounded magnets. The

experimental measurements on torque and PF performance of the rounded shape

SPM motor prototype is presented. They match with FEA simulations and confirm

the accuracy of the presented parametric method.

Eventually, a general design approach based on accurate steel loading for both

DW and CW SPM machines is proposed. By using subdomain model, a Torque-

PF parametric plane is established. The stator sizing equations are obtained by

considering the most loaded flux pass in the stator teeth. Five different cases

of SPM motors are analyzed to get the precise flux quantities passing through

the most loaded teeth. A comprehensive parametric design flowchart for SPM

machines is addressed. In each machine case, the steel loadings on tooth and yoke
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are measured and compared with target B f e at open load condition, which shows

good agreements for all the machine cases. Then the models are also tested at each

nominal rated current. Two models are in highly saturated status. Therefore the

design process is repeated to obtain machines with better efficiency and torque

performance. The presented method gives an insightful and effective means in

the SPM motor design.

5.2 Future Work

The following suggestions can be done in the direction of this dissertation:

• Linear model of steel material is used in the parametric design method now,

which is distorted when the steel loading B f e is over 1.45 T . Applying also

nonlinear portion of the material characteristic is a potential way to improve

the accuracy of sizing equations when more steel loading is needed. It is

also a possible solution to improve the motor efficiency by increasing B f e at

open load condition towards to nonlinear portion of the B −H curve.

• Armature current effect is neglected in the sizing equations, which has little

influence for DW-SPM motors. However, saturation may occur when the

slot are large for CW-SPM motors. To solve this issue, bigger rotor is perused

as suggested in the dissertation. Another solution is to take account of the

armature effect in the sizing equations.

• Inductances are calculated from a simplified 2-D slot model. A more accu-

rate analytical model can be modified into the calculation of inductances.

Then the accuracy of estimated PF can be improved.

• Cogging torque calculation of SPM motors is mainly related to the rotor

positions. Several rotor positions have to be simulated to get the peak

to peak value of cogging torque. The way to reduce the number of rotor

positions to get cogging torque value is a promising direction in the study.

• More cross functions can be added as the optimization targets in the auto-

matic design precess, such as the cost of the PMs.
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