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ABSTRACT

Network sharing is often hailed as a promising and cost-
effective way to tackle the ever-increasing load of cellular
networks. However, its actual effectiveness strongly depends
on the correlation between the networks being joined – in-
tuitively, there is no benefit in joining two networks with
exactly the same load and exactly the same deployment. In
this paper, we analyse the deployment and traffic traces of
two Irish operators to (i) study their correlation in space
and time, and (ii) assess the potential benefit brought by
network sharing. Through our analysis, we are able to show
that network sharing is remarkably effective in making the
load more regular over space, improving the operations and
performance of cellular networks.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

Keywords

Cellular traffic data; Resource sharing; Hotspot analysis

1. INTRODUCTION
These are happy days for owners and users of such mo-

bile devices as smartphones and tablets. Interactive ser-
vices, high-quality multimedia contents, involving games of
all sorts are readily available at their fingertips. Said users
consistently prove willing and ready to pay for higher reso-
lution screens and better cameras, more mind-blowing apps
and more interesting multimedia contents. These are happy
days for device manufacturers and operators as well.

Amidst such happiness, mobile network operators have a
stern challenge to face. On the one hand, the growing de-
mand for bandwidth and capacity prompts costly infrastruc-
ture enhancements. On the other hand, having grown ac-
customed to services like mobile streaming and mobile video
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Figure 1: Network sharing: combining two networks
with very similar load patterns (left case) yields lit-
tle or no benefit. Instead, combining two networks
with different load patterns (right case) results in a
more evenly distributed load for both networks.

uploading did not make subscribers any more willing to tol-
erate an increase in their fees. While the network disruptions
of 2010, caused by the first iPhones [1], are unlikely to re-
peat, this situation is endangering the very profitability of
running a cellular network [2].

Operators and researchers are exploring different ways to
reduce the OPEX and CAPEX associated to cellular net-
works, including deploying micro- and femto-cells and sup-
porting device-to-device communications. A parallel, accel-
erating trend is represented by network sharing. It can come
in the guise of joint ventures aimed at developing new net-
work, as in the Polish and Danish cases [3], or bilateral agree-
ments to jointly manage existing ones. The latter works in
a similar way to roaming: two network operators agree to
serve each other’s users indifferently.

Sensible as it sounds, there are several issues that could
undermine the practicality and effectiveness of network shar-
ing. Some are related to commercial agreements or compe-
tition issues, and fall beyond the scope of our paper. Some,
instead, are technical: intuitively, network sharing makes
sense if the networks being joined and their demand are
different enough. Joining two networks with very similar
deployments and very similar loads has no effect on their
ability to accommodate the peak load (see Fig. 1).

As mentioned, load and deployment are the foremost as-
pects to account for in studying the potential effectiveness
of network sharing. In this paper, we leverage the data
from two real-world traces, provided by two Irish network
operators. Using such information allows us to assess the



practicality and the potential performance benefit of shar-
ing capacity through real data, without the need to rely on
(potentially, oversimplified) models and (potentially, unre-
alistic) assumptions.

The remainder of the paper is organized as follows. In
Sec. 2, we review the related work. In Sec. 3, we describe
our traces and their relevance to our problem. Sec. 4 con-
tains a discussion of the temporal and spatial correlation
of the network loads, and what it portends concerning the
effectiveness of network sharing. In Sec. 5 we give a quanti-
tative estimation of such effectiveness. Finally, we conclude
the paper in Sec. 6.

2. RELATED WORK
There are a number of studies in the literature that aim

at analysing traffic dynamics in cellular networks; they can
be grouped into two categories: field measurements-based
and large-scale dataset-based.

Field measurement studies have the advantage to capture
the actual channel occupancy [4, 5, 6]. All these works offer
interesting insights about the demand and its fluctuations.
However, their foremost limitation is the difficulty to provide
concurrent measurements at more than a few locations. On
the other hand, studies based on large-scale datasets offer
a broader view of the characteristics of a network. Such a
global viewpoint has been adopted in but a limited number
of papers, mainly because of the difficulty to obtain such
data from network operators. One of the first attempts was
made by Willkomm et al. [7], who characterised the primary
usage in cellular voice networks using information from a US
CDMA-based cellular operator. Such data was used to study
the call arrival process, and to propose a random walk model
capturing the aggregate load dynamics. In [8], Keralapura
et al. analyzed the browsing behavior of mobile users in an
American 3G data network, by monitoring 24 hours of IP
traffic. Paul et al. in [9] looked at individual subscriber
behavior and traffic patterns, studying a nation-wide 3G
network at the base station level.

Our work differs from the aforementioned ones in two
main ways. First, our goal is more specific: instead of char-
acterizing the general behavior of cellular networks and their
users, we aim at assessing the effectiveness of network shar-
ing techniques . Furthermore, our work is unique in that we
have access to multiple traces, coming from different opera-
tors: we are therefore able to check whether the deployment
and load patterns are different enough to make network shar-
ing an attractive option.

In this work, we study network sharing in a setting that
is very close to present-day networks. Our results serve as
a motivation and enabling factor for more advanced net-
work sharing schemes. In [10] the authors provide a com-
prehensive survey of the radio access network (RAN) sharing
functionality currently standardized and discussed in 3GPP,
while [11] analyses feasible sharing options in the near-term
in LTE. In [12] the authors introduced Network without Bor-
ders (NwoB), a new concept of wireless networks, charac-
terised by an extreme sharing regime. Operators construct
their networks in a service-oriented fashion, exchanging re-
sources – base stations, spectrum blocks, hot spots... – from
a shared pool, through a virtual marketplace. This new
vision also entails a business paradigm shift [13], with oper-
ators having their role completely re-defined.

Technology MNO1 MNO2 Total

3G (W-CDMA/HSPA) 5656 6679 12335

2G (GSM/GPRS) 5423 4040 9463

Table 1: Number of transmitters included in our
traces, for each operator and technology.

Figure 2: 3G Deployment. Dark points represent
MNO1 transmitters; light green points MNO2 trans-
mitters. The densely covered area in the East cor-
responds to Dublin (zoomed in in the box).

3. OUR TRACES
Our traces come from two Irish operators. They include a

one week long call-detail record (CDR) information for both
data and voice, concerning over 10,000 2G (i.e., GSM/GPRS)
and 12,000 3G (i.e., W-CDMA/HSPA) transmitters distributed
over the entire Republic of Ireland, as shown in Table 1.

For each transmitter, we know its position, azimuth and
sectorization information, as well as its (approximate) cover-
age area. For each voice call and data session, we know the
transmitter it is initiated and terminated at, its duration,
and amount of transferred data.

Fig. 2 summarizes the nation-wide 3G deployment. We
can already observe that, outside of urban centres, different
operators tend to cover different areas.

3.1 Shortcomings and workarounds
Precious as they are, our traces have two main shortcom-

ings. The first one is that they lack information on the user
position and mobility, i.e., we do not know whether users
move during their call or data session. We circumvent this
limitation by associating each call and data session to the
transmitter it is initiated at [7]. Owing to the short aver-
age duration of both calls and data sessions, this is not a
significant limitation.

Furthermore, the traces come from different time periods
(respectively 2011 and 2013), and therefore the magnitude
of the traffic they represent changes substantially. To deal
with this issue, we normalize both traces, so as to study
the fluctuations of the demand and not its absolute value.
Notice that this also bars us from reconstructing the global



1 2 3 4 5 6 7

Lag [days]

−1.0

−0.5

0.0

0.5

1.0

A
u

to
co

rr
e
la

ti
o
n

MNO1 - busiest sector

MNO2 - busiest sector

MNO1 - median sector

MNO2 - median sector

(a)

1 2 3 4 5 6 7

Lag [days]

−1.0

−0.5

0.0

0.5

1.0

A
u

to
co

rr
e
la

ti
o
n

MNO1 - busiest sector

MNO2 - busiest sector

MNO1 - median sector

MNO2 - median sector

(b)

Figure 3: Autocorrelation for 3G voice (a) and data (b).

load by summing the demand of each operator, as it would be
natural to do. As we will see in Sec. 5, we resort to spatial
locality analysis to work around this (potentially critical)
shortcoming.

4. GLOBAL CORRELATION
As discussed in Sec. 1 and summarized in Fig. 1, network

sharing is ineffective when the networks being shared are
too similar to each other. In this section, we analyse the
correlation between the load of MNO1 and MNO2, in both
space and time. A high degree of correlation would mean
that the potential benefit of network sharing is limited; on
the other hand, a lower degree of correlation would bode
well.

4.1 Time correlation
We represent the load of each sector (i.e., the area covered

by each transmitter) of each operator through a time series.
Their time resolution is one hour. We consider as load the
duration of voice calls and the amount of data exchanged
in data session. The traces do include the duration of data
sessions, but such information is often unreliable, e.g., there
are many hour-long sessions with no data exchanged. As far
as normalization is concerned, we do not need any: all the
metrics we will compute work with raw, unnormalized data;
furthermore, as discussed in Sec. 3.1, we are not going to
directly compare the two traces.

The first aspect we study is the autocorrelation of the
time series, shown in Fig. 3. The shape of all curves reflects
well known daily patterns: there is high positive correlation
at 24-hour intervals (and, to a decreasing degree, 48-, 72-,
etc.), highly negative correlation at 12-hour intervals (and,
decreasing in magnitude, at 36-, 60-, etc.). Similar effects
were observed in [9]. Also notice how the two operators
exhibit virtually the same behavior.

What is less expected and more interesting is the sharp
difference between voice (Fig. 3(a)) and data (Fig. 3(b)),
with the latter having a much lower correlation. Intuitively,
data traffic tends to have a more irregular time evolution;
this translates into a higher probability that different oper-
ators experience different load levels at a given time. This
bodes well for the effectiveness of network sharing in cur-

rent networks, where most of the load is due to data rather
than voice, and even more so in future ones, with additional
services such as gaming and tele-presence coming into play.

Still focusing on Fig. 3(b), let us look at the difference
between the busiest and median sectors: the correlation for
the busiest sector is much higher. Intuitively, this suggests
that the load of busy sectors follow very regular patterns,
while less-used sectors have more changing loads. This is
a potential issue, as busy sectors are exactly the ones that
should benefit more from network sharing. We need a more
clear view of how busy sectors are distributed in space, as
described next.

4.2 Space correlation
Our purpose now is to understand how strong is the space

correlation of the demand. In other words, if a sector is
highly loaded, how likely is it that its neighboring sectors
will also be highly loaded? Similarly to time correlation,
space correlation is relevant to understand the effectiveness
of network sharing: if busy (i.e., potentially overloaded) sec-
tors come in large, compact clusters, then it is less likely that
combining networks from different operators can do much
about them.

Moran’s index

Contrary to time correlation, there is no unique definition of
space correlation. We employ Moran’s index [14], also used
in [9, 15] to study spatial aspects of network phenomena. In
our context, we can define it as:

IG =
n

S0

n∑
i=1

n∑
j=1,j 6=i

wi,j(xi − X̄)(xj − X̄)

n∑
i=1

(xi − X̄)2
,

where n is the number of sectors, xi represents the load of
sector i and X̄ is the average load, and

S0 =

n∑

i=i

n∑

j=i,j 6=i

wi,j .

The weights wi,j represent in general the distance weight
between two elements; in many cases, the Euclidean distance
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Figure 4: 3G data: space correlation (Moran’s index) at different times of the day and for Dublin (a) and
for all of Ireland (b).

is used.
In network sharing scenarios, load can only be shared be-

tween overlapping sectors. Therefore, we adopt the following
alternative definition of distance weight:

wi,j =
|Ai ∩Aj |

|Ai ∪Aj |
,

where Ai is the area covered by sector i. From our viewpoint,
two sectors that do not overlap are infinitely distant from
each other, as there is nothing network sharing can do about
their load.

The resulting correlation is plotted in Fig. 4. We can see
that it is slightly higher during weekdays and during peak
hours (around 8am and 6pm). However, the most important
aspect to observe is that correlation levels are always very
low.

Recall [14] that Moran’s index is 0 for complete spatial
randomness, 1 perfect correlation, and −1 for perfect neg-
ative correlation. Our values seldom exceed 0.15, corre-
sponding to positive but very weak correlation. We can
expect that highly loaded sectors from different MNOs are
not likely to overlap, thus, their load can be successfully
relieved through network sharing.

5. THE EFFECTIVENESS OF NETWORK

SHARING
So far, we have found several hints that network sharing

is a promising way of tackling the load in cellular networks.
Now, we want to go one step further, and assess how much
we can actually gain from it.

The most straightforward way of doing this would be con-
sidering the aggregated load of the two operators, and see
how well their joint networks would fare against it. The
shortcomings of our traces, described in Sec. 3.1, rule this
option out.

We therefore take a longer route, and start by computing
the local version of the Moran’s index [16]. The index for
sector i is defined as:

xi − X̄

S2

i

n∑

j=1,j 6=i

wi,j(xj − X̄),

where

S
2

i =

n∑
j=1,j 6=i

(xj − X̄)2

n− 1
− X̄

2
.

Combining the index values for neighboring sectors, we
can divide them into four classes, namely:

HH high-load sectors surrounded by other high-load ones;

HL high-load sectors surrounded by low-load ones (hot spots);

LH low-load sectors surrounded by high-load ones (cold spots);

LL low-load sectors surrounded by other low-load ones.

Notice that the classification is made on a per-operator basis,
i.e., as discussed in Sec. 3.1, we do not mingle together the
traces of the two operators.

We are especially concerned with hot spots, i.e., sectors
in class HL. These sectors are linked to the so-called flash
crowds, i.e., groups of people sharing the same location that
suddenly become interested in downloading some data. Such
events are often impossible to foresee, and represent the
most significant threat for the operations of cellular net-
works [17].

Therefore, we look for HL sectors (hot spots), that over-
lap with sectors of the other operator that have low load,
i.e., that are in LL or LH class – just like in the right case
described in Fig. 1. For these sectors, network sharing can
effectively reduce the load, and thus improve the network
performance.

Fig. 5 shows the number of hot spots when the MNO1 and
MNO2 networks are operated separately or jointly, for dif-
ferent times of the day, during weekends and weekdays. The
most important aspect to observe is the sharp decrease in
the number of hot spots brought by network sharing. This
holds for all times of the day, for both networks, for both
weekdays and weekends: enabling network sharing invari-
ably translates into fewer hot spots.

This is clearly very good news: as we mentioned, hot spots
represent one of the most significant challenge that cellu-
lar networks have to face, and a technique as simple and
cost-effective as network sharing has proven very effective in
curbing it.



5.1 Broadening the focus
So far, our results have focused on the Dublin area alone.

This is sensible, as Dublin is the biggest and most densely
populated urban area of Ireland, and that is where overload-
ing issues are most likely to happen. However, for the sake
of completeness, we also present the number of hot spots
nation-wide, and how it is changed by network sharing.

Fig. 6 shows two interesting facts. First, Dublin does not
host the majority of the Irish hot spots. This is a bit coun-
terintuitive, as Dublin does account for most of the traffic.
Recall, however, that the metric defined earlier in the sec-
tion is local; it follows that hot spots in rural areas of Ireland
can be, so to speak, colder than ordinary sectors in Dublin.
Notice that, whatever their temperature, hot spots always
represent a problem for the network.

The second aspect that we can observe is that the effec-
tiveness of network sharing in reducing the number of hot
spots in rural areas is remarkable. Comparing the solid lines
in Fig. 6 and Fig. 5, we can conclude most of the rural hot
spots disappear when network sharing is enabled. This is
consistent with what we would expect: hot spots are fairly

uncommon in rural areas, and overlapping hot spots even
more so.

Tab. 2 confirms these data. Enabling network sharing
removes virtually all the hotspots in rural areas, and many
of the ones in Dublin. Even in the most challenging setting,
i.e., weekdays in Dublin, at least one third of the hot spots
are removed.

6. CONCLUSION AND FUTURE WORK
This paper addresses the problem of the ever-increasing

load on cellular networks, and the viability of network shar-
ing as a cost-effective technique to tackle it.

After observing that sharing is only effective for networks
whose deployment and load patterns are different enough,
we studied such an issue with the help of two real-world de-
ployment and traffic traces, provided by two Irish operators.
We started by looking at the correlation of the demand in
both time and space, finding that, especially for data, it is
low enough to warrant the effectiveness of network sharing.

We moved one step further, trying to assess how much ex-
actly we can gain through network sharing. Specifically, we
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Figure 5: 3G data, Dublin area: number of hot spots with and without network sharing, during weekdays
(a) and weekends (b).
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Figure 6: 3G data, all of Ireland: number of hot spots with and without network sharing, during weekdays
(a) and weekends (b).



Operator Ireland Urban Rural

Deployment density MNO1 0.080 4.488 0.040
[sectors/km2] MNO2 0.095 5.615 0.042

Space correlation
we

MNO1 0.10 0.08 0.11

[Moran’s Index]
MNO2 0.13 0.11 0.25

wd
MNO1 0.07 0.08 0.10
MNO2 0.04 0.04 0.11

hot spot
we

MNO1 -55% -38% -93%

reduction
MNO2 -55% -35% -50%

wd
MNO1 -64% -46% -96%
MNO2 -54% -44% -93%

Table 2: Deployment density, spatial correlation and
reduction in the number of hot spots, for the whole
of Ireland, urban areas (Dublin) and rural areas.
Figures are differentiated for weekdays (wd) and
weekends (we).

addressed the problem of hot spots, i.e., sudden spikes in the
cellular load. We found that combining the networks of the
two operators can greatly reduce their number. Such a re-
duction is massive in rural areas, and altogether remarkable
in urban areas as well.

A first, natural prosecution of this work deals with how
to actually implement and manage a shared network. There
are many possible sharing regimes, and they call for appro-
priate managing algorithms. However, in order to do that
we will consider other aspects of network sharing other than
capacity, such as coverage (spatial or service specific) and
cost savings (i.e. energy saving through infrastructure shar-
ing).

Our findings can also motivate and drive the develop-
ment of network virtualization schemes, where virtual wire-
less access networks are dynamically built to meet time- or
location-specific content demands, such as the ones we de-
tect through hot spots.
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