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Abstract

Much of the traffic processing that today takes place at cloud servers on the
Internet will be performed within the cellular core network. In such a scenario,
different network entities, e.g., switches and servers, will belong to different par-
ties, including traditional mobile operators and over-the-top content providers.
The relationship between them is often termed coopetition: on the one hand,
they are natural competitors; on the other hand, they can reap significant bene-
fits from limited and defined cooperation. Our main purpose in this paper is to
model these heterogeneously-owned next-generation networks and solve, within
such a novel and complex scenario, the traditional VNF placement and traffic
steering problems. Specifically, (i) we present an efficient, online algorithm to
make placement and steering decisions, and (ii) evaluate its performance in a
realistic scenario. We find that our algorithm would allow mobile operators and
content providers to reduce their reliance on third-party vendors – hence the
associated costs – by as much as 60%.

1. Introduction

Several evolution trends in cellular networks are now converging and com-
bining with each other.

The first trend concerns the core network and is represented by the emer-
gence of software-defined networking (SDN) and network function virtualiza-
tion. Today’s LTE core networks, based on the Evolved Packet Core (EPC)
architecture [1] are built from propriety switches and middleboxes. These in-
clude, for example, a Serving Gateway (S-GW) that manages user handovers
and billing, a Packet Data Network Gateway (PDN-GW) that handles connec-
tivity to external networks, and cellular endpoints (eNodeB) that provide also
encryption and wireless channel management for the network operator. It is
important to notice that the EPC architecture already provides a clear distinc-
tion between user- and data-plane protocols and protocol entities, however it
still uses proprietary and expensive hardware. Thus, a natural direction [2] that
next-generation networks might take is to replace these special-purpose boxes
with smaller, more flexible middleboxes, each implementing a network function.
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Figure 1: A next-generation cellular network, composed of both base stations and servers,
wherein traffic processing takes place. Both base stations and servers have owners: some
belong to the blue mobile operator (square shadow), and others to the pink content provider
(round shadow). In addition to its own servers, the content provider can have the traffic
generated at its own base station (the pink one at the bottom) processed at a third-party
cloud vendor (bottom, dark red line) or at servers in the mobile operator’s core network,
encircled in the blue ellipse (top, light green line), if spare capacity is available therein.

The second trend mostly concerns the access network, and is represented
by heterogeneity [3, 4]: present-day LTE networks are already composed of
different kinds of infrastructure, from macro base stations to femtocells; in the
future, LTE-Advanced and 5G networks will integrate multiple radio access
technologies, including Wi-Fi [5] and millimeter-wave antennas [6]. In parallel,
the traffic served by such networks will also become increasingly heterogeneous,
coming from different applications (web browsing, real-time gaming etc.), each
requiring different service levels [7] and traversing a different chain of network
functions.

The third, and perhaps most disruptive, trend is that, for a variety of rea-
sons, most of which are non-technical [8, 9], content providers such as Google,
Facebook or Netflix are starting to deploy their own networks [10]. The pur-
pose of such networks is to serve some of the content provider demand directly,
and, by that, enhance the available capacity where needed. Unlike the networks
deployed by mobile operators, content providers’ networks will have a spotty
coverage, typically concentrated in densely populated areas. In a similar way,
content providers will not build a complete core network, but rather rely on
third-party cloud vendors, as depicted in Fig. 1.

However, there is another party that could process the content providers’
traffic – mobile operators themselvs. Recall that, in our scenario, mobile op-
erators have built complete core networks capable of processing traffic through
VNFs. Furthermore, such networks must be dimensioned so as to meet the peak

demand mobile operators will face. It follows that, due to daily fluctuations in
the traffic demand, they will be underutilized for most of the time.

This spare capacity can be leased to content providers, as shown by the green
line in Fig. 1, with significant benefits to both parties: mobile operators can
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obtain further revenue form their core networks, and content providers can save
over hefty cloud fees. As the time evolution of different types of demand tends
to be different [11], mobile operators are likely to have spare capacity available
for content providers exactly when they need it. Furthermore, if no spare ca-
pacity is available, content providers can always fall back to cloud providers, as
shown by the red line in Fig. 1. In this paper, we will focus on the infrastruc-
ture corresponding to VNFs (e.g., commodity servers in the core network), and
study how different cooperation level between the mobile operator and content
provider yields a different preference of a VNF placement.

Specifically, our contribution is threefold. First, we derive a proper mathe-
matical model for the problem described above. Second, we present an efficient,
online algorithm to solve this problem. In online settings, where we need to
adapt to changes in demand, our algorithm tries to simultaneously minimize
the number of placement changes (thus leading to a small amount of resource-
consuming migrations) and maximize the policies satisfied. Finally, we assemble
a realistic network trace, using real-life topology and demand information, and
verify that the traffic load of content providers and mobile operators is indeed
sufficiently different to make a cooperative approach viable. We find that op-
timal placements can allow mobile operators and content providers to reduce
their reliance on third-party providers by 93%. The online algorithm, on the
other hand, is able to obtain 60% reductions and scales well for large networks.

It is important to point out that our reference scenario only depicts the sim-
plest possible interaction between mobile operators, content providers, and cloud
vendors. More complex interactions, e.g., where prices are dynamically adjusted
as the demand evolves, are possible and indeed likely in the real world. By focus-
ing on a simple scenario and on basic interactions, our study is able to capture
the essential, qualitative features of heterogeneously-owned networks, while also
representing a good starting point for further, more sophisticate works.

At the same time, while next-generation mobile networks are the main mo-
tivation and primary reference scenario of our study, the problems we explore –
most significantly, VNF placement and traffic steering – are also found in other
kinds of networks [12]. Therefore, our solution concept can be successfully ap-
plied in any workload placing scenario, where two or more entities with different
(and potentially conflicting) objectives have the option to cooperate in order to
optimize the overall placement.

We begin by reviewing related work in Section 2, focusing on the evolution of
cellular networks and problems akin to ours. Then, in Section 3, we present an
optimization formulation of our problem, which we view as a matching between
virtual network functions and servers. We further discuss the complexity of such
optimization, and find it to be NP-hard. Based on such a result, we turn to a
heuristic approach: Section 5 describes the decisions that need to be made,
and how our model is used in each of them. Section 6 presents an efficient
solution strategy, suitable for real-time usage. We evaluate its performance in
Section 8, based on the real-world scenario described in Section 7. Finally,
Section 9 concludes the paper.
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2. Related work

This work mainly considers the challenges and opportunities of transforming
cellular networks into software-defined networks. We discuss recent work that
has been conducted in these two important fields of research.
Next-generation cellular networks

The general consensus is that next-generation cellular networks will not be
just a faster, higher-capacity version of present-day ones. Indeed, new physical-
layer technologies, such as massive MIMO [13], and new types of infrastructure,
such as millimiter-wave base stations [6], can support altogether new applica-
tions (e.g., proximity [14] and machine-to-machine services). Heterogeneity is
expected to be a distinctive feature of next-generation cellular networks [4, 3],
that will also integrate Wi-Fi [5] and device-to-device [15] connectivity.

An important problem in such next-generation networks concerns the owner-
ship and management of such networks. Traditional mobile network operators
— typically private companies, with little or no public support — find it in-
creasingly difficult to cope with the capital expenditure needed to update their
infrastructure [16]; network sharing agreements between operators represent an
early response to this problem [17, 7].

At the same time, the availability of high-performance mobile networks is
critical for the business model of such over-the-top content providers as Google
and Netflix. This gave rise to several forms of revenue transfer from content
providers to mobile operators. For example, some content providers subsidize
(some) of their mobile traffic, as in the Facebook Zero [18] project and a sim-
ilar Twitter program [19], effectively paying some of their users’ bill. More
recently, content providers have started to deploy their own infrastructure in
order to complement the operators’ one, as Google is doing with their Wi-Fi
hotspots [10].

Ultimately, the cellular network is expected to be a virtualized network,
where resources (e.g., spectrum and infrastructure) coming from different par-
ties are viewed as a single pool, that can be managed in a centralized fashion [8].
The relationship between these parties, which include both traditional mobile
operators and content providers, is a hybrid between cooperation and competi-
tion, and has been aptly termed coopetition [9].
Software-defined networking

As a result of the aforementioned trends, next-generation cellular networks
will be substantially more complex than their present-day counterparts. Software-
defined networking (SDN) provides the level of flexibility and fine-grained con-
trol needed to effectively manage them.

Early works [20, 2] advocate the adoption of SDN in cellular core networks.
In particular, SoftCell [2] envisions to replace the components of traditional
backhaul networks (e.g., serving gateways and packet data network gateways)
with middleboxes, running on commodity hardware. When considering the
placement of these middleboxes in a given network, one would want to de-
cide how to steer traffic through them. Given a set of traffic demand flows,
and the total computational processing power required by middleboxes for each
such flow, the work of [21] tries to find an optimal path where: (i) edges are
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not overloaded (ii) traffic passes through nodes providing enough computational
power to process the entire traffic demand. The problem here is modeled as a
variant of the multi-commodity flow problem, and finds a set of paths for each
flow, where each paths handles a certain portion of that flow. Our algorithms
provide with a more accurate placement but still outputs a set of paths for each
flows. To correctly split the traffic between the sets of paths, [22] suggests using
relative portions of the IP address space, with respect to the distribution of the
traffic. The recent work [23] deals with the practical issues of traffic control and
balancing algorithms. In particular, the authors of [23] propose a polynomial-
time approximation algorithm, based on the Alternating Direction Method of
Multipliers (ADMM).

A convergent trend is Network Function Virtualization (NFV) (see [24] and
the comprehensive review [25]). The core idea is to implement middleboxes in
software running as virtual machines on commodity hardware, thus obtaining
lower costs and better scalability [26, 27]. In such settings, SDN’s traffic steering
mechanisms should also account for the physical host machines they run into
and the links connecting them. Most works try to model the set of VNFs each
packet has to traverse in the network as sets of policy chains. [12] for example
provides a scheme for placing VNFs on physical networks given sets of general
policy chains. We extend the notion of policy chains to policy Directed Acyclic
Graphs (DAGs) as we find this approach more flexible given the new VNFs
required by cellular networks [28, 29]. The notion of policy graphs was already
introduced in [30]. It provides a framework to create these special graphs given
current policies in a network. We can use the outputs of their framework as an
input to our algorithm and as a strong proof for the necessity of using policy
graphs instead of sets of policy chains.

The VNF placement problem was also tackled in [31], where it is modeled
as a variant of the facility location problem [32, Ch. 4.5] with different types of
facilities, and clients requiring subsets of these types of facilities; the network is
treated as a metric space which might not be accurate for some network topolo-
gies. Algorithms and mathematical formulation for the problem of assigning
virtual network functions to physical machines were considered in [21], however,
this work focuses more on the traffic steering problem, which is modeled as a
multi-commodity flow problem, then on the notion of placing instances of VNFs
on machines, and the load balancing schemes possible. Load-balancing between
different machines is extremely important in real networks, where traffic de-
mands change constantly. Closer to our scenario, the work [33] proposes SoftAir,
a novel architecture for next-generation, software defined networks leveraging
the novel concepts of network function cloudification and network virtualization
to achieve scalability, flexibility and resilience.

3. System model

In this section, we describe our system model. In Section 4 next, we present
a MILP problem build on top of such a system model, including the decisions to
make and the constraints to account for. Section 5 then discusses how network
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operators and content providers formulate and solve different instances of such
a problem.

We present our model in a setting with a single mobile network operator and
a single content provider. Our model consists of three main elements, which
will be formally defined next: (i) the physical network (including physical host
servers and switches, and the links connecting them) (ii) traffic and computation
demands for the two parties (iii) steering policies for the two parties. Table 1
summarizes all the symbols we use.
Network The network is modeled as a directed graph GN = (VN , EN ). Each
edge e ∈ EN corresponds to a physical link, whose bandwidth (or capacity) is
denoted by b(e) ∈ R

+ Mbytes/sec.
Similarly to [12, 2], VN is comprised of two disjoints sets: The set of servers

(denoted by M) and the set of switches (denoted by S). Only servers are
capable of running virtual machines, and therefore, can host different VNFs.
Every node u ∈ VN has a routing table that can hold up to rT (u) ∈ R

+ rules, a
memory of cM (u) ∈ R

+ MBytes, and a CPU computation power of cC(u) ∈ R
+

Cycles/s. Naturally, for switches s ∈ S, cM (s) = cC(s) = 0; while for servers
m ∈M , we can assume that rT (m) = 0.
Virtual network functions (VNFs) We are given a set F of virtual network
functions (e.g., firewalls, intrusion detection systems, transcoders). One or more
instances of these VNFs are deployed as virtual machines running on different
servers. For each VNF f ∈ F we denote by p(f) the maximum amount of
traffic (in Mbit/sec) a single instance of this VNF can handle. In addition,
each instance of f ∈ F requires a memory of rM (f) ∈ R

+ MBytes and a CPU
computation of rC(f) ∈ R

+ Cycles/Mbit. It is important to notice that in our
model the memory requirements are constant, regardless of the traffic volume
the specific instance processes. The CPU requirements, on the other hand,
depend on the traffic processed by the VNF. Thus, if there are k instance of
some VNF f ∈ F , each one processing x Mbit/sec of traffic, then the memory
requirement is rm ·k MByte, while the incurred CPU load is rC(f)·k ·x Cycles/s.
Finally, there might be some other specific hardware requirements that further
restrict where VNFs can be placed (e.g., transcoders that need to use special
GPUs that only reside on some of the servers). Thus, let Γ : F → 2VN be a
placement restriction function, which defines a set of feasible servers on which
each VNF can run. Moreover, as we shall describe shortly, this function is also
useful for specifying dummy entrance/exit points for the policy chain.
Policy graphs This work extends the notation of policy chains used in previ-
ous works [12, 24] to a policy graph due to the limited descriptiveness of the
former. Future policy requirements formulations, as envisioned by [34, 30] are
better modeled as a tree or a graph rather than a set of policy chains, and
translating the one to the other might result in an exponential increase in the
policy requirements data size.

The policy graph is a connected directed graph GD = (VD, ED) with no
loops. The vertices of the graph are either VNFs or dummy entrance and exit
points. These dummy points correspond, for example, to gateway switches
which connect to external network from where traffic arrives. Note that the
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Table 1: List of notations.
Notation Meaning Remarks

GN = (VN , EN ) The Network directed graph consists of servers and
switches

b(m1, m2) Bandwidth of the link between
servers m1 and m2

Parameter, expressed in
Mbit/s

cC(m), cM (m) CPU and memory capabilities of
server m ∈ M

Parameters, expressed in
Cycles/s and MByte

m ∈ M Physical servers (vertex on the
network graph)

Set

s ∈ S Switches (vertex on the network
graph)

Set

f ∈ F Virtual Network Functions Set
Γ(f) Allowed servers m ∈ M for placing

VNF f

Set for each VNF

p(v) Amount of traffic that each instance
of VNF v can process

Parameter, expressed in
Mbit/s

rC(v), rM (v) CPU and memory requirements of
VNF v ∈ F

Parameters, expressed in
Cycles/Mbit and MByte

rT (s) Number of rows in the routing table
of switch s ∈ S

t(v1, v2) Traffic demand between VNFs v1
and v2 (flow on the policy graph)

Parameter, expressed in
Mbit/s

GD = (VD , ED) The policy graph consists of VNFs from F

κm,v Cost associated with placing an
instance of v ∈ F in m ∈ M

Parameter; not necessarily
a monetary cost

locations of dummy exit/entrance points are restricted using the Γ function
defined earlier. For each edge in the policy graph e ∈ ED we denote by t(e) ∈ R

+

its traffic demands (meaning, the amount of traffic that must pass between the
2 VNFs on its endpoints). This naturally defines the traffic volume that needs
to be processed by each VNF node v ∈ VD in the graph as the total amount
of traffic that enters that VNF: t(v) =

∑

(u,v)∈ED
t(u, v). It is important to

notice that there is no conservation of traffic demand, as some VNFs might
output less traffic than they receive (e.g., an intrusion detection system that
drops packets), while others might output more bandwidth than they receive
(e.g., a video decoder).
Coopetition model The Coopetition model comprises of a network infrastruc-
ture GN = (VN , EN ), two disjoint sets of VNFs FO and FP (for the mobile oper-
ator and content provider, respectively), and two policy graphs GO = (VO, EO)
and GP = (VP , EP ). We note that although the mobile operator and content
provider might use the same types of VNFs, the model isolates their traffic
using 2 disjoint sets of VNFs. On the other hand, we have only one network
infrastructure GN , which typically consists of the mobile network operator in-
frastructure, but may also include some other servers, such as cloud services
that were previously used by the content provider to satisfy its own demands.
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v1 v2

v3

m1

m2 m3

t(v1, v2)

y(m1, v1)

y(m2, v1) y(m2, v3)

y(m3, v3)

x(m2,m3, v1, v2)

x(m2,m1,
v1, v2)

Figure 2: System model. Page icons at the top represent VNFs in F , computers at the
bottom physical servers in M. Directed, thin edges represent the amount of traffic between
VNFs, e.g., t(v1, v2) at the top. Dotted lines represent the match between VNFs and physical
servers, expressed through the y-variables; notice the many-to-many relationship. Directed,
thick edges represent the flows between physical servers, expressed via the x-variables.

4. The VNF Placement Problem

Our VNF placement problem can be represented as a mixed integer lin-
ear program (MILP), where the only integer variables stem from the memory
constraints. Table 2 lists all the variables in our formulation.

Table 2: List of MILP variables.
Notation Meaning Remarks

y(m, v) amount of traffic processed by instances of
VNF v running on server m

Real decision
variable,

expressed in
Mbit/s

n(m, v) Number of instances of VNF v running on
server m

Auxiliary
variable;
equivalent

to
⌈

y(m,v)
p(v)

⌉

x(m1,m2, v1, v2) Traffic produced by an instance of v1 and
meant to be processed at an instance of v2,

travelling between server m1 and m2

Real decision
variable,

expressed in
Mbit/s

The first decision variable defines on which physical server to run each
VNF instance. For each VNF v ∈ F and server m ∈ M, we have a real
variable y(m, v), stating how much traffic is processed by instances of VNF v

running on Machine m. Given a y-value, there will be n(m, v) =
⌈

y(m,v)
p(v)

⌉

in-

stances of VNF v running on Machine m, consuming a total of n(m, v)rM (v)
memory and y(m, v)rC(v) CPU capabilities.

The second decision variables defines how traffic moves between physical
servers. For each pair of VNFs v1, v2 ∈ VD and pair of servers m1,m2 ∈ M we
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define a real variable x(m1,m2, v1, v2), denoted the amount of traffic between
physical servers m1 and m2 that has just been processed by VNF v1 and need
to be processed by VNF V2. Notice that using real variables whenever possible
makes our problem easier less complex to solve. Indeed, virtually all optimiza-
tion algorithms and solvers perform much better with real variables than with
binary or integer ones.
Constraints Next, to ensure the feasibility of VNF placement and VNF flows,
we define the following constraints. First, enough VNFs must be deployed to
serve all the demand:

∑

m∈M

y(m, v) ≥
∑

u∈F

t(u, v), ∀v ∈ F . (1)

Where the left-hand side of (1) is the total amount of traffic that all instances
of a VNF v are processing and the right-hand side is the total amount of traffic
they have to process (i.e., the sum of the traffic on all graph edges having v as
a target).

Next we ensure that valid locations for each VNF are used:

y(m, v) = 0, ∀v ∈ F ,m ∈M,m /∈ Γ(v) (2)

The following three constraints capture the bandwidth, CPU and memory
restrictions of physical links and servers.

∑

v1,v2∈F

x(m1,m2, v1, v2) ≤ b(m1,m2), ∀m1,m2 ∈M. (3)

∑

v∈F

(y(m, v) · rC(v)) ≤ cC(m), ∀m ∈ M; (4)

∑

v∈F

(n(m, v) · rM (v)) ≤ cM (m), ∀m ∈ M. (5)

It is important to notice that the definition of n(m, v) includes a ceiling operator,
which makes constraint (5) integral.

Additionally, there is a maximum number of active (i.e., with non-zero traf-
fic) outgoing flows from each server:

∑

v1,v2∈F ,l∈M

1[x(m,l,v1,v2)>0] ≤ rT (s), ∀s ∈ S. (6)

Recall that switches can be modeled as servers with zero capabilities; hence,
(6) enables us to account for the limited capacity of the forwarding tables at
switches [12, 2].

Finally, we need to ensure that flows defined by the x variables indeed corre-
spond to the flows being processed. A first thing we have to ensure is that VNFs
instances running at each server process the appropriate amount of traffic:

∑

l∈M,u∈F

x(l,m, u, v)−
∑

n∈M,u∈F

x(m,n, u, v)=y(m, v),

∀m ∈ M, v ∈ F . (7)

10



The first term in (7) is the traffic coming to server m and meant to be processed
by any instance of VNF v; the second term is the amount of said traffic leaving
server m. The difference between the two must correspond to the amount of
traffic processed by instances of v running at m, i.e., y(m, v).

Similarly, the traffic leaving server m and meant to be processed at an in-
stance of VNF w “downstream” v in the policy graph must either have entered
server m from some other server, or been produced by instances of v running
on m:

∑

n∈M,w∈F

x(m,n, v, w)=
∑

l∈M,w∈F

x(l,m, v, w)+y(m, v),

∀m ∈ M, v ∈ F . (8)

Notice that (7) and (8) also imply flow conservation at servers that do not
process any traffic, i.e., have y(m, v) = 0.
Objective

The objective function is explicitly defined by the cost values κ:

min
∑

m∈M

∑

v∈F

κm,v · n(m, v). (9)

5. Decision process

Our VNF placing problem problem provides a framework for specifying poli-
cies and applying them to a given network infrastructure. We now show how to
use this framework in our coopetition environment; without loss of generality,
we assume there is only one mobile operator and one content provider.

First and foremost, we notice that a real-life coopetition environment is not
static, as traffic volumes vary over time. Thus, the decision process (namely,
when our algorithms decide where to place VNFs and how to steer traffic be-
tween their deployed instances) is not a one-shot problem but a long-lived one.
In the coopetition setting, the decision process consists of two stages. At the
first stage, the mobile operator makes VNF placement and traffic steering de-
cisions so as to serve all its demand at the minimum possible cost (e.g., by
minimizing the load on its servers). It then announces to the content provider
the amount of remaining CPU and memory available at each physical server.

At the second stage, the content provider makes its own placing and steering
decisions. Its objective is still to serve its traffic while minimizing the total cost
(in this case, typically a monetary one), and it has the opportunity to use its own
servers (if available), servers belonging to the mobile operator that have spare
capabilities, or even servers obtained from a third-party cloud vendor (typically,
at a higher cost).

Notice that in this paper we do not study how mobile operators and content
providers split the savings obtained through their cooperation. We only provide
with a mechanism for both parties to reduce the total expenses imposed by their
operations. As stated before, the degree of saving is correlated with the degree
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of cooperation between both parties. To achieve those different degrees of coop-
eration, we use the κ cost figures as a way to control the specific placement each
participant chooses. Depending on the extent to which operators and content
providers coordinate, we consider several scenarios: (i) no cooperation, or op-

portunistic scenario; (ii) some cooperation, or content provider-aware scenario
and (iii) full cooperation.

5.1. Opportunistic Scenario

Here, the operator ignores the content provider altogether, with the latter
acting in a similar way to secondary users in cognitive radio scenarios.

The mobile operator starts by finding a placement for its own policy graph.
For example, the cost values κ can be designed to minimize the load on the
servers:

κm,v = max

{

rC(v)

cC(m)
,
rM (v)

cM (m)

}

(10)

Equation (10) correlates that the price κm,v with the work (in term of CPU and
memory) added to server m for processing VNF v. Intuitively, using loads as
placement criteria has the positive effect of leaving as many servers as possible
relatively free. This, in turn, gives the content provider (whose demands are
not known to the mobile operator) more degrees of freedom in choosing where
to place its own VNFs instances.

The mobile operator will then set the (probably monetary) cost for the
content provider. The latter can then decide to use the servers provided by
the mobile operator, or some external cloud provider, depending on the cost
defined by each one. The cost set by the mobile operator can, for example,
reflect current loads on the server, so as to keep servers as free as possible (this
is especially useful when there is more than one content provider and the mobile
operator wants to give to each one as many degrees of freedom as possible). One
cost function that reflects this is:

κm,v = max

{

∑|FO|
j=1 am,j · rC(j)

cC(m)
,

∑|FO|
j=1 icm,j · rM (j)

cM (m)

}

, (11)

where Amo = [ai,j ] and IC(Amo) = [ici,j ] are the placement matrix and the
instance count of the mobile operator.

5.2. Content Provider-Aware Scenario

In this scenario, which is closely related to the previous one, we notice that
the mobile operator can use historical information to further increase its revenue,
e.g., by leaving more spare capabilities at those servers that the content provider
used more in the past. There are many ways to change the costs defined by (10)
to reflect that. One elegant cost setting is to use (11) with the current joint
placement of both the content provider and the mobile network operator.
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5.3. Cooperative Scenario

In this scenario, operators and content providers share their demand infor-
mation and make their decisions jointly, so as to maximize the mutual benefit.
This implies that the problem is solved only once, having a single policy graph
which is the disjoint union of the mobile operator and content provider policy
graphs. The cost values in this scenario is often tightly related to how the mo-
bile network operator and the content provider split their savings, which is out
of the scope of this work.

5.4. Problem complexity

In all the scenarios we examined, content providers and network operators
have to solve a mixed-integer linear programming (MILP) problem, which is NP-
hard1.It follows that scalability cannot be ensured for medium- to large-scale
instances. Therefore, we present an online algorithm, whose low computational
complexity makes it suitable for real-time usage.

6. Online algorithm

Solving our placement and steering problem as it is stated in Section 3,
i.e., optimizing (9) subject to constraints (1)–(8), is impractical for two reasons.
First and most obvious, it would mean solving an NP-hard problem (we skip the
full proof, based on a reduction from the boolean satisfiability problem). Per-
haps more important, since decisions are made from scratch at every iteration,
it can bring to a very high number of migrations of VNFs between servers.

We address both issues by presenting an online solution concept, summarized
in Algorithm 1. Our algorithm starts with an initial solution, as defined in
Section 3: the VNF placement n̄ and ȳ and the traffic steering decisions x̄. This
initial solution may be obtained by solving the MILP one-off, or even by some
heuristic placement provided by the user. As the traffic evolves over time, we
adapt the placement and traffic steering variables. We have an aggressiveness

parameter 0 ≤ α ≤ 0.5. This value will be used as a threshold: the algorithm
will try to free up servers with load higher then 1 − α, and shut down servers
with load lower than α.

In Line 1, we compute the following λ-metric, capturing how much spare
capacity we have on all servers running instances of a VNF v:

λ(v) =

∑

u∈F t(u, v)
∑

m∈M min
(

p(v)n(m, v), φ(m,v)
rC(v)

) , (12)

where φ(m, v) = cC(m) −
∑

u6=v ȳ(m,u)rC(u) is the amount of CPU available
at server m for instances of VNF v.

1Our problem is indeed NP-complete. We skip the full proof, based on a reduction from
the 3-SAT problem, in the interest of simplicity and brevity.
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Specifically, λ(v) is the ratio between the total amount of traffic that cur-
rently needs to be processed by instances of VNF v and the total amount of
traffic that existing instances of v can tackle. The minimum in the summation
at the denominator reflect situations where a very loaded server cannot provide
CPU of p(v) cycles/second for all VNF v’s instances that are currently running
on it.

Line 2 checks if there are VNFs that require scaling out, i.e., for which the
λ-value exceeds 1 − α: if such VNFs do exist, we will provision additional in-
stance(s) for it. Notice again that lower values of the aggressiveness parameter α
immediately translate into less action being taken.

If we do decide to take action, then we start by deploying an additional
instance of the VNF with the highest λ-value (Line 3). To choose which server
to deploy the instance at, we solve an LP relaxation of the problem in Section 3
with objective (9), integrated with the following constraints:

ỹ(m, v) >
(

n̄(m, v)− 1
)

· p(v), ∀m ∈M, v ∈ F . (13)

ỹ(m, v) ≤ n̄(m, v) · p(v),

∀m ∈ M, v ∈ F : rM (v) +
∑

u∈F

n̄(m,u)rM (u) > cM (m). (14)

Constraint (13) ensures that the relaxed solution is a superset of the original
solution, and not a completely different one; this allows us to limit the number
of changes to the network. Constraint (14) ensures we do not assign additional
instances of VNF v to servers that cannot possibly host another instance of v
due to memory constraints.

Assuming that we have a relaxed solution ỹ(m, v) (Line 4), we use that
solution to choose a server m⋆. We select the server that maximizes ỹ(m, v⋆)−
ȳ(m, v⋆), i.e., intuitively, where the relaxed solution suggested that more traffic
should be handled. In Line 9, we deploy an extra instance of VNF v⋆ at m⋆.
Finally, we again use the relaxed solution to re-balance the traffic across the
instances proportionally to to the ỹ values given by the relaxed solution:

ȳ(m, v) = t(v)
ỹ(m, v)

∑

m′∈M ỹ(m′, v)
(15)

When there are no more VNFs with load λ(v) greater than 1− α, we move
to Line 12, and start looking for VNFs with a small load, lower than α. Turning
off some instances of these VNFs will reduce costs, without impairing our ability
to serve all traffic. More exactly, in Line 13 we select the VNF with the lowest
λ-value, and in Line 14 we solve an LP-relaxed problem to select the server at
which to switch the instance off. Similar to Line 4, we use an additional restric-
tion which is a following modified version of (13), imposing that the relaxed
solution is a subset of the original one:

ỹ(m, v) ≤ n̄(m, v) · p(v), ∀m ∈M, v ∈ F . (16)
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In Line 15 we use the difference between the current and relaxed y-values to
select the server m⋆, remove an instance of VNF v⋆ from there (Line 16), and
again re-balance the y values (using (15)) and update λ-values (Line 18).

When we exit the loop, there are neither overloaded nor underloaded VNFs,
and the algorithm terminates. The calculated x̄, ȳ are then sent to the Traffic

Steering Module and the Server Manager accordingly which change the place-
ment and routing rules on the network itself. The algorithm will be invoked
again when the values measured by the Traffic Monitor indicates an increase or
decrease in the traffic in the network.

Notice that Line 4 might fail to produce a relaxed solution, due to a failure
to meet the constraints (13) and (14). This means that the current placement
cannot be adapted to meet the new demands. Thus, we are foced to compute
the initial decisions x̄, ȳ afresh by solving the full MILP problem, obtaining a
new optimal solution. It is wise to also decrease the α values in such a case, in
order to be able to adapt more rapidly to ongoing changes in the network.

It is easy to see that, unless the full MILP resolution is triggered, each
execution of Algorithm 1 has polynomial time complexity. Both loops run for
at most |F| iterations, and within each loop we solve a relaxed LP problem,
which also has polynomial complexity.

7. Reference scenario

Our reference scenario includes one mobile network operator and one content
provider. We build it leveraging three sources:

• the location of the base stations of two European mobile network opera-
tors, presented in [35];

• census data from the same country [36];

• a measurement paper [11], presenting the temporal evolution of both the
global mobile traffic and the mobile traffic from specific websites and ser-
vices.

It is worth stressing that all the information we use is public and/or published.
Fig. 3 summarizes how we process our data.
Network operator infrastructure

The base stations of the mobile network operator are simply the base stations
of the largest operator of our trace. The demand they serve is constructed in
such a way that (i) its temporal evolution conforms to the one reported in [11]
and (ii) the demand at each base station is proportional to the population it
covers.

As for the core network, we assume the same three-layer topology considered
in [2]. Specifically, we cluster the base stations in groups of ten, and connect
each such group in a ring; these rings of base stations form the network access
layer. The aggregation layer is formed by k = 6 pods, each connected to k/2 = 3
rings of base stations. The core layer consists of k2 = 36 switches connected in
full mesh.
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Figure 3: The construction of our reference scenario.
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Figure 4: The policy graph we use in our test scenario. Boxes correspond to entry points,
ellipses to VNFs that the traffic has to traverse. The values on the edges is the amount of
data transmitted between the VNFs on their endpoints.

Servers and traffic demand
There are |M| = 54 servers, all with normalized capabilities cM = cC = 1.

As in [2], half of the servers are connected to random switches in the core layer,
half to random switches in the aggregation layer.

Traffic originating from base stations belonging to the mobile operator is
processed through the policy graph of Fig. 4, which is similar to the process-
ing done in today’s LTE-based mobile networks [26]. The traffic volumes on
edges refer to five example base stations in our topology. Traffic from content
providers’ base stations is processed through the policy graph depicted Fig. 4,
which includes several different VNFs for custom processing, inspired by [2, 30].
All VNFs have CPU and memory requirements randomly set between 0 and 1.
Content provider topology and demand

Because infrastructures deployed by content providers are still in their in-
fancy, we need to use the topology of the second mobile operator in our dataset
to construct the content provider’s network. We make two assumptions:

1. as content providers are expected [8] to only cover the areas where the
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demand for their services is most dense, we only keep the 10% most loaded
base stations of the second mobile operator;

2. following recent reports [37] that Netflix’s traffic accounts for over one
third of the total Internet traffic, we multiply the second operator’s traffic
by δ = 0.5.

The traffic demand follows the temporal evolution reported in [11] for Face-
book2. The traffic is proportional to the population served by each base station,
and represents a fraction δ of the operator’s demand.

Each of the content provider’s base stations is connected to both the cloud
provider and the closest base station belonging to the mobile operator; such a
link enables the two parties to cooperate. For simplicity, we assume that the
content provider does not deploy any physical server of its own.

Fig. 5 describes how the traffic demand changes over space and time. Fig. 5(a)
shows that, while both the demands of the mobile operator and the content
provider exhibit the usual afternoon and evening peaks, neither their sizes nor
their shapes match. This confirms our intuition that there is, potentially, enough
spare capacity at the mobile operator’s core network to accomodate a substan-
tial fraction of the content provider’s traffic. Comparing Fig. 5(b) and Fig. 5(c)
provides us with insights about the location of the different demands. In the
maps, lighter colors correspond to higher demand. By comparing the two maps,
we can easily observe that the demand of the content provider has a stronger
tendency to be localized in specific areas. This is consistent with the widespread
assumption that content providers are interested in deploying their infrastruc-
ture only in some locations, but the resulting coverage will be partial and spotty.

8. Experimental results

8.1. Optimal decisions

We first tackle the question what is the most the mobile operators and con-
tent providers can save by switching from a pure competition relationship to a
coopetition. Thus, we have optimally solved the problem (see Section 3), using
CPLEX [38]. Fig. 6(a) and Fig. 6(b) show where the traffic is processed for the
opportunistic and cooperative scenarios. Specifically, the red areas in the fig-
ures represent the traffic demand of the mobile operator, all of which is served
through its own servers (cf. Fig. 5). The blue and yellow areas correspond
to the demand of the content provider: the blue part is served at the mobile
operators’ servers and the yellow through a third-party cloud vendor. If there
were no cooperation/coopetition between the mobile operator and the content
provider, the latter would have to pay cloud processing fees for the traffic cor-
responding to both the blue and yellow areas in the plots. On the other hand,
if coopetition is enabled, the content provider only has to pay such fees for the
traffic depicted by yellow areas. In other words, the blue area corresponds to
fees that should be paid to the cloud vendor in a pure competition scenario, and

2Selecting any other large content provider, e.g., Google, would have yield the same results.
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are saved in a coopetition scenario: a limited and defined cooperation between
mobile operators and content providers can allow them to save 93% on cloud
fees if decisions are made jointly, or 73% if the decisions are opportunistic. We
can further notice that cloud servers are only used during peak times, for at
most 41% (58%) of the total load in the cooperative (opportunistic) scenarios.
Fig. 6(c) shows the difference between the two scenarios is especially signifi-
cant during peak time, when it is more likely that the deployment and steering
decisions made by the mobile operator conflict with the needs of the content
provider.

In Fig. 7, we move to the online case, where decisions are made through
the algorithm described in Section 6. Fig. 7(a) shows how the traffic is served;
comparing it with Fig. 6(b), we can immediately see that the yellow area, i.e.,
the amount of traffic served at the cloud vendor, is larger. In Fig. 7(b), the
area below the blue curve corresponds to the savings of our online algorithm
which amount to 60% of the cloud fees; the area between the yellow and the
blue curves represents the savings that would have been possible if decisions
were made optimally but our online algorithm cannot attain.

On the other hand, our online algorithm requires significantly less machine
migrations that the optimal algorithm. Fig. 7(c) compares the number of these
migrations, showing that our online algorithm reduces the number of migrations
almost by an order of magnitude. This, in turn, simplifies the management of
the virtualized network and reduces the associated overhead. It is also important
to note that the number of migrations in the online algorithm is almost constant
over time and does not depend on the network load, while the optimal algorithm
incurs a surge in the migrations in response to even minor changes in traffic
demand.

We also compared the utilization of servers by our online and optimal algo-
rithm. Specifically, Fig. 8 focuses on the cooperative scenario and shows that
when decisions are made optimally (Fig. 8(a)) there is more CPU time devoted
to the content provider’s traffic and less idle time than with the online algorithm
(Fig. 8(b)).

It is perhaps more interesting to observe that even when decisions are made
optimally, and even during peak hours, there is a small amount of idle CPU. This
corresponds to servers that have spare CPU, but no spare memory or network
capacity. While the first issue can be solved by (over)provisioning more memory,
the latter is a direct consequence of the fact that we are dealing with a set of
networked servers, and the very objective of managing them is to match the
available CPU and network capacity.

8.2. Aggressiveness

In Section 6 we mentioned the aggressiveness parameter α that dictates how
over- or under-loaded a VNF has to be before our algorithm decides to take
action. In Fig. 9, we study how this parameter influences the behavior of our
algorithm and its performance. Quite surprisingly, we find that lower aggres-
siveness values almost invariably translate into better performance. Intuitively,
this is linked to the fact that our algorithm starts with an optimal solution, and
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adjusts it over time: setting a low aggressiveness value means being less eager
to make changes to the current initial solution, including unnecessary ones.

Fig. 9 also shows that lower aggressiveness values imply fewer VNF mi-
grations. It is important to note that setting the right aggressiveness value in
real-world scenarios will invariably involve some trial-and-error. Yet, our results
suggest using low aggressiveness values.

9. Conclusion

Content providers are expected to take part in the creation of next-generation
cellular networks, deploying their own base stations in those areas that are most
significant to them. We envisioned that the traffic generated therein can be
processed with the help of traditional mobile operators, which would open their
SDN-based, virtualized core network to content providers in exchange for a fee.

We modeled the twofold problem of (i) matching virtual network functions
and servers and (ii) steering traffic between them. After proving that optimizing
the original problem is NP-hard, we proposed an online, scalable algorithm to
solve it.

We evaluated our performance using a real-world scenario, assembled using
publicly-available deployment and demand information. We found that in
the optimal case, coopetition between mobile operators and content providers
can allow them to save 93% on third-party cloud fees when decisions are made
jointly and 73% when they are made separately. Our online algorithm is able
to attain a 60% cost redution, while reducing the number of VNF migrations
of almost one order of magnitude.
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Algorithm 1 Our online algorithm.

Require: current load t, initial decisions x̄, ȳ, n̄
1: compute λ(v) as defined in (12)
2: while maxv∈F λ(v) > 1− α do
3: v⋆← arg maxv∈F λ(v)
4: x̃, ỹ← solve LP relaxation (1)–(9),(13)–(14)
5: if there is no feasible solution then
6: Find a new optimal placement using the MILP.
7: else
8: m⋆← arg maxm∈M

(

ỹ(m, v⋆)− ȳ(m, v⋆)
)

9: n̄(m⋆, v⋆)←n̄(m⋆, v⋆)+1
10: re-balance ȳ using (15)
11: update x̄, λ

12: while minv∈F λ(v) < α do
13: v⋆← arg minv∈F λ(v)
14: x̃, ỹ← solve LP relaxation of problem (1)–(9),(16)
15: m⋆← arg minm∈M

(

ȳ(m, v⋆)− ỹ(m, v⋆)
)

16: n̄(m⋆, v⋆)←n̄(m⋆, v⋆)−1
17: re-balance ȳ using (15)
18: update x̄, λ

19: return x̄, ȳ, n̄
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Figure 5: (a): time evolution of the total traffic demand for the mobile operator (MO) and
the content provider (CP); (b), (c): location of the demand for the mobile operator and for
the content provider.
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Figure 6: Optimal decisions. (a): how the traffic is served in the opportunistic scenario; (b):
how the traffic is served in the cooperative scenario; (c): amount of content provider’s traffic
processed at the mobile operator’s servers in both cases.
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Figure 7: Online decisions, cooperative scenario. (a): how the traffic is served; (b): amount
of content provider’s traffic processed at the mobile operator’s servers; (c): number of VNF
migrations.
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Figure 8: Cooperative scenario: CPU usage at the mobile operator’s servers. (a): optimal
decisions; (b): online decisions.
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Figure 9: Online decisions, cooperative
scenario. Effect of the aggressiveness α on
the performance and the number of VNF
migrations.
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