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Abstract—Online social networks (OSNs) play an increasingly
important role today in informing users about content. At the
same time, mobile devices provide ubiquitous access to this content
through the cellular infrastructure. In this paper, we exploit the
fact that the interest in content spreads over OSNs, which makes
it, to a certain extent, predictable. We propose Proactive Seeding–
a technique for minimizing the peak load of cellular networks, by
proactively pushing (“seeding”) content to selected users before
they actually request it. We develop a family of algorithms that
take as input information primarily about (i) cascades on the
OSN and possibly about (ii) the background traffic load in the
cellular network and (iii) the local connectivity among mobiles;
the algorithms then select which nodes to seed and when. We
prove that Proactive Seeding is optimal when the prediction of
information cascades is perfect. In realistic simulations, driven by
traces from Twitter and cellular networks, we find that Proactive
Seeding reduces the peak cellular load by 20%-50%. Finally,
we combine Proactive Seeding with techniques that exploit local
mobile-to-mobile connections to further reduce the peak load.

I. INTRODUCTION

Cellular traffic is growing exponentially, tripling every year,
with a share of video traffic increasing from 50% now to an

expected 66% by 2015 [1]. Credit Suisse reported in [2] that
23% of base stations globally have utilization rates of more

than 80 to 85% in busy hours, up from 20% last year. This
dramatic increase in demand is generating serious problems

for 3G networks and these problems are likely to remain in
4G networks as well. Another challenge for the operators is

that the cellular network traffic greatly fluctuates throughout
the day, following strong daily and weekly patterns. Since the
cellular network is provisioned for peak traffic, mechanisms

that distribute the network load more evenly over time are of
interest to the operators.

Another trend in today’s Internet is that online social net-
works (OSNs) are becoming an increasingly important way

for users to get information. This is not surprising: people
tend to value highly the content recommended by friends or

people with similar interests and are also likely to recommend it
further to others. By “OSNs”, in this paper, we refer broadly to
online information networks that exploit social ties to propagate

information to users. Examples include online social networks
(Facebook and Twitter), websites with social networking fea-

tures (such as Digg.com, blogs), email communication, etc.

On the other hand, mobile devices are quickly becoming

the primary way to access OSNs. For example, one third
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of all Facebook users regularly access the service from their

mobile devices and they generate twice as much activity than
non-mobile users [3]. Interest diffusion over OSNs translates
directly into increased cellular traffic. Cellular operators may

try to exploit the knowledge of such interest diffusion to
alleviate the peak demand in cellular traffic. One approach is

to delay some of the traffic, e.g., by limiting the diffusion of
interest [4] or by using techniques that trade-off user delay for

traffic load [5,6].

We take a different approach. Our goal is to serve impatient

users, i.e., users that expect the content as soon as they become

interested in it, and do not tolerate delay. Our key observation
is that given the vast information often available to the cellular

operator and/or the OSN provider, we can, to a certain extent,
predict the future demand. Consider, for example, the case

of YouTube videos: Google reported that up to 200 million
YouTube videos per day were delivered to mobile devices in

2010 [1]. Many views of these videos are due to the spread of
their URLs over various OSNs. The evolution of such cascades
of forwarded URLs depends on the structure of the OSN,

similarity of users and other features. With this information,
it is possible to predict the diffusion of interest [7,8].1

In this paper, we propose Proactive Seeding, a technique for
reducing the peak load in cellular networks, without introducing

any additional delay in accessing the content. Proactive Seeding
exploits the predictability of future demand to proactively push
(“seed”) the content to users before, and no later than, they

request it. This allows to move some cellular traffic from the
busiest hours to times with lower load and thus reduce its peaks,

as illustrated in Fig. 1. Our findings are the following. First,
we consider the offline case, where the information cascades

are assumed perfectly known. We prove that Proactive Seeding
is optimal in that case, in the sense that it minimizes the peak

load while delivering the content to users no later than they
requests it. We also show via simulation, driven by traces

from Twitter and cellular networks, that Proactive Seeding
leads to 20%-50% reduction in the cellular peak load. Second,
we consider the more realistic case where prediction of the

cascade is imperfect, and we show that Proactive Seeding
cased on conservative underestimating the future demand brings

1For example, in [9], the authors apply machine learning techniques to
Twitter traces, and predict more than half of URL-based cascades of tweets
with only a 15% false positive rate. The cellular operator has already access
to activity on the phone, such as address books, session logs, location history.
Furthermore, operators may partner with OSNs to obtain either raw information
about the social graph and user activity, the results of cascade prediction
performed on the OSN side. Finally, the users themselves could voluntarily
disclose their information, e.g., by running an app directly on their phones, in
exchange for faster access to content and cheaper data plans.
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Fig. 1. Illustration of Proactive Seeding in a system with two types of contents
C = {c1, c2} disseminated among 9 users U = {u1 . . . u9}, in presence of
the background load λk . (a) The diffusion of interest between the users in
content c1 (bright gray) and c2 (dark gray). For example, u3 ∈ w2

c2
means

that user u3 becomes interested in content c2 at time k=2. Without Proactive
Seeding, users request and pull the content through cellular right when they
get interested in it (hk

c ≡wk
c ), which results in an uneven total cellular load

(the total height of bars). (b) Proactive Seeding serves some users before they
actually become interested in the content (W k

c ⊆H
k
c ). The total load becomes

more even in time and its peaks decrease (here by 3 units).

positive gains. Finally, we combine Proactive Seeding with
techniques [10,11] that exploit the local device-to-device (D2D)

connectivity (over WiFi or Bluetooth), which outperforms each
individual technique.

The structure of the rest of the paper is as follows. In

Section II, we formulate the problem. In Section III, we present
the Proactive Seeding algorithms under the assumption that

demand can be perfectly predicted. In Section IV, we modify
our framework to allow for imperfect prediction. In Section V,

we present our evaluation results. In Section VI, we review
related work. Section VII concludes the paper.

II. PROBLEM STATEMENT

We distinguish between two components of cellular traffic:

background load and predictable traffic.

A. Background Cellular Load

We refer as background (cellular) load to all traffic which

is out of our control: its content cannot be predicted and/or
served before the actual request occurs. For example, phone
conversations and other types of real-time traffic contribute

to background load. We denote by λk the total amount of
background load at time frame k, 0 ≤ k ≤ K . Note that,

even though the actual traffic (e.g., the phone calls) cannot be
predicted, the aggregate amount of traffic i.e., λk is known [12]

to follow remarkably regular patterns. We illustrate λk by white
bars in Fig. 1; note that because the content composing it

cannot be predicted or served earlier, λk remains unchanged
in Fig. 1(b).

B. Predictable Cellular Traffic

In contrast, the predictable cellular traffic is all the traffic that
can somehow be predicted and thus proactively served. Denote

by U the set of all users, and by C the set of all existing pieces
of predictable content. We assume that transmitting a single
piece c ∈ C of content to a single user u ∈ U takes exactly

a single unit of cellular traffic.2 Now, denote by w
k
c ⊂ U the

set of users that demand (“want”) the content c ∈ C exactly

at time frame k. In other words, wk
c describes the diffusion of

interest in content c (typically over OSNs). Let

W
k
c =

k⋃

m=0

w
m
c (W k

c ⊆ U) (1)

be the cumulative version of wk
c , i.e., the set of all users that

have requested c until frame k. Finally, we denote by k(u, c) the

time when user u demands content c, i.e., such that u ∈ w
k(u,c)
c .

In the example in Fig. 1(a), w2
c1

= {u5, u6} and, conse-
quently, k(u5, c1) = k(u6, c1) = 2.

C. Transmission Schedule

In this paper, we decouple the diffusion of interest in the

content (i.e., demand) from the actual delivery process. To

this end, we denote by h
k
c ⊂ U the set of users that get

(“have”) content c over cellular network exactly at frame k.
Its cumulative version

H
k
c =

k⋃

m=0

h
m
c (Hk

c ⊆ U)

is the set of all users that have c at frame k. In the other words,

h
k
c is a schedule that determines when the cellular operator

sends content c to which users.

For example, in Fig. 1(b), h1
c1

= {u3, u6} and h
1
c2

= {u5}.

D. User Impatience

In this work, we consider the case where all users are
impatient: a user u ∈ U wants to enjoy content c ∈ C right

after she becomes interested in it. This means that u should
receive c at time l not larger than k(u, c), i.e., u ∈ h

l
c such that

l ≤ k(u, c). This is achieved by guaranteeing that

W
k
c ⊆H

k
c for every k and c. (2)

For example, in Fig. 1(b), we push content c1 to user u5 at
time k = 0 < k(u5, c1) = 2, which is allowed by Eq.(2). In

contrast, sending it at time k>2 = k(u5, c1) would violate the
constraint in Eq.(2).

E. Objective

Using the notation above, the total cellular traffic/load at
time k can be decomposed as the sum of background cellular

load and total predictable traffic, i.e.,

total cellular load = λk +
∑

c∈C

|hk
c |. (3)

2In practice, the content spread over OSNs may greatly vary in size: a ten-
minutes-long Youtube movie is orders of magnitude bigger than a photograph.
All the equations can be easily modified to reflect heterogeneous content size,
at the cost of notation clarity.



Our objective is to minimize the peak of total cellular load, i.e.,

minimize max
0≤k≤K

(
λk +

∑

c∈C

|hk
c |

)
(4)

subject to the user impatience constraint in Eq.(2).

Note that because we have no control over the diffusion of

interest wk
c , we can affect Eq.(4) only by choosing the sched-

ule h
k
c . We give an example of such an optimized schedule

in Fig. 1(b). In particular, we (i.e., the cellular operator) predict
which users will be interested in content c, and proactively seed

some of them with c when the cellular load is relatively small,
e.g., during the previous night. This allows us to reshape the

cellular traffic and reduce its peaks, but not the total traffic.

III. PROACTIVE SEEDING ALGORITHMS

In this section, we focus on the offline case, where we have
perfect knowledge of the future diffusion of interest, i.e., we

know w
k
c for all time frames k and pieces of content c. The

offline case serves as a baseline for understanding the maximum

achievable gains. It also serves as a building block for the
more realistic, online scenario, where prediction of the future

is imperfect, described in Sec. IV.

A. Special Case: single content, no background load

Let us first consider the simplest, yet intuitive case: there

is only a single content (C = {c}) and no background load
(λk = 0). An example of the demand curve corresponding to

such a cascade (e.g., a single content flash-crowd) is shown
in Fig. 2: the total number of users interested in the content

increases until reaches a peak and then decreases.

In this special case, objective Eq.(4) is equivalent to minimiz-

ingmaxk(|h
k
c |) subject to the user impatience constraint Eq.(2).

Intuitively, this entails delivering the content more evenly over

time. Ideally, we would like to send the content with a constant

seeding rate |hk
c | and thus at linear |H

k
c |.This rate should be the

lowest possible, while still satisfying Eq.(2). Because C={c},
Eq.(2) is satisfied if |W k

c | ≤ |H
k
c | for every k. Consequently,

|Hk
c | should be linear and never smaller than |W k

c |. This leads
to an intuitive geometric solution: Draw a straight line that

crosses point (-1,0) and is tangential to |W k
c |. The optimal

service rate |hk
c | is determined by the point where the line

crosses the y-axis. We show an example in Fig. 2.

It is also easy to see that this optimal rate |hk
c | is also

provided by the following formula

|hk
c | =

⌈
K

max
l=k

|W 0
c | − |H

l
c|

l + 1

⌉
. (5)

B. General Case: multiple contents, background traffic

The simple geometric solution from Sec. III-A does not
directly extend to the general case, i.e., in presence of arbitrary

background cellular load λk>0 and multiple contents |C|>1.
For example, Eq.(5) would not necessarily satisfy the user

impatience constraint Eq.(2) for each of the |C|> 1 contents
separately.

without PS, |wk
c |

with PS, |hk
c |

optimal |h0
c |

(a) Instantaneous

time k0

without PS, |W k
c |

with PS, |Hk
c |

optimal |h0
c |

(b) Cumulative

time k0−1

Fig. 2. Geometric interpretation of optimal Proactive Seeding (PS) under a
single content cascade (C={c}), with no background cellular load (λk=0), as
described in Sec. III-A. The curve represents a typical cascade on the Facebook
social graph (see Sec. V-C). We minimize the peak instantaneous cellular load
in (a) while satisfying the impatience constraint Eq.(2), by proactively seeding
the users at a constant rate, until the cascade passes. The optimal seeding
rate |h0

c | can be found by studying the cumulative version (b) of the time

evolution, where a line anchored at point (-1,0) and tangential to |W k
c |, crosses

the y-axis at point (0,|h0
c |).

Algorithm 1 Proactive Seeding

Require: w
k
c ∀c, k, λk ∀k future demand and load

1: h
k
c ← ∅ ∀c, k

2: L← ∅
3: for all (u, c) such that u ∈W

K
c do

4: L← L ∪ {(u, c)}
5: end for

6: sort L by increasing k(u, c)
7: for all (u, c) in L do water-filling

8: k∗ ← argmin0≤l≤k(u,c)(λ
l +
∑

c |h
l
c|)

9: h
k∗

c ← h
k∗

c ∪ {u}
10: end for

11: return h
k
c ∀c, k optimal

To address these problems, we propose the Proactive Seeding
algorithm, shown in Alg. 1. We construct the seeding sched-

ule h
k
c iteratively, starting from an empty set (line 1). In lines 2-

6, we create a list L of existing user-content pairs (u, c), sorted
according to the growing want times k(u, c). Note that user u
may appear in L multiple times, i.e., exactly once for each
content c she is interested in. Lines 7-9 implement a water-

filling type of algorithm, where for each pair (u, c) we find
the time frame k∗ ≤ k(u, c) with the smallest total cellular

load λk∗

+
∑

c |h
k∗

c |. We then schedule this pair (u, c) at

time k∗ by adding u to h
k∗

c (line 9). Finally, once all existing
pairs (u, c) are scheduled, Proactive Seeding returns the seeding
schedule h

k
c for all contents c and time frames k.

We illustrate the output of Proactive Seeding in the example
of Fig. 1(b). The sorted list L resulting after line 6 is L =
[(u1, c1), (u2, c1), (u3, c1), (u5, c1), (u6, c1), (u3, c2), (u8, c1),
(u5, c2), (u1, c2), (u4, c2), (u9, c1), (u2, c2), (u7, c2), (u8, c2)].
For pair (u1, c1), we have k(u1, c1) = 0, and therefore

lines 8-9 result in k∗ = 0 and h
0
c1

= {u1}, respectively.
When processing the second element in L, (u2, c1), we have

λl+
∑

c |h
l
c| = 2 for both l = 0 and l = 1. We arbitrarily break

this tie by setting k∗ = 0, which results in h
0
c1

= {u1, u2}.
The third pair (u3, c1) has now a unique k∗ = 1, and is
scheduled therein. The process continues until L is exhausted.



This schedule h
k
c returned by Proactive Seeding is optimal:

Theorem 1 (Optimality of Proactive Seeding). The seeding

schedule h
k
c , ∀c, k, created by Proactive Seeding minimizes

the peak load (objective in Eq.(4)), while satisfying the user

impatience constraint Eq.(2) for each content c separately.

Proof: First, note that the frame k∗ chosen for user u in

line 8 is not greater than the time k(u, c) when u actually wants
the content. Therefore, by construction, the schedule created
by Proactive Seeding always satisfies the user impatience

constraint Eq.(2) for every content c separately.

We now have to prove that the objective Eq.(4) is met by
Proactive Seeding. Denote by L(j) the set of all pairs (u, c)
such that k(u, c) = j and by L(i, j) =

⋃j

m=i L(m). Denote
by h(j) the transmission schedule constructed by Proactive
Seeding just after processing the pairs L(j) in lines 7-9. In
other words, h(j) schedules all contents for all users that want
it not later than at time j. Consequently, h(K) denotes the

entire schedule, h(K) ≡
⋃

c,k h
k
c . We prove the optimality of

Proactive Seeding by induction on j, as follows.

Initialization (j = 0): For every pair (u, c) ∈ L(0), line 8

automatically sets k∗ = 0. Consequently, h(0) schedules all
pairs L(0) at time slot 0. This is the only feasible solution,

thus the optimal one.

Induction step: Assume that h(j) is optimal for all pairs

L(0, j). We now must prove that h(j + 1) is optimal for all
pairs L(0, j+1).
Denote by max(h(j)) the peak total cellular load resulting

from h(j). Either an optimal allocation will increase the peak
rate at j + 1, or keep it constant. Thus we can distinguish two

cases, as follows:

Case 1: It is possible to schedule the pairs L(j + 1) such that
max(h(j +1)) = max(h(j)). In this case, lines 7-9 guarantee

that this equality holds under Proactive Seeding, by iteratively
choosing the least loaded time slots. Now, because max(h(j))
is optimal, it is the smallest value that does not violate the

impatience constraint Eq.(2). So h(j+1) cannot be lower than
max(h(j)) without violating Eq.(2). Consequently,max(h(j+
1)) = max(h(j)) implies the optimality of h(j + 1).

Case 2: It is not possible to schedule the pairs L(j + 1) such
that max(h(j+1)) = max(h(j)). We can now distinguish two
sub-cases, depending of the background load at time j + 1:
Case 2.1: If max(h(j + 1)) = λj+1 is achievable, then

lines 7-9 of Proactive Seeding will achieve that by iteratively

choosing the least loaded time slots. In this case, the peak
load is equal to the background load λj+1. Such a peak load
is optimal, because, by definition, background load cannot be

changed.
Case 2.2: If max(h(j + 1)) = λj+1 is not achievable, then

lines 7-9 guarantee that max(h(j + 1))−min(h(j + 1)) ≤ 1,
where min(h()) denotes the minimal total cellular load result-
ing from h(). Consequently,max(h(j+1)) cannot be decreased
and h(j + 1) is thus optimal.

Note: Although optimal in the sense of objective Eq.(4),
Proactive Seeding does not guarantee that the users will be

served in the order they request the content; it may schedule
user u before user w, even if k(u, c) > k(w, c). For example,

in Fig. 1 user u3 wants content c1 before user u5, but is sched-
uled to receive it after u5, as we show in Fig. 1(b). However,

it is easy to see that an additional step that reshuffles the
users to enforce the “first-want-first-serve” (i.e., chronological)
order, preserves the optimality and feasibility of the resulting

schedule h
k
c .

C. Extension: D2D-aware Proactive Seeding

In addition to their cellular connections, it is often the case
that some users are within physical proximity of each other and

can establish direct device-to-device (or D2D [13]) connections
between them, e.g., via ad-hoc 802.11 or Bluetooth. If these

users are interested in the same content, they can exploit
their D2D connectivity, and thus offload the cellular network.

Several variants of this idea have been studied in the past, e.g.,
in [10,11,14,15]. What makes this particularly promising, in

our context, is the fact that there is a correlation between prox-
imity on the social graph and geographical proximity, at both
medium [16] and small [17] scale. We show below (and later,

in simulations) that these techniques can be combined with
Proactive Seeding, and address two complementary aspects:

using the D2D connections helps to offload the total aggregated
cellular load, while Proactive Seeding helps to smooth the load

over time.
The D2D connectivity graph changes over time. We denote

by N
k(u) all D2D neighbors of user u at time k. Consider

time k(u, c) when user u becomes interested in content c. We
will assume that each mobile user behaves as follows:

1) If u has been seeded with c before, no action is needed.

2) Otherwise, u attempts to pull c from its current local

neighborsNk(u,c)(u). This is possible only if at least one
of these neighbors has c, i.e., ifNk(u,c)(u)∩Hk(u,c)

c 6= ∅.
3) Otherwise, u fetches c through the cellular network.

Depending on the extent to which the operator is aware of D2D
connectivity, different optimizations are possible:
1) D2D-unaware Proactive Seeding: In this simplest sce-

nario, the operator does not have information about the location

of users and thus performs Proactive Seeding without taking
proximity into account. Consequently, user u can benefit from

D2D, in an opportunistic way, i.e., only if u has not been seeded

earlier (i.e., if u ∈ h
k(u,c)
c ∩w

k(u,c)
c ), which results in

h
k
c ← h

k
c \
{
u ∈ h

k
c ∩w

k
c : N

k(u,c)(u) ∩H
k(u,c)
c 6= ∅

}
.

In the example of Fig. 1, user u4 will pull content c2 from

its D2D neighbors N
3(u4) at time k = 3 if at least one of

them is in {u1, u3, u5} = H
2
c2

(i.e., already has c2).
2) D2D-aware Proactive Seeding: In this scenario, the oper-

ator has information about location and thus proximity of users
and takes it into account while seeding. In particular, it applies

Proactive Seeding but avoids seeding user u if u will be able
to get the content from its neighbors. This can be achieved by

the following refinement of schedule h
k
c :

h
k
c ← h

k
c \
{
u ∈ h

k
c : N

k(u,c)(u) ∩H
k(u,c)
c 6= ∅

}
.

In the example of Fig. 1, we will seed user u5 with content c2
at time k = 1. If we know that u5 ∈N

3(u1), i.e., that u1 and

u5 will form a D2D connection at time k = 3 (i.e., when u1

wants c2) then then we can exclude u1 from h
2
c2
.



IV. DEALING WITH UNCERTAINTY

In Sec. III, we developed an optimal seeding strategy given

the full and precise knowledge of the future (i) cellular back-
ground load, and (ii) predictable traffic pattern. Clearly, the

performance of Proactive Seeding will strongly depend on the
quality of our estimation of the predictable traffic w

k
c . Many

prediction techniques have been proposed in the literature and
developing new ones is out of the scope of this paper. Instead,
in this section, we review some existing techniques, and we

show how they can be incorporated in Proactive Seeding.

A. Interest diffusion on OSNs

In this paper, we are interested in the content that becomes

popular through social ties. One can exploit the structure of
the social network and information about interest diffusion, in

order to predict information cascades. Such a prediction can
then serve as input (instead of the offline knowledge) to our

predictive seeding algorithms.

There is a rich literature on predicting the diffusion of interest
in social networks, see e.g., [7,8]. In our context, predicting

the future progress of a cascade related to content c, can be
modeled as finding the probability

P
(
w

k+1
c ,wk+2

c , ... | wk
c ,w

k−1
c , ...,w0

c , Iother
)
, (6)

where w
k
c ,w

k−1
c , ...,w0

c is the observed history at the current

time k, and Iother represents any other available piece of
information. Below, we comment on how some of the existing

approaches translate into the Eq.(6) probabilities.

1) The threshold model: In the threshold model [7], each

user u is associated with a threshold 0 ≤ θu ≤ 1. u becomes
interested in the content at time k + 1 if at least a (weighted)

fraction of θu of her neighbors are interested in it at time k.
This model is deterministic, i.e., the probabilities in Eq.(6) are
either 0 or 1.
2) The cascade model: In the cascade model [7,8], each

edge (u,w) of the social graph is associated with an activation

probability qu,w. If user u gets interested in the content at
time k, then the edge (u,w) is used exactly once to determine

whether user w will become interested in the content at frame
k + 1, which happens with probability qu,w. In other words,

given the activation probabilities qu,w (i.e., Iother) and the
history w

k
c ,w

k−1
c , ...,w0

c , the cascade model gives us the

following probabilities, concerning the next time frame:

P
(
w

k+1
c | wk

c ,w
k−1
c , ...,w0

c , Iother
)
, (7)

which is a special case of Eq.(6).

3) Machine learning: Another line of research focuses on
machine learning techniques that make use of all the available

information. For example, in [9], the authors, based on the
observed history, manage to accurately predict more than half

of future re-tweets (of URL links) with 15% false positives.

B. From probabilities to Proactive Seeding

Given the knowledge of probabilities in Eq.(6), we follow the

procedure presented in Fig. 3. First, at the current time k, we

use Eq.(6) to calculate the most likely future ŵ
l>k
c (Fig. 3(a)).

Next, we plug ŵ
l>k
c into Proactive Seeding (Fig. 3(b)), which

Prediction
(a)

ŵ
l>k
c Proactive Seeding

(b)

h
k
c Network

(c)

Updated history w
l<k
c

(a) Prediction.

Influence
model

P(wl>k
c )

MCMC
w

l
c(r), r∈R

Averaging

parameters

Fig. 3. Adaptive Proactive Seeding. (top) High-level overview. (bottom) The
“Prediction” block.

returns us the schedule h
k
c for the current time frame. Fi-

nally, we implement h
k
c and collect the actual evolution of

demand w
k
c that is used to refine our calculations in the next

time frame (Fig. 3(c)). This means that our scheme is adaptive

– at every iteration it updates the history by the current state

of the network and recalculates hk
c .

Our prediction includes all times l between the current time k
and time K . K is the latest time for which at least one
realization of the interest diffusion process has at least one
user interested in content c, i.e., |wK

c | ≥ 1. For instance, for
the cascade influence model, K is trivially upper-bounded by
the total number of users, i.e., K ≤ |U |.
In Fig. 3(bottom), we show in more detail the “Prediction”

block from Fig. 3. Given the knowledge of Eq.(6), we are, in
principle, able to calculate exactly the expected future demand

E[wl>k
c ]. In practice, however, the solution space is too big

(especially if the number |U | of users or the final time K
are large) to do it precisely. Instead, we run an MCMC
(Monte Carlo Markov Chain) simulation, i.e., we use Eq.(6)
to generate a number of realizations w

l>k
c (r), r ∈ R. This

step is illustrated by the middle block in Fig. 3(bottom). Next,
we average over all |R| realizations (right-most block in Fig. 3,

bottom), as follows.

First, we estimate the number of users |Ŵ
K

c | that eventually
become interested the content, by the average over all the

realizations:

|Ŵ
K

c | =
1

|R|
·
∑

r∈R

|WK
c (r)|.

Next, we decide which users will become interested in the

content, by taking |Ŵ
K

c | users with the highest observed

probabilities P̂(u ∈W
K
c ) = 1

|R| · |{r ∈ R : u ∈W
K
c (r)}| to

request it. Finally, we interpret as k(u, c) the time that is the
most frequent across the realizations in R:

k̂(u, c) = arg max
0≤k≤K

|{r ∈ R : u ∈ w
k
c (r)}|.

The above process provides an estimate ŵ
k
c of the future

demand, which we use as input to Proactive Seeding, as
in Fig. 3(b).

V. EVALUATION

In this section, we evaluate the performance of Proactive
Seeding through simulation.
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Fig. 4. Traces used in offline simulations. (a) Example of two individual
Twitter cascades; (b) All 9000 Twitter cascades together [9]; (c) Background
cellular load from a US operator [12]. For the sake of readability, all figures
are normalized with respect to the peak value of the data they represent (i.e.,
they do not have the same scale).

A. Performance Metric

Without Proactive Seeding, user u fetches the content c

over cellular when she wants it, which yields h
k
c ≡ w

k
c

and the peak cellular load equal to maxk
(
λk+

∑
c |w

k
c |
)
. In

contrast, with Proactive Seeding, the peak cellular load drops

to maxk

(
λk+

∑
c |h

k
c |
)
. Our main performance metric is the

relative gain in peak cellular load, defined as

γ =
maxk

(
λk +

∑
c |w

k
c |
)
−maxk

(
λk +

∑
c |h

k
c |
)

maxk (λk +
∑

c |w
k
c |)

.

Clearly, the larger the amount of the predictable traffic, the
bigger gain γ we can expect. We therefore denote by ρ the ratio

of the unpredictable traffic (aggregate over all contents) over
the aggregate predictable traffic, i.e.,

ρ =
aggregated unpredictable traffic

aggregated predictable traffic
=

∑

k

λk

∑

k

∑

c

|wk
c |
. (8)

B. Offline Scenario (using Twitter, Cellular and D2D traces)

First, we consider the offline case, with large-scale sim-
ulations fed by real traces of (a) interest diffusion process

in Twitter [9], (b) background traffic from a US cellular
operator [12], and (c) mobility [18]. This allows us to evaluate

Proactive Seeding in presence of cellular background load and
techniques that exploit D2D connectivity. We assume a priori

knowledge of (a), (b), (c), and we evaluate how much gain γ
is achieved by Proactive Seeding.

1) Description of Datasets: (a) Predictable traffic πk: We
use the Twitter trace from [9], where the authors collected

the tweets that carry a URL (which defines our content), over
a period of 300 hours (12.5 days). For our simulations, we
kept only the “re-tweets” (indicated by an RT tag), which

allows us to directly follow the cascades of interests in valuable
(non-spam) content on Twitter (see also RT-cascades in [9]).

Furthermore, in order to be able to observe the full evolution
of such cascades, we exclude the URLs that appear in the first

three or the last three hours of the trace. This leaves us with
around 2.5M of tweets from 554K different users, sharing about

9000 contents (URLs). In Fig. 4(a), we show the evolution of
two typical cascades from that trace. The “cascade” behavior is
easy to see: the URL’s popularity quickly increases over time,

reaches a peak, and then declines. However, when we aggregate
all the 9000 cascades together in Fig. 4(b), the individual

cascade shapes are not visible anymore; instead, the aggregated
predictable traffic πk clearly follows the daily pattern.3

(b) Background cellular load λk: As background load λk, we

take a cellular traffic trace coming from a major operator in
one US state [12].4 Because this trace covers one full week (at
a resolution of 1 hour), we replicate it, concatenate, and shift to

match the 12.5 days of the Twitter trace. The result is presented
in Fig. 4(c). Similarly to Twitter, the cellular background load

follows weekly and daily patterns.

(c) D2D connectivity: We use the Infocom06 contact trace [18]
to simulate the device-to-device (D2D) connectivity. The trace

logs the D2D contacts between 78 devices (iMotes) distributed
to the attendees, over a period of three days.

For each content c, we randomly map the users H
K
c (i.e.,

eventually requesting c) to the users in the trace. Because of the
limited size and duration of the trace, we replicate these users
when |HK

c |>78, and we repeat the connectivity pattern when

the diffusion of interest in content c lasts for more than 3 days.
Finally, users u and w are defined neighbors in our connectivity

graph at hour k, i.e., w ∈ N
k(u) and u ∈ N

k(w), if u
and w encounter each other within this hour (according to the
Infocom06 trace).

The above mapping matches users U with nodes in the

mobility trace in a purely random way. We also experimented
with D2D connectivity graphs that reflect various levels of
correlations between physical proximity and friendship. The

results were similar and are omitted for lack of space.

2) Results: In Fig. 5(a) we focus on a case when ρ = 2, i.e.,
the background load is twice the predictable traffic, and depict

the time evolution of the total load on the 3G network in the
following cases:

• no seeding: All users get the content they are interested

in through the cellular network (i.e., hk
c = w

k
c , ∀c, k).

• Proactive Seeding: Proactive Seeding algorithm is used to
schedule predictable traffic. D2D is disabled.

3Recall, however, that our constraint Eq.(2) is defined for each content, not
for the aggregated traffic.

4Strictly speaking, the trace [12] represents the total cellular traffic. For
simplicity of presentation (e.g., independence of ρ), we interpret this trace as
the background cellular load λk . We have also considered in simulations this
trace as the total load, subtracting πk to get the background load. The results
in both cases are very similar.
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• D2D: Users exploit the D2D connectivity as explained
in Sec. III-C, but Proactive Seeding is disabled.

• Proactive Seeding + D2D: predictable traffic is scheduled

using Proactive Seeding and users exploit D2D links if
available.

The no-seeding scenario results in a cellular load that is

very uneven over time, with high peaks and periods of very
low usage. Under D2D, we observe a slight reduction in the

network load, with the peaks almost unchanged. In contrast,
Proactive Seeding effectively reshapes the total cellular traffic,

reducing the peaks by exploiting the less busy periods. Note
that the peak load (around day 9) corresponds to a peak in
the background load, which confirms that Proactive Seeding

is optimal with respect to objective Eq.(4) (as we proved in
Theorem 1). Finally, when we combine Proactive Seeding and

D2D, we observe a further reduction in the network load.
Fig. 5(b) and Fig. 5(c) show how the aggregated (i.e., over the

whole trace duration) load and the gain γ depend on the ratio ρ
between predictable and background load. Unsurprisingly, the
higher ρ, the less beneficial Proactive Seeding becomes. Proac-

tive Seeding effectively reduces the peak load (Fig. 5(c)), but
has no impact on the aggregated load (Fig. 5(b)). The effect

of D2D is quite the opposite. Applying both Proactive Seeding
and D2D, we get the best of both worlds: i.e., a significant

reduction in both the peak and the aggregated load.

C. The Online Case (using Diffusion Models on OSNs)

Sec. V-B assumed full knowledge of the entire traces. In this
section, we consider the case where the future can be predicted

only with some amount of uncertainty, as described in Sec. IV.
For ease of explanation, we assume no background load and

a single content c and we focus on evaluating the effect of
uncertainty on the results.

1) Social Graphs (Datasets): We use datasets from two
different graphs, each capturing a different type of social tie.

• Facebook: The New Orleans network of the Facebook
social graph [19], consisting of 63K vertices and 816K

edges. The rationale for using this data set is that friends
in Facebook share links and thus participate in spreading

information about content.
• Email: a trace of e-mail contacts, consisting of 1133 nodes

and 5452 edges. The rationale behind using this datasets
is that emails often contain links that propagate in a viral

way, leading to information cascades.

2) Social Influence (Models): Using each of the previous

graphs, we simulate interest diffusion through the cascade
model [7,8] described in Sec. IV-A2. We assume that 5% of

users are interested in the content at time k = 0. The activation
probability for each edge (u,w) is set to qu,w = 0.1. (We have

also tried a range of parameters, omitted for lack of space, and
results were qualitatively similar.)

3) Uncertainty about the model and its parameters: Al-
though the cascade model provides us with a probabilistic

output, there are several other major sources of uncertainty
about the future, which naturally lead to errors in the prediction.

In particular, in practice, (i) we can never know exactly the
model driving the spread of information and (ii) we can

never know precisely the parameters of such a model. We
capture these two effects in our simulations by introducing
a multiplicative noise ν to the probabilities Eq.(6), i.e., we

set P() ← min(1, ν P()). For example, ν = 1.2 results in a
systematic overestimation of the future demand by 20%, and

ν = 0.8 underestimates it by 20%.

4) Results: In Fig. 6, we present results for the Facebook
(left) and Email (right) graphs. Although the two networks
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Fig. 6. Online simulations on the Facebook (left) and Email (right) graphs.

are very different in size and structure, they exhibit the same

qualitative behavior, with a clear cascade evolution. The way
Proactive Seeding works is easy to observe: the users known

(or assumed) to request the content during the peak time are
served during earlier frames, thus reducing the peak load.

For both networks, we compare the ideal (i.e., offline)

performance with the adaptive (i.e., online) case, in which the
demand is not known a priori. In the latter, we consider three
values of the noise ν. If our prediction is not systematically

biased (ν = 1), the online performance of Proactive Seeding
is close to the optimal (offline). In contrast, systematically

overestimating (ν > 1) or underestimating (ν < 1) the future
demand leads to less gain γ, but with qualitatively different

effects. Overestimating the demand means serving users that
will never need the content, thus wasting network and user

resources. In the extreme case, it may even lead to a negative

gain, i.e., a peak load maxk |h
k
c | greater than the peak demand

maxk |w
k
c |. On the other hand, underestimating the demand is

conservative, as moves towards the no-seeding case. The gain
γ can decrease, but is still above zero. Therefore, as a practical

take-away from our online evaluation, we can recommend to
tune the prediction parameters so as to underestimate rather

than overestimation the demand.

Fig. 6 also allows us to see how the adaptiveness, i.e., the
fact that at each time frame k we feed the actual set W k

c of

users interested in the content back to the prediction algorithm,
allows us to recover from prediction errors. If ν > 1, we tend to

overestimate the number of users interested in the content at the
begin of the cascade. However, as we observe the actual number

of interested users, we are able to correct the error, and schedule
fewer users in the subsequent frames. Conversely, if ν < 1, we
start seeding fewer users than we should, and we make it up
for this error later. Notice however that both such cases imply
a peak load that is higher than the ideal (i.e., offline) one.

VI. RELATED WORK

Proactive Seeding touches upon several research areas. We

now review the closest ones and how they relate to our work.

Opportunistic communication. When several users are in-
terested in the same content and they are in proximity of

each other, some of them may be able to use device-to-

device connections, e.g., through WiFi or Bluetooth, to get the
content, instead of their cellular connection. This opportunistic

communication results in offloading the cellular network. In
[5], device-to-device and cellular connections are used to dis-

seminate dynamic content, so as to maximize the “freshness”’
of the content. The connectivity of nodes are taken into account

in order to select the right users to act as relays. As an example,
a node with many neighbors is more likely to be selected as

a relay. The work in [14] considers a similar scenario and
assumes that social ties among the users are strongly correlated
with their physical proximity and similar interests. [6] offloads

the cellular network through proximity connections, while still
meeting strict deadlines. With respect to these works, we have a

different goal – decreasing the peak load on the cellular network
– and a stronger constraint, i.e., the user impatience.

Socially-aware forwarding. Another body of work [20]–[24]
exploits the principle that social ties affect the mobility, and

eventually the proximity, of users. Evidence has been provided,
for example in [16], which shows that there is a significant cor-

relation between similar interests and geographical proximity,
for four different OSNs (BrightKite, FourSquare, LiveJournal
and Twitter). Therefore, knowledge about social ties, can be

taken into account to optimize routing for content delivery.

[20] presents Bubble rap – a routing protocol for DTNs.
Devices detect the centrality of the community the user belongs
to, based on the frequency of contact. This is then used

for routing decisions. [22] use social information to optimize
content discovery in a publish/subscribe setting: the more social

users are given a special role in the delivery process. [21,23,24]
exploit social information to route queries and to decide which

items should be cached or duplicated.

In our work, we exploit social ties for a different purpose,

namely predicting the content requests in order to proactively
serve them. Furthermore, we limit the amount of information

that users disclose to their peers (e.g., users do not broadcast
their whole list of topics of interest, as in [21]).

Interest diffusion in social networks. There is a large body of
literature on diffusion in networks, including but not limited to

technological networks. The classic work in [25] reviews sev-
eral influence models and proposes an algorithm for selecting



which nodes to seed so as to maximize the diffusion, given
the social structure. This is different from our objective in this

paper (to minimize the peak of the cascade) as well as in the
fact that seeding is done only once in the beginning, while we
adaptively seed at every time slot.
Such influence models are motivated by the many studies of

information diffusion on actual social networks. For example,
[26] identifies and studies several cascades on the Flickr social

network. [27] analyzes 1.5 million YouTube videos, showing
that not all popular videos are “social” and that highly social

videos rise to, and fall from, their peak popularity more quickly
than less social videos. Somewhat related to our work, [4]

considers information cascades caused by social influence and
shows which links to select and limit this influence, so as to
delay the peak of the load caused on the cellular network.
Predicting content popularity. Forecasting the popularity of

content, with or without taking into account network effects,
is another active research area. [28] presents methods for

predicting the popularity of items given historical access data,
but without taking into account the network effect, for the

YouTube and Digg social networks. [9] collects a dataset of
22M tweets, containing 15M URLs and presents a methodology

(based on influence models) which predicts more than half of
the tweets in the dataset with only 15% false positives.
In this paper, we use the dataset collected in [9] for sim-

ulations of the offline scenario. More generally, we rely on
prediction models as a part of our machinery, but we do not

develop one ourselves.

VII. DISCUSSION AND CONCLUSION

We presented Proactive Seeding– a new technique for reduc-
ing the peak demand in cellular networks due to information

cascades in social media. In the special case of single content
with no background load, the optimal solution has an intuitive

interpretation. In the special case of multiple contents with
known background traffic, we provide a greedy algorithm

and prove its optimality, in the offline case. In the online
case, we evaluated our algorithms by replacing the actual
future demand by the predicted demand; we found that they

are robust, especially when conservatively underestimating the
demand. We also extended our algorithm to take into account

opportunistic mobile-to-mobile communication, thus offloading
cellular traffic and further reducinf the peak load up to 50%.
The practical deployment of Proactive Seeding is likely to

face some practical challenges. For example, imperfect predic-
tion will result to seeding some nodes that are not interested in

the content, which wastes network resources and phone battery.
However, seeding should take place (i) when the network load is

low, thus at virtually no cost for the network operator, and often
(ii) at night, when the phone is usually being charged and does
not run on battery. Second, content pushed early to the phone

must be stored on the phone’s memory. Today’s smartphones
already have tens of GBs (e.g., the capacity of iPhone 4S

ranges from 16GB to 64GB), thus reserving even 1GB (i.e.,
hours of video or thousands of photos) for Proactive Seeding is

reasonable. Finally, the prediction algorithms typically require
some sensitive information about the users, such as social ties,

location, browsing history. Parts of this information is available
to the OSN and/or to the cellular operator and there are several

options for obtaining this information. These implementation
challenges are out of the scope of this paper, whose focus is to

demonstrate the potential savings of Proactive Seeding.
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