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Abstract

It is well known that, under suitable conditions, microRNAs are able to fine tune the relative concentration of their targets to
any desired value. We show that this function is particularly effective when one of the targets is a Transcription Factor (TF)
which regulates the other targets. This combination defines a new class of feed-forward loops (FFLs) in which the microRNA
plays the role of master regulator. Using both deterministic and stochastic equations, we show that these FFLs are indeed
able not only to fine-tune the TF/target ratio to any desired value as a function of the miRNA concentration but also, thanks
to the peculiar topology of the circuit, to ensure the stability of this ratio against stochastic fluctuations. These two effects
are due to the interplay between the direct transcriptional regulation and the indirect TF/Target interaction due to
competition of TF and target for miRNA binding (the so called ‘‘sponge effect’’). We then perform a genome wide search of
these FFLs in the human regulatory network and show that they are characterized by a very peculiar enrichment pattern. In
particular, they are strongly enriched in all the situations in which the TF and its target have to be precisely kept at the same
concentration notwithstanding the environmental noise. As an example we discuss the FFL involving E2F1 as Transcription
Factor, RB1 as target and miR-17 family as master regulator. These FFLs ensure a tight control of the E2F/RB ratio which in
turns ensures the stability of the transition from the G0/G1 to the S phase in quiescent cells.
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Introduction

The interplay between transcriptional and post-transcriptional

regulation attracted much interest in the past few years [1]. As in

the purely transcriptional regulatory network [2], motifs belonging

to such mixed layer of interaction have been identified [3–6] and

mathematically characterized [4,5,7–9]. MicroRNAs (miRNAs),

small non-coding RNAs which post-transcriptionally regulate gene

expression, play a pivotal role in these circuitries. So far the

attention was mainly devoted to circuits in which miRNAs have

only an auxiliary role. This is the case for instance of the miRNA-

mediated Feed Forward Loop (FFL) [4,5,7,8] or the miRNA

mediated self-loop [9]. However, several important biological

processes are actually controlled by miRNAs which play

themselves the role of master regulators. The corresponding

network motifs show a remarkable degree of topological enrich-

ment in the mixed regulatory network [10,11]. A major reason of

interest in this type of circuits is the so called ‘‘sponge effect’’

[12,13], i.e. the appearance of indirect interactions among targets

due to competition for miRNA binding.

In [10] analysis of data from the Encyclopedia of DNA Elements

(ENCODE) project revealed that two distinct classes of miRNA-

controlled circuits were particularly enriched in the network. In

the first class miRNAs target two interacting genes (which for

example can dimerize). MiRNAs belonging to the second class

target two transcription factors (TFs) which both regulate the same

gene, one as proximal and one as distal regulator. This same

topology was found to be over-represented in human glioblastoma

combining bioinformatical analysis and expression data [11]. Both

these examples suggest a role of miRNAs in ensuring the stability

and fine-tuning of the relative concentration of their targets. The

topological enrichment is further magnified if one selects those

motifs in which the two targets are linked by a transcriptional

regulation (see Figure 1B). The resulting network motif is a FFL in

which a miRNA regulates a TF and together with it one or more

target (T) genes. In the following we shall denote these circuitries

as ‘‘miRNA-controlled FeedForward loops’’ (micFFL).

An interesting feature of the micFFL is that it is the simplest

motif in which a TF regulates its target simultaneously with direct

(transcriptional) and indirect (mediated by the sponge effect)

regulatory interactions. Depending on the sign of the transcrip-

tional regulation this combination can be coherent or incoherent

and may have very interesting functional roles. In this paper we

address the case of an activatory transcriptional regulation (see the

left bottom motif of Figure 1A). The transcriptional version of this

circuit has been analyzed by several authors [14,15]. The circuit is
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able to perform a few important functions able to enhance the

coordination of the targets. At the same time, targets’ coordination

may represent a too strong linkage, thus decreasing the overall

flexibility of the network. This non-trivial behavior could be the

reason of the quite peculiar pattern of topological enrichment we

observe. Our main goal will be to quantitatively study these

functions, to fix the range of parameters in which they occur and,

possibly, to understand their role within the regulatory network as

a whole.

We address the model both at the deterministic and at the

stochastic level. In order to quantify the behavior of the various

molecular species involved, we then compare the micFFL with

four different miRNA-mediated regulatory topologies involving

the same players (one miRNA, one TF and one T). In all cases the

miRNA-target interaction will be modelled via a titration-like

mechanism, i.e. we assume that miRNA and target may only

interact by forming a complex which eventually degrades [16].

After degradation of the complex the miRNA may be recycled.

This choice, at the basis of the sponge effect, will play a major role

in our analysis. In fact it has been shown that titration-like

mechanisms entail, among other properties, cross-talk and

statistical correlation between different targets in competition for

the same group of molecules [17–22]. We show that the sponge

interaction between TF and T induces a statistical correlation

between them much stronger than in case of simple transcriptional

regulation. Moreover, this linkage holds for a range of miRNA

concentrations larger than in the other circuits and reaches its

maximum exactly when TF and T show the highest degree of

stochastic fluctuations. Altogether these observations support the

general picture of miRNAs as homeostasis controllers [8,13], with

Author Summary

Gene expression is controlled by a complex network of
regulatory interactions which may be organized in two
complementary subnetworks: the transcriptional one, medi-
ated by Transcription Factors (TF), and the post-transcrip-
tional one, in which a central role is played by microRNAs. In
this paper we add a further step in the study of synergistic
role of these layers of regulation: a stable fine tuning of the
relative expression of target genes is obtained by a com-
bination of transcriptional and post-transcriptional interac-
tions, and such a combination ensures robustness against
stochastic fluctuations. We show that optimal fine tuning is
reached when the microRNA plays the role of master
regulator and one of its targets is a TF which regulates the
other microRNA targets. This combination defines a new
class of feed-forward loops. We show that such circuitries are
strongly enriched when the TF and its targets have to be
precisely kept at the same concentration notwithstanding
the environmental noise. We complete our analysis with a
detailed description, using both deterministic and stochastic
equations, of the steady state concentrations of the genes
involved in the motifs as a function of the miRNA
concentration and of the miRNA-target interaction strength.

Figure 1. A. Schematic description of the circuits discussed in the paper. NM1: direct regulation; NM2: open motif in which the microRNA
regulates only the transcription factor; NM3: open motif in which the microRNA regulates only the target; NM4: Open motif in which the microRNA
regulates both the TF and the target but the TF-target link is missing; NM5, open motif in which two different microRNAs regulate separately the TF
and the target. In the box we show the activactory micFFL whose deterministic and stochastic behavior we studied in the paper. B. Schematic view of
the general miRNA controlled Feed Forward Loops (combining both activactory and repressive TF-target interactions) mined in the bioinformatic
analysis discussed in the paper. C. Schematic description of the chemical reactions which must be taken into account to describe the miRNA-
mediated feedforward loop with a miRNA-target titrative interaction.
doi:10.1371/journal.pcbi.1003490.g001
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different roles depending on the particular topologies they are

embedded in. In particular, coherent micFFL could be useful in

situations in which TF and T concentrations have to be precisely

kept at the same ratio notwithstanding the environmental noise. In

the last section we discuss a prototypical example of this situation,

i.e. the micFFL involving E2F1 as TF, RB1 as T and a set of

miRNAs (miR-106a, miR-106b, miR-17, miR-20a and miR-23b)

as master regulators. This circuit is involved in the fine-tuned

control of the transition from the G0/G1 to S phase in the cell

cycle. This transition is triggered by the difference in concentra-

tion of the two targets. We shall argue below that the micFFLs

controlling the two genes were selected by evolution exactly to

avoid accidental triggering of the transition due to uncorrelated

stochastic fluctations of the two proteins. The comparison with the

other topologies shows that the simple loss or addition of one of the

interactions in the loop could destroy this linkage and lead to

pathological behaviors.

Results

Bioinformatic search of micFFL in the human regulatory
network

A detailed description of our procedure is reported in the

Material and Methods section, we only report here the main steps.

Briefly, we constructed a list of putative micFFLs combining

miRNA-T and TF-T regulatory interactions obtained as follows.

For the miRNA-T side we integrated information obtained from

four freely available databases of miRNA-T interactions, chosen so

as to have the widest possible spectrum of different prediction

strategies: doRiNA [23], microRNA.org [24], TargetScan [25]

and PITA [26]. We selected as potential targets only transcripts

corresponding to protein-coding genes completely annotated in

Ensembl 68 [27]. For the TF-T side we used two different

strategies. In the first one we selected the TFs contained in the

JASPAR database [28,29] and used the corresponding Position

Frequency Matrix (PFM) to construct a search algorithm for

transcription factor binding sites (TFBS) within the target

promoter regions. We found in this way a total of 948125

interactions. In the second approach we simply used as signatures

of TF-T interactions the ChIP-seq results of the ENCODE project

[10]. Combining together the results of the five cell lines of the

ENCODE project we obtained a total of 45328 TF-T interactions.

We obtained in this way a total of 75933600 micFFLs with

miRNA-T interaction confirmed by at least one database in the

JASPAR case and a total of 2426300 micFFLs in the ENCODE

case. We chose this twofold strategy to construct the TF-T side of

our network so as to have an independent check for the

enrichment analysis. In fact with the ENCODE list, based on

ChIP-seq experiments, we expect to have a smaller rate of false

positives results with respect to a purely bioinformatic approach.

At the same time, using only the ENCODE list could induce a

statistical bias in the results due to the fact that ChIP-seq

experiments were performed only for a small subset of TFs,

selected for their particular biological relevance. This could in

principle create problems when performing a topological enrich-

ment analysis. For this reason we chose to supplement this analysis

with an alternative procedure which has exactly the opposite

features: it is an unbiased genome-wide bioinformatic search from

sequence information only, with no reference to experimental

results. The obvious drawback of this second approach is the

possible presence of several false positives. As we shall see below

our enrichment analysis gives similar enrichment scores for both

strategies thus strongly supporting the reliability of results.

Enrichment test
In order to minimize the number of false positives we selected

only micFFLs in which both the miRNA-TF and the miRNA-T

links were confirmed by all the four databases. This choice

reduced the number of micFFLs to 129110 in the JASPAR case

and 3782 in the ENCODE case. Since the links of the loop are not

on the same ground we performed a topological enrichment

analysis by random reshuffling separately the post-transcriptional

and transcriptional links of the micFFL. First we randomized

miRNA-T links keeping TF-T links fixed. We made 1000

simulations. For each miRNA we extracted random targets within

the Ensembl 68 list of known protein-coding transcripts keeping

fixed the number of targets (i.e. keeping unchanged the outdegree

of the miRNA nodes). We performed the simulation both for the

JASPAR and the ENCODE lists of TF-T interactions and

evaluated a z-score. The z-score was defined, as usual, as

Z~
X{m

s
, where X is the number of micFFL in the real

network, while m and s are the mean and the standard deviation of

the same quantity in the sample of 1000 simulated networks. In

both cases we found very high values of the z-score (see

Figures 2A–B): 49.4 for Jaspar and 23.3 for Encode. We then

randomized TF-T links, keeping the miRNA-T links unchanged.

Also in this case we kept fixed the outdegree of the TF nodes of the

network and perfomed the reshuffling both for the JASPAR and

ENCODE lists. Remarkably enough we found this time in both

cases a very strong negative enrichment (see Figures 2C–D), with z-

score values of the same magnitude of previous case: 220.8 for

JASPAR and 218.1 for ENCODE. The simplest explanation of

this very peculiar behavior is that miRNAs seem to target

preferentially TFs (this largely explains the large positive

enrichment in the first reshuffling test) but at the same time the

particular topology of the micFFL seems to be strongly selected

against by evolution and is preferentially avoided within the

network. These observations make micFFLs a very interesting

subject of study. It seems that its particular topology induces very

strong constraints on the behavior of its targets and might be in

general dangerous for the performances of the network. Conse-

quently, when one of this circuits is actually realized in the network

it is certainly not by chance and it is likely to play a well precise

functional role. The remaining part of this paper will be mainly

devoted to understand this issue. It is very interesting to observe

that the enrichment pattern is essentially the same both in the

JASPAR and in the ENCODE cases. Since the two TF datasets

have a rather small overlap (only 38 TFs are in common) and the

approaches to detect regulatory interactions are completely

independent, the similarity of the two enrichment patterns is a

strong evidence of their reliability and robustness. Finally it is

worthwhile to stress that this very peculiar enrichment pattern

almost disappears and would escape detection if one simulta-

neously permutes both transcriptional and post-transcriptional

interactions due to the compensation between positive and

negative enrichments. According to the standard classification of

FFLs (see for instance [30,31]), the micFFL is a coherent C2 FFL if

the TF protein positively regulates its target gene, or an incoherent

I2 type if the TF protein negatively regulates its target. It would be

very interesting to perform separate enrichment tests for the

coherent and the incoherent cases but unfortunately neither the

JASPAR nor the ENCODE databases contain information on the

sign of the TF regulation.

Putative functions of micFFLs
It has been recently shown that microRNAs can generate

thresholds in target gene expression [16] which in turn may induce

Combining MicroRNA and Transcriptional Regulation
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non-linear relations between protein and transcript concentra-

tions. In the same paper it was also pointed out that gene

expression shows large cell-to-cell fluctuations in a population of

identically prepared cells. We find that similar threshold effects are

also present in the TF and T of micFFLs whose relative

concentrations can be fine-tuned to any desired value as function

of miRNA concentration. In particular, the peculiar topology

ensures a tight control of stochastic fluctuations of this ratio and

the noise reduction is maximal exactly in proximity to the

threshold region. We perform the analysis of the circuit in two

main steps (deterministic and stochastic) concentrating on the

behavior of the ratio p1=p2 for the concentration of two targets.

The robustness of this ratio against stochastic fluctuations is one of

the main reasons of interest on this circuit and will be the main

issue of the stochastic analysis. A more intuitive enquiry (a ‘‘logical

approximation’’) is present in the Supplementary Information (S1).

In order to discuss the functional properties of the micFFL we

compare it with five ‘‘null models’’ obtained eliminating miRNA-

TF and/or miRNA-T interactions. We can thus identify which

properties are direct consequences of the miRNA interaction (as

the threshold effect) or are a peculiar consequence of the micFFL

topology (as the noise reduction).

The simplest null model is represented by the direct regulation

TFRT without miRNAs (NM1). Comparison with NM1 shows

the effect of switching-on the miRNA in our circuit. Two other

important null models are those circuits in which we only keep the

miRNA-TF interaction (NM2) or the miRNA-T interaction

(NM3) (see Figure 1A). Finally, we analyze the circuit with one

miRNA regulating separately the two targets T1 and T2 (NM4)

and the open circuit in which two independent miRNAs regulate

TF and T respectively (NM5) (see Figure 1A). These circuits are

themselves very interesting. In particular NM4 was widely studied

in the past few years to model bacterial small RNA (sRNA)/target

interaction [18,19]. More recently it was also discussed in the

framework of a miRNA/target interaction network [20–22] as an

example of the sponge effect. A byproduct of our analysis will be

the discussion of few interesting features of these null models.

Deterministic analysis
The micFFL is described by the following set of equations:

d m1

dt
~k�m1

{c�m1
m1{k�,on

1 m1Mfreezk
�,off
1 c1

d p1

dt
~k�p1

m1{c�p1
p1

d m2

dt
~k�m2

f (p1){c�m2
m2{k�,on

2 m2Mfreezk
�,off
2 c2

d p2

dt
~k�p2

m2{c�p2
p2

d Mfree

dt

~k�s {c�s Mfree{k�,on
1 m1Mfreez

(k
�,off
1 zc�c1

)c1{k�,on
2 m2Mfreez(k

�,off
2 zc�c2

)c2

d c1

dt
~k�,on

1 m1Mfree{(k
�,off
1 zc�c1

)c1

d c2

dt
~k�,on

2 m2Mfree{(k
�,off
2 zc�c2

)c2

ð1Þ

where c�x denotes the degradation constant of the molecular

species x and k�x the corresponding production rate, m1 and p1 the

Figure 2. A. Randomization of miRNA-target links. Distribution of the number of FFLs for 1000 simulations obtained with JASPAR TFs list and
confirmed by at least 4 miRNA databases (Z = 49,4). B. Randomization of miRNA-target links. Distribution of the number of FFLs for 1000 simulations
obtained with ENCODE TFs list and confirmed by at least 4 miRNA databases (Z = 23,3). C. Randomization of TF-target links. Distribution of the
number of FFLs for 1000 simulations obtained with JASPAR TFs list and confirmed by at least 4 miRNA databases (Z = 220,8). D. Randomization of TF-
target links. Distribution of the number of FFLs for 1000 simulations obtained with ENCODE TFs list and confirmed by at least 4 miRNA databases
(Z = 218,1).
doi:10.1371/journal.pcbi.1003490.g002

Combining MicroRNA and Transcriptional Regulation

PLOS Computational Biology | www.ploscompbiol.org 4 February 2014 | Volume 10 | Issue 2 | e1003490



concentration of mRNA and protein for the TF and m2,p2 those

for the target. We then redefine the parameters dividing them by

the target protein degradation rate c�p2
in order to have

dimensionless values. The system thus becomes:

d m1

dt
~km1

{cm1
m1{kon

1 m1Mfreezk
off
1 c1

d p1

dt
~kp1

m1{cp1
p1

d m2

dt
~km2

f (p1){cm2
m2{kon

2 m2Mfreezk
off
2 c2

d p2

dt
~kp2

m2{p2

d Mfree

dt

~ks{csMfree{kon
1 m1Mfreez

(k
off
1 zcc1

)c1{kon
2 m2Mfreez(k

off
2 zcc2

)c2

d c1

dt
~kon

1 m1Mfree{(k
off
1 zcc1

)c1

d c2

dt
~kon

2 m2Mfree{(k
off
2 zcc2

)c2

ð2Þ

where kx~
k�x
c�p2

are the rescaled transcription or translation rates,

cx~
c�x
c�p2

the rescaled degradation rates and tc�p2
~t the rescaled

time. Following [16] we assumed that miRNA can interact with

target mRNA mi by forming a complex ci with it. The ci stability

is determined by the costants kon
i , k

off
i and by the concentration of

unbound miRNA Mfree. Mfree is related to the total concentration

of miRNA Mtot by the relation:

Mtot~Mfreezc1zc2: ð3Þ

In the following Mtot is an external input of the circuit. The

transcriptional regulation of m2 is described by the activatory Hill

function

f (p1)~
pn

1

pn
1zhn

, ð4Þ

with Hill coefficient n and activation coefficient h. A section of the

Supporting Information S1 is devoted to discuss the explicit

introduction of the promoter state dynamics for the target gene.

The equations describing the null models introduced above

(discussed in detail in Supporting Information S1) can be easily

obtained from Eq.s 2 eliminating some of the molecular species

and/or interactions.

The steady state solution of Eq.s (2) can be written in a simple

way as a function of Mfree. Introducing

h
free
i :

cci

cmi

Mfree, li:
k

off
i zcci

kon
i

, (i~1,2) g:
h

p0
1

1z
h

free
1

l1

 !
ð5Þ

we can write

p1~p0
1

1

1zhfree
1 =l1

,

p2~p0
2

1

1zhfree
2 =l2

1

1zgn
,

ð6Þ

where p0
1 and p0

2 denote the asymptotic values of p1 and p2 in

absence of miRNAs. The Hill function is at saturation, i.e.

f (p1)~1 (similarly for m0
1 and m0

2), so that p0
1~kp1

km1
=cm1

cp1

and p0
2~kp2

km2
=cm2

. From these equations we obtain the ratio

R:p2=p1 as a function of Mfree:

R:
p2

p1
~

p0
2

p0
1

1

1zgn
~

1z
h

free
1

l1

1z
hfree

2

l2

: ð7Þ

It would be interesting to obtain the same ratio as a function of

Mtot instead of Mfree. Mtot can be obtained from Mfree, m1 and m2

Mtot~ Mfree 1z
m1

l1
z

m2

l2
z

cs

a

� �
z

ks

a
,

a~ k
off
1 zk

off
2 zcc1

zcc2
:

ð8Þ

The dependence on m1 and m2 makes it difficult to write the ratio

explicitly in terms of Mtot, but it can be easily obtained numerically.

We plot R as a function of Mtot in Figure 3 in the limit

hfree
1 ~hfree

2 :hfree and l1~l2~l for n~1,2 and 3. We plot for

comparison the same ratio for the null models NM2 and NM3. The

shadowed portions of the plots denote the regions in which either

p1=p0
1 or p2=p0

2 is less than 0.05, i.e where the miRNA concentration

is so high that one of the proteins (or both) is almost absent. As miRNA

concentration increases, R can be tuned from p0
2=p0

1 down to less than

20% of its orginal value. The shape of the Mtot dependence and the

minimum value of R strongly depend on the Hill coefficient. It is

interesting to observe that also NM2 and NM3 allow to fine tune R

essentially to any desired value. These two models represent the

limiting situations which one would obtain when l1&l2 or l1%l2.

Stochastic analysis
As in the previous section, we assume a titrative miRNA-target

interaction and an activatory Hill function for the TF-dependent

target transcription rate. The molecular species we considered are

transcripts for miRNAs (s), transcription factor (m1) and target

(m2), proteins for transcription factor (p1) and target (p2), and the

complexes the miRNA can form when bound to m1 or m2 (c1 and

c2 respectively). The parameters are defined as in (1). The

chemical reactions involved in the circuit are schematically

reported in Figure 1C. The corresponding master equation,

setting fs?n1,m1?n2,c1?n3,p1?n4,m2?n5,c2?n6,p2?n7g, is

LP(fnig,t)

Lt
~ ks(E{1

1 {1)zcs(E1
1{1)n1zkm1

(E{1
2 {1)z

n
zcm1

(E1
2{1)n2zkon

1 (E1
1E1

2E{1
3 {1)n1n2z

zacc1
(E{1

1 E1
3{1)n3zkp1

n2(E{1
4 {1)zcp1

(E1
4{1)n4z

zkm2
(

TF ss

(TF ss)nzhn
{n

TF ss

h

� �n

1z
TFss

h

� �n� �2
z

n

TF ss

TF ss

h

� �n

1z
TFss

h

� �n� �2
n4)(E{1

5 {1)z

zcm2
(E1

5{1)n5zkon
2 (E1

1E1
5E{1

6 {1)n1n5zacc2
(E{1

1 E1
6{1)n6z

zkp2
n5(E{1

7 {1)z(E1
7{1)n7z(1{a)cc1

(E1
3{1)n3z

z(1{a)cc2
(E1

6{1)n6

o
P(fnig,t),

ð9Þ

where a denotes the probability of miRNA recycling and E is the

step-operator Ek
j ~

P?
l~0

kl

l!

Ll

Lnl
j

. As in [8,9] we linearized the Hill

(9)
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function around the steady state value TFss (see Supporting

Information S1 for further details). The analogous equations for

the null models are discussed in Supporting Information S1.

We are interested in evaluating the linear correlation coeffi-

cients rxy~
vxyw{vxwvyw

sxsy

, which measures how much

two variables are linearly dependent.

This quantity can be evaluated in general for any pair of

molecular species, but we are in particular interested in the

correlation between T and TF . To estimate it we need the first

two moments of the probability distribution P(fnig,t). Due to the

complexity of the master equation this cannot be done analytically

not even by linearizing the target transcription rate, thus we

decided to approach the problem in the framework of the linear

noise approximation [32]. In this framework it is straightforward

to obtain the covariance matrix of the system directly from its

macroscopic description [17] and thus have approximate expres-

sions for the first two moments of P(fnig,t). We performed a set of

Gillespie simulations on the model in order to quantify the error

due to the linear noise approximations. Details on all these

calculations can be found in SI.

We made an effort to present all the results in terms of

potentially measurable parameters, such as miRNA number of

molecules and miRNA-target interaction strenght F~
kon

i

cscmi

[18]

(where kon
i , cs, cpi

and cmi
are defined as above). The other

parameters take physiological values (and a section of SI is devoted

to a brief stability analysis over their fluctuations). We estimate the

parameters’ order of magnitude via the transcription, translation

and degradation rates found in [33] and Bionumbers database

[34]. To test our choice, we checked whether the steady state

concentrations have realistic values. In order to understand the

peculiar properties of micFFL we compared it with the null models

NM3,NM4 and NM5. Given the large number of free parameters,

such a comparison is not straightforward. Our strategy was to

maintain equal all the corresponding parameters in the four

models and then compare all of them with the direct regulation

(NM1), i.e. with the situation in which the miRNA is switched-off.

miRNA-controlled feedforward loop increases TF-T
statistical correlation

We report in Figure 4 our estimates for the correlation coefficient

between TF and T (rTF ,T ) for micFFL, NM3, NM4 and NM5. Both

micFFL and NM4 show wide regions of the parameter space in

which TF and T are strongly correlated while for NM3 and NM5

the correlation is almost negligible. This trend is an unequivocal

consequence of the titration which establishes an indirect interac-

tion between transcripts in competition for binding the same

miRNA. We think that the enhanced statistical correlation of targets

is the ultimate reason for the generic enrichement observed in

[10,11] for this type of motif: targets in physical interaction are likely

to require stable stoichiometric ratios.

Comparing Figure 4B with Figure 4C we see that this

correlation is further enhanced in the micFFL by the transcrip-

tional link between TF and T. This enhancement is due to the

interplay between the direct link TF-T and the indirect miRNA-

mediated TF-T link. Figure 4A reproduces the situation in which

two independent miRNA genes (with the same kinetic parameters

Figure 3. The ratio of the target and TF concentrations as a function of Mtot for the micFFL and the NM2 and NM3 null models for
three values n~1,2 and 3 of the Hill exponent.
doi:10.1371/journal.pcbi.1003490.g003
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of miFFLC) target TF and T independently (NM5). The TF-T

correlation profile results here from the bare fact that TF is an

activator of T (direct link). The NM4 case instead (Figure 4C)

could be a proxy for the indirect effect alone. In SI, a more

detailed comparison between NM4 and micFFL was done. Both

circuits increase greatly the correlation, but micFFL, thanks to the

regulatory link, reaches always higher values of correlation. The

union of NM5 and NM4 correlation profiles is indeed very similar

to the miFFLC one. For completeness we also analyzed the case in

which the link miRNA-TF is lacking (NM3). Here again the

correlation profile is due only to the direct TF-T connection. The

heat-map does not show appreciable differences exploring the

parameter space and the TF-T correlation values are almost

everywhere comparable with that of a simple direct regulation.

Threshold effects in micFFL and NM4 motifs
Titrative interactions may induce threshold effects among the

interacting molecules and system hypersensitivity in proximity to the

threshold [16]. In the particular cases of micFFL and NM4 this effect

involves three molecular species simulateneously (miRNAs, TFs and

Ts) and gives rise to a very peculiar behavior. In NM4, when the

amount of miRNA is similar to the amount of mTF and mT, a small

fluctuation in even only one of their concentrations could be enough

to move the system in the protein expressed or repressed phase.

Right in this condition of near-equimolarity of competing species the

system is hypersensitive in changing of control parameters, as

miRNA or targets transcription rates [35]. The threshold is indeed

determined by the model kinetic parameters and in the limit of

strong interaction strength (high value of F) can be located in

ks*km1
zkm2

[17,18,20]. In miFFLC the situation is similar, but

the direct link between TF and T increases the effective target

transcription rate thus shifting the threshold toward a miRNA

transcription rate higher than in NM4. As a consequence, also the

hypersensitivity region shifts its right-boundary.

Switch-on and switch-off response times
In several cases the price to pay to be able to tightly control

protein concentrations is a slowing down of response times.

Response time is defined as the time the target protein needs to

reach half of the value of its final (ton) or initial (toff ) steady state

upon sudden activation or deactivation of TF transcription, that is

tonDx(ton)~
x(?)

2
and toff Dx(toff )~

x(0)

2
. The behaviour of

response times in purely transcriptional FFLs was studied in detail

in the past few years [30,31], the aim of this section is to address the

same issue in the micFFL. To this end we evaluated the switch-on

and switch-off response times of the target in micFFL and compared

them with the analogous quantities in NM1. We fixed the

parameters of micFFL so as to have the same steady state

concentrations both for TF and T. The remaining free parameters

are the miRNA amount and interaction strength. We can thus study

the change in the switch-on and switch-off response times as a

function of these quantities. The results are reported in Figure 5. As

it is easy to see the response times are always of the same order of

magnitude of those of NM1. In particular as the miRNA

concentration increases the switch-on time decreases and, for

physiological concentrations of the target, reaches the steady state

faster than in absence of miRNA. The efficiency of the miRNA plays

only a minor role in this trend. The opposite is true for the switch-off

time which shows a moderate increase while increasing miRNA

concentration and are instead strongly depressed for low miRNA

concentrations. It would be very interesting to extend our analysis to

keep into account also a possible self-regulatory interaction of the

TF, which is a quite common situation in the human regulatory

network. A detailed study of this more complex motif is beyond the

scope of the present paper, but we expect that the main effect of the

self-regulatory interaction should be to induce a change in the

switch-on and switch-off response times. The role of self-regulation

in tuning response times was studied in detail in [2,36] and we

expect their results should hold also in the present case.

Discussion

MicFFLs role in the regulatory network
The main outcomes of the analyses discussed in this paper are

that (i) miRNA-controlled feed-forward loops are able to fine-tune

the TF-T ratio to any desired value as a function of the miRNA

concentration and (ii) the peculiar topology of the circuit ensures a

remarkable stability of this ratio against stochastic fluctuations.

These two effects can be traced back to the titrative form of the

miRNA-target interplay [16] which in turn induces an indirect

TF-T interaction in competition with the standard transcriptional

regulation. The additional interaction is controlled by the miRNA

concentration which thus fine-tunes the TF-T ratio. The sum of

direct and indirect effects results in a stronger TF-T correlation,

available for a broader range of miRNA concentration and

interaction strengths with respect to any other topology involving

the three players (as confirmed by the comparison with the null

models we studied). Such peculiar property of micFFLs could be

very useful when TF and T must keep fixed concentration ratios,

for instance if they must interact with a given stoichiometry. This is

for instance the case of (i) TF-T pairs involved in switch-like

functions, as those controlling processes of tissue differentiation

and cell proliferation, or (ii) TF-TF pairs which cooperate in

regulating the same target. Indeed micFFLs involving proximal

and distal regulators acting on the same gene are strongly enriched

in the human regulatory network [10]. At the same time it is clear

that in a generic situation such TF-T linkage should be avoided:

the typical outcome of transcriptional regulation is that a small

change in the regulator induces a much larger response in the

regulated gene. This explains why this motif shows a strong

negative enrichment when we reshuffle the transcriptional links.

The strong positive enrichment we observe when reshuffling the

post-transcriptional side of the network suggests instead that

inducing a robust and stable fine-tuning of the TF-T ratio could be

one of the most important roles of miRNAs in the regulatory

network. In order to elucidate this point we performed two further

analyses: a functional enrichment analysis of the micFFL targets

and a comparison of the TF-T pairs with the PrePPI database of

protein-protein interactions.

Functional enrichment
We performed a functional analysis of the target gene list

corresponding to the FFLs obtained with (i) the JASPAR TF list

validated by all 4 miRNA-target databases and (ii) the ENCODE

TF list. We used DAVID algorithm [37,38], a comprehensive set

of functional annotation tools, to understand biological meaning

behind large lists of genes. We searched for enrichment based on

Gene Ontology terms, Kegg metabolic pathways and human

deseases. We found for a few categories an impressive enrichment

(Bonferroni corrected p-values below 10{30). Remarkably enough

the two lists of FFLs showed similar enrichment patterns and the

most enriched categories turned out to be exactly the expected

ones: regulation of transcription, regulation of cell proliferation,

positive regulation of cell differentiation, cell cycle and pathways in

cancer. We report in Supporting Information Table S1 (for the

Jaspar list) and Supporting Information Table S2 (for the Encode
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list), the complete list of enriched categories with a False Discovery

Ratio below 10{4.

MicFFLs with experimentally validated interactions
In order to decrease the number of false positives in the list of

putative micFFLs we selected those for which each one of the three

regulatory interactions was experimentally validated in at least one

experiment. This does not mean that all the three interactions are

present in the same biological conditions or that the circuit is

effectively active but it is certainly a strong indication in this

direction. The list combines information collected from several

databases (see details in section Material and Methods). We

obtained in this way a list of 499 micFFLs involving 365 distinct

TF-T pairs which are reported in Supporting Information Tables

S3,S4 and S5. We consider this list as our best candidates for a

possible experimental validation of the micFFL properties

discussed in the previous sections.

Comparison with the PrePPI database
We tested the conjecture that micFFLs could have a role in

stabilizing the stoichiometric ratio of proteins involved in physical

interactions by comparing our list of best candidate micFFLs with

the list of protein-protein interactions collected in the PrePPi

database [39]. Interactions in the database are validated through

an algorithm based on 3 d structure and functional analysis of the

polypeptide chain. The algorithm was trained on the interactions

of the major databases known till August 2010 and checked

through the new interactions noted between august 2010 and

Figure 4. Heat map of the correlation rTF,T for the micFFL and NM3,NM4 and NM5 Null Models. In each plot the values of rTF ,T is
mapped as a function of the miRNA concentration and of the interaction strength F . While for NM3 and NM5 the fluctuation of TF and T are almost
uncorrelated, both NM4 and the micFFL show a well defined region of large correlation. This correlation occurs for rather low miRNA concentrations
and for almost any value of the miRNA-mRNA interaction strength.
doi:10.1371/journal.pcbi.1003490.g004

Figure 5. Comparison of switch-on (A) and switch-off (B) response times between micFFL and direct regulation (NM1).
doi:10.1371/journal.pcbi.1003490.g005
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august 2011. After training, Zhang’s group predicted about 700

new interactions added to the PrePPI database. We found that 30

out of the 499 TF-T pairs were present in the PrePPi database

while the expected number was less than one. Assuming a

binomial distribution we found a p-value smaller than 10{50. It is

clear that we should consider this value with caution, since both

PrePPi and our databases contain statistically biased experimen-

tally validated data. However, the gap between the number of

expected interactions and those we actually found is so large that it

strongly supports our conjecture that micFFLs fine-tune and

stabilize the relative concentrations of interacting proteins.

A prototypical example: The micFFL involving E2F1 and
RB1 as targets and a set of miRNAs (miR-106a,miR-106b,
miR-17, miR-20a and miR-23b) as master regulators

Within the list of candidates with experimentally validated

interactions we selected, as an example, the micFFLs involving

E2F1 and RB1 as targets and a set of miRNAs (miR-106a, miR-

106b miR-17 miR-20a and miR-23b) as master regulators (see

Supporting Information Table S4). The network involving these

genes is reported in Figure 6. The experimental support for these

circuits is very strong (see [10] for the transcriptional regulation

and [40] for those involving the miRNAs). E2F1 and RB1 are

known to physically interact [33,41] and are in fact included in the

PrePPi database. The E2F1-RB1 system is a well known important

switch in the cell cycle. E2F1 belongs to the family of E2F genes,

which control the transition from G0/G1 to S phase in the cell (the

quiescent phase and the first checkpoint phase respectively). In

absence of mitogenic stimulation, E2F-dependent gene expression

is inhibited by interaction between E2F and members of the

retinoblastoma protein family RB (composed by RB1, RBL1 and

RBL2) [41]. When mitogens stimulate cells to divide, RB family

members are phosphorilated then reducing their binding to E2F.

The thus free-from-binding E2F proteins in turn activate

expression of their target genes and trigger cell cycle. In G0

phase almost all cells have E2F1 and RB1 proteins bound in

complexes [33,41]. In this state RB inhibits E2F functions and

consequently the cell cycle. It is clear that the stability of the

relative concentration of the two genes against stochastic

fluctuations is of crucial importance for the correct functioning

of this checkpoint. Our analysis suggests that this stability is

guaranteed by the five miRNAs listed above and by the peculiar

topology of the micFFLs they form with their targets. These

micFFLs allow a rapid reaction of RB1 in case of bursts of E2F1

production thus avoiding a dangerous erroneous activation of the

E2F1 pathway. The fact that the E2F1-RB1 pair is targeted

simultaneously by five miRNAs is likely to reinforce the

stabilization function. In our databases there are several other

instances of TF-T pairs targeted by more than one miRNA. These

are most probably the best candidates for further theoretical and

experimental studies.

Materials and Methods

Construction of the post-transcriptional side of the
regulatory network

As potential targets of miRNAs we selected only transcripts

corresponding to protein-coding genes completely annotated in

Ensembl 68 [27], for a total of 76722 known transcripts. To define

miRNA targets we used four freely available databases, chosen so

as to have the widest possible spectrum of different prediction

strategies. Three of them, doRiNA [23], microRNA.org [24] and

TargetScan [25], use algorithms based on sequence search

similarity, possibly considering target site evolutionary conserva-

tion. The last one, PITA [26], uses an algorithm based on

thermodynamic stability of the RNA-RNA duplex, considering

free energy minimization. Integrating the four databases we found

a total of 4638441 interactions involving 1581 miRNAs. For each

miRNA-T link we annotated how many databases confirm the

interaction. Then, out of these interactions, we selected those

involving only TFs as targets. We based our analysis on two

different TFs databases, JASPAR [28,29] and ENCODE [10]. We

found 34614 miRNA-TF interactions for JASPAR list and 39498

for ENCODE list, involving 127 and 121 TFs respectively.

Construction of the transcriptional side of the regulatory
network

TF-T interactions were obtained with two different strategies

depending on the TF database. For the JASPAR TF list we used

the Position Frequency Matrix (PFM) information contained in the

database [29] and constructed a standard search algorithm for

transcription factor binding sites (TFBS) within the target

promoter region. Following the same procedure adopted in

previous works on the subject [3,42] we choose 1 kb long

promoter regions, from 900 bases before the transcription start

site (TSS) to 100 bases after the TSS. We used the scoring function

proposed in [29], setting the threshold at 0.7 of the max score. We

found in this way a total of 948125 interactions. For the ENCODE

TF list we used the ChIP-seq data obtained within the framework

of the the ENCODE project [10]. These data were obtained for

the 121 TFs over 5 main cell lines. We combined together the

results of the different cell lines obtaining a total of 45328 TF-T

interactions.

Identification of micFFLs
We constructed the list of putative micFFL simply combining

the interaction links obtained above. We obtained a total of

Figure 6. The network of micFFLs involving E2F1 as transcription factor and RB1 as target.
doi:10.1371/journal.pcbi.1003490.g006
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75933600 and 2426300 micFFLs from JASPAR and ENCODE

respectively. The whole list of these micFFLs can be found into the

data package from Dryad repository [43]. In order to reduce the

number of false positives we then selected only the micFFLs with

both miRNA regulatory links confirmed by all the four databases.

We obtained in this way 129100 micFFLs in the Jaspar case and

3782 in the ENCODE case (Supplementary Tables S6 and S7).

Identification of micFFLs with experimentally validated
regulatory interactions

The list of micFFLs with experimentally validated regulatory

interactions was obtained combining information collected from

several databases. For the miRNART and the miRNARTF

interactions we used the last versions of miRTarBase V 3.5

(updated November, 2012), miRecords V.3 (updated on Novem-

ber, 2010) and miR2Disease (updated on Jun, 2010). We obtained

in this way a list of experimentally validated miRNA-T

interactions containing 462 miRNAs, 2280 target genes and a

total of 4277 independent interactions in human. For TFRT

interactions we used data from ENCODE (which contains a total

of 44842 regulatory interactions involving 122 TFs and 10104

target genes) and the last version of Tfact(v.2). Tfact contains genes

responsive to transcription factors, according to experimental

evidence reported in literature. It reports two datasets: (i) a sign

sensitive catalogue that indicates the type (up or down) of TF

regulation exerted on its targets and (ii) a signless catalogue that

includes all regulatory interactions contained in sign sensitive one

plus further interactions without the specific type of regulation.

Focusing on human the database contains a total 4299 regulatory

interactions involving 276 TFs and 1937 target genes. The total

number of non-redundant TF-T regulatory interactions obtained

combining the two datasets is 48850 with 335 TFs and 10,828

target genes. Combining the two datasets we obtained a total of

499 micFFLs. Out of them 95 involved a target which is itself a TF

and for 7 of them the transcriptional regulation is bidirectional

(Supporting Information Table S5). For the remaining 88

(Supporting Information Table S4) only one of the TFs regulates

the other and there is no reciprocal interaction. Finally, in the

remaining 404 micFFLs the target is not a TF (Supporting

Information Table S3).

Simulations and analytic calculations
Analytical results have been obtained with Mathematica 8.0.

Simulations present in SI have been obtained implementing

Gillespie’s direct algorithm [44].

Supporting Information
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(XLS)
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gene (not TF).
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Table S4 List of micFFL where transcription factor targets

another transcription factor.
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and, in turn, each gene is a transcription factor regulating the

other gene.

(XLS)
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