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Abstract. The problem of expressing a specific polynomial as the determinant of a square matrix of affine-linear
forms arises from algebraic geometry, optimization, complexity theory, and scientific computing. Mo-
tivated by recent developments in this last area, we introduce the notion of a uniform determinantal
representation, not of a single polynomial but rather of all polynomials in a given number of variables
and of a given maximal degree. We derive a lower bound on the size of the matrix, and present a
construction achieving that lower bound up to a constant factor as the number of variables is fixed
and the degree grows. This construction marks an improvement upon a recent construction due to
Plestenjak and Hochstenbach, and we investigate the performance of new representations in their
root-finding technique for bivariate systems. Furthermore, we relate uniform determinantal repre-
sentations to vector spaces of singular matrices, and we conclude with a number of future research
directions.
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1. Introduction and results. Consider an n-variate polynomial of degree at most d:

p =
∑
|α|≤d

cαx
α,

where x := (x1, . . . , xn), α ∈ Zn≥0, |α| :=
∑

i αi, x
α :=

∏
i x

αi
i , and where each coefficient cα is

taken from a ground field K. A determinantal representation of p is an N ×N -matrix M of
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the form

M = A0 +
n∑
i=1

xiAi,

where each Ai ∈ KN×N , with det(M) = p. We call N the size of the determinantal repre-
sentation. Clearly, since the entries of M are affine-linear forms in x1, . . . , xn, the integer N
must be at least the degree of p. The minimal size of any determinantal representation of p
is called the determinantal complexity of p.

Determinantal representations of polynomials play a fundamental role in several mathe-
matical areas: from algebraic geometry it is known that each plane curve (n = 2) of degree
d over an algebraically closed field K admits a determinantal representation of size d [9, 11].
Over nonalgebraically closed fields, and especially when restricting to symmetric determinantal
representations, the situation is much more subtle [21]. For larger n, only certain hypersur-
faces have a determinantal representation of size equal to their degree [3, 9]. In optimization,
and notably in the theory of hyperbolic polynomials [41], one is particularly interested in the
case where K = R, A0 is symmetric positive definite, and the Ai are symmetric. In this case,
the restriction of p to any line through 0 has only real roots. For n = 2 the converse also
holds, and indeed with a representation of size equal to the degree of p [17] (via homogeniza-
tion, this implies a conjecture of Lax [24]). For counterexamples to this converse holding for
higher n, see [6]. In complexity theory a central role is played by Valiant’s conjecture that
the permanent of an m × m-matrix does not admit a determinantal representation of size
polynomial in m [39]. Via the geometric complexity theory program [29] this leads to the
study of polynomials in the boundary of the orbit of the N ×N -determinant under the action
of the group GLN2(K) permuting matrix entries. Recent developments in this field include
the study of this boundary for N = 3 [19] and the exciting negative result in [7] that Valiant’s
conjecture can not be proved using occurrence obstructions proposed earlier in [30].

Our motivation comes from scientific computing, where determinantal representations of
polynomials have recently been proposed for efficiently solving systems of equations [34]. For
this application, it is crucial to have determinantal representations not of a single polynomial
p, but rather of all n-variate polynomials of degree at most d. Moreover, the representation
should be easily computable from the coefficients of p. Specifically, in [34] determinantal
representations are constructed for the bivariate case (n = 2) in which the entries of the
matrices A0, . . . , An themselves depend affine-linearly on the coefficients cα. This is what
we call a uniform determinantal representation of the generic polynomial p of degree d in n
variables; see section 2 for a precise definition.

Example 1.1 (the bivariate quadric). The identity

c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2 = det

−x 1 0
−y 0 1
c00 c10 + c20x+ c11y c01 + c02y


exhibits the matrix on the right as a uniform determinantal representation of the generic
bivariate quadric.

In applications, the matrix M is used as input to algorithms in numerical linear algebra
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that scale unfavorably with matrix size N , such as a complexity of O(N6) for n = 2 [34].
Consequently, we are led to consider the following fundamental question.

Question 1.2. What is the minimal size N∗(n, d) of any uniform determinantal represen-
tation of the generic polynomial of degree d in n variables?

A construction from [34] shows that for fixed n = 2 and d → ∞ we have N∗(2, d) ≤
1
4 d

2 +O(d); this construction is reviewed in section 4. We improve the construction from [34]
by giving a particularly elegant uniform determinantal representations of bivariate polynomials
of size 2d+ 1 in Example 4.1, and of size 2d− 1 in Example 4.6. In view of the obvious lower
bound of d this is clearly sharp up to a constant factor for d→∞, although we do not know
where in the interval [d, 2d − 1] the true answer lies. We show in section 7 how to use these
small determinantal representations of bivariate polynomials for solving systems of equations.
Before that, we focus on the asymptotic behavior of N∗(n, d) for fixed n and d→∞. In this
setting, we derive the following result.

Theorem 1.3. For fixed n ∈ Z≥2 there exist positive constants C1, C2 (depending on n) such
that for each d ∈ Z≥0 the smallest size N∗(n, d) of a uniform determinantal representation
of the generic polynomial of degree d in n variables satisfies C1d

n/2 ≤ N∗(n, d) ≤ C2d
n/2.

Moreover, C1 can be chosen such that the determinantal complexity of any sufficiently general
polynomial is at least C1d

n/2.

In the last statement of Theorem 1.3, “sufficiently general” means that the coefficient vec-
tor of the polynomial lies in some (unspecified) Zariski-open and dense subset (when working
over infinite fields), or should be interpreted in a suitable counting sense (when working over
finite fields); see the proof of Theorem 1.3 in section 4. Note also that this statement does
not require the determinantal representation to depend affine linearly on the coefficients of
the polynomial.

We will compare our results with previous constructions, most notably with those by
Quarez [35, Thm. 4.4], who proves the existence of a symmetric representation of size

(
n+b d

2 c
n

)
.

For fixed n and d → ∞, [35] therefore has the asymptotic rate ∼ dn, meaning that the
results of this paper represent a clear improvement. For fixed d and n→∞, [35] leads to the
asymptotic behavior ∼ nbd/2c, which is similar to our bounds; we will discuss more details in
section 8.

In section 2 we formalize the notion of uniform determinantal representations, study their
symmetries, and derive some simple properties. In particular, we relate uniform determinantal
representations to spaces of singular N × N -matrices. In section 3 we briefly review some
of the existing literature on these singular spaces, and we prove that for N > 4 there are
infinitely many equivalence classes of such objects; this poses an obstruction to a “brute-
force” approach towards finding lower bounds on N∗(n, d). In section 4 we present an efficient
explicit construction and prove our main result, namely Theorem 1.3. We also construct
alternative uniform determinantal representations that are worse in terms of size, but which
are optimal under certain restrictions on the underlying singular matrix space. In section 5 we
give upper bounds on N∗(n, d) for small n and d and determine N∗(2, 2) and N∗(3, 2) exactly.
We extend representations from scalar to matrix polynomials in section 6. In section 7 we give
some numerical results that show that for n = 2 and small d we get a competitive method
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for computing zeros of polynomial systems. Finally, in section 8 we summarize our main
conclusions and collect some questions that arise naturally from our work.

2. Problem formulation and symmetries. In this section we give a formal definition of
uniform determinantal representations, and introduce a group that acts on such representa-
tions. We also show that a uniform determinantal representation gives rise to a vector space
consisting entirely of singular matrices; such spaces are the topic of next section.

Let K be a field and fix d, n ∈ Z≥0. Let Fd denote the polynomials of degree at most d
in the polynomial ring K[x1, . . . , xn]. Furthermore, let pn,d be the generic polynomial of that
degree, i.e.,

(1) pn,d =
∑
|α|≤d

cαx
α,

where x := (x1, . . . , xn), α ∈ Zn≥0, |α| :=
∑

i αi, x
α :=

∏
i x

αi
i , and where we consider cα as a

variable for each α.

Definition 2.1. For n, d ∈ Z≥0, a uniform determinantal representation of pn,d is an N×N -
matrix M with entries from K[(x1, . . . , xn), (cα)|α|≤d], of degree at most 1 in each of these
two sets of variables, such that det(M) = pn,d. The number N is called the size of the
determinantal representation.

To be explicit, we require each entry of M to be a K-linear combination of the monomials
1, xi, cα, cαxi, (i = 1, . . . , n, |α| ≤ d). This means that we can decompose M as M0 + M1,
where M0 contains all terms in M that do not contain any cα, and where M1 contains all
terms in M that do. We will use the notation M = M0 +M1 throughout this paper. When n
and d are fixed in the context, we will also speak of a uniform determinantal representation
without reference to pn,d. Our ultimate aim is to determine the following quantity.

Definition 2.2. For n, d ∈ Z≥0, N∗(n, d) ∈ Z>0 is the minimum among all sizes of uniform
determinantal representations of pn,d.

This minimal size could potentially depend on the ground field K, but the bounds that
we will prove do not. Note that in the definition of N∗(n, d) we do not allow terms in M of
degree strictly larger than one in the cα. Relaxing this condition to polynomial dependence on
the cα might affect the exact value of N∗, but by Theorem 1.3 it can only affect the constant
in front of dn/2 for n fixed and d→∞.

Given a uniform determinantal representation M of size N , and given matrices g, h in
SLN (K), the group of determinant-one matrices with entries in K, the matrix gMh−1 is
another uniform determinantal representation of pn,d. In this manner, the group SLN (K) ×
SLN (K) acts on the set of uniform determinantal representations of pn,d. Moreover, there
exist further symmetries, arising from affine transformations of the n-space. Recall that these
transformations form the group AGLn(K) = GLn(K) n Kn generated by invertible linear
transformations and translations.

Lemma 2.3. The group AGLn(K) acts on uniform determinantal representations of pn,d.

This statement is empty without making the action explicit, as we do in the proof.
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Proof. Let g ∈ AGLn(K) be an affine transformation of Kn, and expand

pn,d(g−1x, c) =
∑
|α|≤d

c′αx
α,

where the c′α are linear combinations of the cα. More precisely, the vector c′ can be written as
ρ(g)c, where ρ is the representation of AGLn(K) on polynomials of degree at most d regarded
as a matrix representation relative to the monomial basis.

Now let M = M(x, c) be a uniform determinantal representation of pn,d. Then

det(M(g−1x, ρ(g)−1c)) = pn,d(g−1x, ρ(g)−1c) = pn,d(x, c),

i.e., M(g−1x, ρ(g)−1c) is another uniform determinantal representation of pn,d. The action of
g is given by M 7→M(g−1x, ρ(g)−1c).

Example 2.4 (the bivariate quadric revisited). Take n = d = 2 and the affine transformation
g(x, y) := (y, x+ 1) with inverse g−1(x, y) = (y − 1, x). We have

p2,2(g−1(x, y)) = (c00 − c10 + c20) + (c01 − c11)x+ (c10 − 2c20)y + c02x
2 + c11xy + c20y

2.

We find

c′ =



c′00
c′10
c′01
c′20
c′11
c′02

 =



1 −1 0 1 0 0
0 0 1 0 −1 0
0 1 0 −2 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0





c00
c10
c01
c20
c11
c02

 = ρ(g)c; ρ(g)−1 =



1 0 1 0 0 1
0 0 1 0 0 2
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 .

If we make the substitutions

c00 7→ c00 + c01 + c02, c10 7→ c01 + 2c02, c01 7→ c10 + c11, x 7→ y − 1,
c20 7→ c02, c11 7→ c11, c02 7→ c20, y 7→ x

in the uniform determinantal representation of Example 1.1, then we arrive at the matrix 1− y 1 0
−x 0 1

c00 + c01 + c02 c01 + c02 + c02y + c11x c10 + c11 + c20x


whose determinant also equals p2,2.

The action of the affine group will be used in section 5 to determine the exact value of
N∗(n, 2) for n = 2 and 3. We now turn our attention to the component M0 of a uniform
determinantal representation M .

Lemma 2.5. For any uniform determinantal representation M = M0 +M1 of size N , the
determinant of M0 is the zero polynomial in K[x1, . . . , xn]. Moreover, at every point x̄ ∈ Kn,
the rank of the specialization M0(x̄) ∈ KN×N is exactly N − 1.
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Proof. The first statement follows from the fact that det(M0) is the part of the polynomial
det(M) which is homogeneous of degree zero in the cα; hence zero.

By specializing the vector x of variables to a point x̄ ∈ Kn, the rank of M0 cannot
increase, so the rank of M0(x̄) is at most N − 1. However, if it were at most N − 2, then
after column operations on M by means of determinant-one matrices with entries in K we
may assume that M0(x̄) has its last two columns equal to 0. This means that all entries
of M(x̄) = M0(x̄) + M1(x̄) in these columns are linear in the cα. This in turn implies that
any term in the polynomial detM(x̄) is at least quadratic in the cα. But on the other hand
detM(x̄) equals pn,d(x̄), which is a nonzero linear polynomial in the cα (nonzero since not
every polynomial of degree at most d vanishes at x̄). This contradiction implies that the rank
of M0(x̄) is N − 1.

Lemma 2.6. If M = M0 + M1 is a uniform determinantal representation of size N , then
V ⊆ FN−1 spanned by the (N − 1)× (N − 1)-subdeterminants of M0 satisfies F1 · V ⊇ Fd.

Here, as in the rest of this paper, by the product of two spaces of polynomials we mean
the K-linear span of all the products.

Proof. Let Dij be the determinant of the submatrix of M0 obtained by deleting the ith row
and the jth column. On the one hand, det(M) = pn,d is linear in the cα by assumption, and
on the other hand, by expanding det(M) we see that the part of det(M) that is homogeneous
of degree one in the cα is ∑

i,j

(−1)i+j(M1)ijDij ;

this therefore equals pn,d. Hence any element q of Fd is obtained from the expression above
by specializing the variables cα to the coefficients of q. Since each (M1)ij is then specialized
to an element of F1, we find q ∈ F1 · V .

3. Spaces of singular matrices. Let M = M0 + M1 be a uniform determinantal repre-
sentation of pn,d. Writing M0 = B0 +

∑n
i=1 xiBi, Lemma 2.5 implies that the linear span

〈B0, . . . , Bn〉K ⊆ KN×N consists entirely of singular matrices (and indeed that this remains
true when extending scalars from K to an extension field). There is an extensive literature on
such singular matrix spaces; see, e.g., [12, 14] and the references therein. The easiest examples
are the following.

Definition 3.1. A subspace A ⊆ KN×N is called a compression space if there exists a
subspace U ⊆ KN with dim(〈uTA | A ∈ A, u ∈ U〉K) < dimU . We call the space U a witness
for the singularity of A.

Given any two subspaces U, V ⊆ KN with dimV = −1 + dimU , the space of all matrices
which map U into V (acting on row vectors) is a compression space with witness U . It is easy
to see that these spaces are inclusionwise maximal among all singular spaces.

If A is a singular matrix space, then so is gAh−1 for any pair (g, h) ∈ GLN (K)×GLN (K).
We call the latter space conjugate to the former.

Example 3.2. For N = 2, every singular matrix space is a compression space, hence con-
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jugate to a subspace of one of the two spaces{[
∗ ∗
0 0

]}
,

{[
0 ∗
0 ∗

]}
,

where the ∗s indicate entries that can be filled arbitrarily. A witness for the first space is the
span 〈e2〉 of the second standard basis vector, and a witness for the second space is K2.

For N = 3, there are four conjugacy classes of inclusion-maximal singular matrix spaces,
represented by the three maximal compression spaces

∗ ∗ ∗∗ ∗ ∗
0 0 0

 ,


∗ ∗ ∗0 0 ∗

0 0 ∗

 ,


0 ∗ ∗

0 ∗ ∗
0 ∗ ∗

 ,

and the space of skew-symmetric 3 × 3-matrices [13]; the latter is not a compression space.
For N = 4, there are still finitely many (namely, 10) conjugacy classes of inclusion-maximal
singular matrix spaces [13, 14], but this is not true for N ≥ 5, as Theorem 3.4 below shows.
This theorem is presumably folklore; we include a proof since we have not been able to find a
literature reference for it.

Proposition 3.3. For any m,N ∈ Z≥0 the locus Xm in the Grassmannian Gr(m,KN×N ) of
m-dimensional subspaces of KN×N consisting of all singular subspaces is closed in the Zariski
topology. Moreover, the locus Um in Xm consisting of all inclusionwise maximal singular
subspaces is open inside Xm.

Proof. The first statement is standard. For the second statement, consider the incidence
variety

Z := {(A,A′) ∈ Xm ×Xm+1 | A ⊆ A′} ⊆ Xm ×Xm+1,

which is a closed subvariety of Xm ×Xm+1. The projection of Z into Xm is the complement
of Um, and it is closed because Xm+1 is a projective variety.

Theorem 3.4. Assume that K is infinite and of characteristic unequal to 2. For N ≥ 5
there are infinitely many conjugacy classes of inclusionwise maximal singular N ×N -matrix
spaces.

Proof. TakeN ≥ 5. For sufficiently general skew-symmetric matrices A1, . . . , AN ∈ KN×N

set A := (A1, . . . , AN ) and define the space

BA := {(A1x| · · · |ANx) | x ∈ KN} ⊆ KN×N .

Each matrix in this space is singular, since for x 6= 0 we have

xT (A1x| · · · |ANx) = (xTA1x, . . . , x
TANx) = 0.

In [14] it is proved that, for a specific choice of the tuple A, the space BA is maximal among
the singular subspaces of KN×N . By Proposition 3.3, BA is maximal for sufficiently general
A as well (note that we may first extend K to its algebraic closure to apply the proposition).
In the notation of that proposition, we have a rational map

ϕ : SN 99K UN , A 7→ BA,



422 BORALEVI ET AL.

where S ⊆ KN×N denotes the subspace of skew-symmetric matrices; the dashed arrow indi-
cates that the map is defined only in an open dense subset of SN . For any nonzero scalar t,
ϕ(tA) = ϕ(A). We claim that, in fact, the general fiber of ϕ is indeed one-dimensional. As
the fiber dimension is semicontinuous, it suffices to verify this at a particular point where ϕ
is defined. We take Ai = Ei,i+1 − Ei+1,i for i = 1, . . . , N − 1 and AN general; here Eij is the
matrix with zeros everywhere except for a 1 at position (i, j). Let B ∈ SN ; if ϕ(A) = ϕ(B),
then there exists an invertible matrix g ∈ GLN (K) such that

(A1gx| · · · |ANgx) = (B1x| · · · |BNx)

for all x, so that Aig = Bi. Using skew-symmetry of Ai and Bi, we find that Aig = gTAi.
Substituting our choice of Ai for i ∈ {1, . . . , N − 1} yields gi,j = gj,i = 0 for all j with
|i− j| > 1, gi,i+1 = −gi,i+1, and thus gi,i+1 = 0 since charK 6= 2, and gi,i = gi+1,i+1. Hence, g
is a scalar multiple of the identity. It follows that the fiber of ϕ through A is one-dimensional
as claimed.

Since dimS =
(
N
2

)
, we have thus constructed an (N

(
N
2

)
− 1)-dimensional family inside

UN . Given any point A in UN , its orbit under GLN (K) × GLN (K) has dimension at most
2 (N2 − 1) (scalars act trivially). Now for N = 5 we have

N

(
N

2

)
− 1 = 5 · 10− 1 = 49 and 2 (N2 − 1) = 48,

so that we have found (at least) a one-parameter family of conjugacy classes of singular spaces.
For N > 5 the difference between N

(
N
2

)
− 1 and 2 (N2 − 1) is even larger.

For large N it seems impossible to classify maximal singular matrix spaces. The construc-
tion above already gives an infinite number of conjugacy classes, but there are many other
sources of examples. For instance, for infinitely many N there exists a maximal singular ma-
trix space in KN×N of constant dimension 8, at least if we assume that K has characteristic 0
[12]. On the other hand, if the singular matrix space A has dimension at least N2 −N , then
it is a compression space with either a one-dimensional witness or all of KN as witness [10]
(and hence of dimension exactly N2 − N). A sharpening of this result is proved in [14] (see
also [8]).

It should be noted that in many cases not even the dimension of such singular matrix
spaces is known, for fixed values of the size and rank of the matrices. There is a considerable
body of work devoted to giving lower and upper bounds for such dimensions, both in the case
of bounded and constant rank, but these bounds are rarely sharp; see, among many other
references, [15, 20, 38, 42] and the more recent works on skew-symmetric matrices of constant
rank [4, 25].

Hence, the fact that M0 represents a singular matrix space of dimension (at most) n+ 1
does not much narrow down our search for good uniform determinantal representations, except
in small cases discussed in section 5. However, for our constructions in section 4 we will only
use compression spaces where the witness has dimension 1 or about 1

2N , and our lower bounds
on N∗(n, d) are independent of the literature on singular matrix spaces.

4. Main result and explicit constructions. In this section we look at determinantal rep-
resentations M = M0 +M1, where M0 represents a compression space, which will lead us to
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the proof of our main Theorem 1.3. We then analyze the case where the compression space
has a one-dimensional witness.

The basic example is the following.

Example 4.1. Let p =
∑

i+j≤4 cijx
iyj be the generic polynomial of degree d = 4 in n = 2

variables. It has the following uniform determinantal representation:

(2) p = det



−x 1
−x 1

−x 1
−x 1

c00 c10 c20 c30 c40 −y
c01 c11 c21 c31 1 −y
c02 c12 c22 1 −y
c03 c13 1 −y
c04 1


,

where the empty positions denote zeros. Let M = M0 +M1 be the matrix on the right-hand
side. In this case, M0 represents a compression space with witness U = 〈e5, . . . , e9〉K , which
is mapped into 〈e6, . . . , e9〉K .

To verify the identity above without too many calculations, note that the five maximal
subdeterminants of the 4×5-block with x’s are, consecutively, 1,−x, x2,−x3, x4, and similarly
for y. The matrix obtained from M by deleting the column corresponding to xi and the row
corresponding to yj has determinant xiyj .

This example extends to a uniform determinantal representation of size 2d + 1 for the
generic bivariate polynomial p of degree d. We get p = det(M), where

M = (−1)d
[
Mx 0
L MT

y

]
,

Mx and My are d × (d + 1) matrices with 1 on the first upper diagonal and −x and −y,
respectively, on the main diagonal, while L is a (d+ 1)× (d+ 1) triangular matrix such that
`ij = cj−1,i−1 for i+ j ≤ d+ 2 and 0 otherwise. We will slightly improve on the size 2d+ 1 in
Example 4.6.

To generalize Example 4.1, we will need the following fundamental notion.

Definition 4.2. We say that a subspace V ⊆ K[x1, . . . , xn] is connected to 1 if it is nonzero
and its intersections Ve := V ∩ Fe satisfy F1 · Ve ⊇ Ve+1 for each e ≥ 0.

Note that this implies that V0 = 〈1〉. The terminology is that of [27, Definition 2.5].
Moreover, the same notion already appears in [22], only defined for a set S of monomials:
such a set is called connected to 1 if 1 ∈ S and each nonconstant monomial in S can be
divided by some variable to obtain another monomial in S. The linear span of S is then
connected to 1 in our sense. Translating monomials to their exponent vectors, we will call a
subset S of Zn≥0 connected to 0 if it contains 0 and for each α ∈ S \ {0} there exists an i such
that α− ei ∈ S, where ei is the ith standard basis vector.
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Example 4.3. For n = 2 the following picture gives a space V , connected to 1 and spanned
by the monomials marked with black vertices, such that F1 · V = F6:

1

x6 y6

This is the construction of [34], which shows that there exists a uniform determinantal repre-
sentation of the generic bivariate polynomial of degree d of size 1

4 d
2 +O(d) as d→∞.

Let V be a finite-dimensional subspace of K[x1, . . . , xn] connected to 1. Choose a K-basis
f1, . . . , fm of V whose total degrees increase weakly. For each i = 2, . . . ,m write

fi =
∑
j<i

`ijfj

for suitable elements `ij ∈ F1. Let MV be the (m− 1)×m-matrix whose ith row equals

(−`i1,−`i2, . . . ,−`i,i−1, 1, 0, . . . , 0).

Note that MV depends on the choice of basis and the `ij , but we suppress this dependence in
the notation, since the property of MV in the next lemma does not depend on the choice of
basis.

Lemma 4.4. The K-linear subspace of K[x1, . . . , xn] spanned by the (m − 1) × (m − 1)-
subdeterminants of MV equals V .

Proof. By construction, MV has rank m − 1 over the field K(x1, . . . , xn) and satisfies
MV · (f1, . . . , fm)T = 0. By (a version of) Cramer’s rule, the kernel of MV is also spanned by
(D1,−D2, . . . , (−1)m−1Dm), where Dj is the determinant of the submatrix of MV obtained
by removing the jth column. So these two vectors differ by a factor in K(x1, . . . , xn). Since
D1 = 1 = f1 we find that they are, in fact, equal. Hence 〈D1, . . . , Dm〉 = V as claimed.

Proposition 4.5. Let V,W ⊆ K[x1, . . . , xn] be subspaces connected to 1 such that F1 · V ·
W ⊇ Fd. Then there exists a uniform determinantal representation of the generic n-variate
polynomial of degree d of size −1 + dimV + dimW .

Proof. Set m1 := dimV and m2 := dimW . Consider the matrix

M :=
[
MV 0
L MT

W

]
,

with MV and MW the matrices of sizes (m1−1)×m1 and (m2−1)×m2 from Lemma 4.4, and
where L = (`ij)ij is an m2 ×m1-matrix to be determined. Note that the determinant of M
is linear in the entries of L. Indeed, setting L = 0 yields the singular matrix M0, so det(M)
contains no terms of degree 0 in the entries of L. Furthermore, deleting from M two or more
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of the first m1 columns, we end up with a matrix that is singular since, when acting on rows,
it maps the span of 〈e1, . . . , em1−1〉 into a space of dimension at most m1− 2, so det(M) does
not contain terms that are of degree > 1 in the entries of L.

Hence, the determinant equals
∑

ij ±`ijDjEi, where the Dj are the maximal subdetermi-
nants of MV and the Ei are the maximal subdeterminants of MW . By Lemma 4.4 we have
V = 〈D1, . . . , Dm1〉K and W = 〈E1, . . . , Em2〉K . Hence, the assumption that F1 · V ·W ⊇ Fd
ensures that we can choose the `ij ∈ F1 in such a manner that the determinant of M equals
the generic polynomial p.

Example 4.6. Example 4.1 can be slightly improved to a representation of size 2d− 1 by
taking V = 〈1, x, . . . , xd−1〉 and W = 〈1, y, . . . , yd−1〉; note that, indeed, F1 · V ·W ⊇ Fd. A
representation of size 2d− 1 for the polynomial p from (2) is

(3) p = −det



−x 1
−x 1

−x 1
c00 c10 c20 c30 + c40x −y
c01 c11 c21 + c31x 1 −y

c02 + c03y c12 + c22x 1 −y
c13x+ c04y 1


.

We expect that the factor 2 cannot be improved, but do not know how to prove this.

Remark 4.7. A representation of the form (3) can also be obtained from the linearizations
based on dual basis from [36]. There, linearizations of a univariate polynomial are presented
that use the basis of the form ϕi(x)ψj(x), where ϕi and ψj are polynomials. If we use the
same approach for a bivariate polynomial with the standard basis ϕi = xi and ψj = yj , we
get a representation of the form (3) up to permutations of rows and columns.

We will now prove our main theorem.

Proof of Theorem 1.3, lower bound. We will prove the statement that, for fixed n, the
determinantal complexity of any sufficiently general polynomial p ∈ Fd is bounded from
below by a constant times dn/2; this implies the same lower bound for N∗(n, d). Consider the
polynomial map ϕ : FN×N1 → FN which takes an N × N -matrix of affine-linear forms to its
determinant.

First assume that K is infinite. Then the Krull dimension of imϕ, with the topology
induced from the Zariski topology on the finite-dimensional vector space FN , is at most that
of the domain FN×N1 of ϕ, namely, N2(n+ 1). On the other hand, if imϕ contains an open,
dense subset of Fd, then its dimension must be at least dimFd. We find the inequality

(4) N2(n+ 1) ≥ dimFd =
dn

n!
+O(dn−1),

from which the existence of C1 follows.
On the other hand, if K is finite with q elements, then if imϕ contains a positive fraction

c of Fd for d → ∞, we obtain the inequality N2(n + 1) ≥ cd
n

n! + O(dn−1) by inspecting the
exponents of q.
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Remark 4.8. In the proof of the lower bound we can slightly improve the constant in front
of dn/2 as follows: by multiplying a representation of a nonzero polynomial p from the left
with a nonidentity matrix in SLN (K), we obtain a distinct determinantal representation of
p. Thus if K is infinite, the fibers of ϕ have dimension at least N2 − 1, and we find the
stronger inequality N2(n + 1) − N2 + 1 ≥ dimFd. A similar argument holds for finite K.
One can perhaps repeat this argument with right multiplication, so as to peel off another
term N2 − 1 from the left-hand side, and use the group AGLn(K) from section 2 to peel
off another n2 + n—but for this one would need a more careful analysis of the stabilizer in
SLN (K)× SLN (K)×AGLn(K) of a determinantal representation.

Proof of Theorem 1.3, upper bound. We first give a simple construction for even n that
we upgrade later into a construction for odd n.

Assume that n = 2m with m ∈ Z≥1. Let V be the space of polynomials in x1, . . . , xm
of degree at most d− 1, and let W be the space of polynomials in xm+1, . . . , xn of degree at
most d − 1. Then V and W are connected to 1 and we have F1 · V ·W ⊇ Fd, so that by
Proposition 4.5 we have N∗(n, d) ≤ −1 + dimV + dimW . Now compute

dimV = dimW =
(
m+ d− 1

m

)
=

dn/2

(n/2)!
+O(dm−1).

This implies the existence of C2 for even n.
For n = 2m+ 1 with m ∈ Z≥1 we upgrade the above construction using an idea for which

we thank Aart Blokhuis. For i = 0, 1 let Bi ⊆ Z≥0 denote the set of nonnegative integers
that can be expressed as

∑e
j=0 bj2

2j+i with bj ∈ {0, 1}, i.e., whose binary expansions have
ones only at even positions (for i = 0, counting the least significant bit as zeroth position)
or only at odd positions (for i = 1). Observe that B0 + B1 = Z≥0 and that both B0 and B1
contain at most a constant times

√
d of the first d nonnegative integers for every d—they have

“dimension 1/2”. Now set Ai = Bi ∩ [0, d] for i = 0, 1 so that A0 + A1 ⊇ Z≥0 ∩ [0, d]. One
can show that the number of elements of Ai is at most

√
3d+ 1, and to see that the bound is

sharp one may consider d of the form d = 1 + 22 + 24 + · · ·+ 22s and send s to infinity.
Let U0j be the set of monomials in x1, . . . , xm of degree at most j, and let U1j be the set of

monomials in xm+1, . . . , xn−1 of degree at most j. For i = 0, 1 now set Vi as the space spanned
by the monomials of the form xkn · ϕ, where k ∈ Ai and ϕ ∈ Ui,d−1−k, and the monomials
1, xn, . . . , xdi

n , where di = max(Ai). Then V0 and V1 are connected to 1 and F1 · V0 · V1 ⊇ Fd.
For i = 0, 1 we get

dimVi ≤
√

3d+ 1
(
m+ d− 1

m

)
=
√

3
dn/2

bn/2c!
+O(dm−1/2),

which implies the existence of C2 for odd n.

Example 4.9. For n = 5 the following picture shows the monomials that span the space
V0 for d = 7. Note that in this case B0 = {0, 1, 4, 5} and B1 = {0, 2} (the circles indicate the
monomials and the edges show that V0 is connected to 1):
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x6

x6

1 x65

1

2

The uniform determinantal representation constructed in the preceding proof involves a
compression space with a witness of dimension roughly N/2. One can ask what happens to
the bounds if we require the compression space to have a one-dimensional witness (or, dually
by transposition, with a full-dimensional witness). The uniform representation of the bivariate
quadric in Example 4.3 is of this form. It turns out that such representations have a bigger
size than the general case, but in turn the constant factor that we find in the bound is sharp.

Theorem 4.10. For fixed n, there exists a determinantal representation M = M0+M1 of the
generic n-variate polynomial of degree d of size 1

n·n! d
n+O(dn−1) such that the singular matrix

space represented by M0 is a compression space with a one-dimensional witness. Moreover,
under this latter additional condition on M0, the bound is sharp.

Proof. By Proposition 4.5 (with W = 〈1〉) it suffices to show the existence of a subspace
V ⊆ Fd connected to 1 and such that F1 · V = Fd, where dimV = 1

n dimFd + O(dn−1). We
will, in fact, show that V can be chosen to be spanned by monomials.

First, recall that there exists a lattice Λ in Zn−1 such that Zn−1 is the disjoint union of
Λ and its cosets ei + Λ for i = 1, . . . , n− 1, namely, the root lattice of type An generated by
the rows of the (n− 1)× (n− 1)-Cartan matrix

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ,
where the empty positions represent zeros [5, Planche 1]. In particular, the index of Λ in Zn−1

equals n. For example, if n = 3, here is the root lattice Λ (in black) and its two cosets (in
gray and white):

e1

e2

Now let ∆d be the simplex in Rn with vertices 0, de1, . . . , den, for i = 1, . . . , n let Si be the
set of lattice points in ∆d that have ith coordinate zero, and set S0 := (Z× Λ) ∩∆d. Define

S := S1 ∪ S2 ∪ · · · ∪ Sn ∪ S0,
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a subset of the lattice points in ∆d. We claim that S is connected to 0. Indeed, for each
i = 1, . . . , n the set Si is connected to 0, and from each point α in S0 one can walk within S0
to S1 by subtracting α1 times an e1.

Next, we claim that for each α ∈ ∆d∩Zn there exists a β ∈ S with α−β ∈ {0, e2, . . . , en}.
Indeed, there is a (unique) β′ with this property in Z× Λ. If this β′ has nonnegative entries,
then set β := β′ ∈ S0. Otherwise, α itself has a zero entry, say on the ith position, and we set
β := α ∈ Si.

Furthermore, for i = 1, . . . , n the set Si contains O(dn−1) vertices, and S0 contains 1
n ·

1
n! d

n + O(dn−1) vertices. This concludes the construction—note that in the construction of
Proposition 4.5 the matrix M0 has a zero row, so that it represents a compression space with
a one-dimensional witness.

For sharpness, assume that M = M0 + M1 is a uniform determinantal representation of
size N such that the singular matrix space represented by M0 is a compression space with a
one-dimensional witness. After a choice of basis of KN , we may assume that the first row of
M0 is identically zero; write M0 = [0|M ′0]T accordingly. Let uT be the first row of M1 and
write M1 = [u|M ′1]T . Then we have

p =
∑
|α|≤d

cαx
α = det[u|M ′0 +M ′1].

Let D1, . . . , DN denote the (N − 1) × (N − 1)-subdeterminants of M ′0. By Lemma 2.6, the
space V spanned by these satisfies F1 · V ⊇ Fd. This already gives a lower bound for dim(V )
equal to dn/((n + 1)n!) + O(dn−1). To improve the n + 1 in the denominator into an n, we
observe that by Cramer’s rule the map

FN1 → K[x1, . . . , xn], (`1, . . . , `N ) 7→
∑
i

(−1)i`iDi

has every column of M ′0 in its kernel. These columns are linearly independent over K (indeed
over K(x1, . . . , xn); see Lemma 2.5). We conclude that

(5) N · dimF1 − (N − 1) ≥ dimFd,

so that
N ≥ ((dimFd)− 1)/n = dn/(n · n!) +O(dn−1),

as desired.

5. Small n and d. In this section we give several uniform representations of, to the best
of our knowledge, the smallest possible size for cases where n and d are small. We start with
the two cases where we can compute N∗(n, d) exactly.

Proposition 5.1. N∗(2, 2) = 3.

Proof. Taking V = 〈1, x, y〉 and W = 〈1〉 in Proposition 4.5 we see that N∗(2, 2) ≤ 3; this
is the representation of Example 1.1. Suppose that a uniform determinantal representation
M = M0 +M1 of size N = 2 exists. Then, by Example 3.2, after acting with SL2(K)×SL2(K)
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and transposing if necessary, we may assume that the singular space represented by M0 is a
compression space with a one-dimensional witness. But then (5) reads

2 · 3− 1 = N · dimF1 − (N − 1) ≥ dimF2 = 6,

a contradiction. Hence N∗(2, 2) = 3.

Proposition 5.2. N∗(3, 2) = 4.

Proof. Taking V = 〈1, x, y, z〉 and W = 〈1〉 in Proposition 4.5 we see that N∗(3, 2) ≤ 4.
Suppose that a uniform representation of size N = 3 exists. Up to transposition, there are
three possibilities for the singular space A represented by M0; see Example 3.2 (where the
third compression space is conjugate to the transpose of the first):

1. Assume that A is a compression space with a one-dimensional witness, so that after
acting with SL3(K)× SL3(K) we have

M0 =

0 0 0
∗ ∗ ∗
∗ ∗ ∗

 .
Let Dj denote the determinant of the minor of M0 obtained by deleting the first row
and jth column. Then the linear map

Ω : F 3
1 7→ K[x, y, z], (l1, l2, l3) 7→ l1D1 − l2D2 + l3D3

has F2 ⊆ im Ω. Now inequality (5) reads

3 · 4− 2 = N · dimF1 − (N − 1) ≥ dimF2 = 10,

which holds with equality. This means that, in fact, im Ω must equal F2. In particular,
D1, D2, D3 must all be of degree one (or else im Ω would contain cubic polynomials).
The image of Ω depends only on the span V := 〈D1, D2, D3〉 ⊆ F1. If 1 6∈ V , then there
exists an affine transformation in AGL3(K) that maps V into a subspace of 〈x, y, z〉.
Then 1 6∈ F1 · V = im Ω, a contradiction. If 1 ∈ V , then after an affine transformation
we find 〈1〉 ⊆ V ⊆ 〈1, x, y〉. In that case, z2 6∈ F1 · V , another contradiction.

2. Assume that A is a compression space with a two-dimensional witness, so that after
row and column operations we have

M0 =

0 0 q
0 0 r
s t ∗

 ,
where q, r, s, t ∈ F1. Write M1 = (mij)ij . Using that det(M) is assumed to be linear
in the cαs, we find that

det(M) = −m11rt+m12rs+m21qt−m22qs.

Consequently, setting V1 := 〈q, r〉 and V2 := 〈s, t〉, we have F1 · V1 · V2 ⊇ F2. If 1 6∈ V1,
then by acting with a suitable element of AGL3(K) we achieve that V1 ⊆ 〈x, y, z〉. But
then F1 ·V1 ·V2 63 1. The same applies when 1 6∈ V2. On the other hand, if 1 ∈ V1∩V2,
then by an element in AGL3(K) we achieve that 〈1〉 ⊆ V1, V2 ⊆ 〈1, x, y〉. In that case,
z2 6∈ F1 · V1 · V2.
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3. Finally, assume that A is conjugate to a space of skew-symmetric matrices, so that
after conjugation

M0 =

 0 q r
−q 0 s
−r −s 0

 ,
where q, r, s ∈ F1. Set V := 〈q, r, s〉 ⊆ F1. Then the space spanned by the 2 × 2-
determinants of M0 is V ·V of dimension at most 6. Moreover, we have F1 ·V ·V ⊇ F2.
If 1 6∈ V , then by acting with AGL3(K) we achieve that V ⊆ 〈x, y, z〉, and hence
1 6∈ F1 · V · V . If, on the other hand, 1 ∈ V , then we achieve that 〈1〉 ⊆ V ⊆ 〈1, x, y〉,
and z2 6∈ F1 · V · V .

In each of these cases we arrive at a contradiction. Consequently, N∗(3, 2) = 4 as claimed.

The proofs above use the classification of spaces of small singular matrices in an essen-
tial manner, as well as the action of AGLn(K) on uniform determinantal representations.
We conjecture that N∗(4, 2) = 5, and that this can still be proved in the same manner, us-
ing the classification of 4 × 4-singular matrix spaces from [14]. But as Theorem 3.4 shows,
fundamentally new ideas will be needed to prove lower bounds in larger situations.

For some pairs of small n and d we now give the smallest uniform representations that
we have been able to find. For the constructions we use Proposition 4.5 with subspaces
V,W ⊆ K[x1, . . . , xn] spanned by the monomials and connected to 1. First, we give in Table 1
the minimal sizes known to us of uniform determinantal representations for some small values
of n and d.

Table 1
Minimal known sizes of uniform determinantal representations we have been able to construct for n-variate

polynomials of degree d; cf. Table 2.

n d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
2 3 5 7 9 11 13 15 17
3 4 7 10 14 18 22 27 34
4 5 9 14 19 26 34 44
5 6 11 18 26
6 7 13 22 33
7 8 15 27 39
8 9 17 32

The corresponding representations for the entries in Table 1 for n = 2, which are of size
2d − 1, are given in Example 4.6. For d = 2 we take V = 〈1, x1, . . . , xn〉 and W = 〈1〉;
therefore, N∗(n, 2) ≤ n+ 1, while for d = 3 we can take V = W = 〈1, x1, . . . , xn〉, and hence
N∗(n, 3) ≤ 2n − 1. In Table 2 we give sets V and W for the remaining nonzero entries in
Table 1. The subspaces V and W have the form V = V0 ∪ V1 and W = W0 ∪W1, where

(6)
V0 = 〈1, x1, . . . , xn, . . . , x

e
1, . . . , x

e
n〉,

W0 = 〈1, x1, . . . , xn, . . . , x
f
1 , . . . , x

f
n〉

for e = d(d− 1)/2e and f = b(d− 1)/2c, which yields d− 1 = e+ f . For clarity and brevity,
the variables x, y, z, w, u, v, q, s in Table 2 stand for x1, . . . , x8, respectively.
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Table 2
List of monomials in V1 and W1 that, together with V0 and W0 from (6), lead to uniform representations

of sizes as in Table 1.

n d V1 W1

3 4 − −
3 5 − xy
3 6 − xy, x2y
3 7 − x2y, y2z, z2x
3 8 − x2y, y2z, z2x, x2y2, z2w2

3 9 x3y, y3z, z3x x2y, x2z, y2z, x2y2, x2z2, y2z2

4 4 − xy
4 5 − xy, zw
4 6 x2y, y2z, z2w xy, x2y, zw
4 7 x2y, y2x, z2w, w2x, xy x2z, xz2, y2w, yw2

4 8 x2y, x2y2, z2x, x3y, y3z, z3w, w3x xy, xyz, xyw, y2z, z2w, w2x, w2y, x2z

5 4 − xy, zw
5 5 xy, yz, zw wu, xu

6 4 − xy, zw, uv
6 5 xy, zw, uv, wy yz, wu, xv, xz

7 4 − xy, zw, uv, xq, yq
7 5 xy, zw, uv, wy, qu yz, wu, vq, xz, wx

8 4 − xy, yz, xz, wu, wv, uv, qs

Example 5.3. To show how things get complicated, let us consider the construction for
d = 4. We take V = 〈1, x1, . . . , xn, x

2
1, . . . , x

2
n〉 and

W = 〈1, x1, . . . , xn, xα1xβ1 , . . . , xαmxβm〉,

where 1 ≤ αi < βi ≤ n and m is as small as possible. If we take all possible pairs xαxβ, then
clearly F1 · V ·W ⊇ F4, while on the other hand, when m = 0, F1 · V ·W does not contain
any monomials of the form

(7) xi xj xk x`

for 1 ≤ i < j < k < ` ≤ n. We need a minimal set of xαxβ to cover all possible monomials
(7), which is related to the following covering problem.

Given positive integers r ≤ k ≤ n, we say that a system S of r-subsets (called blocks) of
{1, . . . , n} is called a Turán (n, k, r)-system if every k-subset of {1, . . . , n} contains at least
one block from S [37]. The minimum size of S is called the Turán number T (n, k, r).

In our case, additional terms xα1xβ1 , . . . , xαmxβm form a Turán (n, 4, 2)-system. While for
most cases only upper and lower bounds for T (n, k, r) are known, Turán proved that

(8) T (n, 4, 2) = mn− 3
m(m+ 1)

2
,

where m = bn/3c; see [37, Formula (25)]. To obtain the minimal set one has to divide
{1, . . . , n} into three nearly equal groups (their sizes do not differ for more than one) and then
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take all pairs xαxβ such that α and β belong to the same group. As a result, such construction
gives a uniform representation of size N , where N = 1

6 n
2 + O(n), which therefore implies

N∗(n, 4) ≤ 1
6 n

2 +O(n).

6. Matrix polynomials. Suppose that we have a uniform representation M of pn,d as in
(1), and write

(9) M = M0 +M1 = M0 +
∑
|α|≤d

cαMα,

where each Mα ∈ FN×N1 . Now consider the matrix polynomial (cf. (1))

Pn,d =
∑
|α|≤d

xαCα,

where Cα is a k × k matrix. We will show that under certain assumptions we can construct
from M a matrix M̃ that represents Pn,d in the sense that det(M̃) = det(Pn,d). We obtain
M̃ from M in the following way. Each element of the form a0 + a1x1 + · · ·+ anxn is replaced
by the k × k matrix (a0 + a1x1 + · · ·+ anxn)Ik, where Ik is the k × k identity, and each cα is
replaced by the matrix Cα.

Theorem 6.1. Let (9) be a uniform representation of the generic polynomial (1) of degree d
in n variables and assume that there exist matrices Q and Z, whose elements are polynomials
in x1, . . . , xn such that det(Q) = det(Z) = 1, and QMZ is a triangular matrix with one
diagonal element equal to pn,d and all other diagonal elements equal to 1. Then

M̃ = M0 ⊗ Ik +
∑
|α|≤d

Mα ⊗ Cα

is a representation for the matrix polynomial Pn,d, i.e., det(M̃) = det(Pn,d).

Proof. It is easy to see that (Q⊗Ik)M̃(Z⊗Ik) is a block triangular matrix with one diagonal
block Pn,d while all other diagonal blocks are equal to Ik. Since det(Q⊗Ik) = det(Z⊗Ik) = 1,
it follows that det(M̃) = det(Pn,d).

Example 6.2. Theorem 6.1 applies to the uniform representation (2). Indeed, take

Q =



1
. . .

1
1 y y2 y3 y4

1 y y2 y3

1 y y2

1 y
1


, Z =



1
x 1
x2 x 1
x3 x2 x 1
x4 x3 x2 x 1

1
. . .

1


,
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then

QMZ =



1
1

1
1

p × × × c40
× × × c31 1
× × c22 1
× c13 1
c04 1


.

It is easy to see that there exist permutation matrices PL and PR such that

PL(QMZ)PR =



1
1

1
1

c40 × × × p
× × c31 × 1
× c22 × 1
c13 × 1

c04 1


is triangular and has the diagonal which satisfies Theorem 6.1. Therefore, we can apply
(2) for matrix polynomials by using block matrices. This can be generalized to a uniform
representation of size 2d+ 1 of the form (2). In a similar way we can show that this also holds
for representations of the form (3) of size 2d− 1.

Unfortunately, not all uniform determinantal representations induce a determinantal rep-
resentation of a general matrix polynomial in this manner. As a counterexample, let M be
such a uniform determinantal representation of the polynomial pn,d, |α|, |β| ≤ d, and construct
a representation of larger size

M ′ =
[
M 0
0 N

]
, with N =


0 cα cβ 1

−cα 0 1 0
−cβ −1 0 0
−1 0 0 1

 .
Then det(M ′) = det(M) det(N) = pn,d(1+cαcβ−cβcα) = pn,d, but M̃ ′ is not a representation
for the matrix polynomial Pn,d as the coefficient matrices Cα and Cβ do not commute in
general. This motivates the following definition.

Definition 6.3. A uniform determinantal representation M is minimal if there do not exist
constant matrices P and Z such that det(P ) = det(Z) = 1 and

PMZ =
[
∗ ∗
0 M2

]
, where M2 is square with det(M2) = 1.

We speculate that each minimal uniform representation gives rise to a representation for
a matrix polynomial.



434 BORALEVI ET AL.

7. Numerical experiments. Recently, a new numerical approach for computing roots of
systems of bivariate polynomials has been proposed in [34]. The main idea is to treat the
system as a two-parameter eigenvalue problem using determinantal representations.

Suppose that we are looking for roots of a system of bivariate polynomials

(10)
p =

∑
i+j≤d1 αijx

iyj = 0,
q =

∑
i+j≤d2 βijx

iyj = 0,

where p and q are polynomials of degree d1 and d2 over C. Let P = A0 + xA1 + yA2 and
Q = B0 + xB1 + yB2, where A0, A1, A2 ∈ CN1×N1 and B0, B1, B2 ∈ CN2×N2 , with det(P ) = p
and det(Q) = q, be determinantal representations of p and q, respectively. Then a root (x, y)
of (10) is an eigenvalue of the two-parameter eigenvalue problem

(11)
(A0 + xA1 + yA2)u = 0,
(B0 + xB1 + yB2) v = 0,

where u ∈ CN1 and v ∈ CN2 are nonzero vectors. The standard way to solve (11) is to consider
a joint pair of generalized eigenvalue problems [1]

(12)
(∆1 − x∆0)w = 0,
(∆2 − y∆0)w = 0,

where

∆0 = A1 ⊗B2 −A2 ⊗B1, ∆1 = A2 ⊗B0 −A0 ⊗B2, ∆2 = A0 ⊗B1 −A1 ⊗B0,

and w = u⊗ v.
In this particular application we can expect that the pencils in (12) are singular, i.e.,

det(∆1 − x∆0) ≡ 0 and det(∆1 − y∆0) ≡ 0. Namely, by Bézout’s theorem a generic system
(10) has d1d2 solutions, while a generic problem (11) has N1N2 eigenvalues. Unless (d1, d2) =
(N1, N2), both pencils in (12) are singular. In this case we first apply the staircase algorithm
from [28] to extract the finite regular eigenvalues. The method returns smaller matrices ∆̃0,
∆̃1, and ∆̃2 (of size d1d2 × d1d2 for a generic (10)) such that ∆̃0 is nonsingular and ∆̃−1

0 ∆̃1

and ∆̃−1
0 ∆̃2 commute. From

(∆̃1 − x∆̃0) w̃ = 0,

(∆̃2 − y∆̃0) w̃ = 0,

we compute the eigenvalues (x, y) using a variant of the QZ algorithm [18] and thus obtain
the roots of (10).

The above approach is implemented in the MATLAB package BiRoots [33] together with
the two determinantal representations from [34]. The first one, which we refer to as Lin1, is
a uniform one from Example 4.3 of size 1

4 d
2 +O(d) for a polynomial of degree d. The second

one, which we refer to as Lin2, is not uniform and involves some computation to obtain a
smaller size 1

6 d
2 +O(d). Although the construction of Lin2 is more time consuming, this pays

off later, when the staircase algorithm is applied to (12).
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Table 3 shows the sizes of determinantal representations for polynomials of small degree.
As expected, the new uniform determinantal representation of size 2d−1, which we refer to as
MinUnif, returns smaller matrices, which reflects later in faster computational times. It is also
important that Lin1 and MinUnif return real matrices for polynomials with real coefficients,
which is not true for Lin2.

Table 3
Size of the matrices for Lin1 and Lin2 for bivariate polynomials (n = 2) and various degrees d.

Method d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 11 d = 12
Lin1 5 8 11 15 19 24 29 35 41 48
Lin2 3 5 8 10 13 17 20 24 29 34
MinUnif 5 7 9 11 13 15 17 19 21 23

It has been reported in [34] that the determinantal representation approach for solving
systems of bivariate polynomials is competitive for polynomials of degree 9 or less. As we show
below, the new uniform representation MinUnif extends this to degree 15 and, in addition,
performs better than the existing representations for polynomials of degree 6 or more.

The numerical algorithm that uses MinUnif has complexity O(d6), which is also the com-
plexity of some numerical algorithms for systems of bivariate polynomials that are based on a
resultant; see, e.g., [31]. Such an approach is thus not efficient for polynomials of large degree.
We remark that there also exist probabilistic symbolic algorithms (see, e.g., [23, 26]) that aim
for a smaller complexity, such as one not much higher than O(d4).

In [34] the approach has been compared numerically to the following state-of-the-art nu-
merical methods for polynomial systems: NSolve in Mathematica 9 [43], BertiniLab 1.4 [32]
running Bertini 1.5 [2], NAClab 3.0 [44], and PHCLab 1.04 [16] running PHCpack 2.3.84 [40],
which turned out to be the fastest of these methods. To show the improved performance of
the new determinantal representation, we compare MinUnif to Lin1, Lin2, and PHCLab in
Table 4. For each d we run the methods on the same set of 50 real and 50 complex random
polynomial systems of degree d and measure the average time. For Lin1 and MinUnif, where
determinantal representations have real matrices for real polynomials, we report separate re-
sults for polynomials with real and complex coefficients. The timings for Lin1 and Lin2 are
given only for n ≤ 10 as for larger n these two linearizations are no longer competitive.

Of course, the computational time is not the only important factor; we also have to consider
the accuracy and reliability. In each step of the staircase algorithm a rank of a matrix has
to be estimated numerically, which is a delicate task. After several steps it may happen that
the gap between the important singular values and the meaningful ones that should be zero
in exact computation virtually disappears. In such a case the algorithm fails and does not
return any roots. As the number of steps in the staircase algorithm increases with degree of
the polynomials, such problems occur more often for polynomials of large degree. A heuristic
that usually helps in such cases is to apply the algorithm on a transformed system

p̃ := cp+ sq = 0,
q̃ := −sp+ cq = 0

for random c and s such that c2 + s2 = 1. As this transformation does not change the
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Table 4
Average computational times in milliseconds for Lin1, Lin2, MinUnif, and PHCLab for random full bivariate

polynomial systems of degree 3 to 15. For Lin1 and MinUnif separate results are included for real (R) and
complex polynomials (C).

d Lin1 (R) Lin1 (C) Lin2 PHCLab MinUnif (R) MinUnif (C)
3 6 8 4 116 6 7
4 9 11 6 130 12 13
5 20 26 13 151 18 20
6 39 71 28 174 27 27
7 96 160 51 217 36 44
8 205 395 118 264 59 74
9 467 1124 279 329 95 125

10 1424 3412 600 414 147 221
11 538 248 354
12 650 361 530
13 911 592 740
14 1142 842 1148
15 1531 1237 1835

conditioning of the roots, we can conclude that the difficulties with the staircase algorithm
are not directly related to the conditioning. The trick does not work every time, and it seems
that for some systems the only way to make the determinantal representation approach work
is to increase the machine precision.

We can apply the same approach to systems of polynomials in more than two variables.
However, since the size of the corresponding ∆-matrices is the product of sizes of all represen-
tations, this is competitive only for n = 3 and d ≤ 3. For a comparison, if we have a system of
three polynomials in three variables of degree 3, then the size of the ∆-matrices is 343× 343.
For degree 4 the size increases to 1000× 1000 and PHCpack is faster. Finally, for n = 4 and
the smallest nontrivial d = 2 we already get ∆-matrices of size 625 × 625 and the method is
not efficient.

8. Outlook. We have introduced uniform determinantal representations, which rather
than representing a single polynomial as the determinant of a matrix of affine-linear forms,
represent all polynomials of degree at most d in n variables as such a determinant. We have
seen that in the bivariate case, these determinantal representations are useful for numerically
solving bivariate systems of equations. In the general multivariate case we have determined, up
to constants, the asymptotic behavior of N∗(n, d), the minimal size of such a representation,
for n fixed and d→∞.

We now summarize several results that have been shown in this paper.
• For fixed n and d → ∞, N∗(n, d) ∼ dn/2, and indeed this is also the asymptotic

behavior of the determinantal complexity of a sufficiently general polynomial; see
Theorem 1.3. This is a noticeable improvement on [35], where an asymptotic rate of
N∗(n, d) ∼ dn is shown, with the remark that the representation in [35] is symmetric.
However, symmetry currently cannot be exploited by methods that compute roots of
multivariate polynomial systems.
• Tables 1 and 2 give constructions for the smallest representations that we have been
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able to find for some small values of n and d.
• N∗(n, 2) ≤ n+ 1; cf. Table 1.
• N∗(n, 3) ≤ 2n+ 1; cf. Table 1.
• N∗(n, 4) ≤ 1

6n
2 +O(n); see Example 5.3.

• N∗(2, d) ≤ 2d − 1; cf. Table 1. Note that this result satisfies Dixon [11] up to an
asymptotic factor 2 whereby no computations are necessary for the determinantal
representation. In particular, it is a major improvement on the ∼ 1

4d
2 of [34, 35].

• Due to the smaller sizes of the representations, the numerical approach for bivariate
polynomials (n = 2) is competitive to (say) Mathematica for degree d up to d ≈ 15
(see section 7); this in contrast to d ≈ 9 as obtained in [34].
• Under some conditions, the results carry over to the case of matrix coefficients (see

section 6).
There are still many interesting open questions, both of intrinsic mathematical interest and of
relevance to polynomial system solving. First, in a situation where the degree d is fixed and
the number n of variables grows, what is the asymptotic behavior of N∗(n, d)? Inequality (4)
and dimFd = nd

d! +O(nd−1) for n→∞ yields a lower bound which is a constant (depending
on d) times n(d−1)/2. For odd d we obtain a matching upper bound (with a different constant)
by using Proposition 4.5 with V = W = F(d−1)/2. However, for even d we only know how
to obtain O(nd/2). We remark that in the regime of fixed d, O(nbd/2c) is the same bound as
obtained in [35, Thm. 4.4] for symmetric uniform representations.

Second, in the case of fixed n and varying d studied in this paper, what are the best
constants in Theorem 1.3? More specifically, for fixed n, does limd→∞

N∗(n,d)
dn/2 exist, and if so,

what is its value?
Third, how can our techniques for upper bounds and lower bounds be further sharp-

ened? Can singular matrix spaces other than compression spaces be used to obtain tighter
upper bounds (constructions) on N∗(n, d)? Can the action of the affine group be used more
systematically to find lower bounds on N∗(n, d)?

Finally, is it true that each minimal uniform representation gives rise to a representation
of the corresponding matrix polynomial (cf. section 6)?

Appendix A. Algorithm. We give an algorithm that constructs a determinantal represen-
tation for an n-variate polynomial (1) of degree at most d, where n ≥ 2. It is based on the
construction from the proof of Theorem 1.3 for even n, but can be applied to odd n as well.
For large d the algorithm returns matrices of size O(ddn/2e).

Let m = bn/2c, and let S1 be the list of all monomials in x1, . . . , xm of degree d−1 and S2
the list of all monomials in xm+1, . . . , xn of degree d− 1. For ϕ ∈ Si we denote by pos(ϕ, Si)
the position of ϕ in Si for i = 1, 2.

We take for Vi the span of all monomials in Si for i = 1, 2. The algorithm returns an
N ×N block matrix

(13) M =
[
MV1 0
L MT

V2

]
such that det(M) = ±p, where MV1 is of size (N1− 1)×N1, MV2 is of size (N2− 1)×N2, and
L is of size N2 ×N1, where N1 =

(
m+d−1
m

)
, N2 =

(
n−m+d−1
n−m

)
, and N = N1 +N2 − 1.
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The outline of the algorithm is given in Algorithm 1. In Part 1 we construct matrices
MV1 and MV2 . Note that we do not have to construct S1 and S2 explicitly, we just need an
efficient method to compute the position of a monomial from S1 or S2. We do not give the
details, but by storing additional O(nd) parameters it is possible to implement the function
pos(ϕ, Si) so that its time complexity is O(d). To represent p with (13) we take each nonzero
term cαx

α of p and write xα = z · ϕ1 · ϕ2, where z ∈ {1, x1, . . . , xn}, ϕ1 ∈ S1, and ϕ2 ∈ S2.
We put cαz on the position (j2, j1) in L, where ji = pos(ϕi, Si) for i = 1, 2.

If we write M as a sparse matrix, then the complexity of Algorithm 1 is O(Nd) for Part
1 and O(kd) for Part 2, where k is the number of nonzero coefficients in p. In the worst case,
when all coefficients in p are nonzero, the overall complexity is O

((
n+d
n

)
d
)
.

Algorithm 1. For a given n-variate polynomial p of degree d, where n ≥ 2, the algorithm
returns matrix M such that det(M) = ±p.
Part 1: Construction of MV1 and MV2

m = bn/2c, N1 =
(
m+d−1
m

)
, N2 =

(
n−m+d−1
n−m

)
S1 is the list of all monomials in x1, . . . , xm of degree d− 1
S2 is the list of all monomials in xm+1, . . . , xn of degree d− 1
for i = 1, 2

set MVi to a zero (Ni − 1)×Ni matrix
MVi(1 : Ni − 1, 2 : Ni) = INi−1
for all monomials ϕ ∈ Vi of degree at least 1

set z = xi1 , where ϕ = x
αi1
i1
· · ·xαir

ir
and αij > 0 for j = 1, . . . , r

set MVi(j, k) = −z, where j = pos(ϕ, Vi)− 1 and k = pos(z−1 · ϕ, Vi)

Part 2: Construction of L
set L to a zero N2 ×N1 matrix
for all nonzero terms cαxα of polynomial p

if |α| = d
set z = xi1 , where xα = x

αi1
i1
· · ·xαir

ir
and αij > 0 for j = 1, . . . , r

else
set z = 1

split xα as xα = z · ϕ1 · ϕ2, where ϕ1 ∈ V1 and ϕ2 ∈ V2
set L(k, j) = cαz, where j = pos(ϕ1, V1) and k = pos(ϕ2, V2)

Return M =
[MV1 0

L MT
V2

]
.

Example A.1. If we apply Algorithm 1 to

p = 2 + 3x2
1x2x3 + 4x1x2x3 + 5x2

2x4 + 6x2x3x4 + 7x3x4 + 8x4
5,

then n = 5, d = 4, and the algorithm uses monomial lists (ordered in the degree negative
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lexicographic ordering)

S1 = {1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2},

S2 = {1, x3, x4, x5, x
2
3, x3x4, x3x5, x

2
4, x4x5, x

2
5, x

3
3, x

2
3x4, x

2
3x5, . . . , x

3
4, x

2
4x5, x4x

2
5, x

3
5}.

The result of Part 1 is

MV1 =



−x1 1
−x2 1

−x1 1
−x1 1
−x2 1

−x1 1
−x1 1

−x1 1
−x2 1


,

while MV2 is a 19× 20 matrix with the following nonzero elements:
(a) 1 on the first upper diagonal,
(b) −x3 on (1, 1), (4, 2), (5, 3), (6, 4), (10, 5), (11, 6), (12, 7), (13, 8), (14, 9), and (15, 10),
(c) −x4 on (2, 1), (7, 3), (8, 4), (16, 8), (17, 9), and (18, 10),
(d) −x5 on (3, 1), (9, 4), and (19, 10).

In Part 2 the algorithm builds a 20× 10 matrix L with nonzero elements

`11 = 2, `25 = 4, `36 = 5, `61 = 7, `63 = 6 + 3x1, and `20,1 = 8x5.

The final result is a 29× 29 matrix M =
[MV1 0

L MT
V2

]
that satisfies det(M) = −p.
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