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Abstract

We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized

ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the ma-

terial as grains with randomly distributed sizes and varying exchange constant at the edges. As expected,

magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous appli-

cation of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which

causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these

ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that

the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also

extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with

the results of micromagnetic simulations.

Keywords: Chiral magnetic bubble, Domain wall, Perpendicularly magnetized ultra-thin films,

Dzyaloshinskii-Moriya interaction and Vertical Bloch lines.

1. Introduction

The study of domain wall (DW) dynamics in ultra-thin films and nanowires has attracted significant

attention in the spintronics research community due to its potential for applications in future memory

[29, 9, 37], logic [1] and sensing [36, 3] devices. All these applications require moving multiple DWs precisely

with applied spin-polarised currents or magnetic fields. Initially, DW dynamics in Permalloy with in-plane

magnetic anisotropy were extensively studied [8, 25, 18, 38, 26]. Afterwards, perpendicularly magnetized

ultra-thin films attracted particular interest due to narrower domain walls compared to their in-plane mag-

netized counterparts. It was found that current-driven DW motion provides higher efficiency due to the

enhanced values of spin-torque efficiency [2, 4], with the DWs moving in the same direction as that of the

electrons flow. On the contrary, in heterostructures composed of a magnetic ultra-thin film adjacent to a

heavy metal layer, it was found that DWs move in the direction opposite to the flow of electrons. This

behaviour was attributed to the spin Hall effect [7], which acts on the walls having a Néel configuration. In
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simultaneous developments, it was suggested that in such ultra-thin films the Dzyaloshinskii-Moriya Inter-

action (DMI) [6, 27] can result in a Néel wall type rather than a Bloch one [34, 17, 31, 21]. Interfacial DMI

arises due to the high spin-orbit coupling in the heavy metal layer and the broken inversion symmetry along

the thin-film layers. It results in an anti-symmetric exchange interaction, favoring an orthogonal orientation

between two neighboring spins in contrast with the parallel alignment of the Heisenberg exchange interac-

tion. Remarkably, the DMI imposes the magnetization to rotate from one domain to the next with preferred

handedness or chirality, resulting in right-handed and left-handed chiral Néel DWs. Such a property is

essential for the spin-orbit torque to drive the DWs in the same direction, a feature that is fundamental for

the realization of the next generation of devices, such as racetrack memories. Furthermore, two nearby Néel

DWs with opposite chirality are extremely stable topologically, thus making them particularly suitable for

applications.

In order to precisely control future spintronics devices, it is imperative to understand, control and

measure the DMI. Several efforts have been made to estimate its value using different methods: asymmetric

magnetic bubble expansion [12, 10], magnetic stripe domains annihilation [11], and Brillouin light scattering

[32]. Especially for low values, the estimation can vary dramatically from method to method, also for

nominally identical material systems. This is probably due to the strong sensitivity to interface quality,

growth conditions [14, 20], thickness of heavy metal layer [33] etc. The simplest and thus most widely used

method relies on magneto-optical measurements of the asymmetric expansion of a magnetic bubble under

the simultaneous presence of in-plane and out-of-plane magnetic fields. In these experiments, the DMI value

is inferred from the measure of the DMI field, i.e. the in-plane field at which the velocity of the bubble

DW reaches a minimum. Implicitly, the DW is assumed to keep its width fixed during the expansion, which

results in a constant DMI field.

In this paper, we aim to test these implicit assumptions with micromagnetic simulations of the DW

dynamics in a disordered medium, where the disorder is realistically incorporated into the material as a

collection of grains with randomly distributed sizes and varying exchange constant at the edges. Significantly,

we reveal that the width of the DW, and consequently the value of the DMI field, are not constant, as both

depend on the strength of the applied in-plane field. Furthermore, we find that during expansion the

nucleation of vertical Bloch lines takes place, dramatically influencing the bubble morphology, as they move,

interact and annihilate. As a consequence, the bubble does not grow anymore and flattens, causing a

kink-like (sharp decrease) feature in the velocity vs. in-plane field curve.

2. Methods

Micromagnetic 2D simulations are performed using the software package Mumax3 [35, 24] in a system of

1024 x 1024 x 1 rectangular cells of size 2 nm x 2 nm x 0.6 nm, as schematically shown in Fig. 1. This system
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Figure 1: Schematic of the simulation system depicting its dimension, initial magnetization configuration and grains. The

thickness of the system is 0.6 nm. The exchange constant is reduced at the border of the grains by 43%.

mimics a Pt/Co90Fe10/Pt [16] ultra-thin square film of 2 x 2 µm, with material constants of saturation

magnetization Ms = 1353 kA/m, perpendicular magnetic anisotropy Ku = 1.5 MJ/m3, exchange constant

Aex = 13 pJ/m, and a Gilbert damping parameter α = 0.2. The DMI values used (0.3, 0.5, 0.75, and 1

mJ/m2) correspond to different thicknesses of the Pt layers. The material disorder is realistically simulated

[22, 23] by a random distribution of grains of average size of 10 nm, and an exchange constant being varied

at the border of the grains by 43%. A bubble domain of radius 256 nm is initialized in the center of the

system and then allowed to expand under the simultaneous application of out-of-plane and in-plane fields.

Its initial magnetization configuration is the minimum energy configuration chosen out of different possible

configurations. The bubble domain is allowed to expand till it almost reaches the boundary of the system.

To realistically simulate a large system, we correct for the dipolar energy to that of an infinite system by

adding the field generated from outside the simulated square.

3. Results

3.1. Dynamics of the bubble domain

In Fig. 2 we present a snapshot of the bubble domain dynamics for a DMI constant of 0.5 mJ/m2 during

its evolution under the application of an out-of-plane field of −17 mT for different in-plane fields. Without

an in-plane field the bubble domain expands symmetrically, while for a non-zero in-plane field, it becomes

strongly asymmetrical, as expected. Remarkably, for in-plane fields between 30 mT and 100 mT , the front

3



D (mJ/m2) Onset (mT ) Minimum (mT )

0.3 0±2 -40±2

0.5 -22±2 -62±2

0.75 -38±2 -100±2

1 -80±2 -120±2

Table 1: Onset field and minima field for the RDW at Bz = −17mT for different DMI constants

opposite to the direction of the in-plane field becomes ripple-like, and the magnetization inside the DW

undergoes a complex rotation as we show in the zoomed-in areas of Fig. 2. On the other hand, for very low

and for very high in-plane fields, these ripples are absent and the domain wall appears rather smooth.

In order to understand how the ripples affect the bubble expansion, we show in Fig. 3(a) the velocity of

the right domain wall (RDW) and left domain wall (LDW) as a function of in-plane fields at two different

out-of-plane fields (−13 mT and −17 mT ). As the in-plane field decreases from higher positive values

towards zero, the velocity of the RDW decreases. It keeps decreasing till a negative in-plane field value,

then steeply decreases, reaches its minimum and then increases again. For comparison, we show the width

of the domain wall as a function of in-plane fields in Fig. 3(b) at the same out-of-plane fields. For both cases,

the minimum is not at zero in-plane field, but it is shifted at values roughly corresponding to the onset of

the drop in the DW velocity. On the other hand, it does not significantly depend on the out-of-plane fields.

Fig. 4(a) displays the velocity of the RDW as a function of in-plane field for different DMI constants, and

an out-of-plane field of −17 mT . The nature of the velocity vs. in-plane field curve is similar to Fig. 3(a),

moving the minimum at larger (negative) values for increasing DMI value. Correspondingly, we show in

Fig. 4(b) the width of the RDW and the DMI field as a function of in-plane field. The DMI field HDMI

is calculated using the expression µ0HDMI = D/(Ms∆), where D is the DMI constant and ∆ is the DW

width. The latter depends on the in-plane field and has its minimum shifted towards a negative in-plane

field value in the same way as in Fig. 3(b), while it does not show any marked dependence on the DMI

constant. Having a dependence on the DW width, we can conclude that the DMI field also varies with the

in-plane field.

A few characteristic points can be identified in the velocity curves of Figs. 3- 4, as reported in Table 1.

By ’Onset’ we mean the in-plane field at which the velocity of the wall decreases steeply and the ’Minimum’

is the in-plane field at which the velocity of the wall is minimum. In the table, magnitude of both the onset

and minimum fields increase as a function of DMI.

3.2. Nucleation of vertical Bloch lines

The occurrence of ripples and the flattening of the bubble domain is clearly related to the kink like

feature in the velocity vs in-plane field curve, described above. To better understand its origin, we present
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Bx = 0 mT Bx = 100 mTBx = -100 mT Bx = 150 mTBx = -50 mT Bx = 50 mTBx = -150 mT

t = 5 ns t = 6 ns t = 8 ns t = 9 ns t = 8 ns t = 6 ns t = 5 ns

Figure 2: Snapshots of a bubble domain during its expansion under the application of an out-of-plane field of −17 mT and

an in-plane field (Bx) as indicated, for a DMI value of 0.5 mJ/m2. Black means magnetization into the plane and white

means magnetization out of the plane. The wheel represents the color code for in-plane magnetization direction, red meaning

magnetization along positive x-direction and blue meaning magnetization along negative y direction.

in Fig.5(a) the magnetization angle ϕ at the centre of the DW (with measured with respect to a fixed

coordinate system, as in the sketch) against its position around the bubble (expressed by the angle Ω).

With this representation, a perfect Néel wall all around the bubble periphery translates into a smooth

increase from the coordinate (0, 0) to (2π, 2π). On the other hand, a Bloch wall all along the periphery

would increase from (0, π/2) to (3/2π, 2π) and then decrease to (2π, π/2).

We present the case for an out-of-plane field of −17 mT , an in-plane field of 100 mT and a DMI constant

of 0.5 mJ/m2 as a typical behavior. At 0.2 ns after the application of the fields, the in-plane magnetization

rotates along the periphery from 0 to 2π with some local fluctuations, showing a clear Néel wall configuration.

At 4.38 ns, the magnetization still starts at 0 and ends at 2π, but showing big fluctuations. In particular,

the in-plane magnetization suddenly makes a 2π rotation in clockwise direction (negative), comes back to

zero with an anticlockwise rotation of 2π and makes another 2π rotation anticlockwise to end at 2π. A

rotation of 2π angle of the in-plane magnetization along the periphery corresponds to the onset of a pair of

vertical Bloch lines (VBL) [39]. As a matter of fact, three pairs of VBLs occur at t = 4.38 ns and two pairs

at t=4.40 ns, meaning that two VBLs annihilate during the 20 ps time interval. These complex rotations of

2π angle are also visible in Fig. 2 as color fluctuations in the bubble front.

The VBLs are nucleated in disordered systems due to the incoherent precession of the magnetic moments

within the DWs due to the spatial inhomogeneities of the effective field. Clearly, they are nucleated in pairs

in order to conserve the total topological charge Qtotal of the system. In other words, they must have

opposite topological charge ±QV BL. After nucleation, these VBLs start propagating and interact with each

other. Different VBLs can have different widths due to the inhomogeneous component of the Bx acting on

them, so that they also have different velocities [39]. As a consequence, fast VBLs come close to the slower

ones and can annihilate each other if energetically favorable. These annihilation events can be studied in
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(a) (b)

Figure 3: Velocity (a) and width (b) of the right domain wall (RDW) in blue and left domain wall (LDW) in red as a function

of in-plane field for D = 0.5 mJ/m2. Circles (empty) and triangles (solid) represent velocities at out-of-plane fields of −13 and

−17 mT , respectively.

terms of time evolution of the total topological charge Qtotal(t), expressed as [5]:

Qtotal(t) =
1

4π

∫∫
m(t)

(
∂m(r, t)

∂x
× ∂m(r, t)

∂y

)
dxdy (1)

where m(t) is the normalized magnetization at time t and position r. Fig. 5(b) shows six annihilation

events where the topological charge jumps by ±1, for which a pair of VBLs annihilate both having topological

charge +1/2 or -1/2 respectively. Clearly, these jumps are not perfectly an integer number, due to the

presence of disorder.

3.3. Comparison with models of DW dynamics

While the analysis above explains the drop and the mimimun of the DW velocity of Fig. 3, it seems

to break the interpretation of the DW dynamics in simple terms, as for 1D class model [34], for which a

linear relation between velocity and DW width exists. In particular, while the velocity shows a significant

dependence on the out-of-plane field, the width is totally unaffected. On the other hand, a failure of

simple 1D models is totally expected in case of VBLs nucleation and annihilation. In 1D models, in fact,

the magnetic moments inside the DW are assumed to vary only along one dimension and this is not the

case when VBLs are present. To account for these discrepancies, we extended collective coordinate models

(CCMs) that go beyond the simple 1D models [28], to the bubble dynamics considered here. For simplicity,

we assume that the points on the bubble are free and not interacting with each other. We then introduce

a local in-plane field Heff , and a local dipolar field (with demagnetizing factor N) at points on the bubble

periphery as follows:
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D in mJ/m2

0.3 0.5 1.0

width
HDMI

(a) (b)

Figure 4: (a) Velocity of the right domain wall (RDW) as a function of in-plane field at constant out-of-plane field of −17 mT ,

(b) width and DMI field of the RDW as a function of in-plane field for 3 different DMI constants keeping the OOP field constant

at −17 mT .

Hx,eff = HXcos(Ω) +HY sin(Ω)

Hy,eff = −HXsin(Ω) +HY cos(Ω) (2)

Nx,eff = NXcos(Ω) +NY sin(Ω)

Ny,eff = −NXsin(Ω) +NY cos(Ω)

where x and y are the local axes over which the equations are written, X and Y are the global axes, as in

Fig. 1. With these assumptions, the equations derived for the CCMs will be exactly those found in Ref. [28],

with no DW tilting and the local fields above replacing the global values. We compared this model to the

results of micromagnetic simulations to assess whether these models are accurate especially considering the

disorder included in the model. As depicted in Fig. 6. we find that by reducing the exchange constant by

43% of the nominal value (equivalent to the amount of exchange constant variation at the grain boundaries)

we are able to almost reproduce the micromagnetic results. As such, the toy model seems to be valid at

least for cases of low drive field.

4. Discussion

The fact that the magnetic bubble expands symmetrically without an applied in-plane field and asym-

metrically when a non-zero in-plane field is applied, as shown in Fig. 2, is well-known for most perpendicular

ultra-thin films with DMI. In our simulations we use positive values of DMI, so that the DMI field acts on the

bubble domain in the radially outward direction. A positive in-plane field is thus parallel to the DMI field

on the right side of the bubble and antiparallel on the left side. When these fields are parallel (antiparallel)
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Figure 5: (a) In-plane magnetization angle ϕ of the domain wall along the periphery of the bubble as a function of angular

position of the DW. Positive (negative) angle means an anti-clockwise (clockwise) rotation. (b) Evolution of the total topological

charge Q of the system showing six annihilation events of ±1, corresponding to annihilation of two VBLs with the same

topological charge of ±1/2.

they stabilize (destabilize) the DW. This simple picture helps us to understand why it is possible for the

ripples to form. Incidentally, this is valid only when the two fields are comparable in amplitude, as at higher

in-plane fields the DWs are very stable again.

As shown, the formation of ripples is reflected in the velocity curves in Figs. 3(a), and 4(a). Some aspects

of these curves can be understood with the help of the equation for free energy of the domain wall, given

by [13]:

σDW (Hx,Φ) = σ0 + 2KD∆cos2(Φ) − π∆Ms(Hx +HDMI)cos(Φ) (3)

where σ0 is the Bloch wall energy, and KD the domain wall anisotropy energy. This equation tells us

that the energy of the DW is anisotropic and depends on the magnetization angle of the DW. The energy

of the DW is then maximum when Hx and HDMI are antiparallel and minimum when parallel. The DWs

with the maximum energy have the minimum velocity. This expression explains why there is a horizontal

shift in the velocity curve, but cannot explain the asymmetry, relative to the curves minima, observed in our

simulations as well as in other experiments [20]. It has been speculated that a chiral damping arising out

of spin-orbit interaction could be responsible for this [13]. D.-Yun Kim et al. proposed that the asymmetry

in the velocity curve is due to the dependence of energy on DW width [15]. In order to understand the

flattening of the bubble, we need to explain it taking into account the formation of VBLs that we observe.

Although the flattening of the bubble [19] or kink-like feature [20] of velocity vs in-plane field curve has been

observed experimentally, most of these works focus on extracting the value of the DMI, while the shape

of the bubble is seldom studied. D. Lau et al. used energetic calculations of the equilibrium shape of the

bubble domain wall by Wulff construction in order to explain the shapes [19]. In their studies, they observed

8



(a) (b)

Figure 6: Comparison between the micromagnetic simulations and collective coordinate model for the LDW at a drive field

of Bz = −17 mT . Nominal exchange is the actual value of the exchange constant and minimum exchange is the exchange

constant after reducing it by 43% of the actual exchange constant.

an asymmetric expansion of the bubble with a flattening DW at lower in-plane fields and a non-elliptical

tear-drop shape at higher in-plane fields. While the tear-drop shape could be explained using the Wulff

construction, it was not straightforward to explain the flattening shape. It was speculated in their work

that the flattened shape could be due to the nucleation of vertical Bloch lines. Our detailed study of the

rippled points confirm that the flattening is due to the nucleation and interaction of Vertical Bloch lines.

The nucleation of VBLs has been observed for Co/Ni wide strips experimentally [39] and is predicted to

occur when HDMI is antiparallel to Hx. When the DMI is stronger, a higher in-plane field is needed for the

formation of VBLs to take place. This explains why the onset and minimum points in table 1 are higher for

higher DMI values. VBLs are high energy regions in the DW and therefore sections of DWs having VBLs

have smaller velocities compared to the rest of the DW. Morphologically, they appear as pinned DW points,

resulting in the occurrence of the ripples. VBLs are then responsible for reducing the overall velocity of

one side of the bubble DW. Furthermore, we expect the velocity of the DW to be inversely proportional to

the density of VBLs. Different velocities at different in-plane fields, as shown in Fig. 3(a), are related to

the difference in the density of VBLs. The velocities of the right and left DWs have also been predicted by

Pellegren et al. [30] using a dispersive elastic stiffness model. In this model, the velocities are calculated

from a modified DW elastic energy scale using the creep law. For small length scales, as in the case of our

system, this model predicts the onset of the drop in the DW velocity as well as the convergence of RDW and

LDW velocities at higher in-plane fields. These remarkable similarities between this model, which assumes

non-zero temperature using energy barrier scaling, and our simulations, which are instead simulations of the

dynamics performed at zero temperature, suggest that the observed properties of DW propagation under

simultaneous application of in-plane and perpendicular fields originate from the intrinsic DW energy.
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In addition, we can also use the CCM to understand what happens at the ripple points. The steady

state solution (Φ ∼ 0) for the magnetization angle of the DW in this case reads:

cos(Φeq) =
1

2

[
I22
I1I4

Hz

HW
csc(Φeq) + α

I3
I4

HDMI

HW
− α

I6
I4

Hx,eff −Hy,effcot(Φeq)

HW

]
(4)

where Φeq is the steady state magnetization, HW is the conventional Walker Breakdown field, and the Ii

are constants calculated for a specific Bloch profile [28]. If the equation above does not have a solution, the

magnetization will continue to precess and can be determined using the full collective coordinate model. In

the absence of the DMI and in-plane fields, the drive field determines whether Walker breakdown happens.

However, in the presence of the in-plane field and DMI, there are two additional parameters that play a

role in whether or not precession continues. The fact that the in-plane fields are locally determined means

that points of precession can nucleate within the bubble locally, showing local Walker breakdown behavior.

Physically speaking, such processional motion will lead to 2D effects on the bubble, affecting the spin texture

around that point and giving rise to the ripple like shape of the bubble. Even though the CCM is effectively

a one-dimensional model, such ripples can be observed in the results as well.

5. Conclusions

We have studied the dynamics of chiral magnetic bubbles in perpendicular magnetic anisotropy materials

using micromagnetic simulations in the presence of disorder. As expected, we observe an asymmetry in the

expansion of the bubble in the simultaneous presence of out-of-plane and in-plane fields. There is a range

of applied in-plane fields in which a part of the bubble shows ripple-like structures. These ripples cause a

kink-like feature in the velocity of the domain wall. We confirm that the generation of ripples is due to

the nucleation of vertical Bloch lines. We find that the width of the domain wall depends on the in-plane

field and for the first time to our knowledge, it brings us to the remarkable conclusion that DMI field also

depends on the in-plane field and is not a constant. Future studies on vertical Bloch lines can shed more

light on the dynamics and shape of magnetic bubbles in ultra-thin films and its effect on the measurement

of DMI. Furthermore, we extend a collective coordinate model that explains the velocity curve qualitatively

well.
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