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A node-based version of the cellular Potts model

Marco Scianna1 and Luigi Preziosi2

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino, Italy

Abstract

The cellular Potts model (CPM) is a lattice-based Monte Carlo method, that
uses an energetic formalism to describe the phenomenological mechanisms
underlying the biophysical problem of interest. We here propose a CPM-
derived framework, that relies on a node-based representation of cell-scale
elements. This feature has relevant consequences on the overall simulation
environment. First, our model can be implemented on any given domain,
provided a proper discretization (which can be regular or irregular, fixed or
time evolving). Then, it is allowed an explicit representation of cell mem-
branes, whose displacements realistically result in cell movement. Finally,
our node-based approach can be easily interfaced with continuous mechanics
or fluid dynamics models. The proposed computational environment is here
applied to some simple biological phenomena, such as cell sorting and chemo-
tactic migration, also in order to achieve an analysis of the performance of
the underlying algorithm. This work is finally equipped with a critical com-
parison between the advantages and disadvantages of our model with respect
to the traditional CPM and to some similar vertex-based approaches.

Keywords: cellular Potts model, multiscale model, cell surface
rearrangement, cell membrane node, domain discretization

1. Introduction and motivation

The evolution of biological systems is determined by mechanisms and
processes operating at different spatiotemporal scales, i.e., from the micro-
scopic/molecular level to the macroscopic/multicellular level. Each scale
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can be properly approached with selected mathematical methods. In this
respect, individual cell-based models (IBMs) are particularly suitable to de-
scribe mesoscopic cell-level dynamics. They in fact allow to preserve the
identity of the single component individuals of the system and to capture
their behavior and mutual interactions. This family of theoretical approaches
can be then classify according to the type of representation given to each cell,
which may consist in a material point, an undeformable sphere or ellipsoid
or in a deformable polygon or subset of domain elements.

One of the well-known IBMs is the cellular Potts model (CPM, also called
the Glazier-Graner-Hogeweg model, see [40, 43] and [41, 42, 64, 93] for re-
views). The CPM is a grid-based Monte Carlo method, which implements
an energy minimization principle to determine the evolution of the simulated
system. All CPMs are based on regular numerical lattices as domains, and
define a list of discrete objects. They are spatially-extended cell-scale ele-
ments, which consist of patches of lattice sites sharing the same (integer)
identification number. Continuous fields can be included in the modeling
environment as well, conferring the CPM a multiscale-hybrid nature. They
represent the spatio-temporal evolution of microscopic quantities, such as
diffusive ions and molecules. Attributes of discrete individuals and rules for
their dynamics and for their interactions with selected fields are described
by an effective potential formalism, which results in a system energy given
by a Hamiltonian. This functional describes indeed the state of the system,
whose rearrangements are driven by an algorithm of stochastic minimization,
i.e., an iterative Metropolis procedure which accounts for a probabilistic ac-
ceptance of random updates of lattice configurations. As long as a biological
mechanism can be described with an energetic formalism, it can be included
in the CPM framework. In this respect, the CPM is not specific for a given
type of biological problems, but it can be rather considered as a framework
for model building. For these reasons, the CPM method is becoming an in-
creasingly common technique for the mathematical modeling of a wide range
of phenomena.

In this foundational work, we present a new version of the CPM, which is
still based on an energy minimization philosophy, but which relies on a vertex-
based representation of the discrete cell-scale objects. Besides its intrinsic
novelty, our approach has some advantages from a modeling point of view.
For instance, it can be employed on every given physical domain (provided a
proper discretization): this may be useful for a computational coupling with
selected continuum mechanics or fluid dynamics models. Our approach then
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allows to explicitly represent cell membrane, with its extended protrusions
(e.g., filopodia, pseudopodia), and to avoid the introduction of a generalized
medium element when it is not necessary. Such main model features will
be presented in Section 2. In particular, we will describe the Metropolis al-
gorithm underlying our approach and propose some possible Hamiltonians,
that can be implemented in the resulting computational framework. We will
further indicate some procedures to implement more complex cell dynam-
ics (i.e., division, compartmentalization). Section 3 will be instead focused
on sample applications, dealing with single cell and multicellular dynamics.
Such simulation outcomes will allow also to achieve a qualitative relationship
between variations in some relevant model parameters and the resulting sys-
tem evolution. An analysis of the computational efficiency of our method,
compared with the traditional version of the CPM, will be instead provided
in Section 4. This work will be finally equipped by a detailed discussion,
where the advantages and the disadvantages of the proposed model with re-
spect both to classical CPM approaches and to similar vertex-based models
will be commented.

2. Proposed mathematical model

As traditional Potts models, our approach includes both discrete cell-scale
elements and continuous fields, while the evolution of the system comes from
an iterative and stochastic minimization of its free energy.

The domain of our method can be any physical region Ω ⊂ R2, equipped
by a proper discretization, that can be regular (e.g., in the case of triangular
or square grid elements) or irregular (e.g., in the case of Voronoi tessellations),
fixed or adaptative according to the system dynamics (see Fig. 1 (A)). This
is the first relevant difference with respect to classical CPMs which can be
only employed on rigid lattices formed by equivalent (square or hexagonal)
sites. Let us then define with

Ω =
{
xj ∈ R2 : j = 1, . . . , J

}
(1)

the set of the spatial locations of the vertices of the domain discretization,
where the integers j = 1, . . . , J their tracking numbers. The first-nearer
neighborhood of a given mesh vertex j is then identified with

Ωj =
{
xk ∈ Ω : k ̸= j and k belongs to the same grid element as j

}
, (2)
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as represented in Fig. 1 (B).
We then consider a system formed by Nc cells (or cell-scale elements).

Each cell c = 1, . . . , Nc is assumed to be defined by a given set of numerically
ordered membrane nodes i, where i = 1, . . . , Vc (Vc indicates the total number
of nodes characterizing the c-th individual). xc,i(t) then indicates the actual
location within the domain of node i of cell c. In this respect, if, for instance,
the node i = 9 of the cell c = 3 coincides, at a given time step t, with the
grid vertex j = 23, we can write x3,9(t) = x23. Indeed, each cell c is defined,
at a given time step t, by the following subdomain:

Ω
c
(t) =

{
xj ∈ Ω : xj = xc,i(t), with i = 1, . . . , Vc

}
. (3)

Remark. For the sake of clarity, we underline that the term “vertex” is used
to indicate the junctions between domain grid elements. The term “node”
instead denotes the punctual “hotspots” that identify each cell and that
might be thought also as clusters of adhesive molecules, as we will see in the
following.

The membrane of a cell c can be defined, in general, by any close un-
knotted curve connecting in the right order the component nodes of the
individual (this is the reason why they need to be numerically ordered).
However, for the sake of simplicity, we hereafter opt to assume that the
membrane of each cell is identified by the polygonal line formed by the seg-
ments connecting two consecutive vertices, say i and i + 1. In this respect,
the length of the plasma membrane of an individual c can be properly cal-
culated as the sum of the Euclidean distances between the locations of two
consecutive nodes, i.e.,

lperimeter
c (t) =

Vc∑
i=1

|xc,i+1(t)− xc,i(t)|, (4)

with xc,Vc+1(t) = xc,1(t), for any given time t. Consistently with our hypoth-
esis, the surface of a cell c, i.e., ssurfacec , can be defined as the area within the
polygonal line itself. Each individual c is finally characterized by an associ-
ated type τ(c) (e.g., endothelial cell, fibroblast, ECM fiber, . . .). A sample
representation of a pair of cells, c and c′, is given in Fig. 1 (A).

Each cell can be defined by a different number of membrane nodes and it is
not necessary that they are initially equally-spaced. In this respect, they can
be distributed according to the characteristic shape of the individual itself, for
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example applying proper post-processing techniques to selected experimental
images. For instance, in the case of Fig. 1 (C), the set of cell membrane nodes
is determined, and initially located, according to the following procedure: (i)
the plasma membrane of the experimental cell is approximated by a close
(parametrized) curve in R2; (ii) the points of the curve characterized by
the maximal (or the minimal) curvature are selected, and reported on the
computational domain Ω ⊂ R2; (iii) the membrane nodes of the model cell are
placed in grid vertices as close as possible to the reported points. From Fig.
1 (C), it also possible to observe that the proposed cell representation allows
to realistically described extended membrane protrusions, such as long and
thin filopodia. The number of membrane nodes characterizing a cell element
can also vary in time (i.e., for a cell c, one can have that i = 1, ..., Vc(t)). In
particular, if a node i of cell c is removed, then the remaining consecutive
nodes i − 1 and i + 1 should be linked to avoid membrane breakage (see
Fig. 2 (A), middle panels). Conversely, if a node Vc + 1 is added to cell
c, it should be linked to the nearest pair of consecutive ones, say with i
and i + 1 (see Fig. 2 (A), top panels). Both membrane node creation and
destruction require renumbering of the entire set of nodes of the interested
cell and may result in a variation of its geometrical properties. Cell node
addition and removal can be useful for several modelling needs, mainly to
establish (or to maintain) a reasonable level of detail in cell representation.
For instance, an intermediate node may be added to a cell c if one of its
membrane edges is too long (i.e., if |xc,i+1 − xc,i| is larger than a threshold
value for a given i ∈ {1, . . . , Vc}). In this case, the new membrane node
may be located in a free grid vertex near to the middle point of the segment
connecting i and i + 1. On the opposite, node removal can be implemented
in the case of too short cell membrane edges (i.e., if |xc,i+1 − xc,i| is smaller
than a threshold value for a given i ∈ {1, . . . , Vc}). Further, changes in
the number of cell membrane nodes can be dynamically suggested by the
evolution of the simulated system. For instance, in the case of the migration
of a polarized cell, it may be useful to create some nodes along the leading
edge of the individual, i.e., to reproduce the extension of membrane motility
structures such as filopodia, while removing nodes at its side and trailing
surfaces. Finally, as it will be explained in the following, node addition
may be required before cell division. Other rules and procedures for node
creation and destruction can be eventually defined by researchers according
to the specific phenomenon of interest.

Our approach also accounts for continuous elements, or fields, repre-
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senting the spatio-temporal evolution of molecular entities, that may reside
within discrete cell elements (as nucleic acids, cytosolic ions, and proteins),
or in the external environment (as growth factors, matrix proteins, matrix
metallo-proteinases). They are described as variable concentrations with
standard reaction-diffusion (RD) equations, whose general form is

∂g

∂t
= ∇ · (Dg∇g)︸ ︷︷ ︸

diffusion

+ F (c)︸︷︷︸
reaction term

, (5)

where g denotes the local concentration of the molecular substance, Dg is its
diffusion coefficient, and F : R+ → R is the reaction term. Equations of type
(5) may apply to the entire domain Ω or to selected subregions, with fixed or
moving boundaries (as in the case of intracellular chemicals). As it will be
explained in more detail later, these continuous equations can numerically
solved using finite element schemes, which are properly employed on the
selected domain discretization Ω.

2.1. The Metropolis algorithm

As in traditional CPMs, discrete cell-level objects rearrange and move to
gradually reduce a system free energy which, as seen in the Introduction, can
be described by a Hamiltonian functional H, that will be defined in detail
below. The energy minimization procedure is here implemented by adopting
a version of the Metropolis algorithm for Monte Carlo-Boltzmann thermo-
dynamics properly modified to account for the selected cell representation.
In fact, it evolves in time using repeated probabilistic updates of the spatial
location of the cell membrane nodes. Procedurally, at each step t of the al-
gorithm, called Monte Carlo Step (MCS), a membrane node i of a given cell
c, which is actually located in a grid vertex j (i.e., xc,i(t) = xj), is randomly
selected and proposed to move into an arbitrary free neighboring grid vertex
location, say xk ∈ Ωj. With the term “free” we here intend a grid vertex
that is not occupied by a node belonging neither to cell c itself nor to another
element c′ ̸= c. In particular, if the membrane node i is attempting to move
to a free grid vertex located within the cell c itself, the element c is retracting,
otherwise it is protruding, see Fig. 1 (D).

The move attempt is then accepted with a Boltzmann transitional proba-
bility, which has its origin in the statistical physics (see [42, 83] and references
therein):
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P (xc,i = xj → xc,i = xk)(t) = p(Tc(t))min
{
1, e−∆H(xc,i=xj→xc,i=xk)(t)/Tc(t)

}
,

(6)
where ∆H is the net variation in the total energy of the system as a conse-
quence of the cell membrane node move attempt and Tc ∈ R+ is a fluctuation
allowance, which determines the extent of energy-increasing events leading
to cell membrane displacement [70]. In this respect, it can be broadly cor-
related to the intrinsic motility of cell c (see [92] for a detailed comment).
Further, as commented in [53], all the energy parameters relative to a cell c
are scalable with the corresponding fluctuation allowance: therefore Tc can
be fixed without loss of generality even if it does not have a direct exper-
imental counterpart. Finally, p(Tc(t)) : R+ 7→ [0, 1] is a sort of maximum
transition probability, a continuous and increasing function of Tc such that
p(0) = 0 and lim

Tc→+∞
p(Tc) = 1. The specific form of (6) accounts for low

motile individuals, i.e., which are not able to move even in the presence of
favourable energy gradients [92].

For each node move attempt a further check has to be done in order to
avoid the overlapping either of different parts of the membrane of the same
cell or of parts of the membrane of different individuals. For instance, if cell
membranes are represented by polygonal lines, as in our simplifying assump-
tion, such a control can be done by simply checking if the segments linking
the moving membrane node i to the consecutive ones (say, i − 1 and i + 1)
intersect, as a consequence of the proposed configuration update, the edges
forming the membrane of any cell of the system (including, the moving in-
dividual c itself). A membrane node move attempt that eventually results
in membrane overlapping has to be rejected (even if it is in principle en-
ergetically favourable). Finally, as in traditional CPM approaches, a MCS
may involve more than one cell node move attempt (for instance, Kawasaky
dynamics are also possible [42]). The basic time step of the Metropolis al-
gorithm needs then to be translated into actual units of time (i.e., seconds,
hours, days) via proper a posteriori calibrations with experimental data.

2.2. The Hamiltonian

The algorithm described in the previous section determines the system
evolution by iteratively and stochastically reducing an effective free energy.
In this respect, the Metropolis method is independent from the specific form
of the functional H (in principle, Eq. (6) holds also in the case of an energy
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not described by a Hamiltonian). However, since this work is focused on a
modified version of the CPM, hereafter we will deal with energy functionals
typically employed in the traditional framework. In particular, this section
will be devoted to the description, and the adaptation to our computational
environment, of some of the most common energetic contributions.

In the traditional CPM, a Hamiltonian H may contain a variable number
of terms, which can be grouped in

H(t) = Hadhesion(t) +Hconstraint(t) +Hforce(t). (7)

Hadhesion describes the adhesive/repulsive energy between couples of cell ele-
ments that interact across their membranes. Hadhesion is based on the Stein-
berg’s Differential Adhesion Hypothesis (DAH) [43, 101, 102]. The DAH
proposes that individuals in the same aggregate adhere to each other with
different strengths, according to their specificity. The hierarchy of contact
forces is one of the main driving mechanisms behind the evolution of biolog-
ical systems, whose final organization is supposed to maximize the overall
strength of interface interactions (or, in other words, to minimize the overall
adhesion energy). Evidence supporting DAH has been observed in a wide
array of biological systems: for example, it successfully explains how cellular
adhesive properties can operate to determine tissue reorganization during
cell sorting especially in the embryonic stage of life [4, 41, 42] (for a more
detailed discussion on the DAH the reader can refer to the the last section
of this work). The formulation of DAH-derived Hadhesion, proper for our
node-based CPM, is

Hadhesion(t) =
∑

(xj ,xk) ∈ Ω
c
(t) ×

[
Ω

c′
(t)∩ Ωj

]
, c ̸=c′

J(c,c′)(t), (8)

where Ωj is, as seen, the first-nearer neighborhood of grid vertex j and there-
fore c and c′ are two neighboring cell-scale elements (i.e., two cells or a cell
and an extracellular element, say an insoluble matrix component). The coef-
ficients J(c,c′) ∈ R+ are local binding energies and are symmetric with respect
to their indices. As in traditional CPMs, they may depend on the cell types
(i.e., J(τ(c),τ(c′))) or be specific for the specific pair of interacting individu-
als. With (8), we are assuming that intercellular adhesive interactions are
strictly localized at cell nodes, and not extended over the entire cell mem-
branes (as instead happens in the classical version of the CPM). Such sim-
plifying hypothesis is coherent with the proposed cell representation, being
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employed also in other vertex-based approaches for biological phenomena,
see for example [28, 29, 37, 73] and the models reviewed in [36]. However,
it is reasonable also from a biological point of view: in fact, cell adhesive
molecules (CAMs), such as cadherins and integrins, diffuse from the cytosol
to the plasma membrane and cluster in spatially-defined “hot spots” (i.e., fo-
cal adhesion points in the case of integrins and adherens junctions in the case
of cadherins, see [32, 56] and references therein). In this respect, a possible
model improvement is to define each family of CAMs as a continuous field,
characterized indeed by a variable intracellular concentration. This way, it is
possible to simulate the above-described diffusion of adhesion proteins from
the cell internal regions to the plasma membrane. In this case, each param-
eter J(τ(c),τ(c′)) can realistically vary in time and space, being a function of
the local quantity of CAMs.

Remark. It is useful to recall that a pair of membrane nodes belonging to
two neighbouring cells, say c and c′, does not coincide but “only” shares
the same grid element. As a consequence, although experiencing adhesive
interactions, they maintain a distance equal to the characteristic size of the
domain discretization. In this respect, the more the domain discretization is
refined, the more a pair of adhering cells are close one to each other, thereby
more realistically reproducing biological conditions.

The term Hconstraint sums the energetic contributions that describe selected
attributes of cell-scale elements, such as their perimeter and area. As in the
standard CPM, they are written as energetic penalties, which increase as
a discrete individual deviates from its designed state, in a non-dimensional
elastic form [92]:

Hconstraint(t) =
∑

z−attribute

∑
c

λz
c(t)

[
azc(t)− Az

c(t)

azc(t)

]2
, (9)

where azc(t) is the actual value of the z-attribute of individual c and Az
c(t)

is its target value, which may be fixed or time-variable. The parameters
λz
c ∈ R+ are Lagrangian multipliers [61, 92]. They take the role of “general-

ized elastic moduli”, which determine the weight of each energetic constraint,
and thus the importance of the corresponding cell attribute. In particular,
low values of a given λz

c allow the discrete unit c to deviate more from the
configuration that satisfies the constraint z. On the opposite, high values of
λz
c imply that the discrete element c has difficulties to deviate from the con-
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figuration that satisfies constraint z. Since each energetic contribution given
in Eq. (9) smoothly decreases to a minimum when the relative attributes is
satisfied, the modified Metropolis algorithm automatically drives any system
configuration towards one that more closely satisfies the constraints included
in the model. In this respect, the simulated systems are not usually able to
exactly satisfy all the constraints of all the discrete elements at any given
time step t, since different attributes may be in conflict: this leads to system
configurations characterized by multiple energetic local minima. Asymptot-
ically, each energy contribution in (9) approaches infinity when the actual
value of the corresponding cell attribute vanishes: this is an advantage, as
an infinite energy is required, for example, to shrink a cell to a point. How-
ever, each term in (9) approaches to one if the actual value of the relative
cell attribute becomes very large. This bias would be eliminated with a
normalization by the target value of the attribute, say by Az

c . The choice
of the specific normalization can be done according to the actual modeling
needs. However, both options lead to non-dimensional energy contributions:
therefore, all the λz

c ’s are coherently in units of energy. Finally, the form of
Eq. (9) is the simplest quadratic potential one can think of. However, it
can be easily replaced by more sophisticated potentials U(azc(t), A

z
c(t)), with

U : R× R 7→ R+, characterized by the property

U(Az
c(t), A

z
c(t)) = 0. (10)

Among others, the energetic contributions relative to selected geometrical
attributes of discrete objects, such as their surface and perimeter, are of
particular relevance:

Hsurface(t) =
∑
c

λsurface
c (t)

[
ssurfacec (t)− Ssurface

c (t)

ssurfacec (t)

]2
; (11a)

Hperimeter(t) =
∑
c

λperimeter
c (t)

[
lperimeter
c (t)− Lperimeter

c (t)

lperimeter
c (t)

]2
. (11b)

These terms depend on the actual measures of each cell-scale element, i.e.,
ssurfacec (t) and lperimeter

c (t)(that can be measured as previously described, cf.
Eq. (4)), as well as on the corresponding target quantities, i.e., Ssurface

c (t) and
Lperimeter

c (t) (that can correspond to a relaxed/undeformed cell configuration
or to an initial condition). In particular, the energy variation (11a) due to
cell surface deviations from the target measure may be related to the work
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done by intracellular pressure [61]. λsurface
c indeed regulates the conservation

of mass of the discrete element c and encodes all the bulk effects: in this
respect, cell growth can be realistically included by assuming that Ssurface

c (t)
increases during the simulation [23, 82]. The term (11b) can instead be inter-
preted as an elastic (Hookean) tension applied to the membrane of cell c, that
accounts for its contractility. The cell remodeling ability is determined by
the cortex acto-myosin complex, which can be in turn stimulated by internal
(such as small G-protein activity) or external stimuli (such as ECM contact
guidance), see [53, 57, 61]. From this point of view, λperimeter

c represents a
sort of inverse elasticity of c, i.e., of the ease with which it can change its
shape. For instance, if λperimeter

c is very large, c has a negligible elasticity, and
its membrane is tight.

The Hamiltonian composed of Eqs. (8), (11a), and (11b) constitutes the
basic framework of most CPMs. However, additional terms, here grouped in
Hforce, can be further introduced to model effective and generalized external
forces that act on discrete elements. All these contributions can be described
with the same architecture [30]:

Hforce(t) = −
∑

f−force

∑
c, xj∈Ω

c
(t)

µf
c (t) F

f (t) · xj, (12)

where xj is the application point of force Ff on cell c and µf
c ∈ R measures

the corresponding effective strength. For instance, an extracellular molecular
substance (which is a continuous element described by a discretized PDE) can
activate selected transmembrane receptors of a cell (which is a discrete object
represented on the same grid), thereby biasing its movement: as a result, the
cell chemotactically migrates upon chemical gradients. These dynamics can
be implemented in our model by the following energetic contribution:

Hchemical(t) = −
∑

c, xj∈Ω
c
(t)

µchem
c (t)g(xj, t), (13)

where g(xj, t) is the present concentration of the molecular substance (which
evolves following a proper equation, cf. (5)) at cell membrane node location
j and coefficient µchem

c is the effective cell chemical potential. In this re-
spect, the net energy difference resulting from a chemotactic stimulus when
a membrane node i of a cell c attempts to move is

∆Hchemical(xc,i = xj → xc,i = xk)(t) = µchem
c [g(xj, t)− g(xk, t)]. (14)
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Recalling the dissertations on the traditional CPM [42, 61, 92], the total
force Fc,i applied at a membrane node i of a cell c is given by the negative
local gradient of the energy function, calculated at the grid point actually
occupied by i. For instance, considering a typical Hamiltonian, we have that

Fc,i(t) = −∇Hxj=xc,i
(t) (15)

= −∇

Hsurface(t)︸ ︷︷ ︸
Fpressure

+Hperimeter(t) +Hadhesion(t)︸ ︷︷ ︸
Fmembrane

+Hforce(t)︸ ︷︷ ︸
Fext. forces


xj=xc,i

.

(16)

In particular, as stated from the above equation, the vector F can be de-
composed into a pressure-driven term and in the contributions due either to
extracellular forces or to the forces acting on the cell membrane (i.e., adhesion
and cortical tension). It is however important to note that biological cells are
highly dissipative objects, as they are characterized by a low Reynolds num-
ber [84]: indeed, viscosity greatly exceeds inertial forces and cell behavior
is usually assumed to be overdamped, i.e., regulated by first-order dynamics
[42, 61].

2.3. Further model ingredients

The proposed modeling framework can reproduce other biological pro-
cesses, including cell duplication. In this respect, the main difficult relies in
the choice of a specific algorithmic procedure that realistically implements
the mechanisms of cell division. A possible option can be the following (see
Fig. 2 (A), bottom panels): given a mitotic cell c, select a membrane node
(say i) and link it to one of its non consecutive nodes (say, not to nodes
i + 1 or i − 1), such that the new membrane edge does not overlap to the
others. A close polygonal line is indeed obtained: it identifies one of the
daughter cells. The other daughter individual is then given by the remaining
part the parent’s membrane, closed by a new segment that links the pair of
consecutive disjointed nodes. Both cell and node renumbering are eventu-
ally required. As in the case of the traditional CPM, the daughter cells can
evenly inherit all the parent’s attributes and properties. As reproduced in
the bottom panels of Fig. 2 (A), such a division mechanism may cause a
substantial drop of cell mass: however, due to the shape constraints in Eqs.
(11a)-(11b), the daughter cells gradually maturate into full-size individuals.
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Further drawbacks of this procedure are that it can be implemented only
in the case of cells defined by more than 5 vertices and that at least one of
the two newly born individuals may be defined by a significantly low num-
ber of membrane nodes. In this respect, an algorithmic setup that gives to
both daughter cells the same number of vertices (i.e., the half with respect
to the parent’s number) may be preferable. Node addition can be also useful
to maintain a good detail in the representation of the daughter individuals.
The procedure for cell duplication may take into account more sophisticated
phenomenological rules as well. For instance, as suggested by a number of
experimental works as early as [97], a stochastic distribution of the time be-
tween cell divisions, which may depend both on the genetic state of each cell
and on the time from its last mitotic process, can be introduced. Further, a
cell can be prohibited to proliferate in the absence of a sufficient quantity of
growth factors, as widely demonstrated in literature with mitogenic assays
(refer for example to [71, 100, 113]).

The proposed node-based model is able to employ also some other fea-
tures characterizing the traditional CPM, as the compartmentalization ap-
proach introduced and described in [92, 93]. According to this method, a
collection of standard discrete cell-level objects can be clustered to form a
compartmentalized element, which can better reproduce a real biological in-
dividual. Technically, this approach requires that a set of discrete units c
shares an additional attribute, a cluster id (say, d ∈ N), which defines the
compartmentalized individual they belong to, see Fig. 2 (B). As in the case
of the standard version of the CPM, such a representation of individuals re-
quires a redefinition of the characteristic terms of the Hamiltonian. First, it
is necessary to differentiate the contributions of Hadhesion due either to the
contact between the membranes of discrete units belonging to the same ele-
ment, namely H internal

adhesion, or to the contact between the membranes of discrete
units belonging to different elements, namely Hexternal

adhesion. It is finally needed to
specify the attributes and the forces characterizing all the subunits of each
compartmentalized element. Such a technique allows to reproduce more re-
alistic cell morphology and behavior. For instance, it is possible to study the
role in cell migration of cytoskeletal elements, which provide support and
mediate coordinated and directed movements in response to mechanical ten-
sions and stresses from the local environment. A possible option is to employ
two-compartmental cells, i.e., differentiated in the nucleus (say, element c)
and in the cytosolic region (say, element c′), which are defined in our version
of the CPM by the corresponding membranes, see Fig. 2 (B). In this respect,
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it is useful to remark that the nodes of the intracellular compartments can be
located according to an experimental image, following the same algorithmic
steps described in the text in the case of Fig. 1 (B). The following additional
constraint in Eq. (9) has then to be included:

Hspring(t) =
∑

(xj ,xk) ∈ Ω
c
(t) × Ω

c′
(t) , c̸=c′

λspring
c,c′ (t)

[
|xj − xk| −Dspring

c,c′

|xj − xk|

]2
. (17)

It in fact plays the role of a spring connecting each node of the cell plasma
membrane to each node of the nucleus membrane. In particular, Dspring

c,c′ rep-
resents the target (e.g., equilibrium) length of the connection, xj and xk are
the location of the corresponding vertices, and λspring

c,c′ ∈ R+ is a generalized
elastic coefficient. The term (17) models the fact that the nucleus is an-
chored by intermediate actin filaments and microtubules to the cell plasma
membrane, which is in turn linked to the extracellular substrate through the
focal adhesion clusters, see the review [108] and the references therein. This
way, it is possible to more realistically describe cell movement, i.e., to take
into account simple cytoskeletal dynamics. Let us in fact suppose that an
external stimulus causes the cell plasma membrane to locally protrude in a
given direction: the overall cytosolic region indeed deforms and extends for-
ward. However, due to the term (17), the nuclear membrane is pulled with
the same force and therefore coordinately moves with the overall cell. How-
ever, a more realistic model should explicitly include acto-myosin dynamics
and the relative signal transduction (this topic is often approached in the
literature with multiphase models, see for example the book [2]). A possible
option may amount to use the stress distributions at the plasma membrane
as a signaling input for the subsequent cytoskeletal dynamics.

3. Sample simulations

In order to clarify the role in cell dynamics of the most relevant energetic
contributions and parameters introduced in the previous section, we now
illustrate some test simulations.

Hereafter, we employ rectangular domains Ω, with different sizes. For the
sake of simplicity, all of them are discretized with a fixed triangular mesh,
as the one presented in Fig. 1 (A), right panel, where each grid element
has a characteristic size of 1 µm. Indeed, in all cases, the number of grid
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elements can be calculated as 2 × Area(Ω). In all the sets of simulations
proposed in the following, the system evolves according to the Boltzmann-
like transition probability (6), with one cell node move attempt for each MCS
and p(Tc) = tanh(Tc) where, as already sketched, the motility parameter Tc

is a measure of the agitation rate of individual c.
We first try to find out the possible equilibrium cell configuration (i.e.,

size and shape) at selected parameter regimes. We indeed study the behavior
of a single cell c = 1 placed within a 100 µm × 100 µm-domain, see Figure 3.
The cell is defined by Vc=1 = 14 membrane nodes, whereas the Hamiltonian
accounts for the geometrical constraints specified in Eqs. (11a)-(11b). In
particular, the initial measures of the cell correspond to half of its (fixed)
target dimensions: lperimeter

c=1 (t = 0) = Lperimeter
c=1 /2 = 90 µm and ssurfacec=1 (t =

0) = Ssurface
c=1 /2 = 700 µm2. Both the cell fluctuation allowance and the

elastic moduli λ’s are constant in time. As reproduced in Fig. 3, when
Tc=1 ≈ 0, the cell is almost freezed, regardless of the value of the other
parameters. To observe significant cell dynamics, it is therefore needed to
have a sufficiently high value of the cell fluctuation allowance. In this respect,
given the lack of a direct experimental correspondence [107], its estimate
might represent an issue. However, as provided in the case of the traditional
CPM [53, 107], all energy contributions relative to a cell c can be scalable
with Tc, whose value can therefore be fixed without loss in generality. In
this respect, the fluctuation allowance of each model cell will be hereafter set
equal to 25. The other model parameters will instead vary, according to the
specific simulation: however, they will fall within a reasonable region of the
space of possible values. For a given cell c, it would be in fact nonsensical to
have Tc ∈ [0, 100] and, e.g., the λ-coefficients characterized by a difference of
three or four orders of magnitude. This appropriate precaution is employed
also in most published CPM works (see for instance [61, 68, 69, 106]), as it
also avoids undesired numerical effects, such as cell death and disappearance
in the long run [107]. The behavior of a cell is then mainly determined
by the hierarchy (and not by the specific values) of the model parameters
relative to its energy contributions. In other words, cell dynamics do not
vary if all the relative model coefficients are scaled by the same factor. In
this respect, if Tc=1 is high (say, = 25), a critical role is played by λsurface

c=1 : if
it is comparable to the fluctuation allowance (say, = Tc=1), the cell rapidly
reaches its target measures. After this transient, the cell morphology then
stabilizes if also λperimeter

c=1 falls within the same range (say, = Tc=1), while it
undergoes random perimeter fluctuations that, however, preserve its area, if
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λperimeter
c=1 ≪ Tc=1, see the corresponding panels in Figure 3. On the opposite,

if λsurface
c=1 ≪ Tc=1, the cell undergoes sudden and unrealistical mass variations,

regardless of the value of λperimeter
c=1 (not shown).

As stated above, the hierarchy of the values of the binding energies
J ’s in the DAH-derived term (8) describe the relative preference of cell-
level objects for creating adhesive boundaries with other discrete individ-
uals. To analyze how specific variations of such contact strengths affect
the dynamics, as well as the final configuration, of a biological system, we
first examine the evolution of a round aggregate of 50 cells, all of the same
type τ(c) = L (“L” for light), placed in the center of a 2.025 × 105 µm2

domain, see Fig. 4. Each individual is identified by Vc = 5 membrane
nodes. The Hamiltonian of the system accounts both for cell geometrical
attributes and for intercellular adhesive interactions. As usual, the rule in
Eq. (6) holds, with Tc = TL = 25 for all c = 1, . . . , 50. In particular,
for the sake of simplicity, the initial and the target cell measures coincide:
they are equal to lperimeter

c (t = 0) = Lperimeter
c = Lperimeter

L = 60 µm and
ssurfacec (t = 0) = Ssurface

c = Ssurface
L = 300 µm2 for all c = 1, . . . , 50. Tak-

ing advantage of the results summarized in Fig. 3, we then set for all cells
c a high λsurface

c = λsurface
L = TL = 25 to preserve their area and a low

λperimeter
c = λperimeter

L = 0.5 ≪ TL to allow significant remodeling and mem-
brane fluctuations. We further assume that the intercellular contact strength
is the same for all pairs of interacting individuals, depending on their type.
In particular, referring to Eq. (8), we have that Jc,c′ = J(τ(c),τ(c′)) = JL,L for
any pair of neighboring cells (c, c′). As reproduced in Fig. 4 (top panels), if
JL,L ≪ TL, which means a high intercellular adhesion, and hence an overex-
pression of cadherin molecules, the aggregate remains compact and strictly
packed. In particular, the component cells deform trying to maximize in-
tercellular connections, as they have energetic benefits to stay attached one
to each other. On the opposite, for larger values of cell-cell adhesion (i.e.,
JL,L = TL, which represent the model counterpart of a downregulation in the
cadherin activity), the aggregate quickly dissociates into isolated individu-
als, displaying a scattered phenotype. In fact, not only external cells spread
away, but a repulsion occurs also among individuals within the core of the
population. The cells in fact energetically prefer to float within the extracel-
lular environment rather than creating intercellular bonds. The dispersion
of single cells upon low intercellular adhesion is of particular relevance, for
instance, in the early stages of solid cancer growth and development. As
described in detail in the experimental literature (refer to [20, 21, 26]), the
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malignant individuals able to escape from the main tumor mass have in fact
the greatest invasive potential, as they can invade the host tissue and further
metastasize.

To further compare our method to the standard version of the CPM,
we next perform simulations of cell sorting (the literature on the topic is
vast, the interested reader can refer for instance to [40, 43, 57] and refer-
ences therein). In this respect, a cellular aggregate formed by two types of
randomly positioned individuals, namely τ = L (light) and τ = D (dark), is
placed within a square domain whose size is equal to 450 µm. The Hamil-
tonian again regulates the geometrical attributes of cells and their adhesive
behavior. We also set Tc = TL = TD = 25 for any c. The cell geometrical
constraints and target measures (which correspond to the initial dimensions)
are in common for all individuals, regardless of their type. They are the
same as in the set of simulations shown in Fig. 3: in particular, we use high
values of λsurface

c = λsurface
L = λsurface

D = TL = TD = 25 and low values for
λperimeter
c = λperimeter

L = λperimeter
D = 0.5 ≪ TL = TD, for all c = 1, . . . , 50.

Finally, we capture the final system configuration at 5000 MCS. If the adhe-
sive strength between the two cell types is higher than the two self-contact
values (i.e., JL,D ≪ JL,L = JD,D = TL = TD), the cells heterogeneously mix
to form an experimentally observed “checkerboard” (see Figure 4, bottom
panel). This is due to the fact that making heterotypic bonds is more conve-
nient from an energetic point of view than making homotypic bonds. On the
opposite, if the homotypic adhesion is stronger than the heterotypic one (i.e.,
JL,L = JD,D ≪ JL,D = TL = TD), we observe a spontaneous cell sorting, with
the formation of small clusters of cells of the same type, see the corresponding
panel in Figure 4. Other cell aggregate configurations may be obtained by
defining the extracellular medium as a discrete element, thereby introducing
its adhesive relationship with the cells. As explained in more details in the
conclusive section of this work, alternative mechanisms regulating cell orga-
nization can be in principle implemented in our computational framework:
however, the proposed simulations have been based on the DAH to provide
a closer comparison with the outcomes obtained with traditional CPMs.

As a further test simulation, we model the differentiated dynamics of a
set of three cells upon an exogenous chemical stimulation. The three cells
are initially aligned in a 1.2 × 104 µm2 domain Ω, as shown in the first panel
of Fig. 5. In particular:

• the left one, c = 1, of type τ(c = 1) = E (say, epithelial) is defined by
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Vc=1 = 15 nodes and is the only one sensitive to the chemical substance;

• the central one, c = 2, of type τ(c = 2) = F (say, endothelial), is
defined by Vc=2 = 12 nodes;

• the right one, c = 3, of type τ(c = 3) = E = τ(c = 1), is defined by
Vc=3 = 9 nodes but is insensitive to the chemical.

In this case, the Hamiltonian is given by the sum of the terms describing in-
tercellular adhesive contacts, cell morphological transitions and chemotactic
response. As usual, the contact strengths depend on the type of interacting
cells. In this respect, we set JE,E ≪ JE,F , since we here assume that in-
dividuals of the same cell lineage express analogous cadherin molecules and
therefore adhere more strongly. Further, according to the results obtained in
the previous sets of simulations, we opt for the following parameter setting:

lperimeter
c=1 (t = 0) = Lperimeter

c=1 = lperimeter
c=2 (t = 0) = Lperimeter

c=2 = 100 µm;

lperimeter
c=3 (t = 0) = Lperimeter

c=3 = 80 µm;

ssurfacec=1 (t = 0) = Ssurface
c=1 = ssurfacec=2 (t = 0) = Ssurface

c=2 = 500 µm2;

ssurfacec=3 (t = 0) = Ssurface
c=3 = 500 µm2;

λperimeter
c=1 = λperimeter

c=3 = λperimeter
E = 0.5 < λperimeter

c=2 = λperimeter
F = 25;

λsurface
c=1 = λsurface

c=3 = λsurface
E = λsurface

c=2 = λsurface
F = 25;

Tc=1 = Tc=3 = TE = Tc=2 = TF = 25.

With the above hierarchies of coefficients, we are hypothesizing that, in the
absence of nutrients, cell surface fluctuations are negligible and that the
epithelial-like individuals are more elastic (i.e., they can more easily deform)
than the endothelial one. Referring to Eq. (13) and recalling the previ-
ous assumption, we then have that µchem

c ̸= 0 (i.e., = 4) only for c = 1.
The molecular substance finally evolves according to the following reaction-
diffusion equation (RD):

∂g

∂t
= Dg∇2g − εgg + p(g), (18)

where the coefficients of diffusivity, Dg = 10 µm2 s−1 and of degradation
εg = 1.8 × 10−4 s−1 are homogeneous throughout the domain. Their values
have been estimated according to in vitro measures performed in [95] in the
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case of vascular endothelial growth factor isoforms (VEGFs). p describes in-
stead the production of the chemical at a constant rate ϕC = 0.78 h−1 (such
a value has been experimentally quoted in [95] and widely used also in the
modeling literature [38, 90, 91]) by a source extended along the entire right
border of the domain. As already mentioned and discussed in more details in
the next section, Eq. (18) is solved with a finite element scheme on the same
domain discretization Ω used for the node-based CPM. 10 diffusion step are
run for each MCS, which is then set to correspond to 10 seconds, so that the
resulting cell velocity falls in the realistic range 15 - 20 µm/h [81]. As shown
in Fig. 5, the chemical-sensitive epithelial cell (c = 1) undergoes a gradual
transition from the initial almost round stationary state to a polarized mor-
phology, characterized by clearly distinguishable leading and trailing edges.
In particular, the cell membrane protrudes at the front, defining the direction
of migration towards the chemotactic source. The moving individual then
avoids contacts with the endothelial cell, due to their low adhesive affinity,
see Fig. 5 (top-right panel). On the opposite, attraction and subsequent
adhesion occur between the two epithelial cells. In particular, cell c = 3,
which is insensitive to the chemical stimulus, attaches to cell c = 1 and re-
organizes in an elongated shape to maximize the adhesive contact between
its nodes and those of individual 1. Finally, as captured in the last panels of
Fig. 5, the individual c = 3 is dragged by cell c = 1 towards the source of
the chemical (i.e., towards the right border of the domain).

4. Computational implementation and performance analysis

Originally, CPM users wrote their own software programs, which were
specifically built according to the specific application they were develop-
ing. However, as commented in [5], these proprietary versions were usually
incompatible, making the exact replication of published results hard and
the integration of new CPM extensions considerably difficult. In order to
obtain a common program, several groups have then released open-source,
extensible CPM-based packages. Among others, the CompuCell3D3 environ-
ment (CC3D) has recently become a standard simulation environment for
the implementation of basic CPM applications. CC3D was jointly set up by
groups at the University of Notre Dame4 and at the Biocomplexity Institute

3http://www.compucell3d.org
4http://www.nd.edu
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at Indiana University at Bloomington5, and it is still under full and active
development.

However, the node-based version of the CPM presented in this work re-
quired an own implementation, as modifications of the already existing CPM-
based softwares were not sufficient. Without entering in details, the core
modules of the method (i.e., the set up of the domain and of the relative
mesh, the implementation of the Metropolis algorithm and the definition of
the specific Hamiltonian used in each simulation) are implemented in a C++
language. An XML-based markup language and reasonably simple Python
scripts are instead used to introduce and control the model parameters. In
particular, the implementation of our method consists of the following main
algorithmic steps:

1. The discrete CPM evolves through a MCS, following the rule in Eq.
(6), with the relative cell membrane edge intersection check;

2. Cell node addition, removal and renumbering is performed (if needed);

3. The biophysical properties of each discrete individual (e.g., surface,
perimeter, polarization, velocity) are recalculated;

4. The equations of the continuous elements included in the simulation
environment are rederived, according both to the relative kinetics laws
and to the new boundaries of the cell-level discrete objects. They are
then solved using a finite element method (FEM, [31]), employed on
the domain mesh used for the node-based CPM and characterized by
a number of diffusion time steps sufficient to guarantee numerical sta-
bility;

5. The Hamiltonian functional is updated, given the new configuration of
the domain, and the system is ready to evolve again.

To study the numerical efficiency of the proposed algorithm, we analyze the
performances obtained either from our method or from the traditional CPM
in comparable simulation settings. In this respect, the following three cases
are compared:

• The cell sorting simulation as presented in Fig. 4 (bottom-right panel);

5http://www.biocomplexity.indiana.edu
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• A simulation consisting of a slight modification of the previous case,
i.e., in which at each MCS a cell is randomly chosen and its membrane
nodes are entirely renumbered;

• A cell sorting simulation implemented with the traditional version of
the CPM and run from CC3D. In particular, in order to have a coherent
system configuration, we employ a domain of 450 × 450 lattice sites,
where each grid pixel has a characteristic size of 1 µm. The initial
aggregate condition consists of an almost round colony formed by 25
light (i.e., τ = L) and 25 dark (i.e., τ = D) cells, with an initial surface
of 300 pixels (i.e., corresponding to 300 µm2). Finally, the Hamiltonian
of the system is composed of the terms regulating intercellular adhesion
and shape remodeling:

Htrad CPM(t) = Hadhesion(t) +Hshape(t)

=
∑

x∈σ,x′∈σ′

Jτ(σ(x)),τ(σ′(x′))(t)

+
∑
σ

λsurf
σ (t)

(
ssurfσ (t)− Ssurf

τ(σ)

ssurfσ (t)

)2

+ λper
σ (t)

(
lperσ (t)− Lper

τ(σ)

lperσ (t)

)2
 ,

(19)

where, recalling the notation of the traditional CPM, x and x′ are
two neighboring lattice sites and σ and σ′ two neighboring cells. The
parameters (19) are taken exactly the same as the corresponding ones
in the case of the simulation shown Fig. 4. In particular, we opt
for JL,D = 25 > JL,L = JD,D = 0.5, while we neglect cell-medium
adhesiveness.

For each implementation setting, 50 realizations are run and stopped after
5000 MCS, an observation time sufficient to have a complete cell sorting.
Then the average of the execution time obtained in the different cases is
calculated and reported in Fig. 6 (the standard deviations are smaller than
5% and therefore not indicated). The experiments are carried out in a ded-
icated laptop (SSD 4GB RAM, Pro Intel i7). By comparing the resulting
performances shown in Fig. 6, it is possible to note that our version of the
CPM algorithm is ≈ 12% slower than the traditional CPM. Such a differ-
ence is further increased in the case of node renumbering. The underlying
reasons are the following. In our method, the basic step of the Metropolis
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algorithm (i.e., a cell membrane node displacement attempt) is characterized
by a complexity of O(Nd−1) (where d is the spatial dimension), as only cell
boundaries are set to move (see the comment in [22]). However, the main
computational burden consists in the fact that the required membrane edge
intersection test and the cell node renumbering procedure introduce further
steps characterized by a complexity of O(Nd) (i.e., O(N2) in the case of two-
dimensional simulations). The efficiency of the entire method is therefore
drastically reduced (unless more appropriate data structures will be used).

To conclude the performance analysis of our version of the CPM, the
graphs in Fig. 6 compare the execution time obtained by employing the
sorting simulation of Fig. 4 (i.e., without cell node renumbering) upon vari-
ations in the number of cells, the number of nodes used to define each cell
and the number of grid elements. Also in this cases, 50 realizations are per-
formed and run for 5000 MCS, while the corresponding execution times are
calculated and then averaged. On one side, increments in the domain ele-
ments do not affect the algorithm efficiency. This is due to the fact that,
unless in the case of time-evolving or adaptative meshes, the system has not
to recalculate the position of the grid vertices. On the opposite, as expected,
increments in the number of cells or in the number of their membrane nodes
result in a slowdown of the algorithmic performance. To mitigate this issue,
a preliminary study of the problem of interest may be very useful. For in-
stance, if a given biological phenomenon requires an accurate description of
the subcellular scale, it should also allows to take into account a small num-
ber of individuals. On the opposite, if the simulation of a huge population
is needed, the level of detail for each component cell can be significantly de-
creased. However, we are aware that it is not always possible to maintain the
complexity of the simulated system within a reasonable range. Efficient com-
putational techniques that are able to significantly increase the simulation
speed would be therefore needed.

One of the main issues of the algorithm underlying our version of the
CPM is that too low acceptance probabilities of cell membrane node dis-
placement often waste much computational time. As commented in [5, 24],
this problem holds also for the traditional CPM and has been addressed
by several approaches that may be implemented in our method as well. In
this regard, rejection free dynamics, such as N-fold way and kinetic Monte
Carlo, are particularly productive [7, 35, 59]. For each time step, they in
fact do not consider a trial index copy, which may or may not be accepted,
but choose only from the set of allowed lattice updates (i.e., those that de-
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crease the system energy). The net computational gain will indeed depend
on the balance between the average number of possible cell number flips and
the average acceptation rate. The Masking algorithm instead focuses in re-
ducing the inefficiency of the Metropolis algorithm by avoiding computation
of energy between lattice sites within the same discrete object [112]. How-
ever, this technique still requires a large number of attempted exchanges.
The Random-Walker (RW) algorithm instead reduces, but does not elimi-
nate, the rejection rate by selecting as target sites only those belonging to
an object boundary [22, 45]. The automatic rejection of non-boundary sites,
characteristic of the standard CPM algorithm, is therefore eliminated.

The increment of the computational speed is however appreciable only
in the presence of significantly large domains, containing a huge number of
simulated individuals as well. For this reason, most of the above-commented
methods are integrated by the use of distributive computing, where the over-
all simulation domain is typically divided and distributed between the nodes
of a cluster of CPUs [5, 45, 55]. The already-cited Masking algorithm [112]
represents for instance the first parallel version of the original Potts approach.
It is used to simulate a model of grain growth, where the effective energy con-
sists only of local interactions between grain boundaries. In this respect, as
explained in [5, 24], the main difficulty of all forms of CPM parallelization
is that the effective energy is nonlocal: when a given object crosses between
CPU nodes, any modification to it in fact requires efficient parameter pass-
ing, so that the overall computation does not use stale values. Therefore,
a naive parallelization, where the activity of each processor is restricted to
a predefined subdomain of the whole lattice, increases the frequency of in-
terprocessor communication for synchronization: the waiting time of each
CPU will be therefore much greater than its calculating time. An interest-
ing attempt to overcome this issue is made with the checkerboard algorithm,
presented in [24]. Its developers use an improved data structure to describe
simulated individuals as well as a further decomposition of the subdomain
assigned to each CPU. In particular, the resulting sublattices are chosen so
that the corresponding ones on different processors do not interact. In this
way, an update in one sublattice affects only a selected (i.e., a priori es-
tablished) set of sublattices. Each CPU node is therefore able to determine
the cell identification number flips affecting neighboring nodes, accumulate
them, and pass them synchronously. In this case, the speed gain increases
with the size of the subgrids per processor and decreases with the interaction
range. The checkerboard parallelization can also implement rejection-free or
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RW methods, by using either equivalent or master-slave computations. In
[24], the authors claim that the checkerboard execution scheme minimizes
communication due to synchronization between the CPU nodes and show
that, due to the stochastic nature of the simulation, model accuracy does
not suffer much if synchronization does not takes place at every time step.
Their analysis is based on the assumption that lattice sites updates are rare
occurrences at the boundaries between regions. However, as commented in
[22], this assumption may not hold true for large-scale simulations. A recent
RW distributing implementation of the CPM runs significantly faster [45].
However, the proposed parallel scheme requires shared memory with all pro-
cessors sharing the same subdomains: it is indeed needed a copy of the entire
lattice in each CPU, which limits scalability.

The use of parallel computing can of course help to improve the efficiency
of the algorithm underlying our node-based CPM. However, according to
us, distributed computing has to follow a preliminary computational opti-
mization of our method, at least in the steps concerning the cell membrane
overlapping test and the eventual cell node renumbering.

5. Discussion

The macroscopic evolution of multicellular tissues and organisms is de-
termined by processes characteristic of different spatiotemporal scales. In
this respect, a wide range of of mathematical models waive the fine detail
of microscopic mechanisms while focusing on cell-level dynamics, i.e., on
the cell biophysical properties and behavior. These mesoscopic theoretical
approaches are powerful instruments for comprehending and reproducing bi-
ological phenomena: they in fact facilitate the comparison between model
outcomes and experimental data, given the immediate interpretation of the
simulation results and the reduced number of variable and effective parame-
ters, as commented in [61]. One of the principal families of mesoscopic math-
ematical methods is constituted by Individual Cell-Based Models (IBMs, also
called Cellular Automata with an abuse of terminology), whose main feature
is the possibility to preserve the identity of the individual cells forming the
system of interest [1, 33]. The IBMs can be classified in different categories:
those in which each cell is correlated to a single spatial unit (e.g., a material
point or a center of mass-based entity) and those in which each cell is instead
defined by a collection of spatial units. This last group of approaches includes
the cellular Potts model (CPM). It in fact represents cell-level objects as sets
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of contiguous lattice sites that share the same identification number. Each
discrete element is therefore allowed to have a degree of freedom to deform,
which is only limited by the spatial resolution of the domain. In this respect,
the CPM can be indeed considered a member of the Cell Surface Mechanics
(CSM) models which, as commented by Lecuit and Lenne in [58], describe
how biologically-generated tensions (resulting from intercellular adhesion and
intracellular pressure and cortical contractility) affect cell shape and dynam-
ics.

In this foundational work, we have proposed a substantially modified
version of the CPM, which relies on a node-based representation of cell-scale
elements. In this respect, the CPM simulation domains no longer need to
be fixed and regular (square or hexagonal) numerical lattices but can be
any physical region, provided with a proper discretization. Possible domain
meshes of our CPM-based method may include irregular or deformable grids
and graphs of all classes, even adaptive according to the dynamics of interest.
The proposed cell representation results in some further consequences. First,
realistic cell morphologies can be obtained by grid refinements and by setting
a large number of membrane nodes for each individual, always keeping in
mind that the more the simulated system is detailed the more the simulations
are computationally expensive (cf. Section 4). Secondly, the vertices of the
discretized domain can be empty, i.e., not occupied by any cell node. It
is indeed not necessary to introduced a medium element, i.e., the classical
generalized cell σ = 0 of the standard CPM, which often forces CPM authors
to set an unrealistically high cell-medium energy cost to prevent the presence
of extracellular sites within cell aggregates, as done for instance in [6]. In
this respect, the extracellular environment can be defined and characterized
only when it is really needed, for instance, when haptotactic or durotactic
phenomena are of interest or when it is composed of insoluble matrix proteins
(e.g., laminin, fibronectin, collagens). Entering in more details, single ECM
fibers may be easily represented by segments connecting two o more grid
vertices (according to the scale of the domain).

Another difference of the node-based CPM with respect to the standard
version of the method is that, when moving, cell-scale elements do not su-
perimpose one another. In fact, a cell membrane node can only move in
the free space (when extending) or within the body of its own individual
(when retracting) but it can not occupy a location belonging to another
discrete element. In this respect, each discrete cell is characterized by its
own membrane, that realistically rearranges (via node location updates) and
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eventually pushes onto the neighboring individuals, to produce collective cell
movement.

A further advantage of our approach with respect to the traditional CPM
which, as seen, is based on rigid lattices formed by fixed and equivalent
(square or hexagonal) sites, is the possibility of interfacing it with purely
continuous approaches, not limited to RD equations reproducing the evolu-
tion of chemical variables (that are already included in most CPMs). Our
node-based CPM can be in fact employed on the domain discretization that
best fits the numerical needs of proper fluid dynamics models (e.g., Navier-
Stokes, Darcy, or Brinkman equations) and/or of selected continuummechan-
ics methods that can describe, for instance, the extracellular matrix (and its
elastic, elastoplastic, or viscoplastic properties).

Regardless of the different representation of cell-scale elements, our CPM-
derived method is still based on the classical Metropolis algorithm, which
results in overdamped cell dynamics and in an implicit dissipation (as com-
mented in [52, 61, 93]). As in the case of the traditional version of the CPM,
it is indeed difficult to represent and control viscosity also in our approach.
In this respect, possible options may include the introduction of an energy
threshold in the exponential term of Eq. (6) or the addition of a proper
contribution in the Hamiltonian. The Metropolis algorithm can of course
be used to implement several energy functionals. However, in this work, we
have only employed Hamiltonians formed by terms typically used by CPM
authors, i.e., that deal with cell geometrical constraints, chemotactic stimuli,
and intercellular adhesiveness. In this respect, the Differential Adhesion Hy-
pothesis is one of the fundamental assumptions of most CPM applications.
It proposes that cell sorting results from the hierarchy of adhesive strengths
between the different cell types. However, the DAH is only one of the possible
mechanisms underlying tissue organization and its acceptance is controversial
[11]. For instance, Harris proposes a Differential Surface Contraction (DSC)
hypothesis, in which cortical tension (the force generated within cells whose
direction is parallel to their surface), rather than differential adhesion, drives
multicellular patterning [46]. From this point of view, cell sorting is similar
to active migration, which is significantly driven cell morphological transi-
tions. The DAH instead holds also if cells are considered as structureless
units. In this respect, an interesting paper by Krieg and coworkers [57] tests
both the DAH and the DCS assumption by experimentally measuring (with
an atomic force microscope) the adhesiveness and the cortical tension of cells
from three germ layers of zebrafish embryos and then by performing pairwise
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sorting assays. From their coupled in vitro – in silico results, it seems that
cell organization is mainly driven by the DCS (or by similar assumptions,
such as the Differential Interfacial Tension Hypothesis [12]) rather than by
the DAH. However, as lucidly commented by Green [44], the experiments by
Krieg and colleagues fail to reproduce in vivo dynamics, probably because
they barely take into account of time-dependent variations of intercellular
adhesiveness, of other factors determining cell deformability and of the fact
that the adhesion of cell sheets is quite different from that of individual cells.
Summing up, it still remains debated whether differential adhesion and cor-
tical tension are mutually exclusive or act in synergy (may be in conjunction
with other mechanisms) to determine cell sorting and organization.

Focusing on CPMs, it has to be said that the DAH still remains one of
the fundamental assumptions: only recently, cortical tension has begun to
be included in the modeling framework, as done by Krieg and coworkers in
the already cited paper [57]. Original CPM simulations in fact successfully
captured cell sorting phenomena by taking into account only of intracellular
pressure and intercellular adhesiveness [40, 43]. Ouchi and coworkers then
first proposed an extension of these approaches, that amounted in the addi-
tion of an energy contribution representing a perimeter constraint [79]. Such
a term was identified to model cortical tension, and since then has been ex-
tensively used in several multicellular computational studies. For instance,
in [53] Käfer and coworkers use a 2D CPM to study the critical parameters
determining Drosophila eye geometry, which is essential for correct vision.
In particular, the basic unit of the Drosophila retina, the ommatidium, is
formed by 4 cells surrounded by 2 primary pigment cells, embedded in a
hexagonal matrix consisting of secondary and tertiary pigment cells [109].
This pattern is close to a 2D foam layer: therefore, the authors make the hy-
pothesis that surface tensions, which drive soap bubble packing [25, 58], are
responsible also of cell sorting and organization in Drosophila morphogene-
sis. In particular, Käfer and colleagues first assume that cell surface tension
is modified only by adhesion, i.e., they use a Hamiltonian only accounting
for cell-cell contact interactions and area constraints. As a result, the cells
mechanically behave as soap bubbles: they meet by three at each vertex at
almost equal angles. However, such model outcomes fail to reproduce the ex-
perimentally observed patterns resulting from different cadherin expressions.
The reason is that cells greatly differ from bubbles, both in their membrane
and in their internal composition. In this respect, Käfer and coworkers argue
that, as commented also by Lecuit and Lenne in [58], cell surface tensions
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results from the opposite action of adhesion and cytoskeletal dynamics, i.e.,
from an adhesion-driven extension of cell-cell interfaces balanced by a cor-
tical contraction. The authors indeed add an elastic potential regulating
cell perimeter length. The resulting model finally explains correctly the ge-
ometry both of wild type and of mutant ommatidia. The minimization of a
Hamiltonian energy that include a balance between intercellular adhesion and
intracellular pressure and cortex contractility is at the basis also of a CPM
analyzing Drosophila wing, set up by Bardet and coworkers [6]. In particu-
lar, these authors show that the loss of the tumor suppressor PTEN disrupts
regular cell rearrangements by inhibiting a localized decrease of Myosin II
and Rho-kinase, and therefore by preventing the lengthening of newly formed
cell-cell junctions. A homogeneous distribution of MyoII is in fact required
for a homogeneous cortical contractility and therefore for the formation of a
stable, honeycomb-like cell packing, as observed in several epithelial tissues
[27, 39, 72].

Further comments are needed on the specific Hamiltonian terms proposed
in this work, especially on the relative parameters. First, both the intercel-
lular adhesive strengths and the generalized spring moduli λ’s have been
assumed non negative: this choice has been done to maintain a closer com-
parison with the parameter settings usually employed in traditional CPMs.
However, it is useful to recall that there has been ample discussion whether it
is more reasonable to use positive or negative J-values [53, 79, 86], because
it is difficult to experimentally quantify them, see also [62] for a detailed
comment. In this respect, the already-cited scholar study by Magno and
coworkers show both analytically and through simulations that concurrently
changes in all J-coefficients (and therefore also a shift from positive to neg-
ative values) do not affect the dynamics of the system, if such parameter
variations are accompanied by a proper rescaling of cell volume and sur-
face (i.e., area and perimeter in 2D). A similar analysis in the case of our
node-based CPM would be interesting as well, although we expect to obtain
analogous results. In the case of compartmentalized approach, it is however
consistent to use negative values for the intracellular contact strengths (i.e.,
in the case of the contact between subunits belonging to the same individ-
ual) and positive values for intercellular adhesiveness, see [92, 93]. In the
same work, Magno and colleagues claim that it is nonsensical to consider
negative values for perimeter and area constraints [61], thereby confirming
the coherency of our assumptions. Finally, the sing of the Lagrangian mul-
tipliers in Eq. (12), which give the cell response to a given external force,
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has to be determined according to the dynamics of interest. For example, in
the case of a chemotactic stimulus, µchem

c > 0 yields cell c to move up the
gradient of the molecular substance (which is therefore a chemoattractant),
whereas µchem

c < 0 results in its movement in the opposite direction (and the
molecular substance is chemorepellent).

Regardless the above considerations, both in the case of the traditional
CPM and in the case of our node-based version, a direct one-to-one corre-
spondence between some model parameters and experimental quantities is
not straightforward (as commented also in [41, 42, 67]). In particular, as
explained in details in [107], the CPM parameters can be subdivided in (i)
directly interpretable and measurable quantities, such as cell geometrical di-
mensions or kinetics coefficient of continuous fields, and (ii) more technical
parameters that only subsume various cellular and subcellular properties,
such as the adhesive strengths and the Lagrangian multipliers relative to cell
attributes and cell response to selected forces. It is indeed consistent to as-
sign to the first group of parameters actual dimensioned units, whereas the
second group scales in dimensionless units of energy. This choice, largely
employed also in traditional CPM works (see, as a representative example
the scholar work by Magno and colleagues [61]), has been made to allow re-
searchers to reasonably fix at least the set of parameters with a possible and
direct experimental counterpart: as a consequence, the degrees of freedom
of the parameter space, as well as the complexity of the relative sensitivity
analysis, are reduced. In this respect, as commented in [107], the CPM coef-
ficients included in the energy terms interfere each other in an intricate way,
and therefore simultaneous parameter fittings are often needed to disclose
knowledge on the model behavior. However, at present, there is not a proper
algorithm for an optimal parameter estimate for CPM approaches, which
indeed still remains a complex task, actually requiring “much intuition and
skills by the authors themselves” [107]. In this perspective, we have here
proposed simulations to elucidate how specific parameter settings translate
into qualitative system dynamics. First, we have shown that too low values
of the fluctuation allowance, that weights the probability of accepting a trial
displacement causing an energy gain, result in cell freezing. However, in this
case, we have not captured undesired grid effects, as observed instead with
the traditional CPM [61, 64]. Further, the simulations presented in Fig. 3
have linked the evolution and the stabilization of cell morphology to selected
ranges of values both of the cell elastic moduli and of the cell fluctuation
allowance. In this respect, we underline that the form of Eq. (9) allows to
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avoid cell shrinking regardless of the specific choice of the λ-coefficients, an
artifact that is often present in traditional CPM approaches. In this regard,
some authors interpret the possible vanishing of cells due to specific param-
eter settings as the model counterpart of pressure-driven apoptosis [47] and
delamination [66]. As shown by the simulations in Figs. 3 and 4, it is also
evident that variations of the most relevant parameters of our node-based ap-
proach give rise to expected cell dynamics, i.e., coherent with those obtained
from the traditional CPM. However, a more complete sensitivity analysis (as
the one performed in [61]) would be needed to ensure that the evolution of
the simulated system is consistent across a large range of parameter values
and to allow researchers to qualitatively predict the model outcomes resulting
from different regions of the parameter space. It is finally useful to remark
that a proper fitting between the algorithm basic step and the actual time
units is even more difficult. A good option is to employ an a posteriori cal-
ibration between selected quantities resulting from numerical outcomes and
relevant and available experimental data. For example, is is consistent to fix
the spatial unit of the computational domain and then to infer a reasonable
relationships between a MCS and a proper temporal unit by comparing, e.g.,
cell velocity or the diffusive behavior of a chemical substance as evaluated
either in model simulations or in experimental settings. Such a procedure is
typically performed also in traditional CPM works [67, 90].

Since a powerful modeling approach should be able to adapt to different
biological contexts and to describe multiple types of phenomena, we have
illustrated also a sample simulation of a cell chemotactic migration. In this
respect, we recall that directional components in cell motion are included in
a number of CPMs. In most cases, they amount to chemotactic or durotactic
energy contributions (similarly to Eq. (13)), which model the fact that cells
crawl towards increasing gradients of soluble or insoluble chemical substances
[68, 91, 106]. Further, some authors introduce a term in the Hamiltonian
implementing a cell-shape dependent inertial movement (i.e., persistence).
Such an energy contribution is typically expressed as a motile force, whose
direction is determined by a feedback from the cell earlier displacements.
It is involved both in single cell migration within three-dimensional matrix
environments [94] and in the collective movement of dense cell monolayers
[52]. In all these cases, a constant gradient in the energy functionals leads to
a constant cell velocity, which results in an effective viscous friction between
the cells and the extracellular substrate, at least for the range of parameter
values used. Notably, the work by Kabla [52] shows that minute variations of
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cellular and environmental properties trigger transitions between well-defined
multicellular migratory behavior (e.g., epithelial migration vs. mesenchymal
movement, coordinated vs. disordered cell motion, collective vs. individual
invasion).

As it possible to observe from the sample simulations shown in Section 3,
the proposed node-based cell representation has some other advantages and
disadvantages with respect to the pixel-based one of the traditional CPM. On
one hand, it allows a direct matching between the simulated cell perimeter
(i.e., surface in 3D) and the experimental counterpart: a reasonable corre-
spondence is instead harder to be obtained with traditional CPMs. In these
cases, as commented in [61], it is not possible to simply measure the total
edge length between neighbouring lattice sites belonging to different cells.
Large grid effects in fact emerge, with diagonally oriented edges presenting
a significantly larger length than horizontally or vertically oriented edges
[64]. Such an artifact is typically overcome by CPM authors by multiply-
ing cell perimeter by a proper factor, see again [61] and references therein.
Further, the proposed approach allows to describe extended cell membrane
protrusions (e.g., filopodia and pseudopodia) more easily than the traditional
CPM. Significantly long and thin cell structures are in fact typically obtained
in classical pixel-based CPMs either by a priori assumptions on the target
measure of selected cell axes [69] or by an unrealistical compartmentalization,
such as the subdivision of cells into strings [99] or into sets of undifferenti-
ated hexagonal subunits [65]. On the other side, each piece of cell membrane
is represented in our model by a rigid segment connecting two consecutive
nodes (in the absence of more complicated assumptions): this results in a
decreased realism of the simulation outcomes, especially in the case of phe-
nomena involving complex cell morphological transitions. Such a drawback
can be partially avoided by cell node addition procedures, employed accord-
ing to the problem of interest, as also commented in the text. Finally, a
significant issue of our method is represented by the matching between the
membranes of adherent cells. In fact, the distance between the nodes (and
therefore between the edges) of a pair of cells in contact is equal to the char-
acteristic size of the domain grid elements. In this respect, we suggest the
researchers to perform a preliminary study of the system they want to sim-
ulate, in order to decide the optimal spatial resolution. However, they have
to take into account that, as shown in the plot in Fig. 6 (C), reasonable
increments in the mesh refinement do not affect the algorithm efficiency (at
least in the case of fixed grids).
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5.1. Comparison with vertex-based models
As seen in the previous part of the discussion, the CPM approach can

be considered a member of the Cell Surface Mechanics models (CSMs). Our
version of the CPM is even closer to such type of computational methods,
and in particular to the subfamily of vertex-based models (VBMs). For the
sake of completeness, we indeed propose a digression on VBMs, focused on
their main features as well on a comparison with our node-based CPM.

The origins of VBMs relies in the study of inorganic structures such as
soap bubbles [63], foams [77], and grain boundaries [54]. However, in the
last decades such approaches are extensively used to investigate the bio-
physical mechanics underlying the deformation of epithelial tissues. The
simple epithelium is a cell monolayer, composed of a dense population of
strongly adhering cells, which are indeed densely packed and normally ex-
hibit quasi-hexagonal shapes. The organization of epithelial sheets is mainly
determined by selected cell properties, particularly remodeling ability and
contact strength. Most vertex models represent either a cross-section or the
apical surface of an epithelial sheet [36]. These simplifications allow to treat
the component cells as two-dimensional elements, thereby reducing the com-
putational complexity. Entering in more details, VBMs typically represent
each cell as a polygon, with vertices and edges shared between adjacent indi-
viduals. This is the first relevant difference with respect to our model, where
cell nodes and membrane segments belong to each single discrete element. In
vertex models, the evolution of the shape and the position of the epithelial
cells is largely due to the displacement of their vertices, which obey deter-
ministic rules of motion (i.e., stochasticity is neglected as a consequence of
the strong intercellular interactions). In particular, two further assumptions
are usually done: each vertex is embedded in a viscous medium that applies
a drag force and inertia can be neglected [36]. VBMs also incorporate proce-
dures for junctional rearrangements, that allow cells to form and break bonds
and be prevented from (self) intersecting. As described in [36] (cf. Fig. 3),
in a cell neighbour exchange (also called T1 transition) two vertices sharing
a short edge first merge into a single junction and then decompose into two
different vertices. Further, a T2 transition consists in the removal of a cell
characterized by a sufficiently small area. Finally, a T3 transition involves
vertex/edge merging, which may be implemented in the case of epithelial
sheets with voids and moving boundaries to avoid vertex/edge intersections
[36].

As commented again in [36], one difference among vertex models relies in
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the fact that the forces acting on each vertex can be given explicitly (requir-
ing indeed the solution of an equation of motion for each cell-cell junction) or
through an energy minimization, similarly to CPM approaches. For instance,
a series of models by Weliky and coworkers employs an explicit force-based
approach, where the force on each cell vertex is given both by surface ten-
sions and by a cortical pressure, The formers act in the direction of the cell
membrane and are proportional to the perimeter of the interface, while the
latter is the difference between the osmotic pressure tending to expand the
cytoplasm and the restraining elastic pressure generated by the actin poly-
mer fibers [110, 111]. These models are used to reproduce the key features
of epiboly, i.e., coordinated cell movement involved in the gastrulation of
the teleost fish Fundulus heterclitus [110], as well as to show that contact
inhibition of cell motility and polarized protrusive activity are required to re-
capitulate normal notochord development in the African frog Xenopus laevis
[111]. A variation of the above-described approaches is employed in the mod-
els by Brodland and co-workers, which are based on a finite element method.
The authors first assume that the forces acting at each cell vertex are di-
rected along the plasma membrane: further, they place an additional vertex
at each cell centroid, which allows to create a proper triangulation suitable
for their finite element formulation [11, 12, 13, 14, 15, 16, 17, 18, 19]. The
models by the group of Brodland are then applied to study the biophysics of
cell sorting and engulfment during embryogenesis. We here remark that an
analysis focused on the relationship between cytoskeletal mechanics and cell
behavior could be in principle performed also with our node-based approach.
Differently to the traditional CPM, it is in fact more suitable to be interfaced
with finite element methods, given the possibility of employing selected types
of domain discretization.

Some of the most relevant studies using an energy-based approach are
instead conducted by Honda and coworkers, who investigate how epithelial
cells undergoing mechanical relaxation and neighbor exchange processes min-
imize their surface area while retaining a constant volume [48, 49, 50, 51].
An energy-based model is also set up by Farhadifar and colleagues, and ex-
tensively used to describe wing disk development in Drosophila [34]. In par-
ticular, the employed energy functional is very similar to the Hamiltonians
presented in this work. It in fact reads as:

E =
∑
α

Kα

2
(Aα − A0

α)
2 +

∑
i,j

Λijlij +
Γα

2
L2
α, (20)
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where, given that α indicates each cell and (i, j) a pair of neighboring cell
vertices belonging to different individuals, the first term is an elastic area
constraint implementing intracellular pressure, the second summation mod-
els cell-cell adhesion (i.e., lij is the length of the membrane edge defined by
vertices i and j) and the third term is the counterpart of the above-described
cortical tension. The authors also include in their method a randomized cell
division, and T1 and T2 transitions. They then study how cell mechanics
and mitosis affect geometry and morphology (in terms of cell polygon number
and of the relationship between cell area and perimeter) of the Drosophila
wing disks. In particular, Farhadifar and coworkers estimate the values of
key model parameters by comparing simulation outcomes and experimental
results on the movement of the junctional network after laser ablation of
individual cell boundaries. Later, Staple and colleagues undertake a system-
atic analysis of the ground states of the Farhadifar’s vertex model, which
correspond to the absolute minima of the energy function (20) for a given
number of cells. In particular, a phase diagram is obtained, which deter-
mines the correspondence between selected regions of the parameter space
and different types of ground states.

As elegantly commented in [36], force-based vertex approaches are more
appropriate for dynamic systems sufficiently far from mechanical equilibrium
or for those where the acting forces are well characterized. On the oppo-
site, energy-based methods are more intuitive in the case of systems relaxing
towards equilibrium or for those in which nonlocal effects are significantly
involved.

Further comments are then needed on the implementation of cell division
in vertex-based models. It is usually assumed that a cell splits into two indi-
viduals of equal area [11]. This can be accomplished with the determination
of a specific dividing line and the subsequent addition of two new cell vertices
where such a mitotic segment intersects the parent cell perimeter. The di-
rection of the dividing line (i.e., of the angle of mitosis) may be taken from a
uniform distribution (in the case of isotropic cell division), may be aligned to
the shorter cell axis [13, 51], or may account of cell polarity [80]. The choice
of division plane orientation can have a significant effect on the resulting ep-
ithelial sheet topology, and in particular on the frequency of hexagonal cells
within the tissue [60]. As in the case of CPMs, the time of cell proliferation
can be assumed in VBMs to occur stochastically [34] or to be determined
by a detailed description of the cell cycle, which may account of cell growth
and of a characteristic dormant period between mitotic events [104, 80]. It is
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however useful to comment that the above-described procedures to reproduce
cell duplication mechanisms closely resemble the implementation proposed
for our node-based model, sketched in Fig. 2 (A) and described in the relative
part of text.

Vertex models can be easily modified to incorporate molecular dynam-
ics. For instance, Smith and colleagues use in [96] an arbitrary Lagrangian-
Eulerian formulation and a finite element method and couple the numer-
ical solution of the reaction-diffusion equations governing morphogen and
a vertex-based approach for epithelial reorganization, very similarly to our
CPM. In particular, these authors assume that the rate of cell growth lin-
early increases with the local concentration of the given chemical substance.
Schilling and coworkers instead employ and modify the energy-based model
by Farhadifar in the context of the cell sorting at the anterior/posterior
boundary in the Drosophila wing primordium [89]. They assume that the
bond tensions Λij in Eq. (20) depend on the local intracellular concentration
of a putative molecule of the Hedgehog (Hh) signaling pathway. Further, they
implement a finite volume method, typical of computational fluid dynamics,
to solve the reaction-diffusion equations governing the Hh biochemical cas-
cade. The approach by Schilling and colleagues can be considered nested, i.e.,
the microscopic/molecular scale affects mesoscopic cell behavior, similarly to
what can be done in CPM approaches [92, 93].

The inclusion of mechanical aspects, as seen a fundamental improvement
of our model with respect to traditional CPMs, can be also employed in
vertex-based models. The pioneering work of Odell and coworkers uses a
vertex model to study active or passive mechanical forces lead to tissue de-
formation [75, 76]. In particular, the authors represent a cross section of
an embryo as a ring of cells: each of them is in turn defined by four in-
terconnecting vertices subjected to a viscoelastic force. The apical edges
also actively contract in response to stretch. Similar approaches examine
the mechanics underlying tissue deformation in other systems, including the
process of invagination of the optic cup in vertebrates [74, 85]. A model
for the highly ordered packing of cells in the zebrafish retina [87] instead
includes both mechanical and biochemical aspects in a vertex-based frame-
work. In particular, the localization of planar cell polarity (PCP) proteins
determines cell membrane edge tension, which mechanically affect cell and
tissue geometry. Tissue organization and remodeling in turn constraint PCP
distribution within each cell or between neighboring individuals. The re-
sulting model outcomes suggest that cell patterning in the zebrafish adult
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retina requires the intervention of an externally applied force, representing
intraocular pressure, and the progressive growth and division of cells exhibit-
ing selected amounts of PCP. The model further predicts that cone mosaic
defects arise from mechanical perturbations, as confirmed by experimental
observations in bugeye mutant fish. Similarly, a model of wing imaginal
disk size regulation, developed by Aegerter-Wilmsen and coworkers, assumes
that cell cycle progression is modulated by the concentrations of key pro-
teins associated with mechanotransduction and morphogen signaling [3]. In
particular, these authors use a coupled set of differential algebraic equations
to describe morphogen and selected cell-cell signaling pathways and a clas-
sical vertex model to represent cell growth, division, and remodeling. Cell
mechanical compression then modulates the activity of selected proteins in
the regulatory network which in turn affects the rate at which cells progress
through the cell cycle and biases the direction of cell division. The model is
finally able to reproduce a number of experimental observations, including
the spatially uniform and non-uniform growth patterns in disks.

It is useful to notice that in most vertex-based models each cell junc-
tion is typically shared by a maximum of three cells, within the plane of
the epithelial tissue, although four individuals may briefly meet as an in-
termediate state during a T1 transition. However, in some developmental
processes a prominent event is the formation of multicellular clusters, where
more than three cells share a common vertex. In this respect, Trichas and
coworkers [104] employ a force-based approach similar to the already-cited
models [110, 111] to analyze the functional importance of rosettes formation
in the migration of the mouse anterior visceral endoderm (AVE). The AVE
consists of a small group of specialized cells within the overall mouse vis-
ceral endoderm (VE). During AVE migration, the VE maintains integrity
as an epithelial monolayer, and the portion of the VE through which the
AVE migrates undergoes significant intercalation and dynamic change in cell
organization [98, 105]. To allow for rosette formation, the authors imple-
ment simple T1 transitions as well as vertex/vertex merge operations, which
occur when a cell edge length falls below a given threshold, whose value is
demonstrated to affect the resulting pattern. We here remark that rosette
formation processes can be easily captured by our version of the CPM. In
fact, a given membrane node i of a cell c, placed in grid vertex xj, can be
surrounded by a number of nodes belonging to different individuals equal to
the number of grid vertices forming its neighborhood Ωj. For instance, in
the case of the domain discretization proposed in Fig. 1 (B), a cell can have
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contact interactions even with six other individuals.
The vertex-based approaches reviewed so far are characterized by an es-

sentially two-dimensional nature. However, Osterfield and coworkers adapt
and modify the model by Farhadifar to study the 3D formation of the dor-
sal appendices of Drosophila eggshell [78]. In particular, they allow two-
dimensional cell sheets to move freely in three-dimensional space. This work
is also based on selected experimentally hypothesis on the patterns of ten-
sion within the apical surface of the follicular epithelium. A more realistic
approach to model of three-dimensional morphogenesis consists in represent-
ing cells as prisms, rather than as flat polygons, as done by Honda and
coworkers to study the emergence of geometric asymmetries in the mouse
blastocyst [48, 49] and to point out the mechanisms underlying cell interca-
lation in spherical shells [50]. Three-dimensional dynamics can in principle
be reproduced also by our node-based CPM, which can be employed in 3D
domains. Such an extension requires the redefinition of the neighborhood set
of the grid vertices and the implementation of new procedures to calculate
cell geometrical attributes (e.g., surface and volume). Specific rules for cell
node addition/removal and for cell duplication have to be given as well.

One of the fundamental problems at the basis of vertex models is sur-
face rearrangement upon energy minimization and constraints. This issue is
the focus of the interactive program Surface Evolver [8], which uses a finite
element method to represent a surface as a union of simplices. In partic-
ular, each facet is defined by a chain of three oriented edges, which are in
turn defined by a pair of ordered vertices. This permits the representation
of surfaces characterized by complicated topology. Finally, 3D bodies can
be defined by a list of oriented facets, that make up their boundary. In this
respect, tt is not necessary to have a simplicial decomposition of the interior
bulk of a body, since the Surface Evolver works on 2D elements, eventually
embedded in the 3D space. The energy, whose minimization drives surface
rearrangements (similarly to our node-based model) can be a combination of
tensions, gravitational potentials, and of any other energy contribution that
can be expressed as an integral over an area. The set of constraints instead
involves vertices, edges and bodies. For instance, a vertex may be fixed in
place or constrained to lie on a smooth manifold. A body may be instead
forced to have a fixed volume. A method for energy minimization is finally
needed, as the Metropolis algorithm typical of CPMs. Several operations
are also available for manipulating the finite element triangulation, which
include refinements (i.e., subdivision of each facet into four similar facets for
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better approximation of curved surfaces), equiangulation (i.e., readjustment
of the triangulation to make surface facets as nearly equilateral as possible),
or vertex averaging (shifts of a vertex to the average position of its neigh-
bors). Some of the applications of the Surface Evolver package include the
modeling of the shape of fuel in rocket tanks in low gravity situations [103],
the calculation of areas for the opaque cube problem [9], and the study of
grain boundaries [10].

A member of the group of CSM approaches is also the model by Newman
[73], where cell vertices are used to represent cytoskeletal elements forming
the entire cell body (and not only to define cell membranes, as in most VBMs
and in the case of our node-based CPM). The dynamics of such subcellular
elements are then determined by the solution of Langevin equations, which
account for a weak stochastic component (i.e., mimicking cytoplasmic fluctu-
ations) and selected elastic responses to both intracellular and intercellular
biomechanical forces (all modeled by generalized Morse potentials).

5.2. Conclusions

This paper is intended as a foundational work presenting a different ver-
sion of the cellular Potts model. In particular, we think at our node-based
method as an alternative approach to deal with biological and biomedical
problems. As explained in the comments on the simulation outcomes, and
deeply discussed in this last section, it has in fact advantages and disadvan-
tages with respect both to the traditional CPM and to vertex-based models.
The choice of using our method may be determined by the phenomenon of
interest. For instance, the collective migratory behavior characterizing many
types of confluent monolayers can be better described by a vertex-based ap-
proach. However, VBMs can hardly deal with the evolution of systems where
cells detach from neighboring individuals (e.g., tumor growth and invasion)
or where network-like patterns emerge (e.g., vascular progression). On the
other hand, the traditional version of the CPM is preferable in the case of
the evolution of systems formed by a large number of cells (due to the re-
duced computational complexity). In this respect, to achieve a reasonable
competitiveness of our model, it is necessary an algorithm optimization and
the subsequent test application to more realistic biological scenarios.
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Figure 1: (A) Examples of 2D dicretized domains Ω containing two representative
cells, c (defined by Vc= 9 membrane nodes) and c′ (defined by Vc′ = 6 membrane
nodes). (B) First-nearer neighborhood Ωj of a generic grid vertex j, which is
composed of the set of manually encircled grid vertices. (C) Sample procedure to
properly reproduce in the model a complex cell shape (see the text for details).
(D) Basic Monte Carlo Step (MCS) of the Metropolis algorithm. A membrane
node i of a cell c, which actually coincides with grid vertex j (i.e., xc,i(t) = xj) is
selected at random and attempts move to one of the free neighboring grid vertex
locations xk ∈ Ωj . In particular, if the target grid vertex is within the cell (say,
k′′), c is retracting (see the dark-dashed line). Otherwise, if the target grid vertex
is outside the cell (say, k′), c is protruding (see the blue-dashed line).
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Figure 2: (A) Sample procedures to model node addition/removal and cell dupli-
cation. The full blue dots indicate the cell nodes added/removed/selected to start
division mechanisms. The dashed blue segments represent the cell membrane edges
resulting from the process of interest. (B) Bi-compartmental cell, i.e., differenti-
ated in the nucleus (c′, with Vc′ = 5 nodes) and in the cytosolic region (c, with
Vc = 12 nodes).
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Figure 3: Illustrative simulations of the biological role of the cell geometrical con-
straints in Eqs. (11a)-(11b). In a 100 µm × 100 µm domain Ω, an initially round
cell c = 1, defined by 14 membrane nodes is placed. Its initial measures are equal
to the half of the target dimensions. If the fluctuation allowance is low, the cell
remains almost freezed. On the opposite, at high enough values of Tc=1, the cell
stabilizes into an equilibrium configuration, given by the target measures, if both
λsurface
c=1 and λperimeter

c=1 fall within the same range (say, = Tc=1), whereas it continu-

ously remodels while preserving its overall area if λperimeter
c=1 ≪ λsurface

c=1 = Tc=1. The
specific parameter values used for each representative realization are included in
the corresponding panel. In all cases, the simulation are run for 500 MCS.
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Figure 4: Illustrative simulations of the biological role of the adhesive energies.
Top panels: in a 2.025 × 105 µm2 domain Ω, an aggregate of 50 cells is placed.
The cells are all of the same type: they are defined by 5 membrane nodes and
have target and initial dimensions both equal to 60 µm and 300 µm2, respectively.
Further, we use the following parameter setting: Tc = TL = λsurface

c = λsurface
L = 25,

λperimeter
c = λperimeter

L = 0.5 ≪ TL, for all c = 1, . . . , 50. The final configurations
(i.e., at 5000 MCS) correspond to JL,L = 0.5 ≪ TL and to JL,L = 25 = TL,
respectively. Bottom panels: in the same domain Ω, the cell aggregate is now
formed by individuals of different types (i.e., dark and light). They however share
all the biophysical properties, as Tc = TL = TD = λsurface

c = λsurface
L = λsurface

D = 25,

λperimeter
c = λperimeter

L = λperimeter
D = 0.5 ≪ TL = TD, for all c = 1, . . . , 50, and

initial/target dimensions. The final configurations (i.e., at 5000 MCS) correspond
to JL,D = 0.5 ≪ JL,L = JD,D = 25 = TL = TD and to JL,D = 25 = TL = TD ≫
JL,L = JD,D = 0.5, respectively.
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Figure 5: Test simulation of cell dynamics upon chemotactic stimulation. Three
cells are aligned along the horizontal direction. The left individual is the only
one sensitive to the chemical substance, whose source is extended along the entire
right border of the domain. The left and the right cells are of the same type (say,
epithelial) and therefore strongly adhere. The cell in the middle is of another type
(say, endothelial). The parameter setting is given in the text.
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Figure 6: Analysis of the efficiency of the algorithm underlying the proposed node-
based CPM. (A) Comparison of the execution time of comparable cell sorting
simulations as obtained either from our method or from the traditional CPM. (B)
Computational performance of our method upon variations in the number of cells
or in the number of membrane nodes defining each cell. (C) Computational perfor-
mance of our method upon variations in the number of the domain grid elements.
(D) Initial and final (i.e., at 5000 MCS) configurations of the cell sorting simula-
tion employed with the traditional CPM and used for comparing the algorithmic
efficiency of our method. The system Hamiltonian is given in Eq. (19), whereas
the model parameters are the same as in the case of Fig. 4 (bottom-right panel).
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