
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A pseudorandom number generator based on time-variant recursion of accumulators / Gonzalez-Diaz, Victor R.;
Pareschi, Fabio; Setti, Gianluca; Maloberti, Franco. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II,
EXPRESS BRIEFS. - ISSN 1549-7747. - STAMPA. - 58:9(2011), pp. 580-584. [10.1109/TCSII.2011.2161165]

Original

A pseudorandom number generator based on time-variant recursion of accumulators

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSII.2011.2161165

Terms of use:

Publisher copyright

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2696649 since: 2022-03-29T09:13:00Z

Institute of Electrical and Electronics Engineers Inc.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, VOL. X, NO. X, X 2010 1

A Pseudorandom Number Generator Based on Time
Variant Recursion of Accumulators

Victor R. Gonzalez-Diaz, Member, IEEE, Fabio Pareschi, Member, IEEE, Gianluca Setti, Fellow, IEEE,
and Franco Maloberti, Fellow, IEEE.

Abstract—This paper presents a PseudoRandom Number
Generator (PRNG) that requires very low resources from the
hardware design point of view. It is based on a chain of digital
accumulators whose coefficients are varied by an auxiliary, low
complexity, Linear Feedback Shift Register (LFSR). We present a
predictability and periodicity analysis of the sequences generated
by the proposed architecture to show that the system is a good
candidate to be used for applications requiring high-quality
pseudorandom sequences in portable devices. The statistical
behavior of the proposed solution is also validated by tests from
the National Institute of Standards and Technology (NIST). The
generated pseudorandom sequences pass all tests both at level-
one and level-two approaches.

Index Terms—Pseudorandom Number Generator, Time Vari-
ant, Statistical Tests.

I. INTRODUCTION

AN effective generation of Pseudorandom sequences has
positive consequences on many types of application. To

name a few, the increasing need of security in cryptography ap-
plications makes necessary to design complex systems which
generate deterministic sequences with statistical features as
close as possible to a random process [1]; and Built-In Self
Test (BIST) of digital circuits that uses groups of digital
sequences with random characteristics.

Opposed to True-Random number generators [2] that are
based on some intrinsically random natural phenomenon,
Pseudorandom number generators [3], [4] are numerical al-
gorithms that, starting from an externally (and possibly ran-
domly) chosen seed, can produce long, irregular, random-like
sequences, which are nevertheless periodic and fully repeat-
able. This repeatability property makes them fundamental in
many applications such as cryptography.

Independently of the employed methodology, hardware gen-
eration of pseudorandom numbers is becoming increasingly
difficult due to the tight constraints in terms of power and
area consumption which modern devices require, especially in
the field of portable and consumer applications.

In a PRNG, the periodicity, the predictability, and more
generally all its statistical features are important character-
istics [5]. For instance, in cryptographic applications, the
predictability is important as an attacker may be capable

Manuscript received ..., 2010; revised ..., 2010. Current version published
.... This work was partially supported by the Italian National Program FIRB
#RBAP06L4S5 and CONACyT Mexico #131617.

Victor R. Gonzalez-Diaz and Prof. Franco Maloberti work at the MIS Lab.
in Pavia University, Italy.

Fabio Pareschi and Gianluca Setti are with ENDIF, University of Ferrara,
Italy, and also with ARCES, University of Bologna, Italy.

z-1

x y

0e
M

p 00 10

Fig. 1. Block level model for the modulus M digital accumulator.

to get information observing the PRNG output, so that the
system security is threatened because the seed of the PRNG
(which is related to the cryptographic key [3]) can be ex-
posed. The use of cumbersome algorithms (such as the Blum-
Blum-Shub (BBS) [4]) ensures system security, but the cost
is extremely high in terms of resources required. Simpler
algorithms (such as the Mersenne-Twister [6]) can achieve
a very high quality random stream, but they may not be
cryptographically secure.

This brief proposes a low-resources architecture that is
capable to generate pseudorandom sequences with very good
statistical features. Along with the system architecture, which
exploits a digital Σ∆ modulator with quantization error
mapping function variable within time and is based on a
self-recursive structure, we present a basic predictability and
periodicity analysis. With this, despite the fact that a formal
cryptographic security analysis is beyond the scope of the
paper, we show that, notwithstanding the simplicity of the
architecture, the proposed PRNG is not easily predictable and
it is good candidate for embedding in portable applications.

The paper is organized as follows. Section II presents the
architecture and the notation used to study the evolution
of the system. Section III describes statistical analysis of
the PRNG (including predictability and periodicity of the
generated sequences) and estimates the lower bound of the
computational power required to predict the evolution of the
system. Section III-C validates this PRNG with the statistical
tests of the National Institute of Standards and Technology
(NIST) [7]. The results refer to the level-one testing approach
and also to the level-two testing both with the proportion of
sequences and the χ2 approaches. Finally in Section IV we
discuss some implementation aspects and in Section V we
draw the conclusion.

II. PROPOSED PSEUDORANDOM NUMBER GENERATOR

Digital accumulators are widely used in digital processors,
digital Σ∆ modulators for fractional frequency synthesiz-
ers [8] [9], Digital to Analog converters [10], etc.. Let us

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, VOL. X, NO. X, X 2010 2

z-1

x y

0e
M

p 0

cLFSR

0

d

0 1

Fig. 2. Block level model for the modulus M digital accumulator with time
variant coefficient.

consider the block level model of the modulus M digital
accumulator shown in Fig. 1, where X is the (constant) input,
p0 (the accumulator sum) is the state variable of the system,
while the two outputs are e0 (the sum modulus M , which is
also called quantization error) and y0 (the carry output, which
is set when the accumulator overloads, i.e. when the sum is
bigger than or equal to M). Mathematically, indicating with i
the time step, we have

p0[i] = X + e0[i−1]

y0[i] =

{
0 p0[i] < M

1 p0[i] ≥M
e0[i] = p0[i]−M y0[i] = p0[i] (mod M)

(1)

Under the condition that X and M are relatively prime [11],
[12], the quantization error e0 becomes uniformly distributed
on the range of its M possible values. However, in the
general case, the system may regrettably generate even very
short periodic sequences, composed only by a few among all
possible values.

Many methods have been proposed to improve the statistical
properties of the e0 sequence for a generic input. We consider
here the method first proposed in [9] which consists on varying
the accumulator’s feedback coefficients with time, as shown
in Fig. 2. The quantization error e0 is scaled by a coefficient
c � 1, multiplied by a binary variable d ∈ {0, 1} generated
by a simple congruential PRNG based on a Linear Feedback
Shift Register (LFSR) [13] and then fed back to the input.
The scaling by the c coefficient can be achieved with a digital
Σ∆ modulator, i.e. by another accumulator like the one in
Fig. 1, which takes e0 as input, and whose output y1 replaces
the signal c e0 in the feedback path. The implementation of
this architecture on a m bit digital hardware (i.e. assuming
M = 2m) is shown in Fig. 3 and it is very simple, since only
two m-bit adders are required along with a simple congruential
auxiliary PRNG. The multiplication between y1 and d is
simply obtained with a one-bit AND gate, and the result is
used as the carry input of the first accumulator. The scaling
coefficient is c = 1/M = 2−m. In this architecture the e0
sequence has good statistical properties for all the possible
values of X [9].

In this paper, we propose to use a chain of n time-varied
accumulators to generate a pseudorandom stream. The pro-
posed topology is a modular system identical to a multistage
Σ∆ converter, where the input of the generic stage k is the
quantization error ek−1 of the previous stage, while the carry

1/z

x
em

mm

+

+

1/z

1-bit

e

y

m

m

+

+

0

1

Aux.
LFSR

AND

carry-in

1

y0

d

1/z

Main
accumulator

Coefcient modulation

Fig. 3. Implementation of the time variant coefficient accumulator of Fig. 2
with M = 2m.

1/z

x

LSB

stage 0

m

1/z

LSB

m

1/z

LSB

m

Aux. LFSR

eout 1/z

m

1/z
1/z

1/z

d0 d1 dn

stage 1 stage (n-1) stage n

m

m

m

m

m

m

m

Fig. 4. Architecture of the proposed PRNG.

output yk is used in the previous stage for the generation of
the time variant coefficient, as described above. Note that an
additional stage is required to generate the signal yn used in
the stage n−1. For the proposed architecture, whose block
diagram is shown in Fig. 4, the evolution is regulated by:

pk[i] =

X + e0[i−1] + y1[i−1] d0[i] k = 0

ek−1[i] + ek[i−1] + yk+1[i−1] dk[i] 0 < k < n

en−1[i] + en[i−1] k = n

yk[i] =

{
0 pk[i] < M

1 pk[i] ≥M
ek[i] = pk[i]−M yk[i] = pk[i] (mod M)

(2)
Note that the presence of an auxiliary PRNG is mandatory.

We will show in the following that the output sequence en−1
has the characteristic of a very good pseudorandom sequence.
The seed of this PRNG can be considered as the input signal
X , along with the initial states of all the accumulators and the
seed of the LFSR auxiliary PRNG. Note that, along with the
high-quality and the simple and recurrent architecture, another
one of the advantages of the proposed architecture is to rely
on a digital Sigma-Delta modulator [9], [10] architecture. This
means that, considering an environment where resources are
very limited, we could design an accumulator chain which can
work as a digital Σ∆ converter, and also as a high-security
PRNG when required.

The system we propose is composed by 9 stages (i.e. n = 8)
with m = 8 bits resolution, where e7 is the system output.
The auxiliary PRNG is a maximum-length LFSR composed
by 8 stages, which is the minimum number of stages to

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, VOL. X, NO. X, X 2010 3

simultaneously generate the d0 . . . d7 values required. The
choice of these parameters has been made since they are a
good trade off between system performance and complexity.

III. PROPOSED PRNG STATISTICAL FEATURES

In this section we analyze a few aspects related to the
statistical properties of the proposed PRNG and show that,
despite its simplicity, the statistical features are comparable
with those achieved with much more complex architectures.
We first propose a brief study on the PRNG predictability
and periodicity, where in both cases we start from the case of
the simple chain of accumulators, i.e considering dk = 0,
∀k. Then we consider how the system is changed by the
introduction of the time-varying coefficients as in (2). Finally,
we provide statistical test results for sequences generated by
the PRNG. The results were obtained using, at both level-one
and level-two, the SP800-22 test suite provided by the NIST
[7].

A. Predictability of the PRNG

Assuming dk = 0, we get a system which is actually linear
in modular arithmetic and its evolution can be easily predicted
by means of a limited number of observations. In fact, if we
define with

i(k) = i(i+ 1)(i+ 2) . . . (i+ k − 1) (3)

the Pochhammer symbol for a rising sequential product and we
indicate with ēk the initial condition of the k-th accumulator,
i.e. ek[0] = ēk, we can unroll the recursive evolution equation
(2) and write the evolution of the generic k-th stage as

ek[i] =
i(k+1)

(k+1)!
X +

k∑
l=0

i(l)

l!
ēk−l (mod M) (4)

i.e. we get that the output sequence ek out of the accumulator
k is completely determined by the the constant input X and
the initial conditions of all the accumulators down to the first
one, i.e. ēk, ēk−1, . . . , ē0.

Let us assume a PRNG based on an n stages architec-
ture, and indicate with Xn its seed, i.e. the vector Xn =
(X, ē0, . . . , ēn−1)

′. Predicting the evolution of the PRNG
means finding Xn by observing the en−1, i.e. the output of
the system. By collecting n+1 observations en−1[0], en−1[1],
. . ., en−1[n], we can write the system

en−1[0]

en−1[1]

. . .

en−1[n]

 = An Xn (mod M) (5)

where An is a (n+1)×(n+1) matrix with integer coefficients,
that depends only on n. Equation (5) is a system of n+ 1
linear equations in n+1 unknowns with integer coefficients
in modular arithmetic. The solution of this system is gener-
ally not trivial [14], [15], and not strictly related with the
solution of the associated system in Rn+1 (i.e. system (5)
considered in Rn+1 instead of in modulo M arithmetic), which

is Xn = An
−1 (en−1[0], . . . , en−1[n])

′. However, the above
system has the interesting property that A−1n is an integer
matrix1 i.e. also Xn is integer. In this case the solution Xn

of the modular problem is simply the congruential vector of
Xn. In conclusion, using the simple chain of accumulators as
PRNG makes the system easily predicable.

When considering the system in Fig. 4, we are changing the
true nature of the system which is not linear anymore, since
the terms yk are a non-linear functions of the pk. Despite the
fact that the aim of this Section is not to define an algorithm
for determining the seed of our PRNG from observations, we
can compute, given the solution of (5), a lower bound for the
computational power required for predicting the evolution the
system of Figure 4.

Let us unroll the recursive equation (2), i.e.

ek[i] =
i(k+1)

(k + 1)!
X +

k∑
l=0

i(l)

l!
ēk−l+

+

k∑
l=0

i∑
s=1

s(l)

l!
yk−l+1[i−s]dk−l[i−s+1] (mod M)

(6)
and let us collect as in the previous case the n+1 observations
en−1[0], en−1[1], . . ., en−1[n]. This leads to the system

en−1[0]

en−1[1]

. . .

en−1[n]

 = An Xn + Bn Y n (mod M) (7)

where Bn is a (n+1)×n2 coefficients matrix and where

Y n =

y1[0]d0[1]
...

yn[0]dn−1[1]

y1[1]d0[2]
...

yn[1]dn−1[2]
...

yn[n−1]dn−1[n]

(8)

is a n2 length vector, that is a non-linear function of Xn.
Due to this non-linearity, system (7) may not have a single
solution.

One easy way to solve the impasse of finding the seed Xn is
to assume to know a priori all the yk+1[i−1]dk[i] products, i.e
to assume that Y n is a constant vector. In this way, system (7)
can be solved exactly as system (5). Note that, since we have
2n

2

different Y n, we also have up to 2n
2

different solutions
Xn. The actual seed of the system has to be chosen among
the Xn that are coherent with the assumed Y n.

Note that refining this choice up to a single, coherent Xn

may require some additional observations. Note also that this
approach gives only partial information on ēn and on the
auxiliary PRNG internal state.

1This property was checked using Mathematica for n up to 150.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, VOL. X, NO. X, X 2010 4

The lower bound complexity for this approach is the same
as solving (and checking for coherence) 2n

2

linear systems.
Therefore, neglecting the auxiliary PRNG, a Brute Force-
Attack [16] on the system would try 2(n+1)m possible Xn

seeds. When the number of stages n is comparable with the
number of bits m in each accumulator, the prediction of
the system from the observed values has almost the same
complexity as a Brute Force-Attack.

B. Periodicity of the proposed PRNG

For the sake of simplicity, let us start as in the previous
case by making some considerations on the basic chain of
accumulators. The periodicity of the system is defined as the
smallest time step I > 0 for which ek[i + I] = ek[i], or
equivalently, ek[I] = ēk, ∀k. By using Eq. (4) we can compute
I by solving the system

I X = 0 (mod M)

I(2)

2!
X + I ē0 = 0 (mod M)

. . .

I(n)

n!
X +

n−1∑
l=1

I(l)

l!
ēn−l−1 = 0 (mod M)

(9)

which is a non-linear system in I .
Let us neglect the obvious case where X = ēk = 0, which

generates a constant output. It is known in the Literature [12]
that if M is a prime number, then the system periodicity is
I = M . Otherwise, I depends on all system parameters, i.e.
X , M and n, and also on all the ēk. In the worst case, i.e. when
we get the shortest period, I is the smallest common divisor
between M and X , i.e. conditions exist for which I = 2.

Without entering into the mathematical details, when the
time-varying coefficients are introduced in the feed-back path
as in Fig. 4, the periodicity of the system has to be computed
by solving the system ek[I] = ēk, ∀k, where the ek[I] are
computed through Eq. (6). Furthermore, we have also to ensure
that yk[I] = yk[0] and that the state of the auxiliary PRNG at
time step I matches the initial one.

It is easy to see that computing the exact value of I is at least
as difficult as to predict the evolution of the system. However,
due to the condition on the auxiliary PRNG, we know that I
has to be an integer multiple of the periodicity of the auxiliary
PRNG, i.e. we have a lower bound for I which is independent
on the seed. Therefore, the periodic behavior can be improved
with the auxiliary LFSR.

Note, however, that this periodicity lower bound is usually
a strong underestimation of the actual period. As an example,
with the proposed parameters (n = 8, m = 8 and an 8 stages
LFSR) we have a lower bound equal to 28 − 1 = 255, but
we were not able to observe any periodic behavior in many
simulations with several millions time steps.

C. Statistical tests results

In this Section we propose some statistical test results for
the proposed architecture with n = 8, m = 8 and an 8-
bit LSFR. We have tested many generated pseudorandom

SP800-22 test standard 99% χ2

Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of 1s
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Approx. Entropy
Random Excursion
Random Exc. Var.
Serial
Linear Complexity

0.6020
0.1834
0.4549
0.8694
0.5901
0.5091
0.5157
0.9042
0.5207
0.3416
0.2258
0.2099
0.1245
0.3916
0.1081

0.9860
0.9840
0.9830
0.9920
0.9850
0.9920
0.9920
0.9820
0.9830
0.9900
0.9870
0.9860
0.9890
0.9890
0.9910

0.3285
0.1750
0.3309
0.7237
0.7090
0.2482
0.9374
0.2382
0.6454
0.7749
0.0499
0.3419
0.4291
0.4286
0.2363

TABLE I
RESULTS OF RANDOMNESS NIST TESTS FOR THE PROPOSED PRNG. THE

FIRST COLUMN IS FOR STANDARD APPROACH; THE SECOND ONE IS FOR
THE LEVEL-TWO APPROACH BASED ON THE PROPORTION OF SEQUENCES
PASSING A STANDARD TEST; THE THIRD COLUMN IS FOR A LEVEL-TWO
APPROACH BASED ON A CHI-SQUARE TEST. ALL RESULTS ARE IN THE

EXPECTED RANGE.

streams with the suite SP800-22 [7] which is a collection of
tests developed by the NIST and is the suite most commonly
used in the evaluation of RNG and PRNG for cryptographic
applications. We used this suite since, in recent years, it has
been recognized as the standard de facto for random generators
testing; furthermore due to uniformity of the tests in the suite,
it is possible to apply the so called level-two (or second level)
testing approach, which has been shown to be much more
selective in exposing weak generators [17].

SP800-22 test results are shown in Table I, where we
have adopted all three approaches proposed by NIST. The
first column is the result of a standard test, where we have
generated a single sequence and processed it with all the tests
in the suite. The test result is a p-value, which is a number
in [0, 1] which should be larger than a level of significance α
for considering a test passed. The value suggest by NIST is
α = 0.01. According to the table results, p > α for all tests,
which can be considered passed.

The second and third column are the result for level-two
approaches. In the second column we have generated 1000
different sequences from different initial conditions, and we
have checked the proportion of sequences where p > α. This
number should lie in the confidence interval 0.99 ± 0.0094.
For all tests, the ratio of sequences passing the test is in
the confidence interval. In the third column we have taken
the same 1000 sequences as above and we have tested the
uniformity of their p-values with a chi-square goodness-of-fit
test. The results is a level-two p-value pT , which has to be
larger than a significance level αT . For all tests, pT > 0.01,
i.e. also this level-two test is passed.

Note that when increasing the complexity of the PRNG
by considering a higher number of stages, the statistical
tests are passed with similar results. Similarly, increasing the
complexity of the auxiliary LFSR (note that in this example
we have considered an 8 stages LFSR which is the minimum
length for which we can change the required coefficients,
since n = 8) we obtain similar results. This means that the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, VOL. X, NO. X, X 2010 5

Design This paper [18] [19] [20]
Architecture xc4vfx12 (Virtex-4) xc4vfx100 (Virtex-4) xc2000e (Virtex-E) N/A

Slices (LTUs) 57 (91) 128 (213) 330 (539) 429 (N/A)
RAM No 4 Blocks 2 Blocks Yes (unspecified)

Speed (MSa/s) 90.98 26.13 24.16 38.41

TABLE II
COMPARISON BETWEEN THE NUMBER OF RESOURCES OCCUPIED BY THE PROPOSED GENERATOR AND BY SOME LOW-RESOURCES IMPLEMENTATIONS

OF THE MERSENNE-TWISTER PRNG.

auxiliary PRNG does not influence the statistical properties of
the random generated stream.

Since we have also shown that the auxiliary PRNG has
a little influence on the predictability of the system, while
has a very strong influence on its periodicity, we suggest to
choose the auxiliary PRNG with the only aim of maximizing
the periodicity of the generated sequences. For this reason, the
best choice is a maximum-length LFSR.

IV. HARDWARE IMPLEMENTATION

The proposed architecture, composed by 9 accumulators
with 8-bits of resolution, plus an auxiliary 8-bit LFSR, has
been synthesized with automatic layout generation tools. In the
synthesis obtained by Cadence Silicon Ensemble in a CMOS
0.35µm process a total of 474 digital cells are required with
an area of 280µm × 280µm. This is a very small amount
of digital cells for an high quality PRNG implementation. We
have implemented the proposed architecture also on a Virtex-4
FPGA using Xilinx ISE Web Pack 13.1. The number of slices
required is only 57, with no additional RAM requirements.
These resources have been compared in Table II with some
implementations of the Mersenne-Twister generator on com-
mon FPGA platforms [18]–[20], which require from 128 to
420 FPGA slices depending on the area/timing optimization,
and some additional RAM blocks. The proposed architecture
has clear advantages in terms of resources required and speed.

Note that the lack of a RAM requirement is a twofold ad-
vantage, since the RAM is usually the bottleneck both for the
FPGA speed and for resource allocation. The implementation
of the Mersenne-Twister without the RAM Blocks [19] will
costs 5815 slices; this payload in terms of area would result
in a significant reduction in the FPGA clock maximum speed.

V. CONCLUSIONS

We proposed a new low-complexity pseudorandom number
generator based on a chain of digital accumulators with feed-
back coefficients. The feedback coefficients are changed within
time with the help of a low complexity LFSR. With this system
the congruent relationships that rule the evolution of a chain
of accumulators are transformed in a non-linear mapping that
increments the periodicity of the output sequence. Moreover,
predicting the evolution of the system in general, requires
almost the same computational power of a Brute Force-
Attack. Sequences obtained from the proposed architecture
have similar statistical properties of PRNGs used even for
cryptographic applications, it passes all NIST statistical tests
at the level two, both with the proportion of sequences and
the χ2 approaches.

REFERENCES

[1] R. M. Davis, “The Data Encryption Standard in Perspective,” IEEE
Commun. Mag., vol. 16, no. 6, pp. 5–9, Nov. 1978.

[2] F. Pareschi, G. Setti, and R. Rovatti, “A Fast Chaos-based True Random
Number Generator for Cryptographic Applications,” in 26th European
Solid-State circuit Conference, Montreux, Sep. 2006, pp. 130–133.

[3] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[4] L. Blum and M. Blum, “A Comparison of Two Pseudo Random Number
Generators,” in Proceedings Crypto ’82, 1982.

[5] D. B. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,
FPGAs, and massively parallel processor arrays for random number
generation,” in Proceeding of the ACM/SIGDA international symposium
on Field programmable gate arrays, 2009.

[6] M. Matsumoto, “Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator,” ACM Transac-
tions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30,
Jan. 1998.

[7] National Institute of Standards and Technology (NIST), “A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications,” in Special Publication 800-22, May 2001.

[8] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-Sigma
Modulation in Fractional-N Frequency Synthesis,” IEEE J. Solid-State
Circuits, vol. 28, no. 5, pp. 553–559, May 1993.

[9] F. Maloberti, E. Bonizzoni, and A. Surano, “Time Variant Digital Sigma-
Delta Modulator for Fractional-N Frequency Synthesizers,” in IEEE
International Symposium on Radio-Frequency Integration Technology,
RFIT 2009, Singapore, Dec. 2009, pp. 111–114.

[10] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data
Converters. IEEE, Inc. New York: IEEE Press, 1997.

[11] M. J. Borkowski and J. Kostamovaara, “On Randomization of Digital
Delta-Sigma Modulators with DC inputs,” in Proceedings of the IEEE
2006 International Symposium on Circuits and Systems (ISCAS’06),
May 2006, pp. 3770–3773.

[12] K. Hosseini and M. P. Kennedy, “Architectures for Maximum Sequence
Lenght Digital Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II,
vol. 55, no. 12, pp. 1104–1108, Nov. 2008.

[13] D. E. Knuth, The Art of Computer Programming”, Volume 2: Seminu-
merical Algorithms. Addison-Wesley Professional, 1997.

[14] K. Levasseur, “The Solution of Linear Equations With Integer Coeffi-
cients Using Modular Arithmetic and Cramer’s Rule.” Mathematica in
Education and Research, vol. 4, no. 1, pp. 14–27, Nov. 1995.

[15] J. Lipson, Elements of Algebra and Algebraic Computing. Addison-
Welsley, 1981.

[16] S. Kwok and E. Lam, “Effective Uses of FPGAs for Brute-Force Attack
on RC4 Ciphers,” IEEE Trans. VLSI Syst., vol. 16, no. 8, pp. 1096–1100,
Aug. 2008.

[17] F. Pareschi, R. Rovatti, and G. Setti, “Second-level NIST Randomness
Tests for Improving Test Reliability,” in Circuits and Systems, ISCAS
2007. IEEE International Symposium on, May 2007, pp. 1437–1440.

[18] T. Xiang and K. Benkrid, “Mersenne Twister Random Number Gen-
eration on FPGA, CPU and GPU,” in Proceedings of the NASA/ESA
Conference on Adaptive Hardware and Systems, 2009. (AHS), Aug.
2009, pp. 460–464.

[19] S. Chandrasekaran and A. Amira, “High Performance FPGA imple-
mentation of the Mersenne Twister,” in Proceedings of the IEEE 2006
International Symposium on Electronic Design, Test and Applications
(DELTA’08), Jan. 2008, pp. 482–485.

[20] V. Sriram and D. Kearney, “An area time efficient field programmable
Mersenne Twister uniform random number generator,” in Proc. Int. Conf.
on Eng. of Reconfigurable Systems, Aug. 2006, pp. 244–246.

