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Abstract

We present a technique for automatically extracting mutual exclusion invariants from temporal
planning instances. It first identifies a set of invariant templates by inspecting the lifted represen-
tation of the domain and then checks these templates against properties that assure invariance.
Our technique builds on other approaches to invariant synthesis presented in the literature but
departs from their limited focus on instantaneous actions by addressing temporal domains. To
deal with time, we formulate invariance conditions that account for the entire temporal structure
of the actions and the possible concurrent interactions between them. As a result, we construct a
more comprehensive technique than previous methods, which is able to find not only invariants
for temporal domains but also a broader set of invariants for sequential domains. Our experimen-
tal results provide evidence that our domain analysis is effective at identifying a more extensive
set of invariants, which results in the generation of fewer multi-valued state variables. We show
that, in turn, this reduction in the number of variables reflects positively on the performance of
the temporal planners that use a variable/value representation.

Keywords: Automated Planning, Temporal Planning, Mutual Exclusion Invariants, Automatic
Domain Analysis

1. Introduction

This paper presents a technique for synthesising mutual exclusion invariants from temporal
planning domains expressed in PDDL2.1 (Fox and Long, 2003). A mutual exclusion invariant
over a set of ground atoms means that at most one atom in the set is true at any given moment.
Mutual exclusion invariants can be expressed as multi-valued state variables by adding a special
“null” value so that, at all moments, precisely one value holds. For instance, consider the Floortile
domain from the 8th International Planning Competition (IPC’14 - see Appendix A). A mutual
exclusion invariant for this domain states that two ground atoms that indicate the position of a
robot can never be true at the same time. Intuitively, this means that a robot cannot be at two
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different locations simultaneously. To give a concrete case, consider a planning problem for the
Floortile domain with one robot r1 and three locations, t1, t2 and t3. We can create a state
variable that indicates the position of r1 with a domain of three values: robotAt_r1_t1,
robotAt_r1_t2 and robotAt_r1_t3.

Although a number of approaches to invariant synthesis have been proposed so far (Gerevini
and Schubert, 2000; Rintanen, 2000, 2008; Fox and Long, 1998; Helmert, 2009), they are limited
in scope because they deal with sequential domains only. Recently, Rintanen (2014) has proposed
a technique for temporal domains, but this technique does not scale to complex problems because
it requires grounding the domain. We address both limitations. We find invariants for temporal
domains by applying an algorithm that works at the lifted level of the representation and, in
consequence, is very efficient and scales to large instances.

Our invariant synthesis builds on Helmert (2009), which presents a technique to translate the
non-temporal subset of PDDL2.2 (Edelkamp and Hoffmann, 2004) into the Finite Domain Rep-
resentation (FDR), a multi-valued planning task formalism used by Fast Downward (Helmert,
2006). Since finding invariants for temporal tasks is much more complex than for tasks with
instantaneous actions, a simple generalisation of Helmert’s technique to temporal settings does
not work. In the temporal case, simultaneity and interference between concurrent actions can
occur, hence our algorithm cannot check actions individually against the invariance conditions,
but needs to consider the entire set of actions and their possible intertwinements over time. In
capturing the temporal case, we formulate invariance conditions that take into account the entire
structure of the action schemas as well as the possible interactions between them. As a result, we
construct a significantly more comprehensive technique that is able to find not only invariants for
temporal domains, but also a broader set of invariants for sequential domains.

We describe our approach in two major steps. First, we provide a general theory at the ground
level and offer results that insure invariance under two types of properties: safety conditions
for individual instantaneous and durative actions as well as collective conditions that prevent
dangerous intertwinements between durative actions. Then, we lift these results to the level of
schemas so that all checks needed for verifying invariance can be performed at this higher level,
without the need for grounding the domain. The complexity of these checks are of linear or low
polynomial order in terms of the number of schemas and literals appearing in the domain.

1.1. Motivations

Automated planning is a well-established field of artificial intelligence and, in the more than
fifty years since its appearance, several paradigms have emerged. One fundamental difference
between these paradigms is whether time is treated implicitly or explicitly. While classical plan-
ning focuses on the causal evolution of the world, temporal planning is concerned with the tem-
poral properties of the world. In classical planning, actions are considered to be instantaneous,
whereas in temporal planning actions have durations and can be executed concurrently. Another
important difference between planning paradigms relates to whether the world is modelled by
adopting a Boolean propositional representation or a representation based on multi-valued state
variables. The majority of the work in planning has been devoted to classical planning with
domains expressed using propositional languages, and in particular PDDL (McDermott, 2000)
and its successors (Fox and Long, 2003), the language of the International Planning Competition
(IPC). However, in parallel with the development of classical propositional planning, a number
of temporal planning systems have been proposed for coping with practical problems, especially
space mission operations (Frank and Jónsson, 2003; Chien et al., 2000; Ghallab and Laruelle,
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Propositional Variable/Value

Classical
HSP (Bonet and Geffner, 2001)
FF (Hoffmann and Nebel, 2001)
YAHSP (Vidal, 2004)

FD (Helmert, 2006)
LAMA (Richter and Westphal, 2010)

Temporal
LPG (Gerevini et al., 2006)
POPF (Coles et al., 2010)

TFD (Eyerich et al., 2009)
EUROPA2 (Frank and Jónsson, 2003)

Table 1: Examples of planners and their classification based on whether they treat time explicitly or implicitly and
whether they use a Boolean propositional representation or a multi-valued state variable representation.

1994; Muscettola, 1994; Fratini et al., 2008). Typically, these systems use variable/value repre-
sentations. Table 1 shows a classification of several well-known planners based on these different
characteristics.

Recently, a few techniques have been proposed for translating propositional representations
into variable/value representations (Helmert, 2006; Bernardini and Smith, 2008b; Rintanen, 2014).
A central task of all these techniques is the generation of state variables from propositions and
actions. The basic procedure to do this (which we use as the baseline in our experiments) relies
on generating one state variable with two values, true and false, for each proposition. Naturally,
such translation produces no performance advantage. A more sophisticated strategy, which pro-
duces more compact and optimised encodings, rests on extracting mutual exclusion invariants
from propositional domains and using such invariants to generate multi-valued state variables.
This is the focus of our work.

These translation techniques are important as they allow fair testing of planners developed
for variable/value representations on PDDL benchmarks (which are propositional). The practical
issue is that planners that permit variable/value representation need this feature to be thoroughly
exploited and perform competitively. Since translation between the two different representations
can be cheaply automated, there is no reason to avoid providing the richer representations to those
planners that accept them (if the translation was expensive, one might reasonably argue about the
fairness of this process). As a consequence, these translation techniques are extremely useful for
comparing alternative planning paradigms and for promoting cross-fertilisation of ideas between
different planning communities, which is our primary motivation.

However, the importance of these translation techniques goes beyond the engineering of a
bridge between different input languages. In transforming propositional representations into state
variable representations, they generate new domain knowledge, where new means accessible in
this context. Effectively, these techniques are internal mini theorem provers since, rather than
merely translating, they firstly selectively explore the deductive closure of the original theory to
find theorems that permit optimising the representation, and secondly execute those optimisa-
tions. We will show that the cost of performing these optimisations is worth it because it is very
fast and can be amortised over many problems.

Mutual exclusion invariants are also beneficial in pruning the search space for search methods
such as symbolic techniques based on SAT (Kautz and Selman, 1999; Huang et al., 2010) and
backward chaining search (Blum and Furst, 1997). In addition, as invariants help to reduce the
number of variables required to encode a domain, they are used in planning systems based on
binary decision diagrams (BDDs) (Edelkamp and Helmert, 2001), constraint programming (Do
and Kambhampati, 2001), causal graph heuristics (Helmert, 2006) and pattern databases (Haslum
et al., 2007).
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Finally, from a knowledge engineering perspective, the invariant synthesis presented in this
paper can be used as a powerful tool for debugging temporal planning domains. We do not focus
on this specifically in this paper, but present a case study in Example 19. As shown in Cushing
et al. (2007), several temporal planning tasks developed for the various IPC competitions are
buggy, with the consequence that the planners take a long time to solve them, when they actually
manage to do so. As invariants capture intuitive properties of the physical systems described in
the domains, it is easy for a domain expert to identify modelling mistakes by inspecting them.
Discrepancies between the invariants found by the automatic technique and those that the expert
expects to see for a given domain indicate that the domain does not encode the physical system
correctly. In consequence, the expert can revise the domain and repair it. For example, consider-
ing the Rover domain, we expect that a store could be either full or empty at any time point.
However, the invariant synthesis does not produce an invariant with the atoms full and empty.
It can be shown that this is because the action drop is not properly modelled. Our technique not
only alerts the expert that the system is not properly modelled, but also refers the expert to the
action that is not encoded correctly. This is a useful feature to fix modelling errors quickly and
safely.

1.2. Contributions of the paper

In brief, the contributions of this paper are the following.
From a theoretical point of view:

• We give the first formal account of a mutual exclusion invariant synthesis for temporal
domains that works at the lifted level of the representation. Our presentation of this topic
is rigorous and comprehensive and our theory is general.

• Our technique is based on inferring general properties of the state space by studying the
structure of the action schemas and the lifted relations in the domain, without the need to
ground it. This is generally a hard task. Our theoretical framework is sophisticated, but it
results in practical tools that have high efficiency and low computational cost.

From a practical point of view:

• We provide a domain analysis tool for optimising the generation of state variables from
propositions and actions (both instantaneous and durative). This results in more compact
encodings than related techniques (see Sections 10.1 and 10.2). Succinct domain repre-
sentations often benefit the performance of planners (see Section 10.3).

• We offer a technique that can be used as a debugging tool for temporal planning domains.
As these types of domains are particularly challenging to encode, especially when large
and complex, a rigorous debugging process is crucial in producing correct representations
of the systems under consideration (see Example 19).

1.3. Organisation of the paper

This paper is organised as follows. After presenting PDDL2.1, our input language, in Section
2, we formally introduce the notion of invariance in Section 3.

Sections 4, 5 and 6 are devoted to a detailed analysis of actions at the ground level. In par-
ticular, Section 4 focuses on instantaneous actions: the fundamental concept of strong safety is
introduced and analysed and a first sufficient result for invariance, Corollary 23, is established.
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Section 5 analyses sequences of actions and, in particular, durative actions (seen as a sequence
of three instantaneous actions) for which two new concepts of safety are formulated and inves-
tigated: individual and simple safety. Our main technical results are presented in Section 6 and
consist of Theorems 51 and 53 and Corollary 58: these results ensure invariance under milder
safety requirements on the durative actions than Corollary 23. This is obtained by adding re-
quirements that prevent the intertwinement of durative actions that are not strongly safe.

Sections 7 and 8 lift the concepts and results obtained in the previous sections to the level of
action schemas. In particular, Section 7 deals with the problem of lifting the concept of strong
safety for instantaneous schemas, while Section 8 considers durative action schemas and presents
the lifted version of our main results, Corollaries 92, 97 and 98.

These results are the basic ingredients of our algorithm to find invariants, which we present
in Section 9. Section 10 reports an extensive experimental evaluation of our approach against
the domains of all the temporal IPCs. Sections 11 and 12 conclude the paper with a descrip-
tion of related works and closing remarks. There are four appendices, A – D, that contain the
specifications of the planning domains used as the running examples in the paper.

2. Canonical Form of Planning Tasks

In this work, we consider planning instances that are expressed in PDDL2.1 (Fox and Long,
2003). However, before applying our algorithm to find invariants, we manipulate the domain to
enforce a regular structure in the specification of the action schemas. In Section 2.1, we give a
detailed account of this canonical form that we use and then, in Section 2.2, we describe how
such a form can be obtained starting from a domain expressed in PDDL2.1.

2.1. PDDL Canonical Form
Let us consider a first order language L with a denumerable set of individual variable sym-

bolsV = {v1, v2, . . .} and a signature that has a denumerable set of constantsK = {k1, k2, . . .} and
a denumerable set of relation symbolsZ, where each r ∈ Z is associated with a positive integer
called arity and indicated as arity(r).

Given the language L, a planning instance is a tuple I = (D,P), where D is a planning
domain and P a planning problem. The domain D = (R,Ai,Ad) is a 3-tuple consisting of
finite sets of relation symbols R ⊆ Z, instantaneous and durative actions. The problem P =

(O, Init,G) is a triple consisting of the objects O ⊆ K , the initial logical state and the logical goal
specification.

The ground atoms of the planning instance, Atms, are the (finitely many) atomic formulas
formed by applying the relations inR to the objects inO (respecting arities). A logical state is any
subset of Atms. Considering a logical state s, we denote with sc its complement: sc = Atms \ s.
S = 2Atms denotes the set of logical states. The initial logical state can be chosen arbitrarily:
Init ∈ S. A logical goal specification is any choice of a desired set of final logical states: G ⊆ S.
It is typical to restrict to considering goals only of the form G = {S | C ⊆ S ∈ S} for some
conjunction of atoms C ⊆ Atms.

A state is a tuple in R × S, where the first value is the time of the state and the second value
(logical state) is a subset of Atms. The initial state for the planning instance I is, implicitly, of
the form (t0, Init) where t0, the beginning of the plan execution time, will always take the value
t0 = 0 in this paper, which is also the convention used in the IPC benchmarks1.

1We write t0 to emphasise that the choice of a starting time is theoretically unimportant.
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The set Ai is a collection of instantaneous action schemas. An instantaneous action schema
α is composed of the following sets:

• Vα ⊆ V, the distinct schema’s variables;

• Pre+
α , the positive preconditions;

• Pre−α , the negative preconditions;

• Eff+α , the add effects;

• Eff−α , the delete effects.

If the schema α is clear in context we drop the subscript. For convenience, we also define:

• Preα = Pre+
α ∪ Pre−α;

• Effα = Eff+α ∪ Eff−α

Preconditions and effects are sets of formulas l of the form: (∀v1, . . . , vk : q) where:

• q is an atomic formula: q = r(v′1, . . . , v
′
n) with r ∈ R and arity(r) = n ≥ k;

• {v1, . . . , vk} ⊆ {v′1, . . . , v
′
n} ⊆ V are the quantified variables in l;

• {v′1, . . . , v
′
n} \ {v1, . . . , vk} ⊆ Vα are the schema’s variables in l.

The universal quantification can be trivial (i.e. quantification over zero variables) and, in this
case, it is omitted. Note that we do not allow repeated arguments in the specification of a schema
and all the formulas that appear in the preconditions and effects are positive. The representation
is untyped.

Given a formula l of the form (∀v1, . . . , vk : q), we indicate the sets of the positions of its
free and quantified variables (starting with zero and in the order they appear in q) respectively
as VarF[l] and VarQ[l]. For example, if l = (∀x, z : f (x, y, z, k)), we have: VarQ[l] = {0, 2} and
VarF[l] = {1, 3}. Let Rel[l] = 〈r/k〉 denote the relation symbol r of arity k that appears in the
atomic formula q. In our example, Rel[l] = f /4. Considering a position i ∈ VarF[l] , we indicate
the corresponding variable as Var[i, l]. For instance, Var[2, l] = z.

The setAd is a collection of durative action schemas. A durative action schema Dα is a triple
of instantaneous action schemas Dα = (αst, αinv, αend) with a common set of variables VDα (i.e.
VDα = Vαst = Vαinv = Vαend ) and with αinv having no effects (i.e. Effαinv = ∅). We indicate as {Dα}
the set {αst, αinv, αend}.

We call A the set of all the instantaneous action schemas in the domain, including those
induced by durative actions: A = Ai ∪

⋃
Dα∈Ad

{Dα}. Consider any two action schemas α1 and α2

inA such that there does not exist a durative action Dα with both α1 and α2 in {Dα}. We assume
that the variables of α1 and α2 are disjoint sets2, i.e. Vα1 ∩ Vα2 = ∅.

Given an action schema α ∈ Ai with variables Vα, consider a grounding function gr : Vα →

O that maps the schema’s variables in α to the problem’s objects O. The function gr induces

2Our implementation forces this assumption true by performing a preprocessing step that appropriately renames all
variables of unrelated action schemas apart.
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a function on the formulas in α as follows. Take a formula l that appears in α. We call g̃r(l)
the formula that is obtained from l by substituting the schema’s variables in l with objects in
O according to gr. We call gr(l) the set of ground atoms obtained from g̃r(l) by substituting
each quantified variable in l with objects in O in all possible ways. Note that, when there are
no quantified variables, {g̃r(l)} = gr(l) and they are singletons. For a set L containing formulas
l1, . . . , ln, we call g̃r(L) = {g̃r(l1), . . . , g̃r(ln)} and gr(L) = gr(l1) ∪ . . . ∪ gr(ln). We call g̃r(α)
the action schema obtained from α by grounding each formula l that appears in α according to
gr and gr(α) the ground action that is obtained from g̃r(α) by replacing the quantified variables
with the set of ground atoms formed by substituting objects in O for the quantified variables in
all possible ways.

Considering a durative action schema Dα ∈ Ad and a grounding function gr, the ground
durative action gr(Dα) is obtained by applying gr to the instantaneous fragments of Dα, i.e.
gr(Dα) = (gr(αst), gr(αinv), gr(αend)). Note that we cannot apply different grounding functions
to different parts of a durative action schema.

We indicate the positive and negative preconditions of an instantaneous ground action a as
Pre±a and its add and delete effects as Eff±a . We also put Prea = Pre+

a ∪Pre−a and Effa = Eff+a ∪Eff−a .
Ground actions obtained by grounding different action schema are always assumed to be distinct
even in the case they might have the same preconditions and effects. In particular, two different
durative actions always have distinct start and end fragments. Such fragments are also distinct
from any other instantaneous action. We callGAi andGAd, respectively, the set of instantaneous
and durative ground actions. Finally, we callGA the set of all ground actions in I (obtained from
grounding all schemas inA).

For the sake of simplicity, from now on we will call a ground action simply an action, while
at the lifted level we will use the term action schema. Moreover, the term instantaneous will be
dropped, whenever this does not cause any ambiguity, assuming that actions and action schemas
without the appellative durative are always instantaneous.

An action a is applicable in a logical state s if Pre+
a ⊆ s and Pre−a ∩ s = ∅. We denote by S a

the set of states on which a is applicable. The result of applying a in s is the state s′ such that
s′ = (s \ Eff−a ) ∪ Eff+a . We call ξ this transition function: s′ = ξ(s, a).

The transition function ξ can be generalised to a finite set of actions A to be executed simul-
taneously: s′ = ξ(s, A). However, in order to handle simultaneous actions, we need to introduce
the so-called no moving targets rule: no two actions can simultaneously make use of a value if
one of the two is accessing the value to update it. The value is a moving target for the other
action to access. This rule avoids conflicting effects, but also applies to the preconditions of an
action: no concurrent actions can affect the parts of the state relevant to the precondition tests of
other actions in the set (regardless of whether those effects might be harmful or not). In formula,
two actions a and b are non-interfering if:

Prea ∩ Effb = Preb ∩ Effa = ∅

Eff+a ∩ Eff−b = Eff+b ∩ Eff−a = ∅

If two actions are not non-interfering, they are mutex.
In this work, whenever we consider a set of simultaneous actions A, we implicitly assume

that the component actions are pairwise non-interfering. Moreover, we define

Pre±A =
⋃
a∈A

Pre±a , Eff±A =
⋃
a∈A

Eff±a (1)
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We say that A is applicable in a state s if each component a ∈ A is applicable in s. The set of
states on which A is applicable is thus SA = {s | Pre+

A ⊆ s, Pre−A ⊆ sc}. Given s ∈ SA, the
transition function s′ = ξ(s, A) is defined as follows:

s′ = (s \ Eff−A) ∪ Eff+A

We say that A is executable if SA , ∅ or, equivalently, if

Pre+
A ∩ Pre−A = ∅ (2)

Sets of actions that are not executable do not play any role in our analysis as they will never
appear in executable plans (see below for the exact definition). For this reason, in our analysis,
we always restrict consideration to executable sets of actions. This implies, in particular, that
each single action a that we consider satisfies the condition Pre+

a ∩ Pre−a = ∅.
The following result shows that the application of a set of actions can always be serialised.

Proposition 1 (Serialisability). Consider a set of pairwise non-interfering actions A and a log-
ical state s ∈ SA. Let σ : {1, . . . , n} → A be any permutation of A and consider the sequence of
states recursively defined as s0 = s and sk = ξ(sk−1, σ(k)) for k = 1, . . . , n. Then,

(i) Each σ(k) is applicable in sk−1 (so each sk is well-defined): Pre+
σ(k) ⊆ sk−1 and Pre−σ(k) ∩

sk−1 = ∅.

(ii) The final logical state coincides with the state that is obtained by applying the set A, namely
sn = ξ(s0, A).

Proof. The action σ(1) is applicable in s0 by definition. Assuming that σ( j) is applicable in s j−1
for j = 1, . . . , k, we now show that σ(k + 1) is applicable in sk. Note that from the definition of

transition function ξ for single actions sk = (s0 \
k⋃

j=1
Eff−σ( j))∪

k⋃
j=1

Eff+σ( j). Since Pre+
σ(k+1) ⊆ s0 and

Pre−σ(k+1) ∩ s0 = ∅ by assumption and σ(k + 1) is not interfering with σ(1), σ(2), . . . , σ(k), we

have that Pre+
σ(k+1) ⊆ sk and Pre−σ(k+1)∩ sk = ∅. Also, note that: sn = (s0 \

n⋃
j=1

Eff−σ( j))∪
n⋃

j=1
Eff+σ( j) =

ξ(s, A).

An instantaneous timed action has the following syntactic form: (t, a), where t is a positive
rational number in floating point syntax and a is an action. A durative timed action has the
following syntactic form: (t,Da[t′]), where t is a rational valued time point, Da is a durative
action and t′ is a non-negative rational-valued duration. It is possible for multiple timed actions
to be given the same time stamp, indicating that they should be executed concurrently.

Given a planning instance I, a plan Π consists of a finite set of (instantaneous and durative)
timed actions. The happening time sequence {ti}i=0,...,k̄ for a plan Π is: {t | (t, a) ∈ Π or (t,Da[t′]) ∈
Π or (t − t′,Da[t′]) ∈ Π}.

The simple plan π induced by a plan Π is the set of instantaneous timed actions such that:

(i) (t, a) ∈ π for each (t, a) ∈ Π, where a is an action;

(ii) (t, ast) ∈ π and (t + t′, aend) ∈ π for all (t,Da[t′]) ∈ Π, where Da is a durative action;

(iii) ((ti + ti+1)/2, ainv) ∈ π for each (t,Da[t′]) ∈ Π and for each i such that t ≤ ti < (t + t′), where
ti and ti+1 are in the happening time sequence for Π.

8



For each durative action (t,Da[t′]) in Π, the simple plan π contains the instantaneous timed
actions (t, ast) and (t + t′, aend) as well as, midway between them, the instantaneous timed action
((ti + ti+1)/2, ainv). A plan Π and its corresponding induced simple plan π is admissible if concur-
rent instantaneous actions are non-interfering between each other and actions happening inside a
durative action Da = (ast, ainv, aend) are non-interfering with the action ainv. More precisely, if

• (t, a), (t, b) ∈ π imply that a and b are non-interfering.

• (t,Da[t′]) ∈ Π and (s, b) ∈ π for some time s ∈ (t, t + t′) imply that ainv and b are non-
interfering.

The happening time sequence {ti}i=0,...,k̄ for a plan π is: {t0} ∪ {t | (t, a) ∈ π}. The happening
at time t of the plan π is defined as At = {a ∈ GA | (t, a) ∈ π}. Clearly, At , ∅ iff t is in the
happening time sequence. The sequence of action sets Aπ = (At0 , . . . , Atk̄ ) is called the happening
sequence of π.

An admissible simple plan π for a planning instance I is executable if, given its happening
time sequence {ti}i=0...k̄, there is a sequence of logical states {si}i=0...k̄ such that s0 = Init and for
each i = 0, . . . , k, si+1 is the result of executing the happening at time ti in π. Formally, we have
that Ati+1 is applicable in si and si+1 = ξ(si, Ati+1 ). The state sk̄ is called the final logical state
produced by π. The sequence of times and states {S i = (ti, si)i=0...k} is called the (unique) trace
of π, trace(π). Two simple plans are said to be equivalent if they give rise to the same trace. We
call Plans all the executable simple plans for I and we call Sr the union of all the logical states
that appear in the traces associated with the plans in Plans: Sr = {s | π ∈ Plans, (t, s) ∈ trace(π)}.
Note that Sr ⊆ S. We call the states in Sr reachable states. Finally, an executable simple plan
for a planning instance I is valid if it produces a final state sk̄ ∈ G.

Note that in the passage from the original plan Π to the simple plan π we have formally
lost the coupling among the start and end fragments of durative actions. Since in certain cases
this information is necessary, we set a definition: a durative action Da is said to happen in
π in the time interval [t, t + t′] whenever this holds true in the original plan Π, namely when
(t,Da[t′]) ∈ Π. It will also be convenient to make the following assumption. Whenever two
durative timed actions (t1,Da1[t′1]) (t2,Da2[t′′2 ]) either start at the same point t1 = t2 or end at the
same point t1+t′1 = t2+t′2, in a plan Π, but have different durations t′1 , t′2, the constituent durative
actions are different: Da1 , Da2. This entails no loss of generality. In fact, if Da1 and Da2 are
different, this is obvious. If not, we can always create multiple copies of the same durative
action with different labels: they have the same preconditions and effects in each fragment but
have a different name. Durative actions of this type are called equivalent. Note, finally, that if
two equivalent durative actions Da1 and Da2 appear in a plan with the same starting point and
duration, (t,Da1[t′]), (t,Da2[t′]) ∈ Π, we can get rid of one of them and obtain an equivalent
simple plan. For this reason, we assume from now on that the plans considered are free from
such simultaneous happening of equivalent durative actions.

All concepts and results presented in this paper will not take into consideration the goal G.
They will be concerned with the family Plans of all executable plans and not just the valid ones.
Moreover, it will be convenient to think of Init as a parameter taking all possible values in S,
as our results will be universally quantified with respect to it. Whenever in this paper we fix an
instance I, we think of a family of instances parameterised by all possible Init and G.

2.2. From PDDL2.1 to Canonical PDDL
We build the canonical form described above starting from PDDL2.1 instances, which are

characterised by numeric and temporal information (Fox and Long, 2003). We do not consider
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numeric expressions in our canonical form. We could potentially exploit metric information
to find additional invariants, but currently we do not do that. Instead, we ignore the numeric
expressions in the domain and focus only on its logical and temporal structure. Setting numeric
expressions aside has several consequences: we eliminate numeric constraints from the actions’
specification, the actions’ preconditions and effects do not depend on the duration and actions’
durations become the interval (0,+∞) in the rational numbers. Note that, crucially, the invariants
that we find for the domain without numeric constraints are also invariants for the original domain
since, in removing them, we are only expanding the set of possible valid plans.

Temporal information is handled in PDDL2.1 by means of durative actions. They can be
either discretised or continuous, but we focus on discretised durative actions here. They have a
duration field and temporally annotated conditions and effects.

The duration field contains temporal constraints involving terms composed of arithmetic ex-
pressions and the dedicated variable duration. As already mentioned above, we ignore numeric
constraints and consequently the specific durations of the actions, which we substitute with the
interval (0,+∞). Such precise durations are irrelevant to our technique. We care about the possi-
ble intertwinement between durative actions, which can be studied without considering the exact
durations.

The annotation of a condition makes explicit whether the associated proposition must hold at
the start of the interval (the point at which the action is applied), the end of the interval (the point
at which the final effects are asserted) or over all the interval (open at both ends) from the start
to the end (invariant over the duration of the action). The annotation of an effect makes explicit
whether the effect is immediate (it happens at the start of the interval) or delayed (it happens at
the end of the interval). No other time points are accessible. Logical changes are considered to
be instantaneous and can only happen at the accessible points. To build our canonical form, we
transform durative actions into triples of instantaneous actions. We do this in such a way that we
do not change the set of plans that can be obtained for any goal specification. Plans with durative
actions, in fact, are always assigned a semantics in terms of the semantics of simple plans (Fox
and Long, 2003), as explained in the previous section.

Let us see now in more detail how we obtain the PDDL canonical form from PDDL2.1
instances. PDDL2.1 is a typed representation. We compile away types: for each type that occurs
in the domain, we introduce a new unary relation with the same name. For example, the Floortile
domain contains the type robot, tile and color and so we introduce three new unary relations:
〈robot, 1〉, 〈tile, 1〉, and 〈color, 1〉. We use such relations in the specification of the initial
state, where we list the objects of the planning instance, and in the specification of the actions.
For each typed variable that appears in an action, we specify it without giving its type, but then we
introduce a new precondition in the action that associates the variable to its corresponding unary
relation. We follow the same procedure described in Helmert (2009), which can be consulted for
further details.

In a PDDL2.1 domain, instead of Ai and Ad, we find a set Aa that contains both instan-
taneous and durative action schemas, which have the following characteristics. Durative action
schemas have temporally annotated conditions and effects, which we indicate as Prepx and Effpy,
where p ∈ {+,−}, x ∈ {st, inv, end}, and y ∈ {st, end}. For an action schema in Aa (durative or
not), the condition formula can be a relation, a negation, a conjunction or disjunction of rela-
tions or a quantified formula on relations. The effect formula can be a relation, a negation or a
conjunction of relations, a universally quantified formula on relations or a conditional effect for-
mula, which is a tuple formed by a precondition formula and and effect formula. We manipulate
the action schemas in Aa to obtain Ai and Ad, where each action schema in these sets has the
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canonical form described in Section 2.1.
First, we eliminate conditional effects and existentially quantified formulae through an op-

eration referred to as flattening (see Fox and Long (2003) for details). These features can be
eliminated by applying syntactic transformations with the resulting schemas being equivalent
to the original ones. This procedure can potentially lead to an exponential blow-up of the task
description.

Given a flattened action schema α, we take the formulas (temporally annotated or not) in its
conditions and effects and normalise them by using the algorithm introduced by Helmert (2009).
(We refer the interested reader to this paper for a full description of the normalisation process.)
Our normalisation differs from Helmert (2009) only in that we initially eliminate conditional
effects by applying the flattening operation before normalisation and we keep universal quan-
tification in the preconditions. We also apply normalisation not only to formulas appearing in
instantaneous actions as in Helmert (2009), but also to temporally annotated formulas in dura-
tive actions. We normalise the formulas and leave the temporal annotation unchanged. After
normalisation, all action schema conditions and effects become sets of formulas l of the form
∀v1, . . . , vk : q, where q is an atomic formula and the quantification can be trivial. We indicate
by Pre+

α and Eff+α the set of positive formulas that appear positive in α and by Pre−α and Eff−α the
set of positive formulas that appear negative in α.

After flattening and normalisation, we transform the durative action schemas in Aa into
triples of instantaneous action schemas. For each durative action Dα ∈ Aa, we create two in-
stantaneous action schemas that correspond to the end points of Dα, αst and αend, and one that
corresponds to the invariant conditions that must hold over that duration of Dα, αinv. More
formally, for a durative action schema Dα, we create αst, αinv and αend as follows:

αst αinv αend

Pre+
αst = Pre+st

Dα Pre+
αinv = Pre+inv

Dα Pre+
αend = Pre+end

Dα
Pre−αst = Pre−st

Dα Pre−
αinv = Pre−inv

Dα Pre−
αend = Pre−end

Dα
Eff+αst = Eff+st

Dα Eff+
αinv = ∅ Eff+

αend = Eff+end
Dα

Eff−αst = Eff−st
Dα Eff−

αinv = ∅ Eff−
αend = Eff−end

Dα

Table 2: Transformation of durative action schemas into triples of instantaneous action schemas.

At this point, we are ready to construct Ai and Ad from Aa. We add each flattened and
normalised instantaneous action in Aa to Ai. For each durative action Dα ∈ Aa, after applying
flattening and normalisation, we create the corresponding tuple (αst, αinv, αend) and add it toAd.

Consider a planning instance I in canonical form obtained from a PDDL2.1 instance I′ and
a valid plan Π for I. Π can be converted into an equivalent valid plan Π′ for I′.

2.3. Running Example: the Floortile Domain

We use the Floortile domain as our running example. It has been introduced in the IPC’14
and then reused in 2015. The full PDDL2.1 specification is available in Appendix A. The domain
describes a set of robots that use different colours to paint patterns in floor tiles. The robots can
move around the floor tiles in four directions (up, down, left and right). Robots paint with one
color at a time, but can change their spray guns to any available color. Robots can only paint the
tile that is in above (up) and below (down) them, and once a tile has been painted no robot can
stand on it.
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We have the following relations in this domain: R = { up,down,right,left,robotAt,
robotHas,painted,clear,availableColor }. They have arity two, except for the
last two, which have arity one. availableColor indicates whether a colour gun is available
to be picked by a robot and up,down,right,left indicate the respective positions of two
tiles. As we will automatically infer via our invariant synthesis (see Example 1), the relation
clear in this context means not only that a tile is still unpainted, but also that it is not being
painted and is unoccupied.

The set of instantaneous action schemasAi is empty, while the set of durative action schemas
Ad is: Ad = {changeColor,paintUp,paintDown,up,down,right,left }.

As an example, the durative action schema paintUp corresponds to the following triple:
(paintUpst, paintUpinv, paintUpend), where the single instantaneous action schemas have
the following specifications:

α paintUpst paintUpinv paintUpend

Vα {r, y, x, c} {r, y, x, c} {r, y, x, c}

Pre+
α {robotAt(r, x), clear(y), {robotHas(r, c), up(y, x) {robot(r), tile(y),

robot(r), tile(y), robot(r), tile(y), tile(x), color(c)}
tile(x), color(c)} tile(x), color(c)}

Pre−α ∅ ∅ ∅

Eff+α ∅ ∅ {painted(y, c)}
Eff−α {clear(y)} ∅ ∅

Table 3: Durative action schema paintUp seen as a triple of instantaneous action schemas.

Note that the triple of single instantaneous action schemas in canonical form is obtained from
the following PDDL2.1 specification:

( : d u r a t i v e− a c t i o n pa in tUp
: p a r a m e t e r s ( ? r − r o b o t ? y − t i l e ? x − t i l e ? c − c o l o r )
: d u r a t i o n (= ? d u r a t i o n 2 )
: c o n d i t i o n ( and ( ove r a l l ( r o b o t−h a s ? r ? c ) )

( a t s t a r t ( r o b o t A t ? r ? x ) )
( ove r a l l ( up ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( p a i n t e d ? y ? c ) ) ) )

3. Mutual Exclusion Invariants and Templates

In this section, we formally introduce the concept of mutual exclusion invariant and give
examples of them.

In the PDDL2.1 language, an invariant of a planning instance is a property of the world states
such that when it is satisfied in the initial state Init, it is satisfied in all reachable states Sr. For
example, for the Floortile domain, a trivial invariant says that for each object x, if x is a robot,
then x is not a tile. Similar invariants hold for each type defined in the original PDDL domain.
A more interesting invariant says that, for any two objects x and y, if up(x,y) holds, then
down(y,x) holds too, but down(x,y) does not. It is possible to identify several invariants

12



for the Floortile domain, ranging from trivial invariants such as those involving type predicates
to very complex invariants.

In this paper, we focus on mutual exclusion invariants, which state that a set of ground atoms
can never be true at the same time. From now on we assume we have fixed a planning instance
I in PDDL canonical form.

Definition 2 (Mutual Exclusion Invariant). A set of ground atoms Z ∈ S is a mutual exclusion
invariant set when, if at most one element of Z is true in the initial state, then at most one element
of Z is true in any reachable state, namely

|Z ∩ Init| ≤ 1 ⇒ |Z ∩ s| ≤ 1, ∀s ∈ Sr

We abuse the distinction between the set Z and a formula such as
∧

x,y∈Z ¬x ∨ ¬y and call Z a
mutual exclusion invariant directly and, for brevity, an invariant.

Example 1 (Floortile domain). A mutual exclusion invariant for this domain states that two
ground atoms indicating the position of a robot identified as rbt1, such as robotAt(rbt1,
tile1) and robotAt(rbt1,tile2), can never be true at the same time. Intuitively, this
means that rbt1 cannot be in two different positions simultaneously. Another more complex
invariant states that, given a tile tile1, a robot rbt1 and a colour clr1, atoms of the form
clear(tile1), robotAt(rbt1, tile1) and painted(tile1,clr1) can never be
true at the same time. This means that a tile can be in one of four possible states: not yet painted
(clear), already painted, occupied by a robot that is painting an adjacent tile or none of the
preceding (which can only be because the tile is being painted).

Although we aim to find sets of mutually exclusive ground atoms, we often work with rela-
tions and action schemas to control complexity. A convenient and compact way for indicating
several invariant sets at the same time involves using invariant templates, which are defined
below, after introducing a few preliminary definitions.

Definition 3 (Component). A component c is a tuple 〈r/k, p〉, where r is a relation symbol in R
of arity k = arity(r) and p ∈ {0, . . . , k}.

Take a component c = 〈r/k, p〉 and a set of variables v0, . . . , vk−1 and consider the atomic
formula m = r(v0, . . . , vk−1). When p ≤ k − 1, the number p in c represents the position of
one of the variables of m, which we call the counted variable. When p = k, there are no counted
variables. The set of the fixed variables of c is formally defined as Fc = {(c, i) | i = 0, . . . , k−1; i ,
p}. We define the set of fixed variables of a set of components C = {c1, c2, . . . , cn} as FC =

⋃
c∈C

Fc.

Definition 4 (Admissible Partition). Given a set of components C and corresponding set of
fixed variables FC, an admissible partition of FC is a partition FC = {G1, . . . ,Gs} such that
|G j ∩ Fc| = 1 for each c ∈ C.

If two elements (c1, i) and (c2, j) of FC belong to the same set of the partition FC, we use the
notation: (c1, i) ∼FC (c2, j).

Remark 5. Note that the existence of an admissible partition of FC implies that all the compo-
nents in C have the same number of fixed variables, which is also the number of the sets in the
partition. In the special case in which the number of fixed variables in each component is equal
to one, there is just one admissible (trivial) partition FC = {FC}.
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Definition 6 (Template). A template T is a pair (C,FC) such that C is a set of components and
FC is an admissible partition of FC. We simply write T = (C) when the partition is trivial, i.e.
FC = {FC}.

Definition 7 (Template Instance). Given objects O and template T = (C,FC), an instance γ :
FC → O of T maps (all the elements of) each part of its partition to the same object, that is
γ(ca, i) = γ(cb, j) if and only if (ca, i) ∼FC (cb, j) for all (ca, i), (cb, j) ∈ C

Definition 8 (Template Instantiation). The instantiation of T according to instance γ, γ(T ), is
the set of ground atoms in 2Atms obtained as follows: for each component c = 〈r/k, p〉 of T , take
the relation symbol r, for each element (c, i) ∈ Fc bind the variable in position i according to
γ(c, i) and the counted variable in position p to all the objects O. In formula,

γ(T ) =
⋃

c=〈r/k,p〉∈T

{
r(x0, . . . , xk−1) | xp ∈ O, xi = γ(c, i)∀i , p

}
(3)

Instances are interesting because they can be used to reason about their (exponentially larger)
instantiations without, in fact, constructing those instantiations.

Considering a template T and an instance γ, if the ground atoms in the instantiation of T
according to γ are mutually exclusive in the initial state Init and remain so in any reachable
state s ∈ Sr, then γ(T ) is (by definition) a mutual exclusion invariant set. A template with this
property for each possible instantiation γ is called an invariant template.

Definition 9 (Invariant Template). A template T is an invariant template if, for each instance γ,
the instantiation of T according to γ is a mutual exclusion invariant set.

Given an invariant template T , we can create one state variable for each of its instances.
The domains of these variables are the corresponding mutual exclusion invariant sets with an
additional null value, which is used when no element in the mutual exclusion invariant set is
true.

Before describing in what situations we can feasibly prove that a template is invariant, we
introduce a final concept:

Definition 10 (Template Instance’s Weight). Take an instance γ of template T with instantiation
γ(T ). The weight w(γ, s) of γ in state s is the number of ground atoms of its instantiation true in
s:

w(γ, s) = |γ(T ) ∩ s| .

Proposition 11. A template T is invariant if and only if, for each instance γ of T with instanti-
ation γ(T ), if w(γ, Init) ≤ 1, then w(γ, s) ≤ 1 for each state s ∈ Sr.

Proof. It follows from Definitions 9 and 10.

Example 2 (Floortile domain). A template for this domain is T f t = ({c1, c2, c3}), where:

• c1 = 〈robotAt/2, 0〉 is the first component. It includes the relation robotAt that has
an arity of two (i.e. the relation robotAt(robot,tile) has two variables) and the
variable in position zero, i.e. robot, is the counted variable. The remaining variable,
tile, which is in position one, is the fixed variable: Fc1 = {(c1, 1)}.

• c2 = 〈painted/2, 1〉 is the second component with Fc2 = {(c2, 0)}.
14



• c3 = 〈clear/1, 1〉 is the last component with Fc3 = {(c3, 0)}.

For this example, because each component has only one fixed argument, there is only one
admissible partition - the trivial one - that places all components together:

FC = {{(c1, 1), (c2, 0), (c3, 0)}}

Assume that we have a problem P with two robots rbt1 and rbt2, three tiles, tile1,
tile2 and tile3 and one colour black. Consider one possible instance γ1 such that
γ1(c1, 1) = γ1(c2, 0) = γ1(c3, 0) = tile1. The instantiation of the template T f t according to
γ1 is: γ1(T f t) = { clear(tile1), robotAt(rbt1,tile1), robotAt(rbt2,tile1),
painted(tile1,black)}. The weight of the instance γ1 in some state s is how many of
the atoms in γ1(T f t) are true in s. For example, w(γ1, s0) = 1 for the plausible initial state
s0 = { clear(tile1), robotAt(rbt1,tile2), robotAt(rbt2,tile3)}, because
the intersection of the state s0 and the instantiation γ1(T f t) contains just clear(tile1).

We will see that we can actually prove that T f t is an invariant, which states that any given tile
(e.g., tile1 for the instance/instantiation γ1) satisfies at most one of: (1) clear, (2) painted a
colour, or (3) occupied by a robot. Hence, for the problem P, we can create three state variables
that represent each of the three tiles. The domains of these variables are the three possible
configurations of the tiles and the null value. As it happens, there is only one situation in which
none of the above-mentioned three values can be true, and that is when some robot in some
adjacent tile is painting the tile in question. The special null value of the state variable has that
meaning. For example, SVtile1 = {robotAt(rbt1,tile1), robotAt(rbt2,tile1),
painted (tile1, black), clear(tile1), null } and similarly forSVtile2 andSVtile3.

4. Safe Instantaneous Ground Actions

In this and in the following sections, we fix a planning instance I = (D,P) recalling that
we consider a family of planning instances parameterised by the initial state Init and G. We
then consider a template T and discuss the conditions for T to be invariant. More precisely, we
determine a few sufficient conditions on the families of instantaneous and durative actions in D
that ensure that if, for some instance γ, w(γ, Init) ≤ 1, then w(γ, s) ≤ 1 for all other reachable
states s ∈ Sr.

4.1. Strong safety

We assume a template T to be fixed as well as an instance γ. In the following, A ⊆ GA
always denotes a set of pairwise non-interfering actions and is assumed to be executable.

Definition 12 (Strongly safe actions). The set of actions A is strongly γ-safe if, for each s ∈ SA

where w(γ, s) ≤ 1, the successor state s′ = ξ(s, A) also satisfies w(γ, s′) ≤ 1.

The following result shows that strong γ-safety can always be checked at the level of single
actions.

Proposition 13. Let A be a set of actions. Then, A is strongly γ-safe if a is strongly γ-safe for
all a ∈ A.
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Proof. Write A = {a1, . . . , an} and let s ∈ SA. Note that from Proposition 1, the actions in A
can be serialised and the successor state s′ = ξ(s, A) can be recursively obtained as s0 = s,
sk = ξ(sk−1, ak), k = 2, . . . , n and s′ = sn. By assumption, it follows that w(γ, si) ≤ 1 for every i.
In particular, w(γ, s′) ≤ 1.

The converse of the above result does not hold. A counterexample will be shown later (see
Example 3).

In order to tease apart the property of strong γ-safety, we will need several more formal
definitions, which we will give here and in the following subsections. Firstly, consider restricting
an action to a particular instantiation and its complement.

Definition 14. Given an action a ∈ GA, aγ and a¬γ are the actions, respectively, specified by

Pre±aγ = Pre±a ∩ γ(T ), Eff±aγ = Eff±a ∩ γ(T )
Pre±a¬γ = Pre±a ∩ γ(T )c, Eff±a¬γ = Eff±a ∩ γ(T )c

(where Ac denotes the set complement of A).
Given an action set A, we define the action sets Aγ = {aγ | a ∈ A} and A¬γ = {a¬γ | a ∈ A}.
We also split the states in a similar way: take s ∈ S, put sγ = s ∩ γ(T ) and s¬γ = s ∩ γ(T )c.

Remark 15. For a state s and an action set A, we have that s ∈ SA if and only if sγ ∈ SAγ
ands¬γ ∈ SA¬γ and it holds that:

s′ = ξ(s, A) ⇔
{

s′γ = ξ(sγ, Aγ)
s′¬γ = ξ(s¬γ, A¬γ) (4)

This leads to the following simple but useful result.

Proposition 16. For a set of actions A, the following conditions are equivalent:

(i) A is strongly γ-safe;

(ii) Aγ is strongly γ-safe;

(iii) For every s ∈ SAγ such that s ⊆ γ(T ) and w(γ, s) ≤ 1, it holds that the successor state
s′ = ξ(s, Aγ) is such that w(γ, s′) ≤ 1.

Proof. (ii)⇒(iii) is trivial and (iii)⇒(i) is an immediate consequence of (4) and of the fact that
w(γ, s) = w(γ, sγ) and w(γ, s′) = w(γ, s′γ).

Finally, (i)⇒(ii) follows from the following argument. Take any s ∈ SAγ such that w(γ, s) ≤
1. Consider s∗ = sγ ∪ Pre+

A¬γ . Since s∗γ = sγ ∈ SAγ and s∗¬γ = Pre+
A¬γ ∈ SA¬γ , it follows that

s∗ ∈ SA. If we consider the successor states s′ = ξ(s, Aγ) and s′∗ = ξ(s∗, Aγ), it follows from (4)
that

s′γ = ξ(sγ, Aγ) = ξ(s∗γ, Aγ) = s′∗γ

Therefore,
w(γ, s′) = w(γ, s′γ) = w(γ, s′∗γ ) = w(γ, s′∗) ≤ 1

where the last equality follows from the assumption that A is strongly γ-safe.
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4.2. Characterisation of ground actions with respect to strong safety

Based on the structure of the preconditions and effects, we classify actions in four classes
and then relate each class to the notion of strong safety.

Definition 17 (Classification of Ground Actions). A set of actions A is:

• γ-unreachable if |Pre+
Aγ | ≥ 2;

• γ-heavy if |Pre+
Aγ | ≤ 1 and |Eff+Aγ | ≥ 2;

• γ-irrelevant if |Pre+
Aγ | ≤ 1 and |Eff+Aγ | = 0;

• γ-relevant if |Pre+
Aγ | ≤ 1 and |Eff+Aγ | = 1.

Each A ⊆ GA belongs to one and only one of the above four disjoint classes. The following
result clarifies their relation with strong safety.

Proposition 18. Let A be a set of actions. Then,

1. if A is γ-unreachable or γ-irrelevant, A is strongly γ-safe;

2. if A is γ-heavy, A is not strongly γ-safe.

Proof. If A is γ-unreachable and A is applicable in the state s, it follows that Pre+
A ⊆ s and thus

w(γ, s) ≥ |Pre+
Aγ )| ≥ 2. This shows that the condition w(γ, s) ≤ 1 is never verified and thus A is

strongly γ-safe.
If A is γ-irrelevant and A is applicable in the state s, we have that the successor state s′ =

ξ(s, a) ⊆ s. This yields w(γ, s′) ≤ w(γ, s). This implies that A is strongly γ-safe.
Suppose that A is γ-heavy and consider the state s = Pre+

A. A is applicable in s (because of
assumption (2)) and w(γ, s) = |Pre+

Aγ | ≤ 1. After applying A in s, the successor state s′ = ξ(s, A) is
such that s′ ⊇ Eff+Aγ This yields w(γ, s′) ≥ |Eff+α | ≥ 2 and proves that A is not strongly γ-safe.

The following example shows how the converse of Proposition 13 does not hold.

Example 3. Consider a template T and an instance γ such that γ(T ) = {q, q′, q′′}, where q, q′,
q′′ are distinct ground atoms as well as q′′′. Let A = {a, a′}, where a and a′ are actions such that:

Pre+
a = {q, q′}, Effa = ∅, Prea′ = ∅, Eff+a′ = {q′′, q′′′}

Then, a is γ-unreachable and thus strongly γ-safe, while a′ is γ-heavy and not strongly γ-safe.
However, the set of actions A is γ-unreachable and thus strongly γ-safe.

As the next example shows, γ-relevant action sets may be strongly γ-safe or not.

Example 4. Consider a template T and an instance γ such that γ(T ) = {q, q′, q′′}, where q, q′

and q′′ are three distinct ground atoms, and a is an action such that |Pre+
a | ≤ 1 and Eff+a = {q}.

Since |Eff+a ∩ γ(T )| = 1, a is γ-relevant.

• Suppose that Pre+
a = {q′} and Eff−a = {q′} as shown in Figure 1, left. In this case, a is

strongly γ-safe. In fact, if s ∈ Sa is such that w(γ, s) ≤ 1, q′ ∈ s and in consequence
w(γ, s) = 1. Given s′ = ξ(s, a), q′ < s′, but q ∈ s′ and therefore w(γ, s′) = 1.
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• Suppose that Prea = ∅ and Eff−a = {q′} as shown in Figure 1, right. In this case, a is
γ-relevant, but is not strongly γ-safe. In fact, consider the starting state s = {q′′} so that
w(γ, s) = 1. Since q′′ < Eff−a and q ∈ Eff+a , s′ = ξ(s, a) is such that w(γ, s′) = 2.

Proposition 18 classifies all but relevant actions. Let us now consider relevance. We split it
in four categories and then analyse the strong safety of each case.

a

Pre+: q'

Eff-: q'
Eff+: q

γ(T) = {q, q', q''}

q' ∈  s 
w(γ ,s)=1

q ∈  s' 
w(γ ,s')=1

a

Eff-: q'
Eff+: q

q'' ∈  s 
w(γ ,s)=1

q'', q ∈  s' 
w(γ ,s')=2

Figure 1: Relevant actions can be either safe (left) or unsafe (right). See Example 3. (Empty action parts are not shown.)

Definition 19 (Classification of Relevant Actions). A γ-relevant set of actions A has at most
one relevant precondition (|Pre+

Aγ | ≤ 1). A is γ-weighty, at p, when that is the single relevant
precondition: Pre+

Aγ = {p}. A is γ-weightless if |Pre+
Aγ | = 0.

A γ-weighty at p action set A is either:

• γ-balanced if the precondition is an effect: p ∈ EffAγ ; or

• γ-unbalanced if otherwise: p < EffAγ .

A γ-weightless action set A is either:

• γ-bounded if the entire instantiation is accessed: PreAγ ∪ EffAγ = γ(T ); or

• γ-unbounded if otherwise: PreAγ ∪ EffAγ , γ(T ).

Every relevant set of actions A belongs to one and only one of the above four disjoint classes.
The balanced and unbounded cases are discussed in Example 4. To understand the bounded case
better, recall that a relevant action set has just one relevant positive effect l, as in Eff+Aγ = {l}.
When A is bounded, then the rest of the instantiation γ(T ) \ {l} is accessed negatively: γ(T ) =

PreAγ ∪ EffAγ , Pre+
Aγ = ∅ and Eff+Aγ = {l} together imply that γ(T ) \ {l} = Pre−A ∪ Eff−A. So the

weight after executing a bounded set will be exactly one, regardless of what it was before. In
other words, bounded is even safer than balanced. Formally:

Proposition 20. Let A be a γ-relevant set of actions. Then,

1. if A is γ-balanced or γ-bounded, A is strongly γ-safe;

2. if A is γ-unbalanced or γ-unbounded, A is not strongly γ-safe.

Proof. We will prove the corresponding property for Aγ making use of Condition (iii) of Propo-
sition 16. We first analyse the case when A is γ-weighty. Let Pre+

Aγ = {q1} and Eff+Aγ = {q2}.
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Suppose now that A is γ-balanced and fix a state s ∈ γ(T ) such that w(γ, s) ≤ 1 and Aγ is ap-
plicable in s. Since q1 ⊆ s, necessarily, s = {q1} and w(γ, s) = 1. Consider the subsequent state
s′ = ξ(s, Aγ). If q1 = q2, we have that s′ = s so that w(γ, s′) = 1. If instead q1 ∈ Eff−Aγ , we have
that s′ = (s \ {q1})∪ {q2} = {q2} and thus w(γ, s′) = 1. Suppose that A is unbalanced and consider
the state s = {q1}. The subsequent state s′ = ξ(s, Aγ) = {q1, q2} so that w(γ, s′) = 2.

We now consider the case when A is γ-weightless, i.e. Pre+
Aγ = ∅. Let Eff+Aγ = {q2}. Suppose

that A is γ-bounded and fix a state s ∈ γ(T ) such that w(γ, s) ≤ 1 and Aγ is applicable in s.
Since A is γ-relevant, the subsequent state s′ = ξ(s, Aγ) is such that w(γ, s′) ≤ w(γ, s) + 1. The
only case we need to consider is thus when w(γ, s) = 1. Suppose that s = {q1}. Since, by
assumption PreAγ ∪ EffAγ = T (γ), it follows that q1 ∈ PreAγ ∪ EffAγ . We have that q1 < Pre−Aγ
(otherwise Aγ would not be applicable on the state s). Therefore, necessarily, either q1 ∈ Eff+Aγ
or q1 ∈ Eff−Aγ . In the first case, we have that q1 = q2 and thus s′ = s = {q1}. In the second case,
s′ = {q2}. In both cases, w(γ, s′) = 1. Finally, if A is γ-unbounded, we consider any ground
atom q1 ∈ γ(T ) \ (PreAγ ∪ EffAγ ) and we set s = {q1}. We have that Aγ is applicable in q1 since
Pre+

Aγ = ∅ and q1 < Pre−Aγ , and w(γ, s) = 1. Since it also holds that q1 < Eff−Aγ , we have that the
subsequent state s′ = ξ(s, Aγ) = {q1, q2} and w(γ, s′) = 2.

Putting the Propositions 18 and 20 together, we get the following result:

Theorem 21. Let A be a set of actions. Then,

1. if A is either γ-unreachable, γ-irrelevant, γ-balanced, or γ-bounded, A is strongly γ-safe;

2. if A is either γ-heavy, γ-unbalanced, or γ-unbounded, A is not strongly γ-safe.

Any state in which a γ-heavy or γ-unbalanced action can be executed will immediately have
weight 2 (or more). In contrast, it is possible for a γ-unbounded action to execute without vio-
lating the weight bound, and it is conceivable that all reachable states are such that γ-unbounded
actions end up being safe. In that sense, Theorem 21 is arguably less of a complete classification
than it may appear.

A possibly interesting way to approach knowledge generated by a stronger prover would be
to augment the descriptions of actions with derived preconditions, i.e. properties that hold in all
reachable states and could be freely added as a precondition on all actions. That could convert
γ-unbounded actions into γ-balanced or γ-bounded actions (if negative conditions are added).

Example 5 (Floortile domain). Take the schema α =paintUpend with variables Vα = {r, y, x, c}
(see Table 3) and grounding gr such that gr(r) =rbt1, gr(y) =tile1, gr(x) =tile3, gr(c) =
red. Let c = 〈painted/2, 1〉 be the component that counts the colour argument of painted
and T = ({c}, {{(c, 0)}}) be the template on just that component. Consider the safety of a =

gr(α) with respect to T . Let γ1(c, 0) =tile1 be the instance for the tile the robot is painting,
γ2(c, 0) =tile2 be the instance for an unrelated tile, and γ3(c, 0) =tile3 be the instance for
the tile the robot is standing on. Each instantiation is the set of all possible colours per tile.

The action a is γ2-irrelevant (as expected), meaning none of γ2(T ) are preconditions or
effects, so also a is (trivially) strongly γ2-safe.

While tile3 is relevant to the action as a whole, a does not access painted at tile3 so
a is likewise irrelevant and thus safe with respect to γ3.

The action a is γ1-relevant, because it adds painted(tile1,red)∈ γ1(T ). It is not
strongly γ1-safe, because if executed in a state where the tile was already black, the tile would end

19



up being painted both colours: ξ({ painted(tile1,black)}, aγ1 ) = { painted(tile1,red),
painted(tile1,black)}. In particular, a is γ1-unbounded. If we altered it by adding neg-
ative preconditions on all the other colours, it would become both bounded and safe.

If we added clear to the template, then instead a would be balanced (and thus safe) at the
instantiation for tile1.

4.3. Template safety

This concluding section presents a definition of strong safety with respect to a template, and
presents a first result that expresses a sufficient condition for a template to be invariant.

Definition 22. For a template T , a set of actions A ⊆ GA is strongly safe if it is strongly γ-safe
for every instance γ.

We have the following result:

Corollary 23. For a template T , T is invariant if for each a ∈ GA, a is strongly safe.

Proof. We proceed as follows. We fix any instance γ ofT and we show that if w(γ, Init) ≤ 1, then
w(γ, s) ≤ 1 for every s ∈ Sr. This, by Proposition 11, yields the result. By definition of the set
of reachable states Sr, any s ∈ Sr can be obtained by the initial state Init by recursively applying
a sequence of action sets. Precisely, there exists a sequence of sets (each consisting of pairwise
non-interfering actions) A1, A2, . . . , Ak and a sequence of states {si}i=0...k such that s0 = Init,
sk = s and for each i = 0, . . . , k − 1, si+1 = ξ(si, Ai+1). We prove that w(γ, s) ≤ 1 by induction
on k. Notice that the case k = 0 boils down to s = s0 = Init and w(γ, Init) ≤ 1 is our standing
assumption. Assume it to be true for k − 1 and let us prove it for k. Notice that, we can write
s = sk = ξ(sk−1, Ak) and the induction assumption implies that w(γ, sk−1) ≤ 1. By assumption
every a ∈ GA is strongly safe and thus, by Definition 22, strongly γ-safe. Using Proposition 13
we obtain in particular that Ak is strongly γ-safe. Consequently, also w(γ, sk) ≤ 1.

The condition expressed in Corollary 23 cannot be inverted in general. Indeed, a template
can be invariant even if not all actions are strongly safe. We will see when this happens in the
following section.

5. Safe action sequences and safe durative actions

A template can be invariant even if not all actions are strongly safe. This happens for two
reasons. On the one hand, since the set of reachable states Sr is in general smaller than S, it may
be that all the states that are responsible for the lack of strong safety are unreachable, i.e. they
are not in Sr. On the other hand, in domains with durative actions, some instantaneous actions
are temporally coupled because they are the start and end fragments of the same durative action.
This coupling imposes constraints on the states where the end part can be applied, which might
prove helpful to establish that a template is invariant. While in this paper we will not analyse
the first case as it would require an analysis of the set of reachable states Sr, which is infeasible,
we now elaborate suitable simple concepts of safety for durative actions, which are weaker than
strong safety. These extensions are important in many real-world temporal planning domains.
In our experience, these domains often present end-fragments of durative actions that are unsafe
as written, often, γ-unbalanced. Nonetheless, every use in an executable plan preserves the
weight condition, typically because the associated start-fragments force the weight to zero and
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the invariant-fragments keep it there. (A γ-unbalanced action is safe if it only executes in weight
zero states.) We give a definition of safety for durative actions that captures this case. However,
since in a plan a durative action may intertwine with other actions that happen between its start
and end points, we need to work out a concept of safety for more general sequences of actions
than just durative ones.

Below, we consider general sequences of action sets A = (A1, A2, . . . , An). Any simple plan
π generates such an object. Indeed, if {ti}i=0,...,k̄ is the related happening time sequence and Ati
are the relative happenings, we can consider the happening sequence Aπ = (At0 , . . . ,Atk̄ ) that
contains all the information on the plan π except the time values at which the various actions
happen.

To study the invariance of a template, we break the happening sequence of each plan into
subsequences determined by the happenings of durative actions. More precisely, we consider
sequences A = (A1, A2, . . . , An) where, for some durative action Da = (ast, ainv, aend), we have
that ast ∈ A1 and aend ∈ An. The sets A2, . . . , An−1, as well as A1 and An, possibly contain other
actions that are executed over the duration of Da. However, it is convenient to consider general
sequences of actions A = (A1, A2, . . . , An) without referring to plans or durative actions. Hence,
in this section, we first give a definition of safety for A such that, when A is executed serially in
any executable plan π, if the weight constraint is not violated in the state where the sequence is
initially applied, it is not violated in any intermediate step and at the end of the sequence. For
single action sets (sequences of length n = 1), this concept coincides with the notion of strong
safety.

We then consider a slightly stronger notion of safety which is robust to the insertion, between
elements of the sequence, of other actions whose positive effects have no intersection with the
template. To do this, it is necessary to introduce a number of auxiliary concepts relating to
the state dynamics induced by the execution of A. This general theory will then be applied to
sequences constructed from durative actions.

We recall our standing assumption that any considered subset of actions, Ai, consists of pair-
wise non-interfering actions and is assumed to be executable.

5.1. Safe ground action sequences
For a sequence of action sets A = (A1, A2, . . . , An), we denote with SA the set of state se-

quences (s0, . . . , sn) ∈ Sn+1 such that

si = ξ(si−1, Ai) and Ai is applicable in si−1 for all i ∈ {1, . . . , n}

If (s0, . . . , sn) ∈ SA, we say that (s0, . . . , sn) is a state sequence compatible with A. Given an
instance γ, we also define SA(γ) = {(s0, . . . , sn) ∈ SA |w(γ, s0) ≤ 1}. We use the following
notation for subsequences of A: Ak

h = (Ah, Ah+1, . . . , Ak).
We now fix a template T and an instance γ and give the following natural definition of safety

for a sequence.

Definition 24 (Individually safe actions). A sequence of action sets A = (A1, A2, . . . , An) is
individually γ-safe if for every sequence of states (s0, . . . , sn) ∈ SA we have that

w(γ, s0) ≤ 1 ⇒ w(γ, si) ≤ 1∀i = 1, . . . , n

The invariance of a template can now be expressed in terms of individual safety for the
happening sequences.
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Proposition 25. Let T be a template. Suppose that for every executable simple plan π, the
happening sequence Aπ is individually γ-safe for every instance γ. Then, T is invariant.

Proof. Take any instance γ and assume that w(γ, Init) ≤ 1. We need to show that w(γ, s) ≤ 1
for every s ∈ Sr. For each s ∈ Sr, there exists an executable simple plan π having trace(π) =

{S i = (ti, si)i=0,...,k̄} with s0 = Init, sk̄ = s, and with happening sequence Aπ. We have that the
state sequence (s0, . . . , sk̄) ∈ SAπ

. Since by assumption w(γ, s0) ≤ 1 the individual γ-safety of Aπ

implies that w(γ, s j) ≤ 1 for every j = 1, . . . , k̄. In particular, w(γ, s) ≤ 1.

Below are elementary properties of individual γ-safety for subsequences of A.

Proposition 26. Consider a sequence of action sets A = (A1, A2, . . . , An). The following proper-
ties hold:

(i) if, for some k and h such that k ≥ h − 1, Ak
1 = (A1, A2, . . . , Ak) and An

h = (Ah, . . . , An) are
both individually γ-safe, then A is also individually γ-safe;

(ii) if A is individually γ-safe and Ak and Ak+1 are non-interfering, then A′ = (A1, A2, . . . , Ak ∪

Ak+1, . . . , An) is individually γ-safe;

(iii) if A is individually γ-safe and B j, for j = 1, . . . , n are action sets such that EffB j = ∅,
then, A′ = (A1, B1, A2, . . . , Bn, An) is individually γ-safe. If, in addition, A j and B j are
non-interfering for every j = 1, . . . , n, also A′′ = (A1 ∪ B1, . . . , An ∪ Bn) is individually
γ-safe.

Proof. (i): If (s0, s1, . . . , sn) ∈ SA, we have that

(s0, s1, . . . , sk) ∈ SAk
1
, (sh−1, s1, . . . , sn) ∈ SAn

h
.

Therefore, if w(γ, s0) ≤ 1, from the fact that Ak
1 is individually γ-safe, it follows that w(γ, s j) ≤ 1

for every j = 1, . . . , k. In particular, since k ≥ h − 1, we have that w(γ, sh−1) ≤ 1. From the fact
that An

h is also individually γ-safe, it now follows that w(γ, s j) ≤ 1 for every j = h, . . . , n. This
implies that w(γ, s j) ≤ 1 for every j = 1, . . . , n and proves property (i).

(ii): Suppose (s0, s1, . . . , sk−1, sk+1, . . . , sn) ∈ SA′ where sk+1 = ξ(Ak ∪ Ak+1, sk−1). Put sk =

ξ(Ak, sk−1) and note that, by serialisability (see Proposition 1), sk+1 = ξ(Ak+1, sk), and therefore
(s0, s1, . . . , sk−1, sk, sk+1, . . . , sn) ∈ SA. This implies that w(γ, s j) ≤ 1 for every j = 1, . . . , n and
proves property (ii).

(iii): If (s0, s′0, s1, . . . , s′n−1, sn) ∈ SA′ , then, s′k−1 = sk for every k = 1, . . . , n and (s0, s1, . . . , sn) ∈
SA. Individual γ-safety of A now establishes property (iii). Regarding A′′ the property follows
from the fact that A′ is individually γ-safe and case (ii).

The following is a useful consequence of the previous results: it asserts that if individual
safety holds locally in a sequence, then it also holds globally.

Corollary 27. For a sequence of action sets A = (A1, A2, . . . , An), the following conditions are
equivalent:

(i) the sequence A is individually γ-safe;
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(ii) for each j = 1, . . . , n, there exists a subsequence A j+s
j−r , with r, s ≥ 0, that is individually

γ-safe.

Proof. (i)⇒(ii) is trivial and (ii)⇒(i) follows from an iterative use of (i) of Proposition 26.

Individual safety is a weak property since it is not robust with respect to the insertion of other
actions, even when these actions are irrelevant but possess delete effects. This is connected to the
fact that, while individual safety has this nice local to global feature illustrated in Corollary 27,
it does not possess the opposite feature: subsequences of individually safe sequences may not be
individually safe. The following example shows both these phenomena.

Example 6. Consider a template T and an instance γ such that γ(T ) = {q, q′}. The set of
state sequences compatible with A = (a1, a2) (Figure 2 - top diagram) is: SA = {(s0, s1, s2)|q <
s0, s1 = s0 ∪ {q′}, s2 = s1}. Note that q < s0 because, by hypothesis, a2 is applicable in s1 and
s1 = s0 ∪ {q′}. A is individually γ-safe since w(γ, si) ≤ 1 for every state si that appears in SA.
Note that a1 is γ-unbounded and thus not strongly γ-safe and that A1

1 = (a1) is not individually
γ-safe as well.

Now consider the sequence Ã = (a1, b, a2) (Figure 2 - bottom diagram) where a γ-irrelevant
action b is inserted between a1 and a2. The new set of state sequences compatible with Ã is:
SÃ = {(s0, s1, s2, s3)|s1 = s0 ∪ {q′}, s2 = s1 \ {q}, s3 = s2}. Note that now q can be in s0 since it
is the action b that ensures the applicability of a2. If q ∈ s0, since a1 adds q′ to s0, w(γ, s1) = 2.
This new sequence is not individually γ-safe. The insertion of a γ-irrelevant action has failed the
individual γ-safety of the sequence A.

a1
a2

Pre-: q 

Eff+: q Eff+: q'
s0 s1 s2

a1 Pre-: q 

Eff+: q'
s0 s1 s3s2

Eff-: q

a2
b

A = {a1, a2}

A = {a1, b, a2}

γ(T) = {q, q'}

Eff+: q'

~

Figure 2: The insertion of the γ-irrelevant action b fails the individual γ-safety of the sequence A. See Example 6.

For proving some of our results, the concept of individual safety is not sufficient. Below
we present a stronger definition of safety for an action sequence that is robust with respect to
the insertion of irrelevant actions in it. First, we define the simple concepts of executable and
reachable sequences.

Definition 28 (Executable and reachable actions). The sequence A = (A1, A2, . . . , An) is called:

• executable if SA , ∅;

• γ-(un)reachable if SA(γ) , ∅ (SA(γ) = ∅).
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Remark 29. Note the following chain of implications:

non-executable ⇒ γ-unreachable ⇒ individually γ-safe

Note that if π is an executable simple plan, γ is an instance and w(γ, Init) ≤ 1, then the hap-
pening sequence Aπ is γ-reachable. Moreover, every subsequence A of Aπ is executable. If a
subsequence A of Aπ is γ-unreachable, the weight will surely exceed 1 at some point of the plan
π and thus the template T will not be invariant.

In the special case of a sequence of length 2, executability and reachability admit very simple
characterisations. We report them below as we will need them later. First define, for a generic
set of actions A, the postconditions:

Γ+
A = (Pre+

A \ Eff−A) ∪ Eff+A, Γ−A = (Pre−A ∪ Eff−A) \ Eff+A (5)

We have the following result:

Proposition 30. For a sequence of two action sets A = (A1, A2), the following conditions are
equivalent:

(i) A is executable;

(ii) Γ+
A1 ∩ Pre−A2 = ∅ = Γ−A1 ∩ Pre+

A2 .

Proof. (i)⇒(ii): Note that if (s0, s1, s2) ∈ SA, it follows that Pre+
A1 ⊆ s0. Since s1 = (s0 \ Eff−A1 ) ∪

Eff+A1 it follows that Γ+
A1 ⊆ s1. Analogously, using the fact that (Pre−A1 )c ⊇ s0, it follows that

(Γ−A1 )c ⊇ s1. Since A2 must be applicable on s1, condition (ii) immediately follows.
(ii)⇒(i): Consider s0 = Pre+

A1 ∪ (Pre+
A2 \ Eff+A1 ). Straightforward set theoretic computation,

using conditions (ii), show that A1 can be applied on s0 and that A2 can be applied on s1 =

ξ(A1, s0). This proves (i).

Proposition 31. For a sequence of two action sets A = (A1, A2), the following conditions are
equivalent:

(i) A is γ-reachable;

(ii) A is executable and |Pre+

A1
γ
∪ (Pre+

A2
γ
\ Eff+A1

γ
)| ≤ 1.

Proof. (ii)⇒(i): It follows from the proof of (ii)⇒(i) in Proposition 30 that there exists (s0, s1, s2) ∈
SA with s0 = Pre+

A1 ∪ (Pre+
A2 \ Eff+A1 ). By the assumption, w(γ, s0) ≤ 1 and this proves (i).

(i)⇒(ii): it follows from the fact that if (s0, s1, s2) ∈ SA, necessarily Pre+
A1 ∪ (Pre+

A2 \ Eff+A1 ) ⊆
s0.

The following result shows how executability and γ-reachability are robust with respect to
some specific modifications of a sequence, notably, the deletion of actions containing no effects,
and serialisation.

Proposition 32. Consider a sequence A = (A1, A2, . . . , An) that is executable or γ-reachable.
Then,

24



(i) if B j ⊆ A j are such that EffB j = ∅ for every j = 1, . . . , n − 13, then also A′ = (A1 \ B1, A2 \

B2, . . . , An \ Bn) is, respectively, executable or γ-reachable.

(ii) if A j = A′ j ∪ A′′ j for some j = 1, . . . , n, then also A′ = (A1, A2, . . . , A′ j, A′′ j, . . . , An) is,
respectively, executable or γ-reachable.

Proof. (i): If (s0, s1, . . . , sn−1, sn) ∈ SA, we have that (s0, s1, . . . , sn−1, s′n) ∈ SA′ for a suitable
state s′n. The result then follows from the definition of executability and γ-reachability.

(ii): This follows immediately from serialisability (see Proposition 1).

Here is our stronger notion of safety:

Definition 33 (Safe actions). A sequence of action sets A = (A1, A2, . . . An) is γ-safe if it is
executable and the subsequences Ak

1 are individually γ-safe for every k = 1, . . . , n.

Example 6 illustrates why individual safety is too fragile a concept by itself. We would like
to infer that A in Example 6 is unsafe for some appropriate notion of safety, but, as the example
shows, that concept cannot be individual safety. Definition 33 accomplishes that aim. Indeed,
note how the sequence A = (a1, a2) considered in Example 6 is not γ-safe, since (a1) is not
individually γ-safe.

The definition of safety asks for executability — in addition to asking for every prefix to be
individually safe — because, without executability, individual safety is a vacuous condition. In
particular, we would like to conclude that the happening sequence in Example 7 considered next
is unsafe, for the reason shown. By having Definition 33 require executability, we attain that
judgment.

Example 7 (Motivating Executability in Safety). Consider the non-executable sequence A =

(a1, a2) depicted in Figure 3 - top diagram (q′′ is required to be false by a2, but it is asserted
by a1). Consider a template T and an instance γ such that γ(T ) = {q, q′, q′′}. As it happens,
A is individually safe: vacuously, since it is non-executable. However, this is not really a safe
arrangement: we would like to say that inserting γ-irrelevant actions preserves safety, but con-
sider inserting such an action b, deleting q′′, as in Ã = (a1, b, a2) and depicted in Figure 3 -
bottom diagram. Then the weight bound, which held (vacuously) for A, is violated in Ã (both q
and q′ end up true), and so we can conclude that individually safe is too weak for our purposes.
Observe that, by requiring executability, the definition of safety rules out this (counter-)example:
A is not γ-safe, as desired. (Note that, unlike Example 6, here all the prefixes are individually
safe.)

Remark 34. If A = (A1, A2, . . . An) is γ-safe, the first action set A1 must necessarily be strongly
γ-safe. In the other direction, note that if A is executable and every A j for j = 1, . . . , n is strongly
γ-safe then, A is γ-safe.

This motivates the following definition.

Definition 35 (Strongly and weakly safe actions). A sequence of action sets A = (A1, A2, . . . , An)
is:

3Bn is not constrained; removing effects at the end of the sequence does not alter its executability or reachability.
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a1
a2

Pre-: q'' 

Eff+: q, q'' Eff+: q'
s0 s1 s2

a1 Pre-: q'' 

Eff+: q'
s0 s1 s3s2

Eff-: q''

a2
b

A = {a1, a2}

A = {a1, b, a2}

γ(T) = {q, q'}

Eff+: q, q''

~

Figure 3: Lack of robustness for individually γ-safe actions. See Example 7.

• strongly γ-safe if it is executable and every A j for j = 1, . . . , n is strongly γ-safe;

• weakly γ-safe if it is γ-safe but not strongly γ-safe.

With this, we are finished with upgrading our notion of safety, but there is one last point to
consider: having safety alone still does not let us prove anything, because safety only preserves a
weight bound, it does not force it true initially. So in general we need to consider sequences that
are both γ-safe and γ-reachable. We keep those notions separate, rather than combine them in
another definition, for technical reasons: e.g. γ-safe can be shown for an entire planning domain,
and then γ-reachable can be checked per problem. The first things that can be said of sequences
that are both γ-safe and γ-reachable is that they exclude γ-heavy and γ-unbalanced actions (cf.,
Propositions 16 and 18).

a1 a2

Eff+: q, q' 

A = (a1, a2)

γ(T) = {q, q'}

Pre+: q, q' 

Figure 4: Safety alone does not rule out heavy actions: A is safe, but a2 is heavy. See Example 8.

Example 8 (Motivating Reachability in Proposition 36). Consider the template T and an in-
stance γ such that γ(T ) = {q, q′}. Now consider the executable, but γ-unreachable sequence
A = (a1, a2) depicted in Figure 4, consisting of a γ-unreachable action a1 and a γ-heavy action
a2. In general, we want to quickly exclude any sequence containing a γ-heavy action; but in-
sisting on safety alone is not enough, as this example demonstrates. Action a1 requires both q
and q′ to be true and so the weight has to be 2 initially for A to execute (consequently, A is not
γ-reachable). Perhaps counterintuitively, for the same reason, A is γ-safe: its two prefixes (a1)
and (a1, a2) are both individually safe since all executions begin with the weight bound violated,
and then all the implications comprising “safety” just hold vacuously.

What the example illustrates is that, in general, undesirables such as γ-heavy actions can be
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hidden in nominally safe sequences only by failing reachability. Formally, by insisting on safety
and reachability together, we can rule out heavy and unbalanced actions everywhere:

Proposition 36. Let A = (A1, A2, . . . , An) be a sequence of action sets. If A is γ-safe and γ-
reachable, then, for every j = 1, . . . , n, A j is neither:

• γ-heavy, nor

• γ-unbalanced.

Proof. Since A is γ-reachable, the set SA(γ) is not empty. Fix any (s0, . . . , sn) ∈ SA(γ) and note
that, since A is γ-safe, w(γ, si) ≤ 1 for every i = 1, . . . , n. For any j = 1, . . . , n, we have that
s j = (s j−1 \ Eff−A j ) ∪ Eff+A j ⊇ (Pre+

A j \ Eff−A j ]) ∪ Eff+A j . This implies that

|(Pre+

A j
γ

\ Eff−
A j
γ

) ∪ Eff+
A j
γ

| ≤ 1 (6)

As a consequence, |Eff+
A j
γ

| ≤ 1, which says that A j can not be γ-heavy. If we now assume that

|Eff+
A j
γ

| = 1, Relation (6) implies that Pre+

A j
γ

⊆ Eff+
A j
γ

∩Eff−
A j
γ

. Hence A j cannot be γ-unbalanced.

In studying the two safety properties for a sequence A introduced so far, we can essentially
restrict ourselves to study the state dynamics on the template instantiation γ(T ) as we did for
strong γ-safety of instantaneous actions (see Remark 15).

Considering the sequence A = (A1, A2, . . . An), we denote by Aγ = (A1
γ, A

2
γ, . . . A

n
γ) and A¬γ =

(A1
¬γ, A

2
¬γ, . . . A

n
¬γ) the corresponding restricted sequences. We have the following result.

Proposition 37. Given the sequence A = (A1, A2, . . . An),

(i) A is executable if and only if Aγ and A¬γ are both executable;

(ii) A is γ-reachable if and only if Aγ is γ-reachable and A¬γ is executable;

(iii) A is individually γ-safe if and only if Aγ is individually γ-safe.

(iv) A is γ-safe if and only if Aγ is γ-safe and A¬γ is executable.

Proof. (i): It follows from (4) that, for any sequence of states (s0, . . . , sn) ∈ Sn+1, we have that

(s0, . . . , sn) ∈ SA ⇔

{
(s0
γ, . . . , s

n
γ) ∈ SAγ

(s0
¬γ, . . . , s

n
¬γ) ∈ SA¬γ

(7)

This immediately proves the ‘only if’ implication. On the other hand, if s′ ∈ SAγ
and s′′ ∈ SA¬γ ,

we have that s′γ ∈ SAγ
and s′′¬γ ∈ SA¬γ and thus s = s′γ ∪ s′′¬γ ∈ SA by (7).

Statement (ii) can be proven analogously to (i), and statement (iii) follows by a straightfor-
ward extension of the argument used to prove Proposition 16. Finally, statement (iv) follows
from the definition of strong γ-safety together with the previous statements, (i) and (iii).

We are now ready to state and prove the following fundamental result, which ensures that the
concept of safe sequence is robust to the insertion of irrelevant actions.

Theorem 38. Consider a γ-safe sequence A = (A1, A2) and γ-irrelevant action sets B1, B2, . . . , Bn.
Then, the sequence Ã = (A1, B1, . . . , Bn, A2) is either non executable or γ-safe.
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Proof. Consider the sequences restricted on the instantiation γ(T ) and its complement: Aγ, A¬γ
and, respectively, Ãγ, Ã¬γ. By virtue of Proposition 37, we have that Aγ is γ-safe and to prove
the result it is sufficient to show that Ãγ is either non executable or γ-safe.

Assume that Ãγ is executable and let (s0, s1, s2, . . . , sn+1, sn+2) ∈ SÃγ
be such that w(γ, s0) ≤

1. Since (s0, s1) ∈ SA1
γ

and A1
γ is strongly safe, it follows that w(γ, s1) ≤ 1. Note now that

s j = s j−1 \ Eff−
B j−1
γ

for j = 2, . . . , n + 1 and this immediately implies that

w(γ, sn+1) ≤ w(γ, sn) ≤ · · · ≤ w(γ, s1) ≤ 1

What remains to be shown is that also w(γ, sn+2) ≤ 1. To accomplish this, we introduce the set
F = ∪n

i=1Eff−Bi
γ

and we consider the new initial state s̃0 = s0 \ (F \Pre+

A1
γ
). Since s̃0 ⊆ s0, we know

that Pre−
A1
γ
∩ s̃0 = ∅. Moreover, by construction, we also have that Pre+

A1
γ
⊆ s̃0. Thus A1

γ can be

applied to the state s̃0 and we obtain the next state:

s̃1 := (s̃0 \ Eff−A1
γ
) ∪ Eff+A1

γ

Note that sn+1 = s1 \ F ⊆ s̃1, which implies that Pre+

A2
γ
⊆ s̃1. Also, s̃1 ⊆ sn+1 ∪ Γ+

A1
γ
. Since A2

γ

is applicable in the state sn+1, it follows that Pre−
A2
γ
⊆ sn+1 = ∅. The fact that Aγ, being γ-safe,

is executable implies, by Proposition 30, that Γ+

A1
γ
∩ Pre−

A2
γ

= ∅. Therefore Pre−
A2
γ
⊆ s̃1 = ∅. A2

γ

is thus applicable in the state s̃1 and there exists s̃2 ∈ S such that (s̃1, s̃2) ∈ SA2
γ
. Therefore, we

can conclude that (s̃0, s̃1, s̃2) ∈ SAγ
. Since Aγ is γ-safe and w(γ, s̃0) ≤ w(γ, s0) ≤ 1, we have

that w(γ, s̃2) ≤ 1. At the same time, since sn+1 ⊆ s̃1, we also have that sn+2 ⊆ s̃2 and thus
w(γ, sn+2) ≤ 1. This completes the proof.

Remark 39. We conjecture that Theorem 38 could be generalised to sequences of actions of
length longer than two, but the proof is much more complex. Since this extension is not needed
in this paper, we do not present such a proof here.

For future use, it will be convenient to have a definition of safeness that does not depend on
the particular chosen instance.

Definition 40. A sequence of action sets A is safe for a template T if it is γ-safe for every
instance γ of T . A sequence of action sets A is strongly safe for a template T if it is strongly
γ-safe for every instance γ of T . It is weakly safe if it is safe but not strongly safe.

5.2. Safe ground durative actions
We now restrict our attention to durative actions Da = (ast, ainv, aend). If we interpret Da as a

sequence of three actions, we can treat it using the properties defined for general sequences such
as γ-safety and strong γ-safety. Before studying these properties, it is convenient to make some
considerations on the way durative actions appear in admissible simple plans. Indeed, several
constraints emerge as a direct consequence of the definition of an induced simple plan as well as
from the concept of admissibility explained in Section 2.1. Consider an admissible simple plan
π with happening sequence Aπ = (At0 , . . . , Atk̄ ). If a durative action Da happens in π in the time
interval [ti+1, t j], we have that ast ∈ Ati+1 and aend ∈ At j . Moreover, j − i is necessarily odd and
for every even h = 2, 4, . . . , j − i − 1, Ati+h consists of ainv and, possibly, over all conditions of
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other durative actions happening in the original plan Π simultaneously or intertwined with Da.
Finally, for h = 1, 3, . . . , n−2, Ati+h consists of actions that appear in simple admissible plans and
that, consequently, inherit such constraints.

Definition 41 (Admissible actions). A sequence A = (A1, A2, . . . , An) is:

• admissible if there exists an admissible simple plan π with happening sequence Aπ =

(At0 , . . . , Atk̄ ) such that (A1, A2, . . . , An) = (Ati+1 , . . . , Ati+n ) for some i = 0, . . . , k̄ − n.

• Da-admissible, for some durative action Da, if it is admissible and Da happens in the
corresponding simple plan π as above in [ti+1, ti+n]. In particular, ast ∈ A1 and aend ∈ An.

The existence of Da-admissible sequences that are executable imposes specific conditions on
the durative action Da:

Proposition 42. Consider a durative action Da = (ast, ainv, aend) and assume that there exists an
executable Da-admissible sequence. Then, the following conditions are satisfied:

Γ+
ast ∩ Pre−ainv = ∅, Γ−ast ∩ Pre+

ainv = ∅ (8)

Pre+
aend ∩ Pre−ainv = ∅, Pre+

aend ∩ Pre−ainv = ∅ (9)

where the postconditions Γ± have been defined in (5).

Proof. Suppose that A = (A1, A2, . . . , An) is Da-admissible and executable. Since (A1, A2) is
executable, Proposition 30 implies that

Γ+
A1 ∩ Pre−A2 = ∅ = Γ−A1 ∩ Pre+

A2 (10)

Since ast ∈ A1 and A1 consists of pairwise non-interfering actions, we have that

Γ+
ast ⊆ Γ+

A1 , Γ−ast ⊆ Γ−A1 (11)

Finally, equations (10) and (11), together with the fact that ainv ∈ A2, yield conditions (8). Con-
ditions (9) can be similarly proven.

Durative actions not satisfying any of the conditions expressed in the previous result, can be
ignored in our analysis. From now on we thus assume that all durative actions satisfy conditions
(8) and (9) above.

To study the safety of a Da-admissible sequence, we can, in many cases, reduce the analysis
of the durative action Da to the analysis of an auxiliary sequence of just two actions Da∗ =

(ast
∗ , a

end
∗ ), where ast

∗ and aend
∗ are actions such that:

Eff±ast
∗

= Eff±ast , Pre±ast
∗

= Pre±ast ∪ (Pre±ainv \ Eff±ast )
Eff±aend

∗

= Eff±aend , Pre±
aend
∗

= Pre±aend ∪ Pre±ainv

Remark 43. The executability assumption (2) automatically extends from ast and aend to the
auxiliary actions ast

∗ and aend
∗ , as a consequence of condition (9).

The relation between the two sequences Da and Da∗ is clarified by the following result.
Assume, as always, that a template T and an instance γ have been fixed.

Proposition 44. The following facts hold:
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(i) (s0, s1, s2) ∈ S(ast,ainv) if and only if s1 = s2 and (s0, s1) ∈ Sast
∗
;

(ii) (s0, s1, s2) ∈ S(ainv,aend) if and only if s0 = s1 and (s1, s2) ∈ Saend
∗

;

(iii) (s0, s1, s2, s3) ∈ SDa if and only if s1 = s2 and (s0, s1, s3) ∈ SDa∗ ;

(iv) (ast, ainv) is individually γ-safe if and only if ast
∗ is strongly γ-safe;

(v) (ainv, aend) is individually γ-safe if and only if aend
∗ is strongly γ-safe;

(vi) Da is individually γ-safe if and only if Da∗ is individually γ-safe.

Proof. (i): Suppose (s0, s1, s2) ∈ S(ast,ainv). Since ainv only contains preconditions, we have that
s1 = s2. Note now that s1 = ξ(ast, s0) = (s0 ∪ Eff+ast ) \ Eff−ast must satisfy the conditions Pre+

ainv ⊆

s1 ⊆ (Pre−ainv )c. This yields Pre+
ainv ⊆ s0 ∪ Eff+ast and thus Pre+

ainv \ Eff+ast ⊆ s0. Similarly, from
s0 \Eff−ast ⊆ (Pre−ainv )c, we obtain that s0 ⊆ (Pre−ainv \Eff−ast )c. This implies that also ast

∗ is applicable
on s0 and s1 = ξ(ast

∗ , s
0) since ast and ast

∗ have the same effects. If instead (s0, s1) ∈ Sast
∗
, we

have that ast is applicable on s0 (since the preconditions of ast are also preconditions of ast
∗ ) and

s1 = ξ(ast
∗ , s

0) = ξ(ast, s0). (ii) is proven similarly to (i). (iii) follows from (i) and (ii) and, finally,
(iv), (v), and (vi) follow, respectively, from (i), (ii), and (iii).

The next result studies the effect of exchanging the start and end of a durative action Da with
those of the auxiliary sequence Da∗ in a Da-admissible sequence.

Proposition 45. Consider a durative action Da = (ast, ainv, aend) and a Da-admissible sequence
of actions A = ({ast}, A2, . . . , An−1, {aend}). Let A∗ = ({ast

∗ }, A
2, . . . , An−1, {aend

∗ }). Then SA = SA∗ .
In particular, A is individually γ-safe if and only if A∗ is individually γ-safe.

Proof. Since A∗ differs from A only for having more preconditions, it holds that SA ⊇ SA∗ . Con-
versely, suppose (s0, . . . , sn) ∈ SA. Then, (s0, s1, s1) ∈ S(ast,ainv). Therefore, by (i) of Proposition
44, we have that (s0, s1) ∈ Sast

∗
. Similarly, using (ii) of Proposition 44, we obtain that (sn−1, sn) ∈

Saend
∗

. These two facts together with (s1, s2, . . . , sn−1) ∈ S(A2,...,An−1), yield (s0, . . . , sn) ∈ SA∗ .

The last proposition implies that, in analysing the state dynamics in an executable plan, we
can replace the start and end of each durative action Da with the corresponding ones of the
auxiliary sequence Da∗, if the start and end are isolated from other actions. This is useful for two
reasons. On the one hand, there are cases in which Da∗ is strongly safe even if Da is not. On the
other hand, we can directly apply Theorem 38 to Da∗ since it is of length 2.

As we shall see later, our sufficient results for the invariance of a template always require
safety (strong or simple) of the auxiliary actions Da∗ = (ast

∗ , a
end
∗ ). The check for strong safety

can be done by considering the single components of Da∗ and referring back to the analysis that
we carried out in the previous section. Below, we give a full characterisation of simple safety for
auxiliary actions.

Note first that if Da∗ = (ast
∗ , a

end
∗ ) is weakly γ-safe (Definition 35), necessarily Da∗ is exe-

cutable, ast
∗ is strongly γ-safe and aend

∗ is not strongly γ-safe. If, besides these three properties,
Da∗ is γ-unreachable, then Da∗ is weakly γ-safe because of Remark 29. If we instead assume
that Da∗ is weakly γ-safe and γ-reachable, then, because of Proposition 36, we have that aend

∗ is
γ-unbounded. The following result completely characterises simple γ-safety for such actions.
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Proposition 46. Let Da∗ = (ast
∗ , a

end
∗ ) be a γ-reachable sequence such that ast

∗ is strongly γ-safe
and aend

∗ is γ-unbounded. Then, Da∗ is weakly γ-safe if and only if one of the following mutually
exclusive conditions are satisfied:

(a) ast
∗ is γ-irrelevant, |Pre+

ast
∗γ
| = 1, Pre+

ast
∗γ
⊆ Eff−ast

∗γ
;

(b) ast
∗ is γ-irrelevant, |Pre+

ast
∗γ
| = 1, Pre+

ast
∗γ
* Eff−ast

∗γ
, Pre+

ast
∗γ
⊆ Effaend

∗γ
;

(c) ast
∗ is γ-irrelevant, |Pre+

ast
∗γ
| = 0, Pre−ast

∗γ
∪ Effast

∗γ
∪ Effaend

∗γ
= γ(T );

(d) ast
∗ is γ-relevant, Eff+ast

∗γ
⊆ Effaend

∗γ
.

Proof. Note that Da∗ is γ-reachable and ast
∗ strongly γ-safe. Hence, Da∗ is weakly γ-safe if and

only if Da∗γ is individually γ-safe. This last fact is equivalent to showing that, given any state
sequence (s0, s1, s2) ∈ SDa∗γ such that s0 ∈ γ(T ) and w(γ, s0) ≤ 1, it holds that w(γ, si) ≤ 1 for
i = 2 (since for i = 1 that follows from the strong safety of ast

∗ ). Let

Wγ = {s1 ∈ γ(T ) | ∃s0, s2 ∈ γ(T ), w(γ, s0) ≤ 1, (s0, s1, s2) ∈ SDa∗γ }

We need to show that, for every s1 ∈ Wγ, we have that w(γ, s2) ≤ 1, where

s2 = ξ(aend
∗γ , s

1) = (s1 \ Eff−aend
∗γ

) ∪ Eff+aend
∗γ

Since aend
∗ is γ-unbounded, the condition w(γ, s2) ≤ 1 is equivalent to

s1 ⊆ Effaend
∗γ

(12)

Since ast
∗ is γ-reachable and strongly γ-safe, it follows from Theorem 18 that it is either γ-

irrelevant or γ-relevant. If ast
∗ is γ-irrelevant and |Pre+

ast
∗γ
| = 1, we have thatWγ = {Pre+

ast
∗γ
\Eff−ast

∗γ
}.

Combining this with (12), we thus have that in this case Da∗ is γ-safe if and only if

Pre+
ast
∗γ
\ Eff+ast

∗γ
⊆ Effaend

∗γ
(13)

This leads to the two possible cases (a) and (b).
Suppose now that ast

∗ is γ-irrelevant and |Pre+
ast
∗γ
| = 0. In this case,

Wγ = {s1 ⊆ γ(T ) |w(γ, s1) ≤ 1, s1 ∩ (Pre−ast
∗γ
∪ Eff−ast

∗γ
) = ∅}

Combining this with (12), we thus have that in this case Da∗ is γ-safe if and only if

Pre−ast
∗γ
∪ Eff−ast

∗γ
∪ Effaend

∗γ
= γ(T ) (14)

This leads to case (c).
Finally, if αst

∗γ is relevant we have thatWγ = {Eff+ast
∗γ
}. Combining this with (12), we obtain

that in this case Da∗ is γ-safe if and only if condition (d) is verified.

Remark 47. If Condition (a) of Proposition 46 holds, this implies that the same conditions need
to be satisfied by ast: |Pre+

ast
γ
| = 1, Pre+

ast
γ
⊆ Eff−ast

γ
.
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Definition 48 (Weakly safe durative actions). We say that Da∗ is weakly γ-safe of type (x) where
x ∈ {a, b, c, d} if it is γ-reachable, ast

∗ is strongly γ-safe, aend
∗ is γ-unbounded, and, finally, Da∗

satisfies the condition (x) of Proposition 46.

Example 9. Consider a template T and an instance γ such that γ(T ) = {q, q′}. Figure 5 shows
possible instances of actions of types (a)-(d).

Da* 

Pre+: q

Eff+: q'

γ(T) = {q, q', q''}

Eff-: q

Da*

Pre+: q

Eff+: q'
Eff-: q

Type a Type b

Da*

Pre-: q, q''

Eff+: q'

Da*

Eff+: q'
Eff-: qType c Type dEff+: q

Pre-: q', q''

Figure 5: Examples of weakly γ-safe actions of types (a)-(d). See Example 9.

When the start or the end of a durative action Da happens simultaneously with other actions,
the reduction of Da to Da∗ cannot be performed in general as shown in the following example.

Example 10. Consider a template T and an instance γ such that γ(T ) = {q, q′, q′′}. Figure
6 shows that, when the durative actions Da and Da′ are considered in isolation, both ast

∗ and
a′st
∗ are strongly γ-safe since they are γ-unreachable. Since aend

∗ and a′end
∗ are γ-irrelevant, Da∗

and Da′∗ are strongly γ-safe and thus (by Proposition 44) Da and Da′ are individually γ-safe.
However, if we now consider the case in which Da and Da′ happen simultaneously, giving rise
to the sequence A = (A1 = {ast, a′st}, A2 = {ainv, a′inv}), we see that A is not individually γ-safe.
In fact, if we set s0 = {q′′} with w(γ, s0) = 1, we have that s1 = ξ(s0, A1) = {q, q′′, q′′′} with
w(γ, s1) = 3, which violates the definition of individual γ-safety.

Note that, in the previous example, the two durative actions are γ-unreachable. The follow-
ing result shows that such pathological phenomena can only happen in that case and will be
instrumental for the results of the next section.

Proposition 49. Let Da be a γ-reachable durative action such that ast is not strongly γ-safe,
while ast

∗ is strongly γ-safe. Then,

(i) ast
∗ is γ-bounded;

(ii) for every action set A1 such that ({ast}∪A1, ainv) is executable, ({ast}∪A1, ainv) is individually
γ-safe.

Proof. Since Da is γ-reachable, it follows from Proposition 36, that ast must necessarily be γ-
unbounded. In particular, this yields Pre+

ast
γ

= ∅. Therefore, Pre+
ast
∗γ

= Pre+

ainv
γ
\ Eff+ast

γ
cannot have
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ast aend

Eff+: q 

A = (A1, A2)

γ(T) = {q, q',q''}

ainv

Pre+: q', q'' 
Da

a*
st

Pre+: q',q'' 

Eff+: q 

a'st a'end

Eff+: q' 

a'inv

Pre+: q, q'' 
Da'

a*'
st

Pre+: q,q'' 

Eff+: q' 

A1= {ast, a'st}

Eff+: q, q' 

Pre+: q, q',q'' 
A2= {ainv, a'inv}

s0 s2s1 s3

Figure 6: The sequence A is not individually γ-safe. See Example 10.

any intersection with Effast
γ
. This says that ast

∗ cannot be γ-balanced. Since it also cannot be γ-
unreachable (since Da is γ-reachable), it follows from Corollary 21 that ast

∗ must be γ-bounded.
This proves (i).

Suppose now that the sequence ({ast} ∪ A1, ainv) is executable and let q ∈ Eff+A1
γ
. By (i), it

follows that q ∈ Effast
γ
∪ Pre−ast

∗γ
. Note that q cannot belong to either Eff−ast

γ
or Pre−ast

γ
, since ast and

the actions in A1 must be non-interfering. On the other hand, q cannot belong to Pre−
ainv
γ

, otherwise

the sequence would not be executable. Therefore the only possibility is that q ∈ Eff+ast
γ
. As a result

we have that Eff+A1
γ
⊆ Eff+ast

γ
. Consider now Ã1 the action set obtained from A1 by eliminating

all positive effects belonging to γ(T ). We have that {ast} ∪ A1 = {ast} ∪ Ã1. Consider now
the sequence (Ã1, ast, ainv) and note that Ã1 is γ-irrelevant, and (ast, ainv) is individually γ-safe
because of (iv) of Proposition 44. Therefore, by Proposition 26, (Ã1, ast, ainv) is also individually
γ-safe, and thus also ({ast} ∪ A1, ainv).

No similar results hold for the end parts of durative actions as next example shows.

Example 11. Consider a template T and an instance γ such that γ(T ) = {q, q′}. When the
durative actions Da and Da′ (Figure 7) are considered in isolation, both aend

∗ and a′end
∗ are

strongly γ-safe since they are γ-bounded. Since ast
∗ and a′st

∗ are γ-irrelevant, Da∗ and Da′∗ are
strongly γ-safe and thus (by Proposition 44) Da and Da′ are individually γ-safe. Moreover, Da
and Da′ are both γ-reachable. However, if Da and Da′ happen simultaneously, giving rise to the
sequence A = (A1 = {ainv, a′inv}, A2 = {aend, a′end}), A is not individually γ-safe. If we put s0 = ∅

with w(γ, s0) = 0, we have that s1 = ξ(s0, A1) = ∅ and s2 = ξ(s1, A2) = {q, q′} with w(γ, s2) = 2,
which violates the definition of individual γ-safety.

6. Conditions for the invariance of a template

Any plan π where all actions are strongly safe and all durative actions are safe and take
place in isolation, i.e. with no other actions happening in between them, yields a safe happen-
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ast aend

Eff+: q 

A = (A1, A2)

γ(T) = {q, q'}

ainv

Pre-: q, q' 
Da

a'st a'end

Eff+: q' 

a'inv

Pre-: q, q' 
Da'

A2= {aend, a'end}

Eff+: q, q' 

A1= {ainv, a'inv}

s1s0 s2

a*
end

Pre-: q,q' 

Eff+: q 

a*'
end

Pre-: q,q' 

Eff+: q' 

Pre-: q, q' 

Figure 7: The sequence A is not individually γ-safe. See Example 11.

ing sequence Aπ, as a consequence of Corollary 27. The difficulty, in general, is that durative
actions can in principle start or end together and be intertwined with other instantaneous or du-
rative actions. Safety of durative actions must therefore be accompanied by suitable hypotheses
guaranteeing that dangerous intertwinements or simultaneous happenings cannot take place in
executable plans. In this way, we can work out sufficient conditions for the invariance of a
template, which will be useful in analysing concrete examples.

In this section, we present two results that give sufficient conditions for the invariance of a
template. The first deals with the particular case when all instantaneous actions are strongly safe
and all durative actions Da are such that Da∗ is strongly safe. The second result considers a more
general case when there are durative actions Da for which Da∗ is only weakly safe.

Considering a template T and an instance γ, we denote by GAd(wk, γ) the collection of du-
rative actions that are not strongly γ-safe and with GAst(wk, γ) and GAend(wk, γ) the collection
of their start and end fragments, respectively. The following property prevents the simultaneous
end of durative actions that could yield unsafe phenomena.

Definition 50 (Relevant right isolated actions). For a templateT , the set of durative actionsGAd

is said to be relevant right isolated if, for every instance γ and for every Da1,Da2 ∈ GAd(wk, γ),
one of the following conditions is satisfied:

(i) |Eff+a1end
γ
∪ Eff+a2end

γ
| ≤ 1;

(ii) at least one of the two pairs {a1end, a2end}, {a1inv, a2inv} is either mutex or non executable;

(iii) the sequence ({a1inv, a2inv}, {a1end, a2end}) is γ-unreachable.

Theorem 51. Consider a template T and suppose that the set of instantaneous actions GAi and
that of durative actions GAd satisfy the following properties:

(i) every a ∈ GAi is strongly safe;
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(ii) for every instance γ and every Da ∈ GAd(wk, γ), Da∗ is γ-reachable and strongly γ-safe;

(iii) GAd is relevant right isolated.

Then, T is invariant.

Proof. Consider an executable simple plan π with happening sequence Aπ = (At0 , . . . , Atk̄ ) and
any instance γ. We prove that Aπ is individually γ-safe.

We split happenings as follows: Ati = Ast
ti ∪ As

ti ∪ Aend
ti where

• Ast
ti is either empty or consists of the start fragments in GAd(wk, γ);

• Aend
ti is either empty or consists of the ending fragments in GAd(wk, γ);

• As
ti = At \ (Ast

ti ∪ Aend
ti ) consists of strongly γ-safe actions (either instantaneous or possibly

the starting and ending of durative actions in GAd \ GAd(wk, γ)).

Note that if Ast
ti , ∅, it either consists of all strongly γ-safe actions and is thus strongly γ-

safe, or there exists a durative action Da ∈ GAd(wk, γ) such that ast is not strongly safe and
ast ∈ Ast

ti . Considering the second case, note that Ati+1 simply consists of {ainv} possibly together
with other over all fragments of durative actions. The executability of (Ati , Ati+1 ) yields, by (ii) of
Proposition 32, the executability of (Ati \ Ast

ti , A
st
ti , a

inv, Ati+1 \ {a
inv}) and thus also of (Ast

ti , a
inv). By

hypothesis, Da is γ-reachable and ast
∗ is strongly γ-safe, so we can therefore apply Proposition

49 and conclude that (Ast
ti , a

inv) is individually γ-safe. Using (iii) of Proposition 26, we obtain
that (Ast

ti , Ati+1 ) is individually γ-safe. Therefore, if Ast
ti , ∅, (Ast

ti , Ati+1 ) is individually γ-safe.
Similarly, if Aend

ti , ∅, it either consists of all strongly γ-safe actions and is thus strongly γ-
safe, or there exists a durative action Da ∈ GAd(wk, γ) such that aend is not strongly γ-safe and
aend ∈ Aend

ti . Suppose that there exists another durative action Da′ ∈ GAd(wk, γ) such that a′end ∈

Aend
ti and {aend, a′end} is γ-heavy. The two pairs {ainv, a′inv}, {aend, a′end} are necessarily composed

of non-interfering actions and each of them is executable. Since GAd is right relevant isolated,
this implies that the sequence ({ainv, a′inv}, {aend, a′end}) is γ-unreachable. Since Ati−1 only consists
of actions with no effects, it then follows from Proposition 32 that the sequence (Ati−1 , A

end
ti )

is also γ-unreachable and thus individually γ-safe. The other possibility is that Eff+Aend
tiγ

= Eff+aend
γ

.

Consider in this case Ãend
ti to be the action set obtained from Aend

ti \{a
end} by eliminating all positive

effects belonging to γ(T ). We have that Aend
ti = {aend}∪ Ãend

ti . Note now that (ainv, ) is individually
γ-safe by (v) of Proposition 44. Considering that Ati−1 \ {a

inv} only contains preconditions and
Ãend

ti is strongly γ-safe, applying, in order, items (iii), (i) and (ii) of Proposition 26, we obtain that
(Ati−1 , a

end), (Ati−1 , a
end, Ãend

ti ), and finally (Ati−1 , A
end
ti ) are individually γ-safe.

Note that, for each happening time ti, there are four possibilities:

• Ast
ti = ∅, Aend

ti = ∅: in this case Ati = As
ti is strongly γ-safe by definition;

• Ast
ti , ∅, Aend

ti = ∅: in this case, since As
ti and (Ast

ti , Ati+1 ) are individually γ-safe, using (i)
and (ii) of Proposition 26, we obtain that (As

ti , A
st
ti , Ati+1 ) and (Ati , Ati+1 ) = (As

ti ∪Ast
ti , Ati+1 ) are

also individually γ-safe.

• Ast
ti = ∅, Aend

ti , ∅: arguing analogously to the case above we obtain that (Ati−1 , Ati ) is
individually γ-safe.
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• Ast
ti , ∅, Aend

ti , ∅: arguing analogously to the case above we obtain that (Ati−1 , Ati , Ati+1 ) is
individually γ-safe.

Using Corollary 27 we obtain that Aπ is individually γ-safe.

Note that assumption (iii) in the statement of Theorem 51 excludes the simultaneous end of
durative actions; if such phenomena can be excluded a-priori, the hypothesis can be removed4.

When there are durative actions Da for which Da∗ is not strongly γ-safe, further hypotheses
are needed in order to guarantee that the template T is invariant. In this case, simultaneity can
be harmful, but also any intertwinement between such a durative action and other actions. The
following examples show the type of phenomena that can happen and that any theorem extending
Theorem 51 needs to prevent.

Example 12. Consider a template T and an instance γ such that γ(T ) = {q, q′, q′′}. Both the
durative actions Da and Da′ (Figure 8) are γ-safe. However, they can intertwine in such a way
that they give rise to a sequence that is not individually γ-safe: A = (A1 = {ast}, A2 = {a′st}, A3 =

{aend}, A4 = {a′end}). If we put s0 = {q} with w(γ, s0) = 1, we have that s4 = {q′, q′′} with
w(γ, s4) = 2.

ast aend

Eff+: q' 

γ(T) = {q, q',q''}

Da

a'st a'end

Eff+: q'' 

Da'

Pre: q

s1s0 s3

Eff-: q 

Eff-: q 

Pre+: q 

Pre+: q 

Eff+: q' 
Eff-: q Da

Da'Pre: q

Eff+: q'' 
Eff-: q 

s2 s4

q', q'' ∈  s4 

w(γ ,s4)=2

Figure 8: Action schemas Da and Da′ can intertwine in such a way that they give rise to a sequence that is not individually
γ-safe. See Example 12.

4It seems more believable to synchronise the beginning of two actions than the ends; we can imagine defining a
temporal planning language that a priori excludes simultaneous endings from having any other effect than if sequenced.
We can also imagine imposing the same restriction for beginnings. It seems that PDDL2.1 tries to do so (for both
beginnings and endings with its no-moving-targets rule), but in fact PDDL2.1 permits precise synchronisation to have a
different result (as seen in Example 10). In any case, in such scenarios, condition (iii) - which is costly to check - can be
omitted.
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The following definition describes a set of durative actions for which such phenomena cannot
take place. It consists of three requirements acting, for each instantiation γ, on a subsetGAd(γ) of
durative actions containing the potentially dangerous actions GAd(wk, γ). The first prevents the
simultaneous happening of two start fragments of such durative actions. The second requirement
states instead that between the happening of two such start fragments there must be the end of a
third durative action in GAd(γ). This fact, because of the finiteness of the plans, will lead to the
impossibility of intertwining between durative actions in the family GAd(γ). Finally, the third
requirement prevents the possibility that other γ-relevant actions might happen in the middle of
a durative action in GAd(γ).

Before stating the exact definition, we set the following notation. Given an instance γ and a
GAd(γ) subset of durative actions, we denote by GAst(γ) and GAend(γ), respectively, the set of
its start and end fragments.

Definition 52 (Relevant non intertwining actions). Given a template T , the set of durative ac-
tions GAd is said to be relevant non intertwining if, for every instance γ, we can find a subset of
durative actions GAd(γ) ⊇ GAd(wk, γ) such that the following property is satisfied. For every
Da ∈ GAd(γ) and for every γ-reachable Da-admissible sequence of actions

A = (A1, A2, . . . , An−1, An) (15)

with A1 ⊆ GAst(γ), the following conditions are satisfied:

(i) A1 = {ast};

(ii) If b ∈ A j∩GAst(γ) for 1 < j < n, then there exists b′ ∈ A j′ ∩GAend(γ) for some 1 < j′ ≤ j;

(iii) If A j ∩ (GAst(γ) ∪ GAend(γ)) = ∅ for every j = 2, . . . , n − 1, then each A j is γ-irrelevant
for j = 2, . . . , n − 1.

Considering, in this definition, subsets of durative actions possibly larger than GAd(wk, γ)
leads to a more flexible theory. An instance of this flexibility is later shown in Example 13.

The following is the main technical result of this section: it expresses a sufficient condition
for a template to be invariant under the assumptions that instantaneous and durative actions are
safe and that the relevant-non-intertwining property holds. Later on, we will look for more easy-
to-check conditions that guarantee the relevant non intertwining property.

Theorem 53. Consider a template T and suppose that the set of instantaneous actions GAi and
durative actions GAd satisfy the following properties:

(i) every a ∈ GAi is strongly safe;

(ii) for every Da ∈ GAd, Da∗ is safe;

(iii) the set GAd is relevant non intertwining.

Then, T is invariant.

Proof. Fix any executable simple plan π with happening sequence Aπ = (At0 , . . . , Atk̄ ) and any
instance γ. Assume that w(γ, Init) ≤ 1. We prove that Aπ is individually γ-safe.

Consider the set of durative actions GAd(γ) as in Definition 52. Suppose that we can prove
that if Da ∈ GAd(γ) appears in π at the time window [th, tk] (namely, ast ∈ Ath and aend ∈ Atk ),
the corresponding action sequence A = (Ath , . . . , Atk ) satisfies the following conditions:
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(a) for every i ∈ (h, k), Ati consists exclusively of γ-irrelevant actions;

(b) for every i ∈ [h, k), Ati does not contain actions in GAst(γ) except ast ∈ Ath .

Note that if (b) holds true for every Da ∈ GAd(γ), we automatically have this,

(c) for every i ∈ (h, k], Ati does not contain actions in GAend(γ) except aend ∈ Atk .

Assuming this to hold, we now proceed as in the proof of Theorem 51 and we split each happen-
ing Ati in the following way. We let Ati = Ast

ti ∪ As
ti ∪ Aend

ti where:

• Ast
ti is either empty or consists of a start fragment in GAst(γ);

• Aend
ti is either empty or consists of an ending fragment in GAend(γ);

• As
ti = At \ (Ast

ti ∪ Aend
ti ) only consists of strongly γ-safe actions.

We now consider the new plan π̃:

π̃ = {(t, a) ∈ π | a ∈ As
t } ∪ {(t − ε, a) ∈ π | a ∈ Aend

t } ∪ {(t + ε, a) ∈ π | a ∈ Ast
t }

where ε > 0 is chosen in such a way that ε < ti+1 − ti for every i = 0, . . . , k̄ − 1.

π 

tt-ε t+ε t

π~ ~

It follows from Proposition 1 on serializability that plan π̃ is also executable. We denote its
happening sequence as Aπ̃ = (Ãt0 , . . . , Ãtk̄ ). For the sake of notational simplicity, happening times
are denoted as those in π even if in general they differ and form a larger set. Note now that the
happening times in π̃ can be split into singletons ti such that Ãti only consists of strongly γ-safe
actions, and intervals [ti+1, t j] such that there exists a durative action Da ∈ GAd(γ) happening
in that interval. In this case, we have that the subsequence A = (Ãti+1 , . . . , Ãt j ) is Da-admissible.
Let A∗ = (Ãti ∪ {a

inv}, . . . , At j ∪ {a
inv}). Note that, since A is executable (since it appears in

an executable plan), A∗ is also executable by Proposition 45. Since, by assumption (ii), Da∗ is
γ-safe, it follows from Theorem 38, that A∗ is also γ-safe. Using again Proposition 45 we finally
obtain that A is individually γ-safe.

We have thus proven that each happening time ti in the new plan π̃ stays inside an individually
γ-safe sequence (possibly of length 1). By Corollary 27 this implies that Aπ̃ is individually γ-
safe. A repetitive use of statement (ii) of Proposition 26 now yields that Aπ is also individually
γ-safe.

We are thus left with proving that every durative action Da ∈ GAd(γ) in π satisfies properties
(a) and (b) stated above. Suppose this is not true and let Da be the first action to start in π (in the
time window [th, tk]) and to violate either condition (a) or (b). Note that all durative actions in
GAd(γ) happening in π and starting strictly before time th, will necessarily end at a time t ≤ th
by the way Da has been chosen. Moreover, all such durative actions will satisfy properties (a)
and (b). We can then proceed as before and consider the splitting Ati = Ast

ti ∪ As
ti ∪ Aend

ti for
every i ≤ h (note that in th there could be, in principle, more than one starting action in Ast

th ).
Consider now the auxiliary plan π̃ constructed exactly like before for t ≤ th and coinciding with
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π for t > th. As before, we denote its happening sequence as Aπ̃ = (Ãt0 , . . . , Ãtk̄ ) using the same
notation for the happening times as in π and we assume that Ãth = Ast

th (this is for simplicity of
notation considering that it would be instead Ãth+ε = Ast

th ). Note that since π is executable and
w(γ, Init) ≤ 1, the sequence Aπ is γ-reachable and consequently, because of (ii) of Proposition
32, Aπ̃ is also γ-reachable. Arguing as above, we obtain that (Ãt0 , . . . , Ãth−1 ) is individually γ-
safe. If we take any (s̃0, . . . , s̃k̄) ∈ SAπ̃

(γ), we thus have that w(γ, s̃h−1) ≤ 1. Consider now
A = (Ãth , Ãth+1 , . . . , Ãtk ) = (Ast

th , Ath+1 , . . . , Atk ) and note that, (s̃h−1, . . . , s̃k) ∈ SA(γ) so that A is
γ-reachable. It then follows from the relevant non intertwining property ((i) of Definition 52)
that Ast

th = {ast}. Suppose now that property (b) stated above is not satisfied and let l ∈ (h, k) be
the first index such that Atl ∩ GA

st(γ) , ∅. By (ii) of Definition 52, it follows that there must
exist a durative action Da′ ∈ GAd(γ) such that a′end ∈ Atl′ for some l′ ∈ (h, l]. Note that such
a durative action cannot start, in the plan π and thus also in the plan π̃, before time th for the
way Da was chosen, it cannot either start at time th by previous considerations or in the interval
(th, tl′ ) because of the way l′ has been chosen. This proves that property (b) must be satisfied.
Note that this also shows that Ati does not contain actions in GAend(γ) for any i ∈ (h, k) (as
the corresponding start fragment cannot happen either before or after time th). Finally, Ati is
γ-irrelevant for every i ∈ (h, k) because of (iii) of Definition 52. Therefore A satisfies properties
(a) and (b) contrarily to the assumptions made on Da. The proof is now complete.

Da1

bi

Da2 Da3

Figure 9: Structure of a plan π̃ as constructed in Theorem 53. Strongly safe actions are indicated in green, relevant in red
and irrelevant in grey.

The properties that the set of durative actions GAd needs to satisfy to be relevant non inter-
twining, which are expressed in Definition 52, are in general difficult to check as they require
considering sequences of actions of possibly any length. Below we give a sufficient condition
that guarantees these properties hold but only involves pairs of durative and instantaneous ac-
tions. It is computationally much simpler and suitable to be later analysed at the lifted level of
action schemas.

We start with a property for pairs of actions a, a′ that, when verified, prevents the happening
of the action a followed by a′, in any executable plan, where only irrelevant actions in a certain
family happen in between. See (5) to recall the definition of the postconditions Γ+

a and Γ−a of an
action a.

Definition 54 (M(γ)-unreachable actions). Consider a template T , an instantiation γ and a
subset M(γ) ⊆ GA of γ-irrelevant actions. A pair of actions (a, a′) is M(γ)-unreachable if any
of the following conditions are satisfied:

(i) there exists q ∈ Γ+
a ∩ Pre−a′ such that, for every a′′ ∈ M(γ), q < Eff−a′′ ;

(ii) there exists q ∈ Γ−a ∩ Pre+
a′ such that, for every a′′ ∈ M(γ), q < Eff+a′′ ;

(iii) |Pre+
aγ ∪ (Pre+

a′γ
\ Eff+aγ )| > 1.
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The first condition essentially says that the application of the action a leads to a state con-
taining a ground atom q that needs to be false in order to then apply a′ and that there is no action
in M(γ) that can make this atom false. The second condition is analogous to the first, but ex-
changes the role of true and false atoms. Finally, the third condition requires that (a, a′) be a
γ-unreachable pair, assuming that it is executable. The following result explains the name that
we have chosen for these properties.

Proposition 55. If a pair of actions (a, a′) is M(γ)-unreachable, any sequence of actions

A = ({a}, A2, . . . , An−1, {a′})

such that, for i = 2, . . . , n − 1, Ai ⊆ M(γ), is γ-unreachable.

Proof. Assume that, by contradiction, there exists a γ-reachable sequence

A = ({a}, A2, . . . , An−1, {a′})

such that A j ⊆ M(γ) for each j. Consider (s0, . . . , sn) ∈ SA(γ).
Suppose condition (i) is satisfied. We have that q ∈ s1 and, because of the assumption made,

it follows that q < Eff−A j for every j = 2, . . . , n − 1. Therefore, q ∈ sn−1. Since q ∈ Pre−a′ , this is a
contradiction.

A similar argument can be used when condition (ii) is satisfied.
Finally, assume that condition (iii) is satisfied. Note that, since A2, . . . , An−1 are γ-irrelevant,

Pre+
aγ ∪ (Pre+

a′γ
\ Eff+aγ ) ⊆ s0 and this contradicts the fact that (s0, . . . , sn) ∈ SA(γ).

The following is a stronger version of the relevant non intertwining property that is com-
pletely formulated at the level of pairs of actions, without referring to sequences. It consists of
three points that correspond to the three properties required in Definition 52. It will be convenient
to first introduce some additional notation. Given an instance γ and a GAd(γ) subset of durative
actions, we denote by GA(γ)irr and GA(γ)rel the set of actions in GA \ (GAst(γ) ∪ GAend(γ))
that are, respectively, γ-irrelevant and γ-relevant.

Definition 56 (Pairwise relevant non-overlapping actions). For a template T , the set of durative
actions GAd is said to be pairwise relevant non-overlapping if, for every instance γ, we can
find a subset of durative actions GAd(γ) ⊇ GAd(wk, γ) such that the following properties are
satisfied:

(A) for every Da1,Da2 ∈ GAd(γ), one of the following conditions holds true:

(Ai) at least one of the two pairs {a1st, a2st}, {a1inv, a2inv} is either mutex or non executable;

(Aii) the sequence ({a1st, a2st}, {a1inv, a2inv}) is γ-unreachable;

(Aiii) the pairs {a1inv, a2end}, {a1end, a2inv} are mutex and, if Da1 and Da2 are not equivalent,
the pair {a1end, a2end} is either mutex or non executable.

(B) for every Da1,Da2 ∈ GAd(γ), one of the following conditions holds true:

(Bi) {a1inv, a2st} is mutex;

(Bii) (a1st, a2st) is GA(γ)irr-unreachable;

(Biii) the pairs {a1inv, a2end}, {a1end, a2inv} are mutex and the pair {a1end, a2end} is either mutex
or non executable.
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(C) for every Da1 ∈ GAd(γ), a2 ∈ GA(γ)rel, one of the following conditions is satisfied:

(Ci) {a1inv, a2} is mutex;

(Cii) (a1st, a2) is GA(γ)irr-unreachable;

The next result expresses a sufficient condition for the set GAd to be relevant non intertwin-
ing.

Proposition 57. Consider a template T . The set GAd is relevant non intertwining if the follow-
ing conditions are satisfied:

(i) for every Da ∈ GAd, ast is strongly safe;

(ii) GAd is pairwise relevant non-overlapping

Proof. For a fixed γ, consider the set of durative actions GAd(γ) as in Definition 56. Let Da ∈
GAd(γ) and consider a γ-reachable Da-admissible sequence

A = (A1, A2, . . . , An−1, An)

such that A1 ⊆ GAst(γ). We first show that property (i) in Definition 52 holds true. Assume,
by contradiction, that Da′ , Da is such that a′st ∈ A1. We now show that Da and Da′ violate
property A in the above definition. Indeed, since A is admissible, {ast, a′st} and {ainv, a′inv} are
non-interfering and executable. We now show that ({ast, a′st}, {ainv, a′inv}) is γ-reachable. Note
first that (A1, A2) is clearly γ-reachable. By assumption (ii), Ã1 = A1 \ {ast, a′st} only con-
sists of strongly γ-safe actions. Consider Ã = (Ã1, {ast, a′st}, A2). Notice that if (s0, s1, s2) ∈
S (A1,A2)(γ), then (s0, s̃1, s1, s2) ∈ S Ã(γ) for some s̃1 such that w(γ, s̃1) ≤ 1. This implies that
B = ({ast, a′st}, A2) is also γ-reachable since (s̃1, s1, s2) ∈ S B. Considering that A2 only consists
of invariants, by (i) of Proposition 32, we have that ({ast, a′st}, {ainv, a′inv}) is γ-reachable. Finally,
note that the end fragment of the durative action Da′ can either appear in Ak for some k < n, or
appear in An, or not appear in the sequence as the durative action Da′ ends (in the plan of which
A is a subsequence) after the end of Da. In the first and the third case we have, respectively, that
{ainv, a

′end} or {aend, a
′inv} is non-interfering. In the second case, {aend, a

′end}, is either mutex or
non executable. Note that this second case can only happen when Da and Da′ are not equivalent
(they must differ in at least a fragment by the standing assumption made on simple plans). This
shows that also (Aiii) does not hold. Therefore GAst(γ) = {ast}. This proves (i) in Definition 52.

Suppose now that (ii) in Definition 52 does not hold true for A. Let j > 1 be the first
index for which (ii) is violated, namely for which we can find Da′ ∈ GAd(γ) such that a′st ∈

A j while A j′ ∩ GAend(γ) = ∅ for every 0 < j′ < j. The pair {ainv, a′st} is non-interfering
by Definition 41 of an admissible sequence. Moreover, arguing as in the previous case above
regarding the timing of the end fragments of Da and Da′, we conclude that either one of the pairs
{a1inv, a2end}, {a1end, a2inv}must be non-interfering or the pair {a1end, a2end}must be non-interfering
and executable. Since ({ast}, A2, . . . , A j−1, {a′st}) is γ-reachable, it follows from assumption B in
Definition 56 that there must exist 0 < j′ < j such that A j′ * GA(γ)irr. Let j′ be the first index
for which this happens. Since, by construction, A j′ ∩ (GAst(γ) ∪ GAend(γ)) = ∅, there must
exist b ∈ A j′∩ ∈ GA(γ)rel. Clearly, {ainv, b} is non interfering and since ({ast}, A2, . . . , A j′−1, {b})
is γ-reachable and by construction Ah ⊆ GA(γ)irr for every h = 2, . . . , j′ − 1, property (C) in
Definition 56 is violated. Therefore this proves (ii) in Definition 52.
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Suppose now that A j ∩ (GAst(γ) ∪ GAend(γ)) = ∅ for every j = 2, . . . , n − 1. If (iii) in
Definition 52 does not hold true for A, consider j > 1 to be the first index for which (iii) is
violated, namely A j is not γ-irrelevant, and let b ∈ A j be any action which is not γ-irrelevant.
Clearly, b ∈ GA(γ)rel and, arguing as above, we deduce that Da and b again violate property (C).
The proof is thus complete.

Based on the previous results, we conclude with a simple sufficient condition for the invari-
ance, which is very useful in analysing concrete cases.

Corollary 58. Consider a template T and suppose that, for every instance γ,

• every Da ∈ GAd(wk, γ) is such that Da∗ is weakly γ-safe of type (a);

• every a ∈ GA \ (GAst(wk, γ) ∪ GAend(wk, γ)) is either γ-irrelevant or γ-balanced.

Then, T is invariant.

Proof. It is clear that condition (i) and (ii) of Theorem 53 are satisfied. In order to check that
GAd is relevant non intertwining, we show that the properties (i) and (ii) of Proposition 57 are
satisfied. Fix any instance γ. Note that the assumption that Da∗ is weakly γ-safe of type (a)
implies, in particular, that a∗st and ast are irrelevant and thus strongly γ-safe. Therefore property
(i) is satisfied. We now show that, choosing GAd(γ) = GAd(wk, γ), properties (A), (B), and (C)
of the pairwise relevant non overlapping property are satisfied

Consider Da1,Da2 ∈ GAd(wk, γ). It follows from the fact that Da1
∗ and Da2

∗ are both weakly
γ-safe of type (a) (see Remark 47) that

Pre+

ai st
γ

= {qi} ⊆ Eff−ai st
γ
, i = 1, 2 (16)

If a1 st and a2 st are non-interfering, it follows that q1 , q2 and, in this case, {a1 st, a2 st} is γ-
unreachable. This proves property (A). In order to prove (B), we go back to (16) and we consider
two possible cases. If q1 = q2 we have that q1 ∈ Γ−a1 st ∩ Pre+

a2 st and, since q1 ∈ γ(T ), for sure
q1 < Eff+a′′ for any a′′ that is γ-irrelevant. This implies that condition (ii) of Definition 54 is
satisfied. If instead q1 , q2, we have that condition (iii) of Definition 54 is instead satisfied. In
any case this says that the pair (a1 st, a2 st) is GA(wk, γ)irr–unreachable. This proves (B). Finally
(C) can be proven exactly like (B).

Our results have a broader application than the case in Corollary 58 as shown in the following
example.

Example 13. Consider a domain with two durative actions Da1 and Da2 (shown in Figure 10)
and a template T with just an instance γ such that γ(T ) = {q, q′}. Da1 is strongly γ-safe, while
Da2 is weakly γ-safe of type (a). Note that Corollary 58 cannot be applied since a1end is γ-
bounded. Indeed, the template is not invariant: Figure 10 shows a triple intertwinement of two
copies of Da1 and Da2 that leads to a sequence that is not individually γ-safe. This sequence can
certainly be thought of as the happening sequence of an executable simple plan. Consequently,
T is not invariant.

If we modify the durative action Da1 adding an over all condition Prea1inv = {q}, the intertwin-
ing proposed would no longer be an admissible sequence. Even if Corollary 58 can still not be
applied, we now show that, with this modification, the set GAd = {Da1,Da2} is pairwise relevant
non overlapping. To show this, we fix GAd(γ) = {Da1,Da2} in Definition 56. Conditions (A) and
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(B) must be checked for any ordered pair of durative actions. In our case, there are four possibil-
ities: two identical copies of Da1 or of Da2, the pair Da1,Da2 or the pair Da2,Da1. Note that if
we pick two copies of Da1, conditions (Aiii) and (Biii) hold true because of the over all condition.
If we pick two copies of Da2, (Ai) holds true. Moreover, considering that GA(γ)irr = ∅, it fol-
lows that the pair (a2st, a2st) is GA(γ)irr-unreachable (condition (ii) in Definition 54 is satisfied).
Therefore two copies of Da2 satisfy condition (Bii). Finally, if we consider the pair Da1,Da2 or
Da2,Da1, we have that Pre+

a1st,a2st = {q, q′} so that {a1st, a2st} is γ-unreachable and thus (Aii) is
satisfied. Using again condition (ii) in Definition 54 we can check that both pairs (a1st, a2st) and
(a2st, a1st) are GA(γ)irr-unreachable, so that (Bii) holds true. Finally, note that condition (C) is
empty in our case since GA(γ)rel = ∅. Thanks to Proposition 57 and Theorem 53, we conclude
that T is invariant.
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γ(T) = {q, q'}

a1
inv

Pre+: q 
Da1

Eff-: q' 

Pre+: q' 
Da2

s0 s2s1 s3

Eff-: q 

Eff+: q 

a2
st a2

enda2
inv

a1
st

Pre+: q 
a'1

st

Pre+: q 

a1
end

Eff+: q' 
Eff-: q 

a2
st

Pre+: q' 

Eff-: q' 

s4

a'1
end

Eff+: q' 
Eff-: q 

s5

a2
end

Eff+: q 

s6

q, q' ∈  s6 

w(γ ,s6)=2

Figure 10: A triple intertwinement of two copies of the action schemas Da1 and Da2 leads to a sequence that is not
individually γ-safe. See Example 13.

7. Safety of Action Schemas for a Template

In Section 6, we presented results that guaranteed the invariance of a template: Theorems 51
and 53 and Corollary 58. To be applied, we need to check that all instantaneous and durative
actions satisfy a safety condition as well as other extra properties, which prevent potentially
dangerous simultaneous happenings or intertwinements among actions. Since we aim to find
invariants off-line quickly and efficiently, our algorithm does not work at the level of actions.
Instead, it reasons at the lifted level and uses the structure of the action schemas, i.e. their
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conditions and effects, to decide whether the ground instantiations of these schemas are safe
or not. Our main goal in this section is to obtain lifted versions of Theorems 51 and 53 and
Corollary 58.

In this section and in the following sections, we make an important assumption about the
groundings of the action schemas. Precisely, for any action schema α, instantaneous or durative,
we always assume that the grounding functions we consider gr : Vα → O are injective. This
restriction plays a crucial role in the formulations of our results and, on the other hand, does
not essentially entail any loss of generality, if we allow a suitable modification of the domain’s
action schemas. First, we observe that, for many domains, injectivity follows automatically from
type restrictions and explicit constraints (i.e. given two variables x1 and x2 of an action α, the
preconditions of α contain the requirement x1 , x2). If there are variables that can be bound to
the same value, we can proceed as follows. Given a subset of variables W ⊆ V , we define the
action schema αW by substituting any variable w ∈ W with an amalgamated symbol [W] in all
the formulas of α. For example, if we have an action schema move(rbt, loc1, loc2), we create
an additional schema moveSame(rbt, loc). The set of free variables of the new action schema
αW is thus VαW = (Vα \ W) ∪ {[W]}. Note how an injective grounding for αW corresponds to a
grounding gr of α such that gr(w1) = gr(w2) for every w1,w2 ∈ W while injectivity is otherwise
maintained, namely, gr(v1) , gr(v2) if {v1, v2} * W. Adding all action schemas αW , as W varies
among all possible subsets of Vα, is equivalent to considering all possible grounding functions
for the original action schema α. This procedure potentially leads to an exponential increase (in
the cardinality |Vα|) of the number of action schemas. However, in practical applications, the
possibility of non-injectivity is typically limited to a few variables, and so the procedure leads to
a controlled growth of the number of schemas and, consequently, of the computation complexity.

Following assumption (2) concerning singleton actions and sets of actions, we assume that
any action schema satisfies the condition:

Pre+
α ∩ Pre−α = ∅ (17)

Note that conditions (17) together with the injectivity constraint for groundings automatically
imply that any grounded action a = gr(α) satisfies the condition (2).

In general, we call liftable a property P of ground actions if, given an action schema α, if one
instantiation a∗ = gr∗(α) satisfies P, then all instantiations a = gr(α) satisfy P. In this case, we
say that the action schema α satisfies property P.

The results presented in this and the next sections achieve two main goals. On the one hand,
they show that the properties of safety introduced for instantaneous and durative actions in Sec-
tions 4 and 5 are liftable as well as the non intertwining properties, even if in a weaker sense,
behind the formulation of Theorems 51 and 53. On the other hand, they will give efficient charac-
terisations of such properties at the lifted level, which we use in our algorithmic implementation
(see Section 9).

In the remaining part of this section, we analyse action schemas and their ground instanti-
ations. We show that strong safety is liftable and work out a complete characterisation of this
property at the lifted level. The next section is devoted to lifting properties for durative actions.

7.1. Structure and properties of action schemas

We start with the following definition that introduces the key concept of matching. It couples
an action schema to a template and allows us to understand if, in the ground world, a ground
formula appearing in an action schema is or is not in γ(T ).
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Definition 59 (Matching). Consider a template T = (C,FC) and an action schema α ∈ A. A
formula l that appears in α is said to match T via the template’s component c = 〈r/k, p〉 ∈ C if:

(i) Rel[l] = 〈r/k〉; and

(ii) if l is universally quantified, VarQ[l] = {p}.

Given two formulas l and l′ in α, we say that they are T -coupled (and we write l ∼T l′) if:

(a) l and l′ individually match T via the components c and c′; and

(b) if (c, i) ∼FC (c′, j), Var[l, i] = Var[l′, j].

We now fix a template T and an action schema α and study the properties of the relation ∼T
on the literals of α that match T , introduced above. First, we have the following simple result.

Proposition 60. For a template T = (C,FC) and an action schema α, ∼T is an equivalence
relation.

Proof. Reflexivity and symmetry are obvious from the definition. Regarding transitivity, assume
that l1, l2, l3 are three formulas in α matching T through the components c1, c2, c3 respectively,
such that l1 ∼T l2 and l2 ∼T l3. Suppose that (c1, i) ∈ Fc1 and (c3, j) ∈ Fc3 are such that
(c1, i) ∼FC (c3, j). The fact that FC is an admissible partition implies that there exists (c2, h) ∈ Fc2

such that (c1, i) ∼FC (c2, h) ∼FC (c3, j). The assumptions l1 ∼T l2 and l2 ∼T l3 yield Var[l1, i] =

Var[l2, h] = Var[l3, j]. This shows that l1 ∼T l3.

Definition 61 (T -Class). For a template T = (C,FC) and an action schema α, an equivalence
class of literals with respect to ∼T is called a T -class.

We now derive a more concrete description of the concept of matching.

Remark 62. Suppose that l is a formula in the action schema α that matches the template T via
the component c = 〈r/k, p〉. The possible structure of l is shown below:

p = k, l = r(v0, . . . , vk−1), ∀i vi ∈ Vα

p < k, l = r(v0, . . . , vk−1), ∀i vi ∈ Vα

p < k, l = (∀vp : r(v0, . . . , vk−1)), ∀i , p vi ∈ Vα

(18)

Suppose now that l1 and l2 are two formulas in the action schema α that match the template
T via c1 = 〈r1/k1, p1〉 and c2 = 〈r2/k2, p2〉, respectively. We can represent, for i = 1, 2, li =

ri(vi
0, . . . v

i
ki−1) (or li = (∀vpi : ri(vi

0, . . . v
i
ki−1)) if pi < ki). The T coupling condition l1 ∼T l2

is equivalent to requiring that for any pair of fixed variables (c1, j) ∈ Fc1 and (c2, h) ∈ Fc2 , the
following holds:

(c1, j) ∼FC (c2, h) ⇒ v1
j = v2

h (19)

We now consider a grounding function gr for α and an instance γ for T . If l is a formula in
α that matches T via the component c = 〈r/k, p〉, depending on the structure of l, as illustrated
in (18), we have that

l = r(v0, . . . , vk−1), gr(l) = {r(x0, . . . , xk−1) | xi = gr(vi)∀i}
l = (∀vp : r(v0, . . . , vk−1)), gr(l) = {r(x0, . . . , xk−1) | xp ∈ O, xi = gr(vi)∀i , p} (20)

Considering the definition of γ(T ) in (3) and the fact that the quantified case above can only ap-
pear when p < k, it follows that gr(l) is either a subset of γ(T ) or it must have empty intersection
with γ(T ). This motivates the following definition:
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Definition 63 (Coherence). gr and γ are coherent over l if gr(l) ⊆ γ(T ).

Referring to the representation (20), coherence can be equivalently expressed as

gr(v j) = γ(c, j), ∀ j , p (21)

The following result is immediate from the conditions (21):

Proposition 64. Consider a template T = (C,FC) and an action schema α. Let l be a formula
in the action schema α that matches T . Then, for every grounding function gr of α, it is possible
to find an instance γ of T such that gr and γ are coherent over l and vice versa.

The following result explains how coherence interacts with the equivalence relation ∼T .

Lemma 65. Consider a template T = (C,FC) with an instance γ and an action schema α with
a grounding gr. Assume that gr and γ are coherent over a formula l1 in α and let l2 be another
formula in α that matches T . Then, gr and γ are coherent over l2 if and only if l2 ∼T l1.

Proof. We assume that for i = 1, 2, li matches T through components ci = 〈ri/ki, pi〉. We now
represent each li as in Remark 62:

li = ri(vi
0, . . . v

i
ki−1) or li = (∀vpi : ri(vi

0, . . . v
i
ki−1))

The fact that gr and γ are coherent over l1 yields

gr(v1
j ) = γ(c1, j), ∀ j , p1 (22)

Suppose now that l2 ∼T l1 and consider any fixed variable (c2, h) of c2 for some h ∈ {0, . . . , k2 −

1} \ {p2}. From the fact that FC is an admissible partition, it follows that we can find a fixed
variable (c1, j) of c1 such that (c1, j) ∼FC (c2, h). The T coupling condition (19) implies that
v1

j = v2
h. This yields, using (22) and the fact that γ is an instance

gr(v2
h) = gr(v1

j ) = γ(c1, j) = γ(c2, h)

We have thus proven that

gr(v2
h) = γ(c2, h), ∀h , p2 (23)

On the other hand, assume now that gr and γ are coherent over l2 and pick any fixed variables
(c1, j) and (c2, h) of c1 and c2 respectively such that (c1, j) ∼FC (c2, h). Using the definition of an
instance and equations (22) and (23), we obtain that gr(v2

h) = gr(v1
j ). The standing assumption

that gr is injective yields v1
j = v2

h. This shows that the T coupling condition (19) expressed in
Remark 62 holds true. Therefore, l2 ∼T l1.

The following result immediately follows from the definition of coherence and Lemma 65.

Proposition 66. Suppose that M is a subset of formulas appearing in α. Then, gr(M) ∩ γ(T ) =

gr(M ∩ L) where L is the T -class of formulas of α on which gr and γ are coherent.

46



Proposition 66 has an important practical consequence. Once gr and γ have been fixed, only
the part of α made of formulas in the class L where gr and γ are coherent affect the part of state
dynamics concerning the set γ(T ). Precisely, if a = gr(α), it follows from the definition of aγ
(see Remark 15) that:

Pre±aγ = gr(Pre±α ∩ L), Eff±aγ = gr(Eff±α ∩ L)

Considering that, by Proposition 16, a is strongly γ-safe if and only if aγ is also strongly γ-
safe, the property of strong safety of an action schema α does not depend on the formulas in α
that do not match T . Hence, in principle, such a property should be analysed by studying the
restrictions of α to the different T -classes L of matching formulas. This intuition leads to the
following definition.

Definition 67 (Pure Action Schemas). Considering a template T , an action schema α and a T -
class L of formulas in α, we define αL to be the action schema where we only consider formulas
belonging to L. More precisely, αL is the action schema such that

Pre±αL
= Pre±α ∩ L, Eff±αL

= Eff±α ∩ L

We call αL a pure action schema.

Example 14 (Floortile domain). Consider the template T f t in Example 2 and the action schema
α =paintUpst: Pre+

α = {robotAt(r,x), clear(y)}, Eff−α = {clear(y)}.
Note that both formulas robotAt(r,x) and clear(y) in α match T f t and form two dif-

ferent T -classes because they do not satisfy condition (ii) in Definition 59: L1 = {robotAt(r,
x)} and L2 = {clear(y)}.

Consider the instance γ1 that associates tile1 to each fixed variable in the components of
T f t and grounding function gr(r)=rbt1, gr(x) = tile1 and gr(y) = tile2. In this case, gr
and γ1 are coherent on the T -class L1.

We have two pure action schemas corresponding to α: αL1 and αL2 . αL1 has the following
specification: Pre+

αL1
= {robotAt(r, x)} and αL2 : Pre+

αL2
= {clear(y)},Eff−αL2

= {clear(y)}.

7.2. Pure Action Schema Classification

We now carry on a detailed analysis of pure action schemas, showing in particular how the
check for strong safety for an action a = gr(α) can be efficiently performed at the lifted level
working with the different pure action schemas αL.

We fix an action schema α and a T -class L of its formulas. First, we introduce a concept of
weight at the level of formulas in L that allows us to distinguish between simple and universally
quantified formulas. Precisely, given l ∈ L, we define wl = 1 if l is simple, and wl = ω if l is
universally quantified, where ω = |O|. For a subset A ⊆ L, we define w(A) =

∑
l∈A wl. Note that

w(·) is simply cardinality when all formulas in L are simple. If we consider a grounding function
gr for α, then for every subset A ⊆ L, the following holds:

|gr(A)| = w(A) (24)

Similarly, if c is a component of T , we define wc equal to 1 or to ω if c, respectively, does not
have or does have a counted variable.

We also need one additional concept:
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Definition 68 (Coverage). Consider a component c ∈ T . We let Lc be the subset of formulas
in L that match T through the component c. A subset of formulas M ⊆ L is said to cover the
component c, if w(M ∩ Lc) = wc. M is said to cover T , if M covers every component c ∈ T .

Remark 69. If we consider a component c ∈ T , all ground atoms generated by c are in gr(M)
if and only if M covers c. In particular, γ(T ) = gr(M) if and only if M covers T .

We now give a classification of the pure action schemas αL, formally analogous to that intro-
duced for action sets in Definitions 17 and 19: we simply replace preconditions and effects of aγ
with those of αL and the concept of cardinality with that of weight.

Definition 70 (Classification of Pure Action Schemas). The pure action schema αL is:

• unreachable for T if w(Pre+
αL

) ≥ 2;

• heavy for T if w(Pre+
αL

) ≤ 1 and w(Eff+αL
) ≥ 2;

• irrelevant for T if w(Pre+
αL

) ≤ 1 and w(Eff+αL
) = 0;

• relevant for T if w(Pre+
αL

) ≤ 1 and w(Eff+αL
) = 1.

Definition 71 (Classification of Relevant Action Schemas). The pure relevant action schema
αL is weighty when it has a single relevant precondition: w(Pre+

αL
) = 1. A is weightless if

w(Pre+
αL

) = 0.
A weighty action schema αL is either:

• balanced for T if Pre+
αL
⊆ Eff+αL

∪ Eff−αL
;

• unbalanced for T if Pre+
αL
∩ (Eff+αL

∪ Eff−αL
) = ∅;

A weightless action schema αL is either:

• bounded for T if L covers T ;

• unbounded for T if L does not cover T .

The following result clarifies the relation with the corresponding grounded actions.

Proposition 72. Consider an action schema α, a T -class L of its formulas, a grounding function
gr and an instance γ coherent over L. Let a = gr(α). Then, αL satisfies a property expressed
in Definitions 70 and 71 if and only if a satisfies the corresponding γ-property as defined in
Definitions 17 and 19.

Proof. An immediate consequence of the fact that aγ = gr(αL), of Equation (24), and of Remark
69.

We are now ready to give the following final result concerning strong safety of general action
schemas. It shows how strong safety can be seen as a property of an action schema and can be
interpreted by analysing its pure parts.

Corollary 73. Strong safety is a liftable property. Moreover, an action schema α is strongly safe
if and only if, for every T -class of formulas L of α, αL is unreachable, irrelevant, balanced or
bounded.
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Proof. Suppose that a = gr(α) for some gr and let γ be an instance. Then, aγ = gr(αL) where L
is the T -class on which gr and γ are coherent. The result is now a straightforward consequence
of Proposition 72 and Corollary 21.

Example 15 (Floortile domain). Consider the templateT f t and the action schema α = paintUpst

in Example 14. The two pure action schemas αL1 and αL2 are both irrelevant and hence strongly
safe. Hence, α is strongly safe.

Now consider the action schema α′ =paintUpend with specification: Eff+α′ = {painted(y,
c)}. This is a pure action schema. It is unbounded and thus not strongly safe.

An immediate consequence of Corollary 23 is:

Corollary 74. Given a template T , T is invariant if for each α ∈ A, α is strongly safe.

8. Durative action schemas

Our goal now is to work out proper lifted versions of the properties of durative actions pre-
sented in Section 5, in particular those involved in the statement of our main results, Theorems
51 and 53. Some of these properties concern just one durative action (e.g. safety), while others
involve more actions (e.g. non-interfering, irrelevant-unreachable). We start analysing the first
type of properties, presenting, in particular, an explicit characterisation of safety for durative
actions at the lifted level.

We use the following notation. Take a durative action schema Dα = (αst, αinv, αend) and a
grounding function gr for Dα. We let Da = gr(Dα), where Da = (ast, ainv, aend) with ast =

gr(αst), ainv = gr(αinv), and aend = gr(αend).
Our first goal is to lift the assumptions (8) and (9) on durative actions. First define, for a

generic action schema α, the subsets of postconditions:

Γ+
α = (Pre+

α \ Eff−α) ∪ Eff+α , Γ−α = (Pre−α \ Eff+α) ∪ Eff−α

We will make the standing assumption that every durative action schema Dα = (αst, αinv, αend)
satisfies the relations

Γ+
αst ∩ Pre−

αinv = ∅, Γ−αst ∩ Pre+
αinv = ∅ (25)

Pre+
αend ∩ Pre−

αinv = ∅, Pre+
αend ∩ Pre−

α+inv = ∅ (26)

Since, we recall, grounding functions must be injective, (25) and (26) are equivalent to re-
quiring that any grounding function Da = gr(Dα) satisfies conditions (8) and (9).

Also, we define the auxiliary durative action schema Dα∗ = (αst
∗ , α

end
∗ ) where αst

∗ and αend
∗ are

the action schema such that:

Eff±
αst
∗

= Eff±αst , Pre±
αst
∗

= Pre±αst ∪ (Pre±
αinv \ Eff±αst )

Eff±
αend
∗

= Eff±
αend , Pre±

αend
∗

= Pre±
αend ∪ Pre±

αinv

Da∗ = gr(Dα∗) is the corresponding auxiliary action previously defined in Section 5.2.
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8.1. Safety of durative action schemas

We now fix a template T and start to analyse safety. We consider a durative action schema
Dα, its auxiliary action schema Dα∗ and its groundings Da = gr(Dα) and Da∗ = gr(Dα∗).
Strong safety for durative actions reduces to strong safety of its components and it is thus a
liftable property. As a consequence, we can talk about the strong safety of Dα or Dα∗: this
is equivalent to the strong safety of all its groundings, Da = gr(Dα) or, respectively, Da∗ =

gr(Dα∗). Checking such a property at the lifted level can be done by applying Corollary 73 to
the start and end fragments.

We now want to characterise simple safety of the auxiliary durative action Da∗ = gr(Dα∗) at
the lifted level. First we consider executability.

Proposition 75. Executability of auxiliary durative actions is a lifted property. Precisely, Dα∗
is executable if and only if

Γ+
αst
∗
∩ Pre−

αend
∗

= ∅ = Γ−αst
∗
∩ Pre+

αend
∗

(27)

Proof. An immediate consequence of Proposition 30.

Assume now that Dα∗ is executable. Fix a grounding gr and let Da∗ = gr(Dα∗). Consider
an instance γ and let L be the T -class of formulas in Dα on which gr and γ are coherent. Let
DαL = (αst

L , α
inv
L , αend

L ) and Dα∗L = (αst
∗L, α

end
∗L ). Note that Da∗γ = gr(Dα∗L). Therefore, since

simple γ-safety of Da∗ only depends on Da∗γ (since executability has already been assumed),
we expect that such a property can be formulated in terms of the pure auxiliary durative action
schema Dα∗L. To this aim, we now give, for such durative action schemas, the same classification
introduced for durative actions in Definition 48. First, we need a further concept:

Definition 76 (Reachable action schemas). Dα∗L is said to be reachable if it is executable and

w(Pre+
αst
∗L
∪ (Pre+

αend
∗L
\ Eff+αst

∗L
)) ≤ 1

Proposition 77. If gr and γ are coherent over L and Da∗ = gr(Dα∗), we have that Da∗γ is
γ-reachable if and only if Dα∗L is reachable.

Proof. An immediate consequence of Propositions 31 and 66 and of equation (24).

Definition 78 (Safe durative action schemas). When Dα∗L is such that

(i) Dα∗L is reachable;

(ii) αst
∗L is strongly safe;

(iii) αend
∗L is unbounded;

(iv) Dα∗L satisfies any of the conditions below:

(a) αst
∗L irrelevant, w(Pre+

αst
∗L

) = 1, Pre+
αst
∗L
⊆ Eff−αst

∗L
;

(b) αst
∗L irrelevant, w(Pre+

αst
∗L

) = 1, Pre+
αst
∗L
* Eff−αst

∗L
, Pre+

αst
∗L
⊆ Effαend

L
;

(c) αst
∗L irrelevant, w(Pre+

αst
∗L

) = 0, Pre−
αst
∗L
∪ Eff−αst

∗L
∪ Effαend

L
covers T ;

(d) αst
∗L relevant, Eff+αst

L
⊆ Effαend

L
.
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we say that Dα∗L is weakly safe of type (x) where x ∈ {a, b, c, d}.

Corollary 79. Safety for durative auxiliary actions is a liftable property. Da∗ = gr(Dα∗) is safe
if and only if:

• Dα∗ is executable;

• For every T -class L of formulas in Dα, one of the following conditions hold:

– Dα∗L is strongly safe;
– αst

∗L is strongly safe and Dα∗L is unreachable;
– Dα∗L is weakly safe of type (x) where x ∈ {a, b, c, d}.

Proof. An immediate consequence of previous definitions and Proposition 46.

Example 16 (Floortile domain). Consider our usual template:

T f t = ({〈robotAt/2, 0〉, 〈painted/2, 1〉, 〈clear/1, 1〉}

and the action schema:

Dα = paintUp : (paintUpst, paintUpinv, paintUpend)

where the single instantaneous action schemas have the specifications shown in Table 4.

α paintUpst paintUpinv paintUpend

Pre+
α {robotAt(r, x) {robot − has(r, c) ∅

clear(y)} up(y, x)}
Eff+α ∅ ∅ {painted(y, c)}
Eff−α {clear(y)} ∅ ∅

Table 4: Durative action schema paintUp (abbreviated specification). See Example 16.

In this action schema, we have three formulas that matchT f t: robotAt(r,x), clear(y)
and painted(y,c). They form twoT -classes: L1 = {robotAt(r,x)} and L2 = {clear(y),
painted(y,c)}. Note that in this case paintUpst

Li
is equal to paintUpst

∗Li
for i = 1, 2 and

the same holds for paintUpend
Li

.
The pure action schemas paintUpst

L1
, paintUpst

L2
and paintUpend

L1
are strongly safe be-

cause they are irrelevant. The pure schema paintUpend
L2

is unbounded.
The pure durative action schema paintUpL1 is strongly safe because paintUpst

L1
and

paintUpend
L1

are strongly safe since they are irrelevant.
The pure schema paintUpL2 is weakly safe of type (a) since:

• paintUpL2 is reachable because paintUpst
L2

is reachable and paintUpend
L2

does not
contain preconditions;

• paintUpst
L2

is strongly safe since it is irrelevant;

• paintUpend
L2

is unbounded;

• w(Pre+
paintUpst

L2

) = 1 because the preconditions at start consist of clear(y);

• Pre+
paintUpst

L2

⊆ Eff−
paintUpst

L2
because the delete effects at start also contain clear(y).
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8.2. Lifting properties of multiple actions

In this section, we study how properties that involve more than one action (e.g. mutex) can
be lifted. This requires working simultaneously with different groundings and, for this reason,
additional concepts are needed.

Consider two action schemas α1 and α2 (instantaneous or durative) with sets of variables
Vα1 and Vα2 , respectively. Whenever we consider two groundings gr1 and gr2 for α1 and α2,
respectively, the pairwise properties of the two actions ai = gri(αi) (e.g. properties regarding the
sequence (a1, a2) or the set {a1, a2}) are non liftable, as in general they may depend on the specific
groundings chosen. A key aspect is the possible presence, in the two action schemas, of pairs of
variables vi ∈ V i f such that gr1(v1) = gr2(v2): this may cause the same ground atom to appear
in the two actions a1 and a2, which in principle can affect the validity of certain properties, such
as non-interference. To cope with this complexity at the lifted level, we introduce a concept of
reduced union of the two sets Vα1 and Vα2 to be used as a common set of variables for the two
schemas.

We define a matching between α1 and α2 as any subsetM ⊆ Vα1 × Vα2 such that:

• If (v1, v2), (w1, v2) ∈ M, then v1 = w1;

• If (v1, v2), (v1,w2) ∈ M, then v2 = w2.

We now define the set Vα1 tM Vα2 obtained by Vα1 ∪ Vα2 by reducing each pair of variables
v1 ∈ Vα1 and v2 ∈ Vα2 such that (v1, v2) ∈ M to a new variable, denoted as v1v2. Note that in the
case whenM = ∅, no reduction takes place and Vα1 t∅ Vα2 = Vα1 ∪ Vα2 .

For a matchingM, we have natural maps πi
M

: V i f → Vα1tMVα2 associating to each variable
vi, vi itself or the new reduced variable viv j in case (vi, v j) ∈ M. The two schemas α1 and α2

can thus be rewritten in this new alphabet by formally substituting each variable vi ∈ V i f in their
formulas with πi

M
(vi). If li is a formula of αi, we denote by πi

M
(li) the formula obtained with this

substitution. Similarly, if Ai is a set of formulas of αi, we put πi
M

(Ai) = {πi
M

(li) | li ∈ Ai}.
For the formulas of the two schemas, expressed in the common variable set Vα1 tM Vα2 ,

we can jointly apply set theoretic operators. If li is a formula of αi and Ai is a set of formulas
of αi, for i = 1, 2, we will use the notation l1 =M l2 for π1

M
(l1) = π2

M
(l2) and l1 ∈M A2 for

π1
M

(l1) ∈ π2
M

(A2). Similarly, we put A1 ∗M A2 = π1
M

(A1) ∗ π2
M

(A2) where ∗ ∈ {∪,∩, \}.
We now investigate the relation between matchings and specific groundings of the two schemas.

Definition 80 (Coherent grounding functions). Consider two action schemas α1 and α2 and a
matchingM between them. Two grounding functions gr1 and gr2 for α1 and α2, respectively, are
said to beM-adapted if given vi ∈ V i f for i = 1, 2, it holds that gr1(v1) = gr2(v2) if and only if
(v1, v2) ∈ M.

Remark 81. Note that, for two groundings gr1 and gr2, if we considerM = {(v1, v2) | gr1(v1) =

gr2(v2)} we have thatM is a matching (recall that maps gri are injective) and gr1 and gr2 are
M-adapted.

Coherent groundings can be factored through the reduced set Vα1 tM Vα2 :

Proposition 82. Consider two action schemas α1 and α2, a matching M between them, and
grounding functions gri for αi, i = 1, 2. The following conditions are equivalent:

(i) gr1 and gr2 areM-adapted;
52



(ii) there exists an injective function gr : Vα1 tM Vα2 → O such that, gri = gr ◦ πi
M

for i = 1, 2.

Suppose that gr1 and gr2 are two M-adapted groundings of α1 and α2 and let gr be the
function as in (ii) of the previous proposition. If Ai is a set of formulas of αi, for i = 1, 2, for any
set theoretic operation ∗ ∈ {∪,∩, \} it holds that:

gr1(A1) ∗ gr2(A2) = gr(π1
M

(A1)) ∗ gr(π2
M

(A2)) = gr(A1 ∗M A2) (28)

This follows from Proposition 82 and the fact that gr is injective. An iterative use of (28) shows
that any set theoretic expression on the two grounded actions gri(αi) is in bijection (through gr)
with a corresponding expression on the two action schemas αi expressed in the common reduced
set Vα1 tM Vα2 . As a consequence, any property of actions (with the standing assumption of
M-adapted groundings) that can be expressed by set theoretic operations on their formulas can
be reformulated by rewriting these formulas in the new alphabet Vα1 tM Vα2 . This is the key
observation in order to lift properties of pairs of actions. To be more concrete, we consider the
example of non-interfering actions, which will be needed in what follows.

Definition 83 (Mutex simple action schemas). We say that two action schemas α1 and α2 areM
non-interfering if for i , j

Eff+(αi) ∩M Eff−(α j) = ∅

Pre(αi) ∩M Eff(α j) = ∅

If α1 and α2 are notM non-interfering, they are calledM-mutex.

Definition 84 (Executable action schemas). We say that a set of twoM non-interfering action
schemas {α1, α2} isM-executable if for i , j

Pre+(αi) ∩M Pre−(α j) = ∅ .

Proposition 85. Consider two action schemas α1 and α2, a matching M between them and
grounding functions gr1 and gr2 for, respectively, α1 and α2, that are M-adapted. Put ai =

gri(αi) for i = 1, 2. Then,

(i) α1 and α2 areM-mutex if and only if a1 and a2 are mutex;

(ii) {α1, α2} isM-executable if and only if {a1, a2} is executable.

Proof. An immediate consequence of Definitions 88 and 84 and of equation (28).

Remark 86. Note that certain properties that depend on the matching M have a monotonic
behaviour, i.e. if they are true for a matchingM, they remain true for a larger matchingM′ ⊇ M.
This is the case, for instance, of properties that can be expressed in terms of identities between
formulas of type l1 =M l2, such as theM-mutex property.

To cope with properties related to a template and its instantiations, it is useful to introduce
a family of matchings induced by the presence of formulas in the two schemas matching in a
template. Precisely, consider now a template T = (C,FC) and two action schemas α1 and α2.
Consider T -classes Li of formulas of αi for i = 1, 2. There is a natural way to associate a
matching to L1 and L2 as follows. Pick formulas li ∈ Li for i = 1, 2 and consider components
ci ∈ C such that li matches T through ci. Let:

ML1,L2 = {(Var[l1, j],Var[l2, h]) | (c1, j) ∼FC (c2, h)} (29)
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It immediately follows from the definition of T -coupled pairs of formulas (Definition 59) that
ML1,L2 does not depend on the particular formulas li chosen, but only on the T -classes Li.

Essentially, inML1,L2 , we are rewriting variables in the formulas of L1 and L2 that correspond
to FC-equivalent variables in the template T . The next proposition shows the role played by such
a matching.

Proposition 87. Consider two groundings gr1 and gr2 for α1 and α2, respectively, which are
M-adapted. Then the following facts hold:

(i) for an instance γ for T , if Li are the T -classes of formulas of αi on which gri and γ are
coherent. Then,ML1,L2 ⊆ M;

(ii) for T -classes of formulas Li of αi, ifML1,L2 ⊆ M, there exists just one instance γ of T such
that gri and γ are coherent on Li.

Proof. Fix, for i = 1, 2, li ∈ Li. Assume that li matches T through components ci = 〈ri/ki, pi〉

and represent li as in Remark 62:

li = ri(vi
0, . . . v

i
ki−1) or li = (∀vpi : ri(vi

0, . . . v
i
ki−1))

(i): Let j , p1 and h , p2 be such that (c1, j) ∼FC (c2, h). The fact that gri and γ are coherent
yields:

gr1(v1
j ) = γ(c1, j) = γ(c2, h) = gr2(v2

h)

This implies, by Definition 80, that (v1
j , v

2
h) ∈ M. By definition (29), we thus haveML1,L2 ⊆ M.

(ii): Choose γ in such a way that gr1 and γ are coherent: γ(c1, j) = gr1(v1
j ) for every j , p1.

Now fix h , p2 and choose j , p1 such that (c1, j) ∼FC (c2, h). Then, sinceML1,L2 ⊆ M,

γ(c2, h) = γ(c1, j) = gr1(v1
j ) = gr2(v2

h)

This implies that gr2 is also coherent with γ.

We are now ready to lift the properties used in Section 6. We start with unreachability for
fragments of durative action schemas.

Definition 88 (Unreachable durative action schemas). Take two durative action schemas Dα1,
Dα2 and the corresponding T -classes of formulas L1 and L2.

1. We say that ({α1inv, α2inv}, {α1end, α2end}) is (L1, L2)-unreachable if at least one of the fol-
lowing conditions is satisfied:

(i) Pre+
α1inv ∩ML1 ,L2 Pre−

α2end , ∅;

(ii) Pre−
α1inv ∩ML1 ,L2 Pre+

α2end , ∅;

(iii) w(Pre+

α1end
∗L1
∪M Pre+

α2end
∗L2

) ≥ 2 for every matchingM ⊇ML1,L2 .

2. We say that ({α1st, α2st}, {α1inv, α2inv}) is (L1, L2)-unreachable if at least one of the following
conditions is satisfied:

(i) Γ+
α1st ∩ML1 ,L2 Pre−

α2inv , ∅;

(ii) Γ−
α1st ∩ML1 ,L2 Pre+

α2inv , ∅;
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(iii) w(Pre+

α1st
∗L1
∪M Pre+

α2st
∗L2

) ≥ 2 for every matchingM ⊇ML1,L2 .

Note that the check of property (iii) of the above definition in principle involves all possible
matchings containingML1,L2 . In Section 9.2, we propose an efficient check of this condition that
exhibits a computational complexity of polynomial order in the number of variables and formulas
of the domain.

Proposition 89. Suppose that Dα1, Dα2 are two durative action schemas and gr1, gr2 two
corresponding grounding functions. Let Dai = gr(Dαi) and consider an instance γ. Let Li be the
T -class of formulas of Dαi on which gri and γ are coherent.

• If ({α1inv, α2inv}, {α1end, α2end}) is (L1, L2)-unreachable, then ({a1st, a2st}, {a1inv, a2inv}) is γ-
unreachable.

• If ({α1st, α2st}, {α1inv, α2inv}) is (L1, L2)-unreachable, then ({a1st, a2st}, {a1inv, a2inv}) is γ -
unreachable.

Proof. We only prove the first point, the second being analogous. LetM be the matching such
that gr1 and gr2 areM-adapted. It follows from Proposition 87 thatM ⊇ ML1,L2 . Note that the
conditions (i) and (ii) expressed in Definition 88, if true forML1,L2 , are also true for the matching
M, because of Remark 86. Consequently we know that at least one of the conditions (i), (ii), or
(iii) expressed in Definition 88 holds true for suchM. It then follows from (28) that at least one
of the following conditions holds:

(ib) Pre+
a1inv ∩ Pre−a2end , ∅;

(iib) Pre−a1inv ∩ Pre+
a2end , ∅;

(iiib) |Pre+

a1inv
γ
∪ Pre+

a1end
γ
∪ Pre+

a2inv
γ
∪ Pre+

a2end
γ
| ≥ 2.

By virtue of Propositions 30 and 31 this implies that ({a1inv, a2inv}, {a1end, a2end}) is γ-unreachable.

We now give the lifted version of relevant right isolated.

Definition 90 (Relevant right isolated schemas). For a template T , the set of durative action
schemas Ad is said to be relevant right isolated if, for every Dα1,Dα2 ∈ Ad, corresponding
T -classes L1, L2 of formulas of each of them such that Dαi

Li are both not strongly safe, one of the
following conditions is satisfied (we use the notationM =ML1,L2 ):

(i) |Eff+
α1end

L1
∪M Eff+

α2end
L2
| ≤ 1;

(ii) at least one of the two pairs {α1end, α2end}, {α1inv, α2inv} is either M-mutex or non M-
executable;

(iii) ({α1inv, α2inv}, {α1end, α2end}) is (L1, L2)-unreachable.

Proposition 91. For a template T , suppose that the set of durative action schemasAd is relevant
right isolated. Then GAd is also relevant right isolated.
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Proof. Fix any instance γ and consider Da1,Da2 ∈ GAd(wk, γ). Let Dαi and gri, for i = 1, 2,
be durative schemas and groundings such that Dai = gri(Dαi). Let Li be the T -class of formulas
of each schema Dαi such that gri and γ are coherent over Li for i = 1, 2. Therefore, Dα1 and
Dα2 must satisfy one of the conditions (i) to (iii) in the Definition 90. LetM be the matching
to which gr1 and gr2 are adapted (in the sense of Remark 81). We know from Proposition 87
thatM ⊇ ML1,L2. Note now that if condition (i) holds true, it also holds true for such largerM
(Remark 86) and this yields condition (i) of Definition 50. Similarly, condition (ii) yields the
same condition with this newM (Remark 86) from which condition (ii) in Definition 90 follows
using Proposition 85. Finally, if condition (iii) holds true, then condition (iii) in Definition 90
follows by using Proposition 89. Therefore, by Definition 90 we have that the two durative action
schemas Dα1 and Dα2 must satisfy one of the conditions (i) to (iii) in the definition. From the fact
that gr1 and gr2 areM-adapted, it follows that conditions (i) of Definition 90 yields condition (i)
of Definition 50. Condition (ii) and (iii) in Definition 50 finally follow conditions (ii) and (iii) in
Definition 90 using Propositions 85 and 89.

We are now ready to propose the lifted version of our first invariant result Theorem 51 .

Corollary 92. Consider a template T and suppose that the set of instantaneous action schemas
Ai and that of durative action schemasAd satisfy the following properties:

(i) every α ∈ Ai is strongly safe;

(ii) for every Dα ∈ Ad and every T -class L such that DαL is not strongly safe, Dα∗L is reach-
able and strongly safe;

(iii) Ad is relevant right isolated.

Then, T is invariant.

In order to lift the remaining results on the invariance of a template, a key point is to lift the
fundamental Definition 56 of pairwise relevant non overlapping. To do this it will be convenient
to introduce some compact notation concerning sets of action schemas and relative classes. We
define

AdC(T ) = {(Dα, L) |Dα ∈ Ad, L T -class of Dα}
AdC(wk,T ) = {(Dα, L) ∈ AdC(T ), DαL weakly safe}

AC(T ) = {(α, L) |α ∈ A, L T -class of α}

(α, L) and (Dα, L) are called, respectively, schema-class and durative schema-class pairs.
We now propose a lifted version of the property of unreachability expressed in Definition 54.

Definition 93 (MC-unreachable schemas). Consider a template T and a subset MC ⊆ AC(T )
such that for every (α, L) ∈ MC, αL is irrelevant. Consider a pair of action schemas α1, α2 ∈ A

and relative classes L1 and L2, respectively. (α1, α2) is (MC; L1, L2)-unreachable if any of the
following conditions is satisfied:

(i) there exist l1 ∈ Γ+
α1 , l2 ∈ Pre−

α2 with l1 =ML1 ,L2 l2 such that, for every schema-class (α, L) ∈
MC and for every matching M between α1 and α for which M ⊇ ML1,L, we have that
l1 <M Eff−α;

(ii) there exist l1 ∈ Γ−
α1 , l2 ∈ Pre+

α2 with l1 =ML1 ,L2 l2 such that, for every schema-class (α, L) ∈
MC and for every matching M between α1 and α for which M ⊇ ML1,L, we have that
l1 <M Eff+α;
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(iii) w(Pre+

α1
L1
∪M (Pre+

α2
L2
\M Eff+

α1
L1

)) ≥ 2 for every matchingM ⊇ML1,L2 .

Note that the check of all these properties in principle involve all possible matchings con-
taining ML1,L2 . In Section 9.2, we propose an efficient check of this condition that exhibits a
computational complexity of polynomial order in the number of variables and formulas of the
domain.

The following result shows how the notion of unreachability in Definition 93 is the lifted
version of the one expressed in Definition 54.

Proposition 94. Consider a template T and a subset MC ⊆ AC(T ) such that for every (α, L) ∈
MC, αL is irrelevant. Consider a pair of action schemas α1, α2 ∈ A and relative groundings
gr1 and gr2. Let ai = gr(αi) and consider an instance γ. Let Li be the T -class of formulas of
αi on which gri and γ are coherent. If (α1, α2) is (MC; L1, L2)-unreachable, then (a1, a2) is M-
unreachable where M is the set of actions a so obtained. For every (α, L) ∈ MC and grounding
gr of α such that gr and γ are coherent over L, we let a = gr(α).

Proof. Let M be the matching such that the two groundings gr1 and gr2 are M-adapted. By
Proposition 87, we have that M ⊇ ML1,L2 . Suppose (i) holds and put q = gr1(l1) = gr2(l2) ∈
Γ1+

a ∩ Pre2−
a . Consider now any action a ∈ M and let α be an action schema such that a = gr(α)

for some grounding gr. Let L be the T -class of formulas of α on which gr and γ are coherent. By
construction, it follows that (α, L) ∈ MC. Consider now the matching M̃ between α1 and α such
that gr1 and gr are M̃-adapted. We have that M̃ ⊇ ML1,L. Then, by (i) we have that l1 <M̃ Eff+α ,
which implies that q < Eff−a . This shows that condition (i) of Definition 54 is satisfied. Similarly,
one can prove that condition (ii) of Definition 93 yields condition (ii) of Definition 54. Finally
the fact that (iii) of Definition 93 yields condition (iii) of Definition 54 follows from a repeated
application of relation (28).

We are now ready to lift Definition 56. Given a set of durative actions and classesAdC(T )∗ ⊆
AdC(T ), we put

AstC(T )∗ = {(αst, L) ∈ AC(T ) | (Dα, L) ∈ AdC(T )∗},
AendC(T )∗ = {(αend, L) ∈ AC(T ) | (Dα, L) ∈ AdC(T )∗}
AC(T )∗irr = {(α, L) ∈ AC(T ) \ (AstC(T )∗ ∪AendC(T )∗) |αL irrelevant},
AC(T )∗rel = {(α, L) ∈ AC(T ) \ (AstC(T )∗ ∪AendC(T )∗) |αL relevant}

Definition 95 (Pairwise relevant non-overlapping action schemas). For a template T , the set of
durative action schemas Ad is said to be pairwise relevant non-overlapping if we can find a set
of durative schema-class pairsAdC(T )∗ ⊆ AdC(T ) withAdC(T )∗ ⊇ AdC(wk,T ) such that the
following properties are satisfied:

(A) for every (Dα1, L1), (Dα2, L2) ∈ AdC(T )∗, denoted M = ML1,L2 , one of the following
conditions holds true:

(Ai) at least one of the two pairs {α1st, α2st}, {α1inv, α2inv} is either M-mutex or non M-
executable;

(Aii) ({α1st, α2st}, {α1inv, α2inv}) is (L1, L2)-unreachable.

(Aiii) the pairs {α1inv, α2end}, {α1end, α2inv} areM-mutex and the pair {α1end, α2end} is either
M-mutex or nonM-executable.
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(B) for every (Dα1, L1), (Dα2, L2) ∈ AdC(T )∗, denoted M = ML1,L2 , one of the following
conditions holds true:

(Bi) {α1inv, α2st} isM-mutex;

(Bii) (α1st, α2st) is (AC(T )∗irr, L
1, L2)-unreachable;

(Biii) the pairs {α1inv, α2end}, {α1end, α2inv} areM-mutex and the pair {α1end, α2end} is either
M-mutex or nonM-executable.

(C) for every (Dα1, L1) ∈ AdC(T )∗, (α2, L2) ∈ AC(T )∗rel, denoted M = ML1,L2 , one of the
following conditions is satisfied:

(Ci) {α1inv, α2} isM-mutex;

(Cii) (α1st, α2) is (AC(T )∗irr, L
1, L2)-unreachable;

Proposition 96. Consider a template T . If the set of durative action schemasAd is pairwise rel-
evant non-overlapping, then the corresponding set of durative actions GAd is pairwise relevant
non-overlapping.

Proof. Consider the set of of durative action schemas and classesAdC(T )∗ in Definition 95. Fix
any instance γ and define GAd(γ) as the set of durative actions Da obtained as follows: for every
(Dα, L) ∈ AdC(T )∗ consider the grounding gr of Dα such that gr and γ are coherent over L and
put Da = gr(Dα). We now show that properties (A), (B), and (C) of Definition 56 hold with
respect to this choice of GAd(γ).

To prove (A) and (B) we fix Da1,Da2 ∈ GAd(γ). Let Dαi and gri, for i = 1, 2, be durative
schemas and groundings such that Dai = gr(Dαi). Let Li be the T -class of formulas of each
schema Dαi such that gri and γ are coherent over Li for i = 1, 2. By the way GAd(γ) has been
defined above, we have that (Dαi, Li) ∈ AdC(T )∗. LetM be the matching such that gr1 and gr2

are adapted (in the sense of Remark 81). We know from Proposition 87 thatM ⊇ML1,L2.
We know that the two pairs (Dαi, Li) satisfy one of the conditions (Ai) to (Aiii). Notice now

that if (Ai) or (Aiii) is satisfied, (Ai) or (Aiii) is also satisfied with respect to the larger matching
M (Remark 86). Using Proposition 85 we then conclude that Da1,Da2 satisfy the corresponding
condition (Ai) or (Aiii) in Definition 56. Finally, If instead (Dαi, Li) satisfy (Aii), then condition
(Aii) in Definition 56 follows for Da1,Da2 by using Proposition 89. Condition (A) for the pair
Da1,Da2 is thus satisfied.

We now come to condition (B). We know that the pair (Dαi, Li) satisfy one of the conditions
(Bi) to (Biii). Arguing as in the previous point, we get that if they satisfy either (Bi) or (Biii),
then Da1,Da2 satisfy the corresponding (Bi) or (Biii) in Definition 56. Alternatively, (Bii) for
(Dαi, Li) yields (Bii) for Da1,Da2 as a consequence of Proposition 94.

We finally consider condition (C). To this aim, we fix Da1 ∈ GAd(γ) and a2 ∈ GA(γ)rel.
Consider action schema Dα1 ∈ Ad and α2 ∈ A and corresponding groundings gri, for i = 1, 2,
such that Da1 = gr1(Dα1) and a2 = gr2(α2). Let Li be the T -class of formulas of each schema
such that gri and γ are coherent over Li for i = 1, 2. By the way GAd(γ) has been defined above,
we have that (Dα1, L1) ∈ AdC(T )∗ while (α2, L2) ∈ AC(T )∗rel. We thus have that Dα1 and α2

must satisfy one of the two properties (Ci) or (Cii). Arguing as in the previous points we obtain
that these two properties imply the corresponding one (Ci) or (Cii) for Da1 and a2.

The Proof is therefore complete.
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We are now ready to give the lifted versions of our main results: Theorem 53 and Corollary
58. Proofs are straightforward consequences of our previous definitions and results.

Corollary 97. Consider a template T and suppose that the set of instantaneous action schemas
Ai and that of durative action schemasAd satisfy the following properties:

(i) every α ∈ Ai is strongly safe;

(ii) for every Dα ∈ Ad, Dαst is strongly safe and Dα∗ is safe;

(iii) Ad is pairwise relevant non-overlapping.

Then, T is invariant.

Corollary 98. Consider a template T and suppose that the set of instantaneous action schemas
Ai and that of durative action schemasAd satisfy the following properties:

(i) for every (Dα, L) ∈ AdC(wk,T ), then Dα∗L is weakly safe of type (a);

(ii) for every (α, L) ∈ AC(T ) \ (AstC(wk,T ) ∪ AendC(wk,T )), then, αL is either irrelevant or
balanced.

Then, T is invariant.

We end this section by presenting two examples from the IPCs in which we apply Corollaries
98 and 92 to demonstrate the invariance of the templates under consideration. Corollary 97 is the
most general one and can be used in more complex cases.

Example 17 (Floortile domain). Consider our usual template:

T f t = ({〈robotAt/2, 0〉, 〈painted/2, 1〉, 〈clear/1, 1〉}

The action schemas in the domains are: Ad = {changeColor,paintUp,paintDown,
up,down,right,left}. The schemas paintUp and paintDown are symmetrical and
differ only on formulas not matching T f t. They have the same T -classes L1 = {robotAt(r,
x)} and L2 = {clear(y), painted(y,c)}. As seen in Example 16, the pure schemas
paintUpst

∗L1
and paintUpend

∗L1
are irrelevant and paintUp∗L2 is weakly safe of type (a). The

same holds for paint-down∗L1 and paint-down∗L2 .
The schemas up, down, right, left are also symmetrical and differ only on for-

mulas not in the components of T f t. They have the same T -classes L3 = {robotAt(r,
x), clear(x)} and L4 = {robotAt(r,y), clear(y)}. The schemas up∗Li , down∗Li ,
right∗Li and left∗Li , with i = 3, 4, are all weakly safe of type (a).

The schema changeColor has no formula matching the template, hence its start and end
fragments are both irrelevant.

By Corollary 98, the template T f t is invariant.

Example 18 (Depot domain). Consider the domain Depot (see Appendix B) and the template:

Tdp = ({〈lifting/2, 1〉, 〈available/1, 1〉}

Invariants of this template mean that a hoist can be in two possible states: lifting a crate or
available. The action schemas in the domains are all durative:

Ad = {drive, lift, drop, load, unload}
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We indicate them as Dα1, . . . ,Dα5 respectively and, given Dαi, its variables as xi, yi, . . ..
To demonstrate that Tdp is invariant, we want to apply Corollary 92. We start with condition

(ii) sinceAi is empty.
The action Dα1 =drive has no formulas that match the template so it is strongly safe. The

other schemas have respectively T -classes Li = {lifting(xi, yi), available(xi)}. There are
only two fragments of the durative actions that are not strongly safe as they are unbounded: α3end

L3

and α4end
L4

. However, their auxiliary versions α3end
∗L3

and α4end
∗L4

are strongly safe since they are bal-
anced (when the over all condition lifting(x3, y3) is added to the end effects, it matches the
delete effect lifting(x3, y3) and balances the add effect available(x3); similar considera-
tions hold for Dα4). Reachability for α3end

∗L3
and α4end

∗L4
is a straightforward check. In consequence,

condition (ii) holds.
We now need to verify condition (iii) of Corollary 92, i.e. Ad is relevant right isolated. Under

the re-writing ML3L4 , we have that x3 = x4 and y3 = y4 and therefore Eff+
α3end

L3

∪ML3L4
Eff+

α4end
L4

=

{available(x3) = available(x4)}. Hence condition (i) of Definition 90 is satisfied.
We can conclude that Tdp is an invariant template.

Example 19 (Rovers domain). Consider the domain Rovers (see Appendix C) and the template:

Trv = ({〈full/1, 0〉, 〈empty/1, 0〉}

Invariants of this template would mean that the store of a rover can be in two possible states:
empty or full. Since rovers’ stores can only contain one object, this seems a promising template.

To verify that it is invariant, we now analyse the safety of each schema in the domain. The
schemas in the domain are all durative:

Ad = {navigate, sample soil, sample rock, drop, calibrate, take image,

communicate soil data, communicate rock data, communicate image data}

We indicate them as Dα1, . . . ,Dα9 respectively and, given Dαi, its variables as xi, yi, . . ..
The actions Dα1 and Dα5throughDα9 have no formulas that match the template so they are

irrelevant and, consequently, strongly safe. We are left with: Dα2 =sample soil, Dα3 =sample
rock and Dα4 =drop. Each of them has just one T -class Li = {empty(xi), full(xi)} for
i = 2, 3, 4. Note that Dα2

L2
and Dα3

L3
are both weakly safe of type (a). Dα4

L4
is strongly safe: α4st

L4

is irrelevant and α4end
L4

is relevant bounded.
Note that we cannot conclude invariance by using either Corollary 92 (as not all schemas

are strongly safe) or Corollary 98 (because of α4end
L4

that is relevant bounded). We now directly
show that, surprisingly, Trv is not invariant. If γ is any instance of T , we consider groundings
gri for i = 2, 4 such that gri and γ are coherent over Li and we put Dai = gri(Dαi). Now we are
essentially in the case analysed in Example 13: intertwining two copies of Da4 and one of Da2

leads to an admissible not individually γ-safe sequence.
If we modify the durative action schema Dα4 adding an over all condition Preα4inv = {full(x4)},

by arguing similarly to Example 13, we can prove that Ad is pairwise relevant non overlapping
and thus conclude, using Corollary 97, that T is now invariant.

This example shows how our invariant synthesis can be used as a debugging tool and as a
method to improve the modelling of planning domains. In this case, the addition of an over all
condition is sufficient to prevent erroneous physical phenomena as a store being full and empty
at the same time.
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9. Guess, Check and Repair Algorithm

As with related techniques (Gerevini and Schubert, 1998, 2000; Rintanen, 2000; Helmert,
2009), our algorithm for finding invariants implements a guess, check and repair approach. It
starts by generating a set of initial simple templates. For each template T , it then applies the
results stated in the previous sections to check its invariance. If T is invariant, the algorithm
outputs it. However, if the algorithm does not manage to prove the invariance of T , it discards
it. Before rejection, however, the algorithm tries to fix the template by generating a set of new
templates that are guaranteed not to fail for the same reasons as T . In turn, these new templates
need to be checked against the invariance conditions as they might fail for other reasons.

9.1. Guessing initial templates

When we create the set of initial templates, we ignore constant relations, i.e. relations whose
ground atoms have the same truth value in all the states (for example, type predicates). In fact,
they are trivially invariants and so are typically not interesting.

For each modifiable relation r with arity k, we generate k + 1 initial templates. They all have
one component and zero or one counted variable (which can be in any position from 0 to k − 1):
〈r/k, k〉 (no counted variable) and 〈r/k, p〉 with p ∈ {0, . . . , k − 1}. Since the templates have one
component, there is only one possible admissible partition FC, with C = {c}. Hence, we construct
the template T = (C,FC).

Example 20 (Floortile domain). Consider the components c1 = 〈robotAt, 2, 1〉. Let FC = {F1}

where F1 = {(c1, 0)}. An initial template is T1 = ({c1}, {F1}). Intuitively, invariants of T1 mean
that a robot can occupy only one position at any time and our algorithm validates it as an
invariant. Another initial template is built by considering the component c2 = 〈robotAt, 2, 0〉
and the partition FC = {F2} where F2 = {(c2, 1)}. We have another initial template: T2 =

({c2}, {F2}). Invariants of this template mean that a tile cannot be occupied by more than one
robot, which is not true in general, and our algorithm correctly discards it. Finally, consider
the component c3 = 〈robotAt, 2, 2〉 and the partition FC = {F3} where F3 = {(c3, 0), (c3, 1)}.
Another initial template is T3 = ({c3}, {F3}). This is also not an invariant and is rejected.

If we repeat this process with every modifiable relation r in the Floortile domain, we obtain
the full set of initial templates.

9.2. Checking conditions for invariance

We apply the results stated in the previous sections to check the invariance of a template. In
particular, we apply our most operative results: Corollaries 74 , 92 , 97, 98. All these results
work at the level of action schemas, not ground actions.

We first need to verify if all the instantaneous action schemas A in the domain, both the na-
tive ones and those obtained from the fragmentation of durative actions, respect the strong safety
conditions. We then check safety conditions that only involve durative action schemas that are
not strongly safe. Finally, we validate additional conditions that avoid the intertwinement of po-
tentially dangerous durative actions. Given the different computational complexity of our results
(see considerations below), our algorithm checks the applicability of them in the following order:
first, Corollary 74, which involves only conditions for instantaneous schemas, then Corollary 98,
which considers safety conditions for individual action schemas, and finally Corollaries 92 and
97, which need to verify conditions involving pairs of durative action schemas. To implement
this procedure, we apply the decision tree shown in Figure 11 to the set of action schemas A.
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The leaves labelled as Possibly Not Invariant arise when our sufficient results do not apply. In
this case, we cannot assert anything about the invariance of the template.

Our checks involve the analysis of all T -classes in each action schema α in the domain. Since
the T -classes form a partition of the set of formulas in the schema that match the template, the
maximum number of T -classes is equal to the number of such formulas. We can estimate this
term with the product ω · |C| where ω is the maximum number of formulas in any schema that
shares the same relation and |C| is the cardinality of the template’s component set C. We deduce
that all safety checks for individual schemas (both the instantaneous and the durative ones) have
a computational complexity of the order of M · |A| ·ω · |C|, where M is the maximum number of
formulas appearing in any schema and |A| is the total number of schemas. Consequently, this is
the computational complexity of Corollaries 74 and 98 that only involve safety checks.

The check of the right relevant isolated property of Definition 90, which is needed in Corol-
lary 92, and the check of the pairwise relevant non overlapping property of Definition 95, which
is used in Corollary 97, instead involve schema-class pairs and possibly families of matchings.
When the condition to be checked only involves a fixed matching, its computational complexity
is of the order of M2 · |A|2 ·ω2 · |C|2. This leaves out all the checks of the unreachability conditions
for pairs of schemas, namely, (iii) of Definition 90 and (Aii), (Bii), (Cii) of Definition 95 that
need to verify the conditions expressed in Definitions 88 and 93. Below, we provide some details
on how these conditions can also be efficiently checked at the algorithmic level.

• Check of Definition 88: The two instances of conditions (i) and (ii) involve a fixed match-
ing. The two instances of condition (iii) instead are quantified over the all possible match-
ings containing ML1,L2 . Consider the first case (the second one being analogous). We
first check if w(Pre+

αiend
∗Li

) ≥ 2 for i = 1 or for i = 2: if this is the case, then condition

(iii) is verified. If Pre+

αiend
∗Li

= {li} and the formulas li are such that Rel[l1] , Rel[l2] then,

again, condition (iii) is verified. If, instead, Rel[l1] = Rel[l2], we show that condition
(iii) is never satisfied. Indeed, in this case, the two formulas match the template through
the same component c = 〈r/k, p〉. We write li = r(vi

0, . . . , v
i
k−1) for i = 1, 2 and we note

that (v1
j , v

2
j ) ∈ ML1,L2 for every j , p. Therefore, if p = k (all variables are fixed in the

component), necessarily, l1 =ML1 ,L2 l2. If instead p < k, then l1 =M l2 when we consider
M = ML1,L2 ∪ {(v1

p, v
2
p)}. Finally, condition (iii) is certainly not verified if Pre+

αiend
∗Li

= ∅ for

i = 1 or i = 2. For two given schema-class pairs, this check therefore has complexity M2.

• Check of Definition 93: All three properties in this definition, in principle, involve check-
ing a condition over all possible matchings containingML1,L2 . We first consider (i). Sup-
pose that we find l1 and l2 that satisfy l1 =ML1 ,L2 l2. Now fix (α, L) ∈ MC. If for ev-
ery l ∈ Eff−α we have that Rel[l] , Rel[l1], then (i) holds. If instead there are l ∈ Eff−α
such that Rel[l] = Rel[l1] = 〈r/k〉, for each of them we proceed as follows. We write
l1 = r(v1

0, . . . , v
1
k−1) and l = r(v0, . . . , vk−1) and for each j = 0, . . . , k − 1 we consider

the two variables v1
j and v j. If there exists j such that either (v1

j ,w) ∈ ML1,L for some
w ∈ Vα \ {v j}, or (w1, v j) ∈ ML1,L for some w1 ∈ Vα1 \ {v1

j }, then for sure (v1
j , v j) <M for

any matching M ⊇ ML1,L and (i) is verified. Now consider the case in which (i) is not
verified. NowM =ML1,L ∪ {(v1

j , v j) | j = 1, . . . , k} is a matching such that l1 =M l.

Checking condition (ii) is analogous to (i). As far as condition (iii) is concerned, note
that when we need to check this property, the schemas involved will be reachable and not
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Figure 11: Decision Tree for deciding the invariance of a template T .
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heavy. For property (iii) to hold, we must have Pre+

αi
Li

= {li} for i = 1, 2. Following the

same argument as in the previous item, if Rel[l1] = Rel[l2], then (iii) is not verified. If
instead Rel[l1] , Rel[l2], we consider the set Eff+

α1
L1

. If it is empty or if Eff+
α1

L1
= {l} and

Rel[l] , Rel[l2], then (iii) is verified. Otherwise, it is not. We conclude that for two given
schema-class pairs, this check has complexity M3 · |A| ·ω · |C| ·N where N is the maximum
number of variables in any formula in the domain.

The above considerations allow us to conclude that the check of the right relevant isolated
property has complexity M2 · |A|2 ·ω2 · |C|2, while the check of the pairwise relevant non overlap-
ping property has complexity M3 · |A|3 ·ω3 · |C|3 ·N. There are also the complexities of checking
the properties of Corollaries 92 and 97, respectively.

Example 21 (Floortile domain). The variables for the computational complexity analysis are as
follows:

|A| = 14, M = 4, ω = 1, |C| = 3,N = 2

9.3. Repairing templates
In analysing an action schema α, when we reach a failure node in our decision tree, we

discard the template T under consideration since we cannot prove its invariance. This might be
because of two reasons: either T is not an invariant or our sufficient conditions are not powerful
enough to capture it. Before discarding the template, however, we try to fix it in such a way as to
obtain new templates for which it might be possible to prove invariance under our conditions. In
particular, based on the schema α, we enlarge the set of components of the template by adding
suitable formulas that appear in the preconditions and negative effects of α since they can be
useful to prove that α is weakly or strongly safe.

If the algorithm rejects T because it finds an instantaneous schema that is heavy or unbal-
anced (first step in the decision tree), no fixes are possible forT . Since α leads to a weight greater
than or equal to two for at least one instance of T , enlarging the set of components of T cannot
help in repairing the template. Similarly, if there are durative schemas that are non-executable
or unreachable, no fixes are possible since these properties cannot be changed by adding compo-
nents. However, when a failure node is reached in the presence of unbounded schemas, enlarging
the set of components might prove useful in making them weakly or strongly safe schemas. We
operate as follows: for each unbounded schema α, we try to turn it into a balanced action schema
and, when α is the end fragment of a durative action Dα, we alternatively attempt to make Dα a
weakly safe schema, as defined in Definition 78.

Take a template T = (C,FC) that has been rejected by the algorithm. Let k be the number of
fixed variables for T and let m be the number of its components. Consider an unbounded schema
α with relevant formula l. We look for another formula l′ in α with the following characteristics:

(i) Rel[l′] = 〈r′/a′〉, where a′ = k or a′ = (k + 1);

(ii) There exists a bijection β from the variables of l to the variables of l′ such that Arg[i, l] =

Arg[β(i), l′] for every i ∈ I;

(iii) l′ ∈ Pre+
α ∩ Eff−α .

If α is the end fragment of a durative action Dα, then condition (iii) can be substituted with
one of the alternative following conditions:
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(iv) l′ ∈ Pre+
αst
∗
∩ Eff−

αst
∗

(v) l′ ∈ Pre+
αst
∗
∩ Eff−

αend
∗

For each formula l′ that satisfies conditions (i), (ii) and one of conditions (iii), (iv) and (v),
we create a new component c′ = 〈r′/k′, p′〉, where p′ ∈ {0, . . . , k′}, and one new template T ′ =

(C′,F ′
C

), where C′ = C∪{c′} and F ′
C

is an admissible partition of FC′ such that for each c1, c2 ∈ C,
we have that (c1, i) ∼FC′ (c2, j) if and only if (c1, i) ∼FC (c2, j) and (c, i) ∼FC′ (c′, j) if and only if
Arg[i, l] = Arg[ j, l′] (or, equivalently, j = β(i)).

If we find a formula l′ that satisfies condition (iii), the schema α is guaranteed to be balanced
for T ′; if the formula l′ satisfies condition (iv), α is guaranteed to be weakly safe of type (a) for
T ′; finally, if the formula l′ satisfies condition (v), α is guaranteed to be weakly safe of type (b)
for T ′.

Example 22 (Floortile domain). Consider the template T2 = ({c2}, {F2}) as indicated in Example
21 and the action schema α =upend: Preα = ∅, Eff+α = {robotAt(r,y), clear(x)}. The
formula robotAt(r,y) matches T2 and forms a T -class L1 = {robotAt(r,y)}. The pure
action schema αL1 is unbounded as well as the end parts of the other schemas that indicate
movements. If we apply our decision tree to T2 and the set of actions A, we cannot prove that
T2 is an invariant since the unbounded schemas are not weakly safe. Before discarding T2, we
try to fix it. In particular, the formula clear(y) satisfies conditions (i), (ii) and (iv) above. If
we add it to T2, we obtain a new template T ′2 = ({c2, c′2}, {F

′
2}) where c′2 = 〈clear, 1, 1〉 with

Fc′2 = {(c′2, 0)} and F′2 = {(c2, 1), (c′2, 0)}. If we apply our decision tree to this new template, we
can prove that T ′2 is an invariant since Corollary 98 can be successfully applied (all schemas are
either strongly safe or weakly safe of type (a)). Intuitively, invariants of this template mean that
a tile is either clear or occupied by a robot.

10. Experimental Results

To evaluate the performance of our Temporal Invariant Synthesis, referred as TIS in what
follows, we have performed a number of experiments on the IPC benchmarks. We implemented
the TIS algorithm, reported in Section 9, in the Python language and conducted the experiments
by using a Quad Core 2.6 GHz Intel i5 processor with 4 GB memory.

Since our paper proposes a domain analysis, the core measure of success is whether this
analysis can find invariants that previous methods cannot. We carry out this evaluation in Sec-
tions 10.1 and 10.2. In particular, in Section 10.1, we focus on the number and quality of the
invariants found by TIS. In Section 10.2, we present a comparison between our TIS and the
invariant synthesis that is used within the planner TFD (Eyerich et al., 2009), both in terms of the
invariants found and of the state variables that can be synthesised based on such invariants. The
experimental results (in particular, Figure 13 and Table 6) show that TIS finds more invariants
than related techniques, which in turn results in a more compact representation using a smaller
set of state variables.

To enrich our experimental analysis, we also test the hypothesis that more compact encodings
benefit the performance of the planners that use state variables. In Section 10.3, we present
experiments that show the impact of using TIS, which results in a smaller set of state variables,
on the performance of two state-of-the-art planners that use a variable/value representation.
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10.1. Quality of the representation

In this section, we discuss the number and quality of the invariants found by TIS, and the
efficiency of our algorithm.

Figure 12 shows the invariants that our technique finds for all the IPC temporal domains
(from IPC’02 to IPC’14). Each set in Figure 12 corresponds to a set C of components, which are
separated by a comma and indicated with the relation name (arity is omitted here for brevity), the
positions of the fixed variables (not enclosed in square brackets) and the position of the counted
variable (enclosed in square brackets). For example, {at 0 [1], in 0 [1]} indicates the invariant
with the components c1 = 〈at/2, 1〉 and c2 = 〈in/2, 1〉. The admissible partitions are not shown
for brevity, however in most of the cases the only admissible partition is the trivial one.

Depots (IPC'02):
{clear  [0]}
{lifting 0 [1], available 0}
{in 0 [1], at 0 [1], lifting 1 [0]}
{in 0 [1], on 0 [1], lifting 1 [0]}
{clear 0, in 0 [1], on 1 [0], lifting 1 [0]}

DriverLog (IPC'02):
{empty 0, driving 1 [0]}
{driving 0 [1], in 0 [1], at 0 [1]}

ZenoTravel (IPC'02):
{in 0 [1], at 0 [1]}

Rover (IPC'02):
{at 0 [1]}
{channel_free  [0]}
{at_rock_sample  [0]}
{at_soil_sample  [0]}
{available  [0]}
{at_soil_sample 0, have_soil_analysis 1 [0]}
{at_rock_sample 0, have_rock_analysis 1 [0]}
{at_rock_sample  [0], at_soil_sample  [0], full  [0]}

Satellite (IPC'02):
{power_avail  [0], power_on  [0]}
{pointing 0 [1]}

Pipesworld - no tankage (IPC'04):
{normal 0, push-updating 0, pop-updating 0}
{normal  [0], push-updating  [0], pop-updating  [0]}

Pipesworld - tankage (IPC'04):
{first 1 [0]}
{occupied 0, not-occupied 0}
{normal  [0], not-occupied  [0]}
{normal 0, push-updating 0, pop-updating 0}
{normal  [0], push-updating  [0], pop-updating  [0]}
{push-updating  [0], occupied  [0], pop-updating  [0]}

UMTS (IPC'04):
{initiated 0 [1]}
{initiated 1 [0]}

Openstack (IPC'06/'08):
{waiting  [0]}
{stacks-avail  [0]}
{started 0, waiting 0}
{started  [0], waiting  [0]}
{waiting 0, started 0, shipped 0}
{waiting  [0], started  [0], shipped  [0]}

Storage (IPC'06):
{at 0 [1]}
{on 0 [1], lifting 1 [0]}
{lifting 0 [1], available 0}

TPP (IPC'06):
{at 0 [1]}

Trucks (IPC'06):
{free 1 0, in 1 2 [0]}
{in 2 1 [0], free 0 1}

Crewplanning (IPC'08):
{unused  [0]}
{currentday 0 [1]}

Elevators-strips (IPC'08):
{lift-at 0 [1]}  
{passengers 0 [1]}   
{passenger-at 0 [1], boarded 0 [1]}

Elevators-numeric (IPC'08):
{lift-at 0 [1]}
{passenger-at 0 [1], boarded 0 [1]}

Modeltrain (IPC'08):
{idle  [0]}
{switch-exit 0 [1]}
{tail-segment 0 [1]}
{head-segment 0 [1]}
{switch-entrance 0 [1]}
{next-train 0 [1], last-train-in-tail-segment 0}
{next-train 1 [0], first-train-in-head-segment 0}

Openstacks-strips (IPC'08):
{waiting  [0]}
{not-made  [0]}
{stacks-avail  [0]}
{started 0, waiting 0}
{made 0, not-made 0}
{started  [0], waiting  [0]}
{made  [0], not-made  [0]}
{waiting 0, started 0, shipped 0}
{waiting  [0], started  [0], shipped  [0]}
 
Parcprinter (IPC'08/'11):
{notprintedwith 0 1 [2]}  
{notprintedwith 0 2 [1]}  
{notprintedwith 1 2 [0]}  
{timepoint 0 [1], location 0 [1]}  
{hasimage 0 1 [2], notprintedwith 0 1 [2]}

Pegsol (IPC'08/'11):
{occupied  [0]} 
{free 0, occupied 0}  
 
Sokoban (IPC'08/'11):
{at 0 [1]} 
{clear  [0]}  
{at 1 [0], clear 0}  
 

Transport (IPC'08):
{in 0 [1], at 0 [1]}
{ready-loading  [0]}     

Woodworking (IPC'08):
{idle  [0]}
{unused  [0]}   
{unused 0, wood 0 [1]} 
{unused 0, treatment 0 [1]}
{unused 0, surface-condition 0 [1]} 

Floortile (IPC'11/'14):
{clear  [0]}
{robot-at 0 [1]}
{robot-has 0 [1]}
{clear 0, robot-at 1 [0]}
{painted 0 [1], clear 0, robot-at 1 [0]}

Matchcellar (IPC'11/'14):
{unused  [0]}
{unused 0, light 0}
{unused  [0], light  [0]}

Parking (IPC'11/'14):
{car-clear 0, behind-car 1 [0]}
{curb-clear 0, at-curb-num 1 [0]}
{behind-car 0 [1], at-curb-num 0 [1]}

TurnAndOpen (IPC'11/'14):
{closed  [0]}
{at-robby 0 [1]}
{closed 0, open 0}
{closed  [0], open  [0]}
{carry 0 2 [1], free 0 1}

MapAnalyser (IPC'14):
{starting 1 [0]}
{starting 0 [1]}
{available 0, in_place 0}
{at_jun 0 [1], starting 0 [1]}
{available  [0], in_place  [0]} 

RTAM (IPC'14):
{on_fire  [0]}
{trapped  [0]}
{uncertified  [0]}
{off_fire 0, on_fire 0}
{loaded 0 [1], at 0 [1]}
{off_fire  [0], on_fire  [0]}
{untrapped 0, trapped 0}
{certified 0, uncertified 0}
{available 0, loaded 1 [0]}
{untrapped  [0], trapped  [0]}
{certified  [0], uncertified  [0]}
{loaded 0 [1], waiting 0, uncertified 0}
{certified 0, delivered 0, uncertified 0}
{certified  [0], delivered  [0], uncertified  [0]}
{delivered 0, waiting 0, uncertified 0, loaded 0 [1]}

Airport (IPC'04):
{facing 0 [1]}
{is-pushing  [0]}
{at-segment 0 [1]}
{is-moving 0, is-pushing 0}
{is-moving  [0], is-pushing  [0]}
{airborne 0 [1], at-segment 0 [1]}
{at-segment 1 [0], not_occupied 0}
{airborne 0 [1], is-moving 0, is-pushing 0}
{is-parked 0 [1], is-moving 0, is-pushing 0}
{not_occupied  [0], is-moving  [0], is-pushing  [0]}

Figure 12: Invariants found for the temporal domains of all the IPCs. Each invariant is enclosed in braces where the
relation names indicate the components of the invariant, the numbers not enclosed in square brackets indicate the posi-
tions of the fixed variables in the list of variables of the corresponding relation and numbers enclosed in square brackets
indicate the position of the counted variables.
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For comparison purposes only, we have devised a variant of our invariant synthesis technique,
which we refer to as Simple Invariant Synthesis (SIS). SIS is the simplest possible extension
of Helmert’s original technique to temporal domains. It fragments each durative schema into
three instantaneous schemas and then applies Helmert’s original technique, i.e. it judges safe
only instantaneous schemas that in our classification are irrelevant or balanced. We use the SIS
technique to explore the impact on runtime of the sophisticated checks that we need to perform
to make sure that the durative actions that are not balanced are indeed safe.

The second and the third columns of Table 5 compare the number of invariants found by SIS
to those found by TIS for the temporal domains of the last three competitions: IPC’08, IPC’11,
and IPC’14. The fourth column reports the TIS runtime (RT) for generating the invariants. The
numbers tell us that the TIS computation time to calculate invariants is negligible and that there
is no significant delay associated with the checks required by our algorithm, in particular the
complex checks involving pairs of schemas. While these checks do not impact the computational
time, they allow us to find a more comprehensive set of invariants than a simpler technique such
as SIS.

The last column in Table 5 (# FIX) reports the number of invariants obtained by repairing
failed templates in our TIS algorithm and provides an indication of the importance of the repair
step in our algorithm.

Domains # INV SIS # INV TIS TIS RT # FIX TIS

IPC’08

CrewPlanning 0 2 0.29 0
Elevators-Num 0 2 0.02 1
Elevators-Str 0 3 0.02 1
Modeltrain 3 7 0.23 2
Openstacks-Adl 2 7 0.01 4
Openstacks-Num 4 8 0.06 6
Openstacks-Num-Adl 2 5 0.01 4
Openstacks-Str 4 9 0.09 6
Parcprinter 5 5 0.59 2
Pegsol 0 2 0.002 1
Sokoban 0 3 0.01 1
Transport 0 2 0.01 1
Woodworking 2 5 0.20 3

IPC’11

Floortile 0 5 0.05 2
Matchcellar 3 3 0.003 2
Parking 0 3 0.03 3
Storage 0 3 0.05 2
TMS 0 0 0.02 0
TurnAndOpen 2 5 0.03 2

IPC’14

Driverlog 0 2 0.03 2
Mapanalyser 3 5 0.04 4
RTAM 6 15 0.20 8
Satellite 0 2 0.01 1

Table 5: Number of invariants (# INV) obtained by using the Simple Invariant Synthesis (SIS) and the Temporal Invariant
Synthesis (TIS) against the temporal domains of the IPC’08, IPC’11 and IPC’14, TIS run time (RT) for generating
invariants and number of invariants obtained by TIS via repairing failed templates (# FIX).
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10.2. Comparison with the Temporal Fast Downward Invariant Synthesis

Currently, it is difficult to compare our technique for generating temporal invariants from
lifted domains to related techniques since they either handle non temporal domains only (Fox
and Long, 1998; Gerevini and Schubert, 2000; Rintanen, 2000, 2008; Helmert, 2009) or work
at the ground level of the representation (Rintanen, 2014, 2017). The approach that appears
most similar to ours is the invariant synthesis implemented within the Temporal Fast Downward
(TFD) planner (Eyerich et al., 2009), which we refer to as TFD-IS (simply TFD in the tables
and figures). This technique also works on lifted domains, but it refines the results obtained
at this level by using information on reachable ground atoms. In this section, we present a
comparison between our TIS and TFD-IS with respect to: (i) the invariants found by the two
approaches; and (ii) the state variables that can be synthesised based on such invariants. In
comparing invariants, we consider the temporal domains of all IPCs, while in comparing state
variables we focus on those domains in which TFD-IS and TIS output different invariants. We
start with a brief description of TFD-IS.

Our knowledge of TFD-IS is based on examination of the code5 and an analysis of the
results that the code produces, since there is no formal account of the technique. TFD-IS is
an extension of Helmert’s original synthesis (described in Section 11.2) devised to deal with
temporal and numeric domains. As with the original technique, TFD-IS employs a guess, check
and repair approach to find invariants. The algorithm analyses the temporal schemas directly,
without splitting them into their start, over all and end fragments. Only two types of relevant
durative action schemas are evaluated as safe: those that in our classification are balanced at start
and irrelevant at end and those that are weakly safe of type (a). In all the other cases, the action
schemas are labelled as unsafe and the candidate invariant is dismissed.

Figure 13 shows a few examples of the different sets of invariants found by the TFD-IS and
our TIS, taking one temporal domain from each IPC competition.

Table 6 shows the number of invariants found by the two techniques in all the domains of
the IPC competitions. In 12 out of 33 cases the TIS outperforms the TFD synthesis, and in all
the other cases the two synthesis output the same invariants. In several cases, the difference in
the number of invariants is significant (e.g. for Depots, TIS finds five invariants against zero for
TFD-IS; for Airport , TIS finds ten invariants against one for TFD-IS).

We next investigate how the different number of invariants reflects on the number of state
variables that are generated based on them. In this context, together with TIS and TFD-IS, we
also consider the case in which no invariants are used to synthesise state variables, referred to as
NIS (No Invariant Synthesis). In this case, a state variable with two truth values (true and false)
is produced for each atom in the domain. We use NIS as a baseline for our experiments. Table
7 reports the comparison for those IPC temporal domains in which TIS and TFD-IS produce
different invariants and, for brevity, shows three problems for each domain. The Table shows that,
by increasing the number of invariants found, TIS gives rise to a more compact representation
than NIS or TFD-IS. In all the domains TIS produces a significant reduction in the number of
state variables in comparison to NIS and TFD-IS. In Sokoban, for example, the reduction is
greater than one order of magnitude.

5TFD-0.4 code is available at http://gki.informatik.uni-freiburg.de/tools/tfd/index.html. We used the so-called “Safe”
version of the invariant synthesis.
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{clear  [0]}
{lifting 0 [1], available 0}
{in 0 [1], on 0 [1], lifting 1 [0]}
{in 0 [1], at 0 [1], lifting 1 [0]}
{on 1 [0], in 0 [1], clear 0, lifting 1 [0]} 

Depot (IPC'02)
TIS TFD

None

{facing 0 [1]}
{is-pushing  [0]}
{at-segment 0 [1]}
{is-moving 0, is-pushing 0}
{is-moving  [0], is-pushing  [0]}
{airborne 0 [1], at-segment 0 [1]}
{at-segment 1 [0], not_occupied 0}
{airborne 0 [1], is-moving 0, is-pushing 0}
{is-parked 0 [1], is-moving 0, is-pushing 0}
{not_occupied  [0], is-moving  [0], is-pushing  [0]}

Airport (IPC'04)
TIS TFD

{is-pushing  [0]}

{at 0 [1]}
{on 0 [1], lifting 1 [0]}
{lifting 0 [1], available 0}

Storage (IPC'06)
TIS TFD

{at 0 [1]}

{clear  [0]}
{robot-at 0 [1]}
{robot-has 0 [1]}
{clear 0, robot-at 1 [0]}
{painted 0 [1], clear 0, robot-at 1 [0]}

Floortile (IPC'11)
TIS TFD

{clear  [0]}
{robot-at 0 [1]}
{robot-has 0 [1]}

{starting 1 [0]}
{starting 0 [1]}
{available 0, in_place 0}
{at_jun 0 [1], starting 0 [1]}
{available  [0], in_place  [0]} 

Map-Analyser (IPC'14)
TIS TFD

{starting 1 [0]}
{starting 0 [1]}
{at_jun 0 [1], starting 0 [1]}

Sokoban (IPC'08)
TIS TFD

{at 0 [1]} 
{clear  [0]}  
{at 1 [0], clear 0} 

{clear  [0]}

Figure 13: Examples of the different invariants produced by TIS and TFD-IS taking one domain from each IPC compe-
tition.

Domains # INV TFD # INV TIS

IPC’02

Depots 0 5
DriverLog 2 2
ZenoTravel 1 1
Rover 5 8
Satellite 2 2

IPC’04

Airport 1 10
Pipesworld - no tankage 0 2
Pipesworld - tankage 1 6
UMTS 2 2

IPC’06

Openstack 6 6
Pathways 0 0
Storage 1 3
TPP 1 1
Trucks 2 2

Domains # INV TFD # INV TIS

IPC’08

CrewPlanning 2 2
Elevators-Num 2 2
Elevators-Str 3 3
Modeltrain 6 7
Openstacks-Num 8 8
Openstacks-Num-Adl 5 5
Openstacks-Str 9 9
Parcprinter 5 5
Pegsol 1 2
Sokoban 1 3
Transport 2 2
Woodworking 5 5

IPC’11

Floortile 3 5
Matchcellar 3 3
Parking 3 3
TMS 0 0
TurnAndOpen 5 5

IPC’14

Mapanalyser 3 5
RTAM 11 15

Table 6: Number of invariants (# INV) found by using TIS and TFD-IS on all the IPC temporal domains.
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Domains # SV
NIS TFD TIS

Depots - p1 46 46 14
Depots - p10 198 198 32
Depots - p20 758 758 67
Rover - p1 35 32 25
Rover - p10 125 105 77
Rover- p20 480 289 204
Airport - p10 218 218 172
Airport - p30 7068 7068 3828
Airport - p50 18071 18071 9145
Pipes - NoTank - p10 100 100 98
Pipes - NoTank - p30 527 527 522
Pipes - NoTank - p50 1225 1225 1216
Pipes - Tank - p10 148 122 96
Pipes - Tank - p30 647 590 525
Pipes - Tank - p50 1385 1240 1151
Storage - p10 98 86 38
Storage - p20 546 456 136
Storage - p30 1930 1630 350

Domains # SV
NIS TFD TIS

Pegsol - p10 67 67 34
Pegsol - p20 67 67 34
Pegsol - p30 67 67 34
Modeltrain - p10 589 383 191
Modeltrain - p20 588 380 188
Modeltrain - p30 1270 750 390
Sokoban - p10 490 490 72
Sokoban - p20 127 127 37
Sokoban - p30 1131 1131 75
Floortile - p1 64 40 16
Floortile - p10 126 67 26
Floortile - p19 186 97 36
MapAnalyser - p1 215 179 174
MapAnalyser - p10 752 677 670
MapAnalyser - p20 854 729 722
RTAM - p1 1279 341 311
RTAM - p10 1498 407 374
RTAM - p20 3114 677 614

Table 7: Number of state variables (# SV) that are obtained by instantiating invariants coming from : (1) No Invariant
Synthesis (NIS); (2) TFD Invariant Synthesis (TFD); and (3) Temporal Invariant Synthesis (TIS). We focus on the
temporal IPC domains in which TIS and TFD find different invariants. We consider three problems for each domain
(first, intermediate, and last instance of the benchmark).

10.3. Performance in Temporal Planners

We have performed a number of additional experiments in order to evaluate the impact of
using the state variables generated by TIS on the performance of those planners that use a vari-
able/value representation. In particular, we focus here on the performance of two planners: Tem-
poral Fast Downward (TFD) (Eyerich et al., 2009) and POPF-SV, a version of POPF (Coles et al.,
2010) that makes use of multi-valued state variables6.

10.3.1. TFD: Temporal Fast Downward
TFD is a planning system for temporal and numeric problems based on Fast Downward (FD)

(Helmert, 2006), which is limited to non temporal and non numeric domains. TFD uses a multi-
valued variable representation called “Temporal Numeric SAS+” (TN-SAS+), which is a direct
extension of the “Finite Domain Representation” (FDR) used within FD to handle tasks with
time and numeric fluents. TN-SAS+ captures all the features of PDDL - Level 3 and represents
planning tasks by using: i) a set of state variables, which are divided into logical and numeric
state variables; ii) a set of axioms, which are used to represent logical dependencies and arith-
metic sub-terms; and iii) a set of durative actions, which comprise: a) a duration variable; b)
start, persistent and end conditions; and c) start and end effects.

TFD translates PDDL2.1 tasks into TN-SAS+ tasks first and then performs a heuristic search
in the space of time-stamped states by using a context-enhanced additive heuristic (Helmert and
Geffner, 2008) extended to handle time and numeric fluents. The translation from PDDL2.1 to
TN-SAS+ works in four steps. First, the PDDL instance is normalised, i.e. types are removed
and conditions and effects are simplified. Then, an instance where all the formulas are ground

6This version of POPF has been made available to us by the authors, Andrew and Amanda Coles.
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is produced through a grounding step and the invariant synthesis (which we have previously
indicated as TFD-IS) is applied to generate invariants (the grounding and the invariant synthesis
can be performed in parallel). Starting from the invariants provided by the invariant synthesis
and the ground domain, a set of multi-valued state variables is generated. Finally, a set of actions
is obtained starting from PDDL actions, which describe how the state variables change over time.

In Figures 14 - 16, we compare TFD with two alternative versions, one in which we sub-
stitue our technique, TIS, for the original TFD-IS, and one in which we substitute the baseline
technique, NIS (No Invariant Synthesis), for TFD-IS. We focus on the IPC domains in which
TFD-IS and TIS produce different invariants (see Table 6). The search time (ST) is in seconds
and, following the conventions of the IPCs, the timeout has been set to 1800 seconds. Problems
for which a plan could not be found within the timeout by all three techniques do not appear in
the table.

In several cases, the lower number of state variables produced by TIS speeds up the TFD
planner, for example in the domains Modeltrain, Sokoban and Storage, and, for some problems,
the gain is very high, for example Storage - p12, p14, p15 and Sokoban - p03, p05, p07, p16. In
domains such as Rover , Mapanalyser and Floortile, when TFD manages to solve the problems,
it is so fast that the impact of the number of state variables is negligible. There are also a few
cases where the results are mixed, see for example Depots as well as both versions of Pipesworld
(tankage and no tankage). The reduction in the number of variables sometimes constitutes an
advantage for the planner (see for example Depots - p16, PipesworldNoTankage - p13, p20, p25,
p30, p31,p35, p37 , PipesworldTankage - p09, p29, p30), while other times it seems to be detri-
mental for the search (see Depots - p21, PipesworldNoTankage - p27, p28, p39, PipesworldTank
age - p36, p37, p39, p45, p49). It should be noted that in Depots and PipesworldNoTankage,
TFD-IS does not find any invariants so we are effectively comparing the binary encoding based
on NIS against the multi-value state variables encoding based on TIS. It is interesting to see
that in PipesworldTankage there are several instances (for example, p36, p39, p49) in which the
binary encoding performs best.

In terms of problem coverage, the two techniques perform similarly. In some cases, finding
more invariants helps in solving difficult problems, see for example PipesworldNoTankage - p25,
p35, p37 , Storage - p15, and Sokoban - p07 . However, there are also cases in which the opposite
is true, for example in PipesworldNoTankage - p39, PipesworldTankage - p36, p37, p45, p49.
Note that there are also problems in which the binary representation works best: PipesworldTank
age - p39, p49.

The intuition of the influence of the number of state variables on planning performance comes
from the observation that TFD uses graph structures for the computation of the heuristic esti-
mates whose complexity is strongly influenced by this number. Our results indicate that, while
this intuition is probably correct, there are other details in the heuristic computation that need to
be considered and the connection between the number of state variables and the graphs’ struc-
ture must be analysed in greater depth. The experiments show that TIS has the potential to speed
up search and to improve the coverage of planners, but more research is needed to understand
how a more compact representation can be exploited at its full potential across all the domains
and problems. For example, it would be interesting to analyse the performance of TFD when
different subsets of the invariants are used to generate state variables. We did not perform such
experiments as this analysis is beyond the scope of this work.
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Depot
NIS/TFD TIS

P01 0.02 0.01
P02 8.52 11.88
P13 37.16 33.89
P16 65.66 6.75
P21 203.7 439.71

Rover
NIS TFD TIS

P01 0 0 0
P02 0 0 0
P03 0 0 0
P04 0 0 0
P05 0.02 0.02 0.02
P06 0.06 0.05 0.05
P07 0.02 0.02 0.01
P08 0.05 0.04 0.04
P09 0.18 0.18 0.23
P10 0.07 0.07 0.06
P11 0.16 0.07 0.11
P12 0.08 0.08 0.08
P13 0.33 0.26 0.26
P14 0.11 0.08 0.1
P15 0.34 0.28 0.25
P16 0.43 0.55 0.14
P17 1.11 0.45 0.62
P18 4.43 3.3 2.29
P19 2.78 2.78 1.88
P20 17.66 10.96 10.83

Pipesworld (no-tankage)
NIS/TFD TIS

P01 0.01 0
P02 0.08 0.05
P03 0.03 0.02
P04 0.15 0.13
P05 0.02 0.01
P06 0.1 0.1
P07 0 0
P08 0.01 0.01
P09 0.02 0.02
P10 0.13 0.04
P11 1.37 0.78
P12 63.64 69.07
P13 1.56 0.07
P14 13.32 14.99
P15 4.14 4.03
P16 63.34 67.76
P17 1.15 1.22
P18 1.37 1.15
P19 2.7 0.29
P20 18.96 3.64
P21 0.34 0.26
P24 13.8 13.38
P25 X 42.56
P27 485.56 641.58
P28 373.22 597.43
P29 70.28 80.54
P30 44.2 4.82
P31 212.29 57.21
P35 X 367.61
P37 X 1096.59
P39 490.9 X
P41 0.53 0.5
P49 111.26 133.72
P50 413 386.19

Figure 14: Search time (ST) in seconds for the planner TFD on IPC temporal domains. Three versions of the invariant
synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original TFD synthesis; and (3) our Temporal Invariant
Synthesis (TIS). We focus on the domains in which TIS and TFD synthesis produce different invariants. The timeout
used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout do not appear in the
tables.
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Storage
NIS TFD TIS

P01 0 0 0
P02 0 0 0
P03 0 0 0
P04 0 0 0
P05 0.04 0.02 0.02
P06 0.02 0.01 0.01
P07 0.16 0.12 0.12
P08 0.38 0.67 0.29
P09 0.23 0.16 0.08
P10 0.44 0.4 0.33
P11 1.16 2.14 1.25
P12 4.27 9.57 1.27
P13 0.2 0.2 0.17
P14 41.33 38.14 19.54
P15 X X 483.37
P16 0.28 0.29 0.8

Modeltrain
NIS TFD TIS

P01 X 5.74 5.3
P15 6.26 2.16 2.07
P16 92.31 3.88 3.82
P17 X 54.38 53.85
P18 X 128.3 126.7
P19 X 92.9 91.9
P20 X 192.2 190.1
P23 X 506.5 501.4

Pipesworld (tankage)
NIS TFD TIS

P01 0.01 0.01 0
P02 2.72 1.84 0.65
P03 0.86 0.04 0.03
P04 1.27 1.06 0.16
P05 0.04 0.03 0.03
P06 0.08 0.07 0.04
P07 0.39 0.25 0.36
P08 2.46 1.37 0.98
P09 8.27 66.3 23
P10 16.14 6.02 12.44
P11 6.32 4.88 10.66
P12 429.11 302.36 399.79
P13 0.56 0.54 0.54
P14 311.67 277.62 364.56
P15 X 31.95 216.36
P18 24.28 21.73 20.73
P19 62.72 47.39 79.02
P20 X 145.16 172.26
P21 76.21 4.9 2.86
P29 1241.41 915.42 265.21
P30 516.54 162.56 91.59
P36 930.99 946.81 X
P37 X 175.62 X
P39 716.4 X X
P41 3.64 3.16 3.15
P45 567.96 288.72 X
P49 1395.87 X X

Figure 15: Search time (ST) in seconds for the planner TFD on IPC temporal domains. Three versions of the invariant
synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original TFD synthesis; and (3) our Temporal Invariant
Synthesis (TIS). We focus on the domains in which TIS and TFD synthesis produce different invariants. The timeout
used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout do not appear in the
tables.
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Pegsol
NIS/TFD TIS

P01 0.02 0.02
P02 0 0
P03 0.02 0
P04 0 0
P05 0 0
P06 0.02 0.02
P07 0 0
P08 0.04 0.04
P09 0.08 0.08
P10 0.06 0.04
P11 0.14 0.12
P12 0.08 0.06
P13 0.1 0.1
P14 0.76 0.64
P15 0.08 0.08
P16 0.1 0.1
P17 0.16 0.14
P18 0.88 0.7
P19 2.02 0.72
P20 0.02 0.02
P21 0.3 0.24
P22 0.06 0.1
P23 0.16 0.14
P24 0.06 0.06
P25 0.12 0.1
P26 0.1 0.06
P27 0.08 0.06
P28 41.3 33.02
P29 12.88 9.16

Sokoban
NIS/TFD TIS

P01 0.91 0.3
P03 246.1 13.73
P04 0.08 0.05
P05 79.74 25.83
P06 0.72 0.5
P07 X 570.99
P11 2.1 1.5
P13 0.09 0.07
P15 18.64 10.61
P16 195.49 12.59
P19 3.22 3.09
P20 6.63 6.09
P28 3.76 1.96

Floortile
NIS TFD TIS

P01 0.29 0.26 0.2
P02 2.2 4 1.56
P03 0.72 0.55 0.18
P04 2.14 0.82 0.72
P05 0.19 0.13 0.08

Mapanalyser
NIS TFD TIS

P01 0.2 0.06 0.04
P02 0.08 0.04 0.03
P03 0.24 0.05 0.04
P04 0.24 0.24 0.24
P05 2.98 0.44 0.4
P06 2.47 0.36 0.33
P07 2.02 0.3 0.28
P08 1.14 0.37 0.34
P09 2.44 0.4 0.37
P10 6.28 0.32 0.32
P11 3.85 0.34 0.4
P12 2.04 0.34 0.31
P13 2.43 0.36 0.36
P14 4.01 0.4 0.4
P15 2.14 0.39 0.37
P16 27.98 0.73 0.73
P17 0.63 0.3 0.3
P18 24.67 0.53 0.53
P19 1.37 0.42 0.41
P20 17.44 0.45 0.44

Figure 16: Search time (ST) in seconds for the planner TFD on IPC temporal domains. Three versions of the invariant
synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original TFD synthesis; and (3) our Temporal Invariant
Synthesis (TIS). We focus on the domains in which TIS and TFD synthesis produce different invariants. The timeout
used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout do not appear in the
tables.
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10.3.2. POPF-SV: Forward-Chaining Partial-Order Planner with State Variables
POPF-SV is a version of the forward-chaining temporal planner POPF (Coles et al., 2010)

that reads a variable/value representation of the domain and uses it for performing an inference
step in a pre-processing phase and for reducing the size of the states during search. In particular,
POPF-SV reads a standard PDDL task along with its corresponding TN-SAS+ translation. This
translation is the same as in TFD, so the invariant synthesis used in POPF-SV is TFD-IS, as de-
scribed in the previous section. However, unlike TFD, POPF-SV reasons with both the original
PDDL domain and the TN-SAS+ version of the domain. The multi-valued state variable repre-
sentation of the task is not used in the heuristic computation, but it is employed for two different
purposes. An inference step based on the state variables is performed to support temporal pref-
erences. This step extracts rules that are then used during search (for example, is it possible to
have action a within 10 time units of action b). The second use of the invariant analysis aims to
make the state representation more efficient. Only one value for each multi-valued state variable
needs to be stored within a state since if one is true then the others must necessarily be false.
This property results in massive savings in memory. This is particularly beneficial for POPF as
memory is generally what causes the planner to fail (rather than time).

In Figures 17 - 19, we compare POPF-SV with two alternative versions, one in which we
replace the original TFD-IS used within POPF-SV with our technique, TIS, and one in which
we replace TFD-IS with NIS, which we use as a baseline for our experiments. We focus on the
IPC domains in which TFD-IS and TIS produce different invariants (see Table 6). The search
time (ST) is in seconds and, following the conventions of the IPCs, the timeout has been set to
1800 seconds. Problems for which a plan could not be found within the timeout by all three
techniques do not appear in the table.

The tables clearly show that for POPF-SV dealing with fewer state variables is beneficial to
the algorithm across all the domains. In the domains that are more challenging for the planner,
such as Depots, PipesworldTankage, PipesworldNoTankage Sokoban, and Floortile, the gain is
significant. These results are in line with our intuition that a larger set of invariants help to
obtain more compact representations, which in turn have a positive impact on the planners’
performance. The three versions work similarly in terms of coverage.

10.4. Beyond the IPC
The generality of our approach for synthesising invariants from lifted temporal domains can-

not be fully appreciated by considering IPC domains only. This is because the durative actions
of such domains present a rather uniform structure: most of the actions are either balanced or
weakly safe of type (a). However, in domains that describe practical applications, other types of
actions are often used. For example, in data processing, web services composition, production
and software domains (Barnes et al., 2013; Ghosh and Ghosh, 2010; Liu et al., 2007; Golden,
2003), the creation of new objects from an empty set is often required. Typically, the actions that
create the new objects are bounded or weakly safe of type (c). TFD-IS fails to identify invariants
in such situations as it regards such actions as unsafe.

As an example, consider the following case.

Example 23 (DataProcessing domain). Consider the domain DataProcessing (see Appendix D)
and the template:

Tdl = ({〈at/2, 1〉})

Assuming that each file has a unique identification in the file system, an invariant of this template
is that a file can be in only one location at any point in time. The action schemas in the domains
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Pipesworld (no-tankage)
NIS/TFD TIS

P01 0.02 0.02
P02 0.02 0.02
P03 0.04 0.02
P04 0.08 0.04
P05 0.02 0.02
P06 0.1 0.1
P07 0.02 0.02
P08 0.04 0.02
P09 0.06 0.04
P10 0.06 0.05
P11 0.18 0.1
P12 0.8 0.44
P13 1.02 0.56
P14 5.84 3.14
P15 5.36 3.2
P16 14.98 7.76
P17 162.6 86.54
P19 0.3 0.28
P20 8.04 4.3
P21 0.06 0.04
P23 10.46 6.1
P24 1.36 0.82
P26 23.5 12.82
P27 1.32 0.82
P28 137.96 68.5
P30 1.2 1
P31 154.38 100.18
P33 459.04 291.1
P34 53.5 31.06
P35 68.28 36.62
P39 39.75 21.44
P40 10.7 7.06
P41 0.4 0.4

Rover
NIS TFD TIS

P01 0.02 0 0
P02 0 0 0
P03 0.2 0.2 0.2
P04 0 0 0
P05 0.02 0.02 0.02
P06 0.14 0.12 0.12
P07 0.04 0.02 0.01
P08 0.15 0.18 0.14
P09 0.12 0.1 0.09
P10 0.14 0.14 0.12
P11 0.23 0.24 0.22
P12 0.32 0.3 0.29
P13 1.16 1.2 1.12
P14 0.12 0.06 0.05
P15 1.22 1.16 1.12
P16 0.34 0.34 0.32
P17 2.48 2.46 2.4
P18 2.16 2.16 2.08
P19 58.6 58.02 57.01

Depot
NIS/TFD TIS

P01 0 0
P02 0.04 0.03
P03 6.78 4.9
P04 30.4 17.87
P05 X 134.4
P07 10.54 7.2
P10 130.6 94.16
P13 0.24 0.2
P17 0.48 0.4
P21 46.58 39.4

Figure 17: Search time (ST) in seconds for the planner POPF-SV on IPC temporal domains. Three versions of the
invariant synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original POPF-SV synthesis (i.e. TFD-IS); and
(3) our Temporal Invariant Synthesis (TIS). We focus on the domains in which TIS and TFD-IS produce different
invariants. The timeout used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout
do not appear in the tables.
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Airport
NIS TFD TIS

P01 0.06 0.02 0.02
P02 0.04 0.04 0.04
P03 1.1 1.08 1
P04 0.18 0.18 0.17
P05 0.2 0.22 0.2
P10 0.32 0.36 0.3
P11 0.27 0.28 0.26

Pipesworld (tankage)
NIS TFD TIS

P01 0.1 0.02 0
P02 0.1 0.08 0.06
P03 2.35 2.18 1.8
P04 0.42 0.4 0.32
P05 0.08 0.08 0.08
P06 0.07 0.1 0.06
P07 0.2 0.2 0.2
P08 0.22 0.26 0.22
P09 34.32 28.64 22.1
P10 8.04 6.96 5.6
P11 6.1 5.64 4.21
P13 11.62 10.88 8.52
P14 38.56 32.56 26.38
P15 52.04 51.4 40.43
P21 351.3 308.26 217.3
P26 515.82 499.62 373.28
P27 9.38 8.46 6.56
P29 128.92 127.02 101.44
P30 371.82 314.74 256.9
P31 956.26 876.84 624.76
P39 174.08 166 128.88
P41 3.36 3.34 2.86

Storage
NIS TFD TIS

P01 0 0 0
P02 0 0 0
P03 0 0 0
P04 0 0 0
P05 0.04 0.04 0.02
P06 0 0 0
P07 0.04 0.02 0.02
P08 0.02 0.02 0.02
P09 0.02 0.02 0.02
P10 0.14 0.14 0.1
P11 0.08 0.08 0.08
P12 0.06 0.06 0.06
P13 0.08 0.08 0.06
P14 5.02 5 3.44
P15 16.92 17.14 11.6
P16 41.58 43.12 27.94
P17 9.58 9.64 6.32

Figure 18: Search time (ST) in seconds for the planner POPF-SV on IPC temporal domains. Three versions of the
invariant synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original POPF-SV synthesis (i.e. TFD-IS); and
(3) our Temporal Invariant Synthesis (TIS). We focus on the domains in which TIS and TFD-IS produce different
invariants. The timeout used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout
do not appear in the tables.
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Floortile
NIS TFD TIS

P01 6.9 6.16 5.18
P02 19.84 17.64 14.28
P03 12.96 11.6 9.28
P04 19.6 17.4 13.92
P05 11.48 10.22 8.06

Sokoban
NIS/TFD TIS

P01 0.76 0.56
P03 39.28 23.62
P04 0.12 0.1
P05 39.93 18.21
P06 20.29 12.28
P07 278.74 181.14
P08 96.6 70.58
P11 0.24 0.22
P13 0.74 0.62
P15 10.64 10.38
P17 110.08 72
P19 4.66 2.98
P20 1.34 0.92
P28 0.22 0.22

Pegsol
NIS/TFD TIS

P01 0.02 0.02
P02 0 0
P03 0.02 0
P04 0 0
P05 0 0
P06 0.02 0.02
P07 0 0
P08 0.04 0.04
P09 0.08 0.08
P10 0.06 0.04
P11 0.14 0.12
P12 0.08 0.06
P13 0.1 0.1
P14 0.76 0.64
P15 0.08 0.08
P16 0.1 0.1
P17 0.16 0.14
P18 0.88 0.7
P19 2.02 0.72
P20 0.02 0.02
P21 0.3 0.24
P22 0.06 0.1
P23 0.16 0.14
P24 0.06 0.06
P25 0.12 0.1
P26 0.1 0.06
P27 0.08 0.06
P28 41.3 33.02
P29 12.88 9.16

Figure 19: Search time (ST) in seconds for the planner POPF-SV on IPC temporal domains. Three versions of the
invariant synthesis are used: (1) No Invariant Synthesis (NIS); (2) the original POPF-SV synthesis (i.e. TFD-IS); and
(3) our Temporal Invariant Synthesis (TIS). We focus on the domains in which TIS and TFD-IS produce different
invariants. The timeout used is 1800 seconds. Problems for which all the techniques do not find a plan within the timeout
do not appear in the tables.
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are all durative:

Ad = {create, remove, compress, uncompress, move}

We indicate them as Dα1, . . . ,Dα5 respectively and, given Dαi, its variables as xi, yi, . . ..
For i = 2, 5, Dαi has just one equivalence class Li = {at(xi, yi), at(xi, zi)}. Instead for i =

1, 3, 4, Dαi has two equivalence classes Li = {(∀yi :at(xi, yi)), at(xi, zi)} and L′i = {at(x′i ,wi)}.
We set AdC(Tdl)1 = {(Dαi, Li) | i = 2, 5}, AdC(Tdl)2 = {(Dαi, Li) | i = 1, 3, 4}, and AdC(Tdl)3 =

{(Dαi, L′i ) | i = 1, 3, 4}. We then note that for each (Dα, L) ∈ AdC(Tdl)1, DαL is weakly safe of
type (b), while for every (Dα, L) ∈ AdC(Tdl)2, DαL is weakly safe of type (c). Moreover, for every
(Dα, L) ∈ AdC(Tdl)3, DαL is irrelevant. In particular,AdC(wk,Tdl) = AdC(Tdl)1 ∪A

dC(Tdl)2.
We want to use Corollary 97 to prove the invariance of this template. Assumptions (i) and

(ii) are evident. We need to show property (iii), i.e. Ad is pairwise relevant non-overlapping (see
Definition 95). To this aim, we fix AdC(T )∗ = AdC(wk,T ) and we check that properties A, B,
and C hold true.

We note that if (Dαi, Li), (Dα j, L j) ∈ AdC(Tdl)1, properties (Ai) and (Bi) hold true. In-
deed, idle(xi = x j) ∈ Preαi st ∩MLi ,L j

Effα j st and idle(xi = x j) ∈ Preαi inv ∩MLi ,L j
Effα j st so that

{αi st, α j st} and {αi inv, α j st} are bothMLi,L j -mutex. Instead, if (Dαi, Li), (Dα j, L j) ∈ AdC(Tdl)2,
properties (Aiii) and (Biii) hold true. Indeed, at(xi = x j, y j) ∈ Preαi inv ∩MLi ,L j

Effα j end and
at(xi = x j, y j) ∈ Preαi end ∩MLi ,L j

Effα j end so that {αi inv, α j end} and {αi end, α j end} are MLi,L j -
mutex. We now consider (Dαi, Li) ∈ AdC(Tdl)1 and (Dα j, L j) ∈ AdC(Tdl)2. We have that
at(xi = x j, yi) ∈ Pre+

αi st ∩MLi ,L j
Pre−

α j st so that {αi st, α j st} is non MLi,L j -executable. This yields
property (Ai). We now prove property (Bii) for this pair. To this end, we note that AC(T )∗irr =

AstC(Tdl)3∪A
endC(Tdl)3 and we show that property (i) of Definition 93 holds true for (αi st, α j st).

Indeed, at(xi = x j, yi) ∈ Γ+
αi st ∩MLi ,L j

Pre−
α j st and, on the other hand, if (α, L) ∈ AC(T )∗irr,

L ∩ Effα = ∅ so that at(xi = x j, yi) <M Eff−α for every matching M ⊇ MLi,L. This tells us
that (αi st, α j st) is (AC(T )∗irr, Li, L j)-unreachable. Finally, following an analogous argument,
we can show that {α j inv, αi st} is non MLi,L j -executable so that property (Bi) holds for the pair
(Dα j, L j), (Dαi, Li). Finally, the properties (C) are trivially verified sinceAC(T )∗rel = ∅

TFD-IS does not reason about weakly safe actions of type (b) and (c) and, in consequence,
does not produce the invariant Tdl. The FD invariant synthesis would have a similar behaviour
for the corresponding sequential domain.

11. Related Work

Several approaches to invariant synthesis are available in the literature. In what follows, we
present these approaches in depth by highlighting similarities and differences with our technique.

11.1. Previous work on synthesising temporal invariants

The invariant synthesis presented in Bernardini and Smith (2011a) represents a preliminary
version of the technique described in this paper. Bernardini and Smith (2011a) lacks a rigorous
presentation of the theoretical framework behind the synthesis of invariants. In addition, the al-
gorithm does not capture all the cases in which unsafe intertwinements between durative actions
can happen, which results in the generation of unsafe invariants that could be violated under
some circumstances. For example, for the domain ZenoTravel (IPC’02), the algorithm classifies
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Tzt = ({〈fuel-level/2, 1〉}) as an invariant. However, it can be shown that Tzt is not an in-
variant because the schema refuel is weakly safe of type (b) and can give rise to dangerous
intertwinements that can invalidate the invariant conditions.

11.2. Fast Downward and Temporal Fast Downward

Helmert (2009) presents a translation from a subset of PDDL2.2 into FDR (Finite Domain
Representation), a multi-valued planning task formalism used within the planner Fast Down-
ward (Helmert, 2006). The translation only handles non-temporal and non-numeric PDDL2.2
domains, the so-called “PDDL Level 1” (equivalent to STRIPS (Fikes and Nilsson, 1971) with
the extensions known as ADL (Pednault, 1986). One of the steps of this translation is the iden-
tification of mutual exclusion invariants and it is an extension of the technique presented in
Edelkamp and Helmert (1999) developed for STRIPS.

When considering sequential domains, the invariant synthesis presented in this paper works
similarly to Helmert’s technique. In particular, both work at the lifted level, while all the other
related techniques discussed below work at the ground level. Both techniques start from simple
invariant candidates and check them against conditions that ensure invariance by analysing the
structure of the action schemas in the domain. When a candidate is rejected, they both try to
refine it to create a new stronger candidate, which is then checked from scratch.

However, in contrast with our technique, Helmert’s method considers a schema safe only
when the weight transitions from one, to zero and back to one. Potentially safe transitions from
zero to one are ignored. This simplified analysis results in the identification of a smaller set
of invariants compared to our technique. For example, Helmert’s invariant synthesis labels as
unsafe all the action schemas that add a relevant formula without deleting that formula or another
relevant one, even when the preconditions impose that the weight is zero when the action schema
is applied. In this way, Helmert’s invariant synthesis misses invariants that our technique is able
to find (see Example 23).

Chen et al. (2009) builds on Helmert’s invariant synthesis and his multi-valued domain for-
mulation to synthesise long-distance mutual exclusions (londex), which capture constraints over
actions and facts not only at the same time step but also across multiple steps. The londex has
been successfully used in SAT-based planners to improve their performance. It is worth consid-
ering how the concept of londex can be extended to temporal domains.

Within the context of Temporal Fast Downward (TFD) (Eyerich et al., 2009), a simple exten-
sion of Helmert’s invariant synthesis is used to deal with temporal and numeric domains of the
ICPs. See Section 10.2 for a description of this technique.

11.3. Rintanen’s Invariant Synthesis

An algorithm for inferring invariants in propositional STRIPS domains is proposed by Rin-
tanen (2000, 2008). It synthesises not only mutual-exclusion invariants, but also other types of
invariants. The algorithm works on a ground representation of the domain and, starting from an
inductive definition of invariants as formulae that are true in the initial state and are preserved by
the application of every action, the algorithm is based on an iterative computation of a fix-point,
which is useful for reasoning about all the invariants of a domain at the same time rather than
inferring some invariants first and then using them for inferring others.

Rintanen’s algorithm uses a guess, check and repair approach but, unlike our technique, it
starts from stronger invariant candidates and then progressively weakens them if they are not
preserved by the actions. Thus, the repair phase starts by considering a less general invariant
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instead of a more general one. For example, let us consider the schema σ = x , y → P(x, y) ∨
Q(y, z) as a potential invariant (all the invariants considered have this implicative form). One of
the weakening operation consists of identifying two variables. In this case, if z is set equal to x,
the weaker candidate σ = x , y→ P(x, y) ∨ Q(y, x) is obtained and checked.

This technique has been successfully used within both Graphplan based planners (Blum and
Furst, 1997), where it helps to identify unreachable subgoals, and SAT-based planners (Kautz
and Selman, 1999), where it can be useful to reduce the amount of search required. However,
even though its implementation is limited to invariants involving two formulas at the most, it
incurs a high performance penalty on large instances.

Rintanen (2014) extends the original algorithm presented in Rintanen (2000, 2008) in order
to handle temporal domains. As in the original algorithm, the temporal one works on ground
domains, not using a lifted representation at any stage. The format of the invariants found is
l1V(r) l2, where l1 and l2 are positive or negative ground facts, r is a floating point number, and
the formula says that either l1 is true or l2 is true over the interval [0..r] relative to the current
time point. If r = in f , the formula means that if l1 is false, then l2 will remain true forever. Since
Rintanen’s invariant synthesis exploits the initial conditions and the ground representation of the
domain, it usually finds a broader range of invariants than our technique. However, this makes
the invariant synthesis computationally costly. Reachability analysis on a ground representation
of the planning instances is computationally very expensive, so while our algorithm takes a
few seconds to run, Rintanen’s synthesis requires tens of minutes to find invariants in several
domains (see Table 1 in Rintanen (2014)). In recent work, Rintanen (2017) has proposed a hybrid
algorithm that performs the basic invariance tests with a ground method, but grounds the actions
and formulas only with respect to a smaller number of objects in order to reduce complexity.

We do not directly compare our technique against Rintanen’s algorithm in Section 10 because
the two techniques aim to find different types of invariants (our focuses on mutual exclusion in-
variants, while Rintanen’s tackles a broad range of invariant types) and they work on different
representations of the problem (lifted versus ground). However, in what follows, we give exam-
ples of the output of Rintanen’s technique for completeness.

Consider the Crewplanning domain (IPC’08 and IPC’11). For each crew member ci, Rinta-
nen’s algorithm finds ground invariants of the type:

not current day − ci − d j V(in f ) not current day − ci − dk

which means that if it is day d j for the crew member ci, it cannot be day dk at the same time.
If there are k days, this results in k2 invariants for each crew member. All these invariants
correspond to the single lifted invariant current day 0 [1] that is found by our invariant synthesis.
For the same domain, however, Rintanen’s algorithm finds additional invariants that express
temporal relations between atoms. Our technique does not aim to find this type of invariant. For
example, Rintanen’s method finds temporal invariants of the form:

done sleep − ci − dk V(255) not done meal − ci − d(k+2)

which means that, for the crew member ci, the atom done meal in day k + 1 becomes true 255
time units after the atom done sleep was true in day k. In fact, in day k, done sleep is made true
by the end effects of the action sleep. From this time point, in order to make done meal true the
day after k + 1, two actions need to be executed: post sleep, with duration 195, and have meal
with duration 60, for a total time separation of 255 time units. For the Crewplanning domain,
the run time of our algorithm is 0.29 seconds, while Rintanen’s algorithm has a runtime of 1
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minute and 23.24 seconds for hard instances. This is actually one of the best run times, since for
problems such as Parcprinter , Elevators, Sokoban, Transport-numeric and others, the algorithm
has a run time of more than 4 hours. Given these run times, it does not seem plausible to use
Rintanen’s algorithm as a pre-processing step to improve search in planning, which is one of the
most important uses of invariant synthesis algorithms.

11.4. DISCOPLAN
DISCOPLAN (DIScovering State COnstraints for PLANning) (Gerevini and Schubert, 1998)

is a technique for generating invariants from the non-temporal PDDL Level 1 tasks. DIS-
COPLAN supports conditional effects without compiling them. DISCOPLAN discovers not
only mutual exclusion invariants, but also other types of invariants: static predicates, simple
implicative, (strict) single valuedness and n-valuedness, anti-simmetry, OR and XOR invariants.

For mutual exclusion invariants, DISCOPLAN uses a guess, check and repair approach sim-
ilar to our approach: a hypothetical invariant is generated by simultaneously analysing the pre-
conditions and the effects of each action to see whether an instantiation of a literal is deleted
whenever another instantiation of the same literal is added. Then, this candidate is checked
against all the other actions and the initial conditions. If the hypothetical invariant is not found
to be valid, then all the unsafe actions are collected together and a set of possible refinements are
generated. However, whereas our technique tries to refine a candidate as soon as an unsafe action
is found, DISCOPLAN tries to address all the unsafe causes at the same time while generating
refinements. This approach leads to more informed choices on how to refine hypothetical invari-
ants and can result in the identification of more invariants. However, it is more expensive from a
computational point of view, which is why DISCOPLAN is often inefficient on big instances.

DISCOPLAN can be used not only for finding invariants, but also for inferring action-
variable domains. An action-variable domain is a set that includes all the objects that can be
used to instantiate the variables of an action. Such sets of possible tuples of variables are found
by forward propagation of ground atoms from the initial state. This technique is related to the
reachability analysis performed by Graphplan (Blum and Furst, 1997), but does not implement
mutual exclusion calculation.

DISCOPLAN is usually used in combination with SAT encodings of planning problems. In
particular, a pre-processing step is performed over the domain under consideration in order to
find invariants and variable domains, then the domain as well as the invariants and the variable
domains are translated into SAT. Finally, a SAT-based planner is used to solve the resulting
translated domain. SAT-based planners (Kautz and Selman, 1999; Huang et al., 2010) show
significant speed-up when invariants and action-variable domains are used.

11.5. Type Inference Module
TIM (Type Inference Module) (Fox and Long, 1998) uses a different approach for finding

invariants in non-temporal PDDL Level 1 domains. More precisely, TIM is a pre-preprocessing
technique for inferring object types on the basis of the actions and the initial state. Data ob-
tained from this computation is then used for inferring invariants. TIM recognises four kinds of
invariants:

1. Identity invariants (for example, considering the domain Blockworld , two objects cannot
be at the same place at the same time);

2. Unique state invariants (for example, every object must be in at most one place at any time
point);
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3. State membership invariants (for example, every object must be in at least one place at any
time point); and

4. Resource invariants (for example, in a 3-blocks world, there are 4 surfaces).

Invariants of types 1 and 2 correspond to mutual exclusion invariants. The invariants found by
TIM have been exploited to improve the performance of the STAN planner (Fox and Long, 2011).

11.6. Knowledge representation and engineering

In addition to works that address the creation of invariants directly, there are works in the
literature that highlight the importance of multi-valued state variables for debugging domain de-
scriptions and for assisting the domain designer in building correctly encoded domains (Fox and
Long, 1998; Bernardini and Smith, 2011b; Cushing et al., 2007). In particular, Cushing et al.
(2007) analyse well-studied IPC temporal and numeric domains and reveal several modelling er-
rors that affect such domains. This analysis lead the authors to suggest better ways of describing
temporal domains. They identify the direct specification of multi-valued state variables as a key
feature for doing this, and show how this can help domain experts to write correct models.

Other works in the literature use the creation of invariants and state variables as an interme-
diate step in the translation from PDDL to other languages. In particular, Huang et al. (2010)
introduce SASE, a novel SAT encoding scheme based on the SAS+ formalism (Bäckström and
Nebel, 1995). The state variables (extracted from invariants) used by SASE play a key role
in improving efficiency. Since our technique generates a broader set of invariants than related
techniques, it results in SAS+ tasks with smaller sets of state variables. We speculate that this
positively impact SAT-based planners that use an SASE encoding. Testing of this hypothesis is
future work.

12. Conclusions and Future Work

In this paper, we present a technique for automatically finding mutual exclusion invariants
in lifted temporal planning domains expressed in PDDL2.1. Our technique builds on Helmert’s
invariant synthesis (Helmert, 2009), but generalises it and extends it to temporal domains. Syn-
thesising invariants for temporal tasks is much more complex than for tasks with instantaneous
actions because actions can occur simultaneously or concurrently and interfere with each other.
For this reason, a simple generalisation of Helmert’s approach does not work in temporal set-
tings. In extending the theory to capture the temporal case, we have had to formulate invariance
conditions that take into account the full temporal structure of the actions as well as the possible
interactions between them. As a result, we have constructed a technique that is significantly more
comprehensive than related techniques. Our technique is presented here formally and proofs are
offered that support its soundness.

In contrast to the majority of related approaches, our technique works at the lifted level of the
representation, so it is very efficient. The experimental results show that its run time is negligible,
while it allows us to find a wider set of invariants, which in turn results in synthesising a smaller
number of state variables to represent a domain. The experiments also indicate that the temporal
planners that use state variables to represent the world may benefit from dealing with a smaller
number of state variables.

Our approach to finding invariants can be incorporated in any translation from PDDL2.1 to a
language based on multi-valued state variables. For example, we have used (a simplified version
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of) the temporal invariant synthesis described in this paper in our translator from PDDL2.1 to
NDDL (Bernardini and Smith, 2008b), which is the domain specification language of the EU-
ROPA2 planner (Iatauro, 2017). EUROPA2 has been the core planning technology for several
NASA space mission operations. It uses a language based on multi-valued state variables that
departs from PDDL2.1 in several ways. The use of our translator from PDDL2.1 to NDDL has
facilitated the testing of EUROPA2 against domains of the IPCs originally expressed in PDDL2.1
(Bernardini and Smith, 2007, 2008a). This originally motivated our work on temporal invariant
synthesis.

In future work, we plan to extend our experimental evaluation by incorporating our invariant
synthesis in other planners that use a multi-valued variable representation and that are not cur-
rently publicly available. This will allow us to assess more exhaustively the impact that handling
fewer state variables has on the performance of temporal planners. The experimental results
shown in this paper provide evidence that more research on this is needed.

In addition, we plan to exploit the metric information encoded in planning domains to find
a broader range of invariants. Invariants for domains with metric fluents are interesting and
challenging. We envisage that there are two kinds of situations to be considered: those in which
it can be shown that a linear combination of fluents is invariant (relevant to domains with linear
effects on variables) and those in which metric fluents interact with propositional fluents in a
more complex way. For example, one might think of a domain encoding the act of juggling in
which the number of balls in the air plus the number in the hands is a constant, but the balls in
the hand might be encoded propositionally (for example, by a literal holding left and so
on), while those in the air might be encoded as a count. Finding the invariant in this case is a
challenging problem since it crosses the propositional and metric fluent spaces.

Finally, as shown in Example 19, our technique can be a valuable tool for debugging tem-
poral planning domains. We intend to work in this direction by incorporating our technique in
validation tools such as VAL (Howey et al., 2004).
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Appendix A: PDDL2.1 Specification of the Floortile Domain

( d e f i n e ( domain f l o o r − t i l e )
( : r e q u i r e m e n t s : t y p i n g : d u r a t i v e− a c t i o n s )
( : t y p e s r o b o t t i l e c o l o r − o b j e c t )

( : p r e d i c a t e s
( r o b o t A t ? r − r o b o t ? x − t i l e )
( up ? x − t i l e ? y − t i l e )
( down ? x − t i l e ? y − t i l e )
( r i g h t ? x − t i l e ? y − t i l e )
( l e f t ? x − t i l e ? y − t i l e )
( c l e a r ? x − t i l e )
( p a i n t e d ? x − t i l e ? c − c o l o r )
( r o b o t−h a s ? r − r o b o t ? c − c o l o r )
( a v a i l a b l e C o l o r ? c − c o l o r )
( f r e e− c o l o r ? r − r o b o t ) )

( : d u r a t i v e− a c t i o n c h a n g e−c o l o r
: p a r a m e t e r s ( ? r − r o b o t ? c − c o l o r ? c2 − c o l o r )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and ( a t s t a r t ( r o b o t−h a s ? r ? c ) )

( ove r a l l ( a v a i l a b l e C o l o r ? c2 ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( r o b o t−h a s ? r ? c ) ) )

( a t end ( r o b o t−h a s ? r ? c2 ) ) ) )

( : d u r a t i v e− a c t i o n pa in tUp
: p a r a m e t e r s ( ? r − r o b o t ? y − t i l e ? x − t i l e ? c − c o l o r )
: d u r a t i o n (= ? d u r a t i o n 2 )
: c o n d i t i o n ( and ( ove r a l l ( r o b o t−h a s ? r ? c ) )

( a t s t a r t ( r o b o t A t ? r ? x ) )
( ove r a l l ( up ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( p a i n t e d ? y ? c ) ) ) )

( : d u r a t i v e− a c t i o n paint−down
: p a r a m e t e r s ( ? r − r o b o t ? y − t i l e ? x − t i l e ? c − c o l o r )
: d u r a t i o n (= ? d u r a t i o n 2 )
: c o n d i t i o n ( and ( ove r a l l ( r o b o t−h a s ? r ? c ) )

( a t s t a r t ( r o b o t A t ? r ? x ) )
( ove r a l l ( down ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( p a i n t e d ? y ? c ) ) ) )

( : d u r a t i v e− a c t i o n up
: p a r a m e t e r s ( ? r − r o b o t ? x − t i l e ? y − t i l e )
: d u r a t i o n (= ? d u r a t i o n 3 )
: c o n d i t i o n ( and ( a t s t a r t ( r o b o t A t ? r ? x ) )

( ove r a l l ( up ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and
( a t s t a r t ( not ( r o b o t A t ? r ? x ) ) )
( a t end ( r o b o t A t ? r ? y ) )
( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( c l e a r ? x ) ) ) )
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( : d u r a t i v e− a c t i o n down
: p a r a m e t e r s ( ? r − r o b o t ? x − t i l e ? y − t i l e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( r o b o t A t ? r ? x ) )

( ove r a l l ( down ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( r o b o t A t ? r ? x ) ) )
( a t end ( r o b o t A t ? r ? y ) )
( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( c l e a r ? x ) ) ) )

( : d u r a t i v e− a c t i o n r i g h t
: p a r a m e t e r s ( ? r − r o b o t ? x − t i l e ? y − t i l e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( r o b o t A t ? r ? x ) )

( ove r a l l ( r i g h t ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( r o b o t A t ? r ? x ) ) )
( a t end ( r o b o t A t ? r ? y ) )
( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( c l e a r ? x ) ) ) )

( : d u r a t i v e− a c t i o n l e f t
: p a r a m e t e r s ( ? r − r o b o t ? x − t i l e ? y − t i l e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( r o b o t A t ? r ? x ) )

( ove r a l l ( l e f t ? y ? x ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( r o b o t A t ? r ? x ) ) )
( a t end ( r o b o t A t ? r ? y ) )
( a t s t a r t ( not ( c l e a r ? y ) ) )
( a t end ( c l e a r ? x ) ) ) )

)

Appendix B: PDDL2.1 Specification of the Depot Domain

( d e f i n e ( domain Depot )
( : r e q u i r e m e n t s : t y p i n g : d u r a t i v e− a c t i o n s )
( : t y p e s p l a c e l o c a t a b l e − o b j e c t

d e p o t d i s t r i b u t o r − p l a c e
t r u c k h o i s t s u r f a c e − l o c a t a b l e
p a l l e t c r a t e − s u r f a c e )

( : p r e d i c a t e s ( a t ? x − l o c a t a b l e ? y − p l a c e )
( on ? x − c r a t e ? y − s u r f a c e )
( i n ? x − c r a t e ? y − t r u c k )
( l i f t i n g ? x − h o i s t ? y − c r a t e )
( a v a i l a b l e ? x − h o i s t )
( c l e a r ? x − s u r f a c e ) )

( : d u r a t i v e− a c t i o n Dr ive
: p a r a m e t e r s ( ? x − t r u c k ? y − p l a c e ? z − p l a c e )
: d u r a t i o n (= ? d u r a t i o n 10)
: c o n d i t i o n ( and ( a t s t a r t ( a t ? x ? y ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( a t ? x ? y ) ) ) ( a t end ( a t ? x ? z ) ) ) )
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( : d u r a t i v e− a c t i o n L i f t
: p a r a m e t e r s ( ? x − h o i s t ? y − c r a t e ? z − s u r f a c e ? p − p l a c e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( a t s t a r t ( a v a i l a b l e ? x ) )

( a t s t a r t ( a t ? y ? p ) ) ( a t s t a r t ( on ? y ? z ) )
( a t s t a r t ( c l e a r ? y ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( a t ? y ? p ) ) ) ( a t s t a r t ( l i f t i n g ? x ? y ) )
( a t s t a r t ( not ( c l e a r ? y ) ) ) ( a t s t a r t ( not ( a v a i l a b l e ? x ) ) )
( a t s t a r t ( c l e a r ? z ) ) ( a t s t a r t ( not ( on ? y ? z ) ) ) ) )

( : d u r a t i v e− a c t i o n Drop
: p a r a m e t e r s ( ? x − h o i s t ? y − c r a t e ? z − s u r f a c e ? p − p l a c e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( ove r a l l ( a t ? z ? p ) )

( ove r a l l ( c l e a r ? z ) ) ( ove r a l l ( l i f t i n g ? x ? y ) ) )
: e f f e c t ( and ( a t end ( a v a i l a b l e ? x ) ) ( a t end ( not ( l i f t i n g ? x ? y ) ) )

( a t end ( a t ? y ? p ) ) ( a t end ( not ( c l e a r ? z ) ) )
( a t end ( c l e a r ? y ) ) ( a t end ( on ? y ? z ) ) ) )

( : d u r a t i v e− a c t i o n Load
: p a r a m e t e r s ( ? x − h o i s t ? y − c r a t e ? z − t r u c k ? p − p l a c e )
: d u r a t i o n (= ? d u r a t i o n 3 )
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( ove r a l l ( a t ? z ? p ) )

( ove r a l l ( l i f t i n g ? x ? y ) ) )
: e f f e c t ( and ( a t end ( not ( l i f t i n g ? x ? y ) ) ) ( a t end ( i n ? y ? z ) )

( a t end ( a v a i l a b l e ? x ) ) ) )

( : d u r a t i v e− a c t i o n Unload
: p a r a m e t e r s ( ? x − h o i s t ? y − c r a t e ? z − t r u c k ? p − p l a c e )
: d u r a t i o n (= ? d u r a t i o n 4 )
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( ove r a l l ( a t ? z ? p ) )

( a t s t a r t ( a v a i l a b l e ? x ) ) ( a t s t a r t ( i n ? y ? z ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( i n ? y ? z ) ) ) ( a t s t a r t ( not ( a v a i l a b l e ? x ) ) )

( a t s t a r t ( l i f t i n g ? x ? y ) ) ) )

)

Appendix C: PDDL2.1 Specification of the Rovers Domain

( d e f i n e ( domain Rover )
( : r e q u i r e m e n t s : t y p i n g : d u r a t i v e− a c t i o n s )
( : t y p e s r o v e r waypo in t s t o r e camera mode l a n d e r o b j e c t i v e )

( : p r e d i c a t e s ( a t ? x − r o v e r ? y − waypo in t )
( a t l a n d e r ? x − l a n d e r ? y − waypo in t )
( c a n t r a v e r s e ? r − r o v e r ? x − waypo in t ? y − waypo in t )
( e q u i p p e d f o r s o i l a n a l y s i s ? r − r o v e r )
( e q u i p p e d f o r r o c k a n a l y s i s ? r − r o v e r )
( e q u i p p e d f o r i m a g i n g ? r − r o v e r )
( empty ? s − s t o r e )
( h a v e r o c k a n a l y s i s ? r − r o v e r ?w − waypo in t )
( h a v e s o i l a n a l y s i s ? r − r o v e r ?w − waypo in t )
( f u l l ? s − s t o r e )
( c a l i b r a t e d ? c − camera ? r − r o v e r )
( s u p p o r t s ? c − camera ?m − mode )
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( a v a i l a b l e ? r − r o v e r )
( v i s i b l e ?w − waypo in t ? p − waypo in t )
( have image ? r − r o v e r ? o − o b j e c t i v e ?m − mode )
( c o m m u n i c a t e d s o i l d a t a ?w − waypo in t )
( c o m m u n i c a t e d r o c k d a t a ?w − waypo in t )
( c o m m u n i c a t e d i m a g e d a t a ? o − o b j e c t i v e ?m − mode )
( a t s o i l s a m p l e ?w − waypo in t )
( a t r o c k s a m p l e ?w − waypo in t )
( v i s i b l e f r o m ? o − o b j e c t i v e ?w − waypo in t )
( s t o r e o f ? s − s t o r e ? r − r o v e r )
( c a l i b r a t i o n t a r g e t ? i − camera ? o − o b j e c t i v e )
( o n b o a r d ? i − camera ? r − r o v e r )
( c h a n n e l f r e e ? l − l a n d e r ) )

( : d u r a t i v e− a c t i o n n a v i g a t e
: p a r a m e t e r s ( ? x − r o v e r ? y − waypo in t ? z − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and ( ove r a l l ( c a n t r a v e r s e ? x ? y ? z ) ) ( a t s t a r t ( a v a i l a b l e ? x ) )

( a t s t a r t ( a t ? x ? y ) ) ( ove r a l l ( v i s i b l e ? y ? z ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( a t ? x ? y ) ) ) ( a t end ( a t ? x ? z ) ) ) )

( : d u r a t i v e− a c t i o n s a m p l e s o i l
: p a r a m e t e r s ( ? x − r o v e r ? s − s t o r e ? p − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 10)
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( a t s t a r t ( a t ? x ? p ) )

( a t s t a r t ( a t s o i l s a m p l e ? p ) )
( a t s t a r t ( e q u i p p e d f o r s o i l a n a l y s i s ? x ) )
( a t s t a r t ( s t o r e o f ? s ? x ) ) ( a t s t a r t ( empty ? s ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( empty ? s ) ) ) ( a t end ( f u l l ? s ) )
( a t end ( h a v e s o i l a n a l y s i s ? x ? p ) )
( a t end ( not ( a t s o i l s a m p l e ? p ) ) ) ) )

( : d u r a t i v e− a c t i o n s a m p l e r o c k
: p a r a m e t e r s ( ? x − r o v e r ? s − s t o r e ? p − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 8 )
: c o n d i t i o n ( and ( ove r a l l ( a t ? x ? p ) ) ( a t s t a r t ( a t ? x ? p ) )

( a t s t a r t ( a t r o c k s a m p l e ? p ) )
( a t s t a r t ( e q u i p p e d f o r r o c k a n a l y s i s ? x ) )
( a t s t a r t ( s t o r e o f ? s ? x ) )
( a t s t a r t ( empty ? s ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( empty ? s ) ) ) ( a t end ( f u l l ? s ) )
( a t end ( h a v e r o c k a n a l y s i s ? x ? p ) )
( a t end ( not ( a t r o c k s a m p l e ? p ) ) ) ) )

( : d u r a t i v e− a c t i o n drop
: p a r a m e t e r s ( ? x − r o v e r ? s − s t o r e )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( s t o r e o f ? s ? x ) ) ( a t s t a r t ( f u l l ? s ) ) )
: e f f e c t ( and ( a t end ( not ( f u l l ? s ) ) ) ( a t end ( empty ? s ) ) ) )

( : d u r a t i v e− a c t i o n c a l i b r a t e
: p a r a m e t e r s ( ? r − r o v e r ? i − camera ? t − o b j e c t i v e ?w − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and ( a t s t a r t ( e q u i p p e d f o r i m a g i n g ? r ) )

( a t s t a r t ( c a l i b r a t i o n t a r g e t ? i ? t ) ) ( ove r a l l ( a t ? r ?w) )
( a t s t a r t ( v i s i b l e f r o m ? t ?w) ) ( a t s t a r t ( o n b o a r d ? i ? r ) ) )

: e f f e c t ( a t end ( c a l i b r a t e d ? i ? r ) ) )

( : d u r a t i v e− a c t i o n t a k e i m a g e
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: p a r a m e t e r s ( ? r − r o v e r ? p − waypo in t ? o − o b j e c t i v e ? i − camera ?m − mode )
: d u r a t i o n (= ? d u r a t i o n 7 )
: c o n d i t i o n ( and ( ove r a l l ( c a l i b r a t e d ? i ? r ) )

( a t s t a r t ( o n b o a r d ? i ? r ) )
( ove r a l l ( e q u i p p e d f o r i m a g i n g ? r ) )
( ove r a l l ( s u p p o r t s ? i ?m) )
( ove r a l l ( v i s i b l e f r o m ? o ? p ) )
( ove r a l l ( a t ? r ? p ) ) )

: e f f e c t ( and ( a t end ( have image ? r ? o ?m) ) ( a t end ( not ( c a l i b r a t e d ? i ? r ) ) ) ) )

( : d u r a t i v e− a c t i o n c o m m u n i c a t e s o i l d a t a
: p a r a m e t e r s ( ? r − r o v e r ? l − l a n d e r ? p − waypo in t ? x − waypo in t ? y − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 10)
: c o n d i t i o n ( and ( ove r a l l ( a t ? r ? x ) ) ( ove r a l l ( a t l a n d e r ? l ? y ) )

( a t s t a r t ( h a v e s o i l a n a l y s i s ? r ? p ) )
( a t s t a r t ( v i s i b l e ? x ? y ) ) ( a t s t a r t ( a v a i l a b l e ? r ) )
( a t s t a r t ( c h a n n e l f r e e ? l ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( a v a i l a b l e ? r ) ) ) ( a t s t a r t ( not ( c h a n n e l f r e e ? l ) ) )
( a t end ( c h a n n e l f r e e ? l ) )
( a t end ( c o m m u n i c a t e d s o i l d a t a ? p ) ) ( a t end ( a v a i l a b l e ? r ) ) ) )

( : d u r a t i v e− a c t i o n c o m m u n i c a t e r o c k d a t a
: p a r a m e t e r s ( ? r − r o v e r ? l − l a n d e r ? p − waypo in t ? x − waypo in t ? y − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 10)
: c o n d i t i o n ( and ( ove r a l l ( a t ? r ? x ) ) ( ove r a l l ( a t l a n d e r ? l ? y ) )

( a t s t a r t ( h a v e r o c k a n a l y s i s ? r ? p ) )
( a t s t a r t ( v i s i b l e ? x ? y ) ) ( a t s t a r t ( a v a i l a b l e ? r ) )
( a t s t a r t ( c h a n n e l f r e e ? l ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( a v a i l a b l e ? r ) ) ) ( a t s t a r t ( not ( c h a n n e l f r e e ? l ) ) )
( a t end ( c h a n n e l f r e e ? l ) )
( a t end ( c o m m u n i c a t e d r o c k d a t a ? p ) ) ( a t end ( a v a i l a b l e ? r ) ) ) )

( : d u r a t i v e− a c t i o n c o m m u n i c a t e i m a g e d a t a
: p a r a m e t e r s ( ? r − r o v e r ? l − l a n d e r ? o − o b j e c t i v e ?m − mode ? x − waypo in t

? y − waypo in t )
: d u r a t i o n (= ? d u r a t i o n 15)
: c o n d i t i o n ( and ( ove r a l l ( a t ? r ? x ) ) ( ove r a l l ( a t l a n d e r ? l ? y ) )

( a t s t a r t ( have image ? r ? o ?m) )
( a t s t a r t ( v i s i b l e ? x ? y ) ) ( a t s t a r t ( a v a i l a b l e ? r ) )
( a t s t a r t ( c h a n n e l f r e e ? l ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( a v a i l a b l e ? r ) ) ) ( a t s t a r t ( not ( c h a n n e l f r e e ? l ) ) )
( a t end ( c h a n n e l f r e e ? l ) )
( a t end ( c o m m u n i c a t e d i m a g e d a t a ? o ?m) ) ( a t end ( a v a i l a b l e ? r ) ) ) ) )

Appendix D: PDDL2.1 Specification of the DataProcessing Domain

( d e f i n e ( domain D a t a P r o c e s s i n g )
( : r e q u i r e m e n t s : t y p i n g : d u r a t i v e− a c t i o n s : n e g a t i v e− p r e c o n d i t i o n s )
( : t y p e s r e g d i r − f i l e )
( : c o n s t a n t s t r a s h − d i r )

( : p r e d i c a t e s ( i d l e ? f − f i l e )
( compressed ? f − f i l e )
( uncompressed ? f − f i l e )
( a t ? f − f i l e ? d − d i r ) )
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( : d u r a t i v e− a c t i o n C r e a t e
: p a r a m e t e r s ( ? f − f i l e ? d − d i r )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( f o r a l l ( ? x − d i r ) ( not ( a t ? f ? x ) ) ) )

( ove r a l l ( f o r a l l ( ? x − d i r ) ( not ( a t ? f ? x ) ) ) )
( a t end ( f o r a l l ( ? x − d i r ) ( not ( a t ? f ? x ) ) ) ) )

: e f f e c t ( and ( a t end ( i d l e ? f ) ) ( a t end ( a t ? f ? d ) ) ) )

( : d u r a t i v e− a c t i o n Remove
: p a r a m e t e r s ( ? f − f i l e ? d − d i r )
: d u r a t i o n (= ? d u r a t i o n 1 )
: c o n d i t i o n ( and ( a t s t a r t ( i d l e ? f ) ) ( a t s t a r t ( a t ? f ? d ) )

( ove r a l l ( not ( i d l e ? f ) ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( i d l e ? f ) ) ) ( a t end ( not ( a t ? f ? d ) ) )

( a t end ( a t ? f t r a s h ) ) ( a t end ( i d l e ? f ) ) ) )

( : d u r a t i v e− a c t i o n Compress
: p a r a m e t e r s ( ? f s − f i l e ? f t − f i l e ? d − d i r )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and ( a t s t a r t ( i d l e ? f s ) ) ( a t s t a r t ( a t ? f s ? d ) )

( a t s t a r t ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) )
( ove r a l l ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) )
( ove r a l l ( not ( i d l e ? f s ) ) )
( a t end ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( i d l e ? f s ) ) ) ( a t end ( i d l e ? f s ) ) ( a t end ( i d l e ? f t ) )
( a t end ( compressed ? f t ) ) ( a t end ( a t ? f t ? d ) ) ) )

( : d u r a t i v e− a c t i o n Uncompress
: p a r a m e t e r s ( ? f s − f i l e ? f t − f i l e ? d − d i r )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and ( a t s t a r t ( i d l e ? f s ) ) ( a t s t a r t ( a t ? f s ? d ) )

( a t s t a r t ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) )
( ove r a l l ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) )
( ove r a l l ( not ( i d l e ? f s ) ) )
( a t end ( f o r a l l ( ? x − d i r ) ( not ( a t ? f t ? x ) ) ) ) )

: e f f e c t ( and ( a t s t a r t ( not ( i d l e ? f s ) ) ) ( a t end ( i d l e ? f s ) ) ( a t end ( i d l e ? f t ) )
( a t end ( uncompressed ? f t ) ) ( a t end ( a t ? f t ? d ) ) ) )

( : d u r a t i v e− a c t i o n Move
: p a r a m e t e r s ( ? f − f i l e ? ds − d i r ? d t − d i r )
: d u r a t i o n (= ? d u r a t i o n 3 )
: c o n d i t i o n ( and ( a t s t a r t ( i d l e ? f ) ) ( a t s t a r t ( a t ? f ? ds ) )

( ove r a l l ( not ( i d l e ? f ) ) ) )
: e f f e c t ( and ( a t s t a r t ( not ( i d l e ? f ) ) ) ( a t end ( not ( a t ? f ? ds ) ) )

( a t end ( a t ? f ? d t ) ) ( a t end ( i d l e ? f ) ) ) ) )
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