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Rakeness-Based Design of Low-Complexity
Compressed Sensing

Mauro Mangia, Fabio Pareschi, Valerio Cambareri, Riccardo Rovatti, Gianluca Setti

Abstract—Compressed Sensing (CS) can be introduced in the
processing chain of a sensor node as a mean to globally reduce
its operating cost, while maximizing the quality of the acquired
signal. We exploit CS as a simple early-digital compression stage
that performs a multiplication of the signal by a matrix.

The operating costs (e.g., the consumed power) of such an
encoding stage depend on the number of rows of the matrix, but
also on the value and position of the rows’ coefficients. Our novel
design flow yields optimized sparse matrices with very few rows.
It is a non-trivial extension of the rakeness-based approach to
CS and yields an extremely lightweight stage implemented by
a very small number of possibly signed sums with an excellent
compression performance.

By means of a general signal model we explore different
corners of the design space and show that, for example, our
method is capable of compressing the signal by a factor larger
than 2.5 while not considering 30% of the original samples (so
that they may not be acquired at all, leaving the analog front-
end and ADC stages inactive) and by processing each of the
considered samples with not more than three signed sums.

I. INTRODUCTION

Compressed Sensing (CS) is a technique that allows the
reconstruction of a signal starting from a number of linear
measurements that is potentially much smaller than its number
of Nyquist-rate samples. The possibility of such a parsimo-
nious representation hinges on a change of basis: many natural
signals are such that, if expressed in a suitable domain, exhibit
a large number of zero or almost-zero components, i.e., are
sparse.

For this reason, CS has been proposed [1], [2] as an
appealing, resource-efficient method to substitute Analog-to-
Digital Converters (ADC) with Analog-to-Information Con-
verters (AIC) [3], [4], which exploit the possibility of matching
the resources needed for the acquisition of an analog signal to
its true information rate by computing measurements directly
in the analog domain. On the other hand, recent evidence
showed that CS is at least as efficient when implemented in a
purely digital architecture [5], [6], [7], i.e., as a way to provide
digital signal compression. In this context, the investigation of
Chen et al. [5] showed that there may be a clear practical
advantage in using CS as an early-digital compression stage
over its analog implementation in terms of power consumption.

The detailed modeling in each of the above papers is beyond
our scope. Yet, the guiding idea is that data compression is
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Fig. 1. The three stages of a sensor node that acquires and transmits
information depending on a locally acquired signal to a final, possibly remote
“consumer” (top); its specialization entailing CS, and either immediate or
delayed transfer of its measurements (bottom).

needed to reduce the energy required by the transmitter, but the
complexity of compression stages must be extremely limited
not to balance the resources saved in transmission. CS with
its simple random projections is an ideal candidate. This is
especially true if, as in this paper, the implementation of the
linear mapping can be kept to an almost negligible level of
complexity by proper design.

We focus on the part of the acquisition system that computes
and dispatches the measurements, being agnostic on the spe-
cific implementation of signal reconstruction. This complies
with two largely accepted assumptions: i) many deployments
of sensor networks have a hierarchy of available resources and
sensing nodes sit at the bottom, while data are collected and
processed by increasingly more powerful nodes; ii) the amount
of resources spent in processing the measurements depends
on the application and on the target level of quality, the best
achievable reconstruction being an index of the quality of the
extracted measurements.

Motivated by this, we focus on methods and algorithms to
realize a CS-based, low-complexity digital signal compression
stage in a sensor node, whose general signal chain is summa-
rized in Figure 1. The acquisition stage provides an interface
with the physical, analog and continuous-time world. Right
after it, we introduce CS to provide a compression stage that
encodes samples into digital words, i.e., compressive measure-
ments. Once computed, these measurements are transferred to
their final consumer by the measurements’ dispatch stage.

We show how the degrees of freedom offered by CS can be
exploited to: i) decrease the amount of sampling, ii) decrease
the number of elementary operations in the compression stage,
and iii) reduce the number of measurements transmitted/stored
in the last stage.

This reduction of the computational burden can im-
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pact power consumption that is often the key operating
cost. Although an exact quantification of these savings is
implementation-dependent, preliminary evidence exists that,
for example, even naive and non-optimized zeroing of entries
in the projection matrix results in a resource-efficient and
effective compression [6][20].

The paper is organized as follows. Section II summarizes the
main concepts of CS including an extension from the author’s
prior work, i.e., rakeness [8]. Roughly speaking, choosing CS
acquisition sequences maximizing rakeness allows to increase
the energy collected by each sample in a way similar to
what happens in rake receivers in chaos-based DS-CDMA
communication, where spreading sequences, the corresponding
waveforms, and rake receiver taps, are jointly selected to
collect as much energy as possible at the received side [9][10].
Section III identifies the three parameters controlling the
amount of processing performed by each of the stages in
Figure 1.

In Sections IV and V, a novel design flow for CS systems
is defined in which all the three merit factors affecting
computational complexity are taken into consideration along
with implementation constraints. This is different from clas-
sical rakeness-based design, that is concerned only with the
compression ratio and does not consider implementation con-
straints. A method to generate ternary or binary vectors with
a prescribed correlation is also given, which is a non-trivial
extension of one of the techniques available for antipodal
vectors.

A final Section VI shows the impact of the proposed design
flows on some example cases and on two specific tasks in
ECG acquisition that allow comparisons with state-of-the art
proposals.

II. OVERVIEW OF COMPRESSED SENSING

We here adopt a discrete-time formulation of CS, in which
the input waveform is represented by a set of n samples
collected in a signal x � px0, . . . , xn�1qJ P Rn.

The key assumption of CS is κ-sparsity, that is the existence
of a n-dimensional sparsity basis S P Rn�n in which any
instance of the signal x � Sξ is represented by a vector ξ P Rn
with not more than κ ! n non-zero components.

The number of true degrees of freedom in x is therefore
considerably smaller than n. Leveraging this property, funda-
mental results [11] have shown that the signal can be captured
by a set of m   n properly designed linear measurements.
These measurements are gathered in the m-dimensional vector
y � py0, . . . , ym�1qJ P Rm, as obtained by applying a
projection matrix A P Rm�n to x, i.e., y � Ax � ASξ.

The elements of y are also indicated as projections, and their
minimum amount m essentially depends on pn, κq. In fact,
formal results [11], [12] guarantee that ξ (and thus x) can be
recovered from y despite the fact that A (and thus AS) yields
a dimensionality reduction, provided that m � Opκ log nq.
Roughly speaking, the rationale of these guarantees is that
generic, κ-sparse vectors are mapped almost isometrically [1]
into the measurements; if this is true, the recovery of the
original signal x from y � Ax is possible by enforcing the a
priori knowledge that its representation ξ is sparse.

Algorithmically, methods to perform this sparse signal
recovery have been explored and improved in recent years
[11], [13], [14]. Many recovery algorithms solve convex
optimization problems such as

min
ξ̂PRn

}ξ̂}1 (1)

s.t. }ASξ̂ � y}22 ¤ ε2 (2)

where the 1-norm }ξ̂}1 is used to promote sparsity and }ASξ̂�
y}22 is the usual Euclidean norm that measures the accuracy
with which the measurements y are matched by the solution,
as ε ¥ 0 is chosen proportionally to the amount of noise
affecting y.

With these premises, it is fair to say that most of the
practical interest in CS comes from two key facts:
 although theoretical upper bounds exist on the error

committed by signal recovery algorithms depending on
the features of A, S and the amount of noise, their
effective performance largely exceeds that predicted by
formal guarantees, yielding signal recovery from a small
number of measurements y [15];

 the mathematical conditions that allow signal recovery
algorithms to succeed can be matched (with very high
probability) by simply drawing A as a suitably chosen
random matrix. Although theoretical guarantees depend
on the choice of specific distributions [16], in practice a
wide class of random matrices allows for effective signal
recovery [17].

Starting from these facts, one may attempt to optimize
acquisition performance by adapting the statistical distribution
of A to that of the signal x. Once the distribution of A is
chosen, a single instance can be drawn and used for sensing
with a substantial chance of achieving the desired result.

This is what rakeness-based design of A does [8], [15]. To
formalize it, indicate with a � pa0, . . . , an�1qJ the random
column vector corresponding to a generic row of A so that
aJx is the generic measurement.

Assume also that x is not only sparse, but also localized in
the sense that its energy is anisotropically distributed in the
signal space, or, more formally, that its correlation matrix X �
ErxxJs is not a multiple of the identity. Such a localization
can be quantified by computing how much the eigenvalues of
X deviate from the isotropic case, i.e.,

Lx �
n�1̧

j�0

�
λjpX q
trpX q �

1

n


2

� tr
�
X 2
�

tr2pX q �
1

n
(3)

where trp�q stands for matrix trace, λjp�q is the j-th eigenvalue
of its matrix argument, and one can show that 0 ¤ Lx ¤ 1� 1

n .
Localization and sparsity are different priors since the

subspace along which energy concentrates does not need
to be a κ-dimensional canonical subspace in the sparsity
reference system. If x is localized (as it almost always happens
when dealing with real world signals [15]) one may identify
preferred directions along which the signal is most likely lying.
These are the directions along which projections may want
to focus, though they should remain able to explore other
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directions that on the average are less energetic but may be
important to reconstruct x.

This highlights a trade-off analogous to the exploita-
tion/exploration dilemma typical of complex optimization
problems: too general methods do not leverage the additional
knowledge on typical signals, while too specific ones may fail
to perform acceptably in slightly atypical cases. Such a trade-
off can be tackled defining the concept of rakeness between
two vector processes a, x P Rn as ρpa, xq � Ea,x

��
aJx

�2�
,

i.e., the average energy of the projections of instances of x
over independently drawn instances of a. If A � EaraaJs
(note that the calligraphic typefaces indicate correlations so
that A is a correlation matrix, while A is the sensing matrix),
then rakeness can be expressed as ρpa, xq � tr pAX q.

With this, we may formalize the intuitive design criteria of
concentrating projections on most energetic directions while
not neglecting the others, as the maximization of the rakeness
subject to a cap on the localization of the sensing process,
i.e., if N � t0, . . . , n� 1u,

max
A

tr pAX q (4)

s.t. Aj,k � Ak,j j, k P N (5)
s.t. A © 0 (6)
s.t. La ¤ `Lx (7)

where (5) and (6) ensure that A is a correlation matrix
(symmetric and positive semidefinite), and the coefficient
` ¥ 0 in (7) sets how much the projection waveforms should
be localized with respect to the process to sense and thus
controls the trade-off between exploitation (high rakeness)
and exploration (low localization). For this reason, we will
call the optimization problem defined by (4)-(7) Rakeness-
Localization Trade-off (RLT).

Though many other methods to optimize sensing matrices A
have been proposed (see [18] for an overview of some methods
for real matrices and [19] for an example of optimized binary
matrices), rakeness-based design is unique in that it tunes
sensing depending on a broadly verified property of the input
signal, instead of trying to optimize some generic measure
of good behavior such as coherence, mutual coherence, or
restricted isometry. Thanks to this adaptation to the signal,
rakeness-based design largely outperforms the other methods.
For example, experiments in Section VI show this for binary
matrices comparing our method with that in [19].

Clearly, adapting measurements to increase average energy
has effects on the mutual coherence between the projection
matrix and the sparsity base, weighted by the statistics of
the signal. Moreover, one may reasonably expect that this
increases the mutual entropy between x and y. Though out
of the scope of this paper, these directions are clearly worth
exploring to give a even sounder ground to rakeness-based
design.

III. OPERATING COSTS OF COMPRESSED SENSING

The general three-stages structure at the top of Figure 1
can be specialized within the CS framework. Since it was

suggested [5], [6] that early digitization may be more efficient
than analog-domain computation of projections, the sampling
stage entails both an Analog Front End (AFE) interfacing
our system with the sensor and an Analog-to-Digital Con-
verter (ADC) performing discretization in time and magnitude.
Projections are therefore performed by digital Multiply and
ACcumulate operations (MAC). The last stage has either the
option of immediately transmitting (TX) the measurements or
storing them in a non-volatile memory (NVM) waiting for
external signal and resources to trigger transfer at a later time.
As anticipated, the operating cost of the three stages can be
related to features of the CS mechanism.

Clearly, the cost of measurement dispatch depends on the
number of measurements that must be transmitted/stored in
order to guarantee a correct input signal reconstruction.

As far as measurement computation is concerned, applying
a dense A entails a potentially large number (n � m) of
MAC operations. A straightforward way of reducing this
computational effort is to assume that A is populated either
by antipodal (Ap,q P t�1,�1u), binary (Ap,q P t0,�1u)
or ternary (Ap,q P t�1, 0,�1u) symbols so that multipliers
reduce to simple signed adders, leaving the general reconstruc-
tion performance substantially unaltered [3], [6]. Since when
Ap,q � 0 the MAC unit can be left idle, the computational
effort of the projection stage is controlled by the number of
non-zero entries in A.

More specifically, let Pq be the number of non-null entries
in the q-th column of A. Looking at the projection mechanism
from the point of view of each sample, Pq quantifies the
number of MAC operations triggered by the availability of
xq .

Implementations may want to constrain Pq ¤ Θ   m for
a certain Θ and for all q � 0, . . . , n � 1. This requirement
can be thought of as a throttling since it ensures that a
limited computational effort is associated to each incoming
sample: for example, if the projection stage is hardwired in
a parallel structure, not more than Θ parallel paths must be
deployed; alternatively, if Ax is computed by a programmable
architecture, at most Θ MAC iterations are needed in each
sample time. Hence, from the computational point of view,
the product by the original m � n matrix A is equivalent to
that of a Θ� n throttled matrix.

Pushing this further, note that if Pq � 0 then xq does not
enter the computation of any of the measurements. Hence,
one may think of not acquiring that sample and make also
the AFE and ADC idle for the corresponding sample time,
thus reducing operating cost. We will indicate such an option
as puncturing, a sample skipping technique that has already
been proposed, for example, for compressed estimation [20].

Furthermore, throttling and puncturing affect the subsystem
providing the matrix A to the signal chain, let it be a memory
or a run-time generator. For example, if A is stored in a
non-volatile memory as in [6], the number of non-zeros in
A directly impacts the size of the memory dedicated to it.

The saving in the computational effort of the different stages
together with the memory footprint for the sensing matrix
can be quantified by defining the compression ratio (CR), the
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Fig. 2. Visual representation of the zeroing policies and corresponding saving
figures. The whole rectangle corresponds to the matrix A in which boxes
correspond to single entries. White boxes contain zero coefficients, colored
boxes contain non-zero coefficients. Some columns contain only zero entries
and are highlighted by a red vertical dashed line.

average throttling (AT) and the puncturing ratio (PR) as

CR � n

m
¥ 1

AT � |tq|Pq ¡ 0u|°n�1
q�0 Pq

¥ 1

m

PR � n

|tq|Pq ¡ 0u| ¥ 1

where |tq|Pq ¡ 0u| ¤ n is the number of columns with at least
one non-zero element. Hence, columns zeroed by puncturing
are not counted by AT, which therefore accounts only for
the average computational effort spent on samples that are
effectively processed.

Note that CR is not a bitwise ratio, so it can be used only
as a proxy of the true gain of the compression stage. Yet, it is
typically a good proxy, since it is known [3][7] that, though
measurements are the results of accumulation, a satisfying
reconstruction quality can be obtained by encoding the entries
of y with a number of bits that i- is quite close to the number
of bits encoding the entries of x; ii- does not significantly
depend on m when the latter is reduced by optimization.

Figure 2 offers a visual representation of the zeroing policies
we discuss and the corresponding saving parameters for a
sparse, m � n matrix A with n � 16 and m � 8, such that
CR � 2. The non-zero elements of A are represented by
filled boxes, while empty boxes correspond to zero elements.
Puncturing leaves only 10 non-null columns out of n � 16
and thus PR � 1.6. The total amount of non-zero elements
is
°n�1
q�0 Pq � 30 over 10 non-punctured columns and thus

AT � 1{3 which corresponds to an average of 3 non-zero
elements for each column.

From the computational point of view, if no MAC is
performed for zero entries in A, the product by such a matrix
is equivalent to a product by a matrix throttled to have only 3
rows and punctured to have only 10 columns, i.e., 30 MACs
instead of the potential 16 � 8 � 128 MACs entailed by a
non-sparse matrix.

The definitions of PR, AT, CR are given so that they are
merit figures: the larger they are, the lower the computational
effort. In fact, an abstract modeling of the operating costs of
each stage characterizing the sensor node gives:
 sampling stage:
Op# of non-zero columns in Aq � O

�
n

PR

�
;

 compression stage:
Op# of non-zero entries in Aq � O

�
n

AT PR

�
;

 dispatch stage:
Op# of measurements to transferq � O

�
n

CR

�
.

Actual implementations will weight differently the contri-
bution of each stage to the overall computational burden.

To give a rough insight on how the proposed merit figures
may affect the resources needed by actual implementation we
may resort to high-level power and memory modeling of some
typical realization options.

As an example, the power models for CS in sensor nodes
developed in [20] and [6] may be used to show the different
impact of PR, AT and CR.
 sampling stage:

Power is required by both the AFE and by the ADC.
The AFE contribution is typically dominated by the low
noise amplifier whose power requirement depends on the
operating temperature, the amplifier gain and its 3 dB
bandwidth, the noise efficiency factor, the power supply
voltage and the full scale voltage. By using reasonable
values for these parameters [20] one may estimate

WAFE � 22bxfAFE � 36 fJ

where fAFE is the average activity of the AFE. Under the
assumption [20] that this stage can be put in an extremely
low-power state whenever a sample is not needed, i.e.,
when the corresponding column of A is null, we have
fAFE � fs{PR so that

WAFE � 2bx
fs
PR

� 36 fJ (8)

Similarly, we can estimate the power consumption of the
ADC with

WADC � 2bx
fs
PR

� 10 fJ (9)

where we have set the Walden figure of merit equal to
10 fJ/conversion-step [21].

 compression stage:
Matrix multiplication can be realized in a number of
ways. Here we focus on two corner cases: an ultra
low-power general purpose DSP [6] and a full custom
architecture [20].
For the ultra low power DSP the power model has been
obtained from experimental results when n � 512, fs �
360 Hz, bx � 11, and leakage is reduced by 65% with a
proper reverse body bias technique [6].

WMAC � 1

PR AT
� 708 nW � 7.1µW (10)

In the full custom approach all MAC operations are im-
plemented as signed sums and accumulations. The corre-
sponding power model is obtained [20] by designing and
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TABLE I
ENERGY PER BIT FOR SOME EMERGING STORAGE/TRANSMISSION

TECHNOLOGIES

Energy per bit [nJ/bit] Source

NVM
FLASH 0.01 [22]
CBRAM 0.001 [23]
STT-MRAM 0.0001 [24]

TX
NB 0.1 [25]
BLE 1 [26]
NFC 10 [27]

simulating a dedicated compression stage implemented
with a low-leakage 28 nm SOI CMOS technology. Differ-
ent input and accumulator wordwidths are considered and
read operations from a suitable integrate memory with 2
bits per sample (needed to encode ternary coefficients) are
taken into account. Power consumptions were obtained
from simulating gate-level netlists produced by Synopsis
Design Compiler with Mentor Graphics Modelsim and
Monte Carlo input data. As a result

WMAC � n

PR AT
p24bx�10 log2 n�19qfs � 1 fJ

�mWleakpbx, nq (11)

where Wleakpbx, nq is the leakage of each parallel MAC
branch and

Wleakpbx, nq � p30bx � 18 log2 n� 82q � 1 nW

where a scaling corresponding to a body bias techniques
similar to the previous case has also been applied.

 dispatch stage:

Every time window, the m � n{CR measurements must
be either stored locally or transmitted. Hence, the required
power is estimated in

WNVM|TX � n

CR
byENVM|TXfs (12)

where by ¤ bx � log2 n is the number of bits used to
store each element of y, ENVM is the energy needed to
store a single bit in the NVM, while ETX is the energy
needed to transmit a single bit. Values for ENVM and
ETX are reported in Table I for some consolidated and
emerging technologies.

The above models can be used to target different applica-
tions and show the different weights that PR, AT, and CR
may have on the overall power consumption.

As a first case consider a system similar to the one modeled
in [6] where in (8) and (9) we have n � 512, fs � 360 Hz
and bx � 11; the compression stage refers to (10) and for
the dispatch stage with by � 11 we consider (12) where
data are stored in a FLASH memory [22]. The overall power
consumption W is

W rµWs � 7.1� 54

PR
� 0.7

PR AT
� 20

CR
(13)

If, instead of storing the measurements, one transmits them
using a low energy Bluetooth module (BLE) [26] W becomes

W rµWs � 7.1� 54

PR
� 0.7

PR AT
� 2000

CR
(14)

As a second case considers an architecture closer to what
is modeled in [20] with a sampling stage identical to the
previous one, a NVM in the dispatch stage and a custom
implementation of the compression stage obeying (11). In this
case set n � 64, fs � 1 MHz, bx � by � 5 and assume that
measurements are stored in a STT-MRAM [24] thus yielding

W rµWs � 9.4

PR
� 11.2

PR AT
� 45.5

CR
(15)

where the custom layout of the compression stage makes the
leakage dependent on CR.

The fact that 1 ¤ CR ¤ n with typical values in the units,
1 ¤ PR ¤ n with typical values close to 1, while 1

m ¤
AT ¤ 1, makes the three above cases very different as far as
sensitivity to our parameters is concerned.

Further to power consumption, an issue that may be im-
portant in implementations exploiting general purpose pro-
grammable hardware (possibly involved also in other tasks)
certain implementation is the memory footprint, mainly due
to the storage of A.

Usually, the addressing granualarity is at byte level and a
straighforward deployment would use nmbyte of memory for
A. When PR AT increases, A can be stored exploiting one
of the many techniques used for sparse matrices. A common
option is to store A column-wise and memorize the position
and the values of the the non-null entries in A. Assuming that
position and value entries use 1 byte each, we come up with
2n{pPR ATq byte for the whole A. Hence a reduction in the
memory footprint arises whenever

PR AT ¡ 2

m

As an example with n � 256 and m � 128 it is enough that
PR AT ¥ 0.016 to yield an improvement while, in the same
setting, we will show that values up to PR AT ¡ 0.5 can be
obtained (allowing to store A in less than 512 byte instead of
32 Kbyte).

Though only by examples, the above discussion shows that,
depending on implementation choices or constraints the role
of CR, AT, and PR may change.

This is why our model keeps CR, AT, and PR as distin-
guished metrics giving the tools to increase them as much as
possible while keeping the quality of the reconstruction above
a minimum application-dependent accuracy level.

The main point is that as CR, AT and PR increase the
number of measurements and the number of samples entering
each measurement decreases, and we have less chances to look
at the signal and capture information. Hence these chances
must be optimally exploited to avoid performance degradation.

This is where the extension of rakeness-based design we
present here comes into play. It finds, within the matrices
featuring certain PR, AT, and CR, those that promise the
best acquisition performance. Conversely, once that a target
reconstruction quality is chosen, the novel rakeness-based
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design helps increasing PR, AT, and CR thus reducing the
complexity of the acquisition stages.

IV. RAKENESS-BASED TERNARY CS

As noted before, adopting Ap,q P t�1, 0,�1u helps sig-
nificantly to reduce the complexity and the number of MACs
entailed by the product Ax. Regrettably, not all the correlation
matrices in the feasibility space of the RLT problem in (4)-(7)
correspond to a ternary vector process that may be used to fill
the rows of A and the full characterization of the true set of
matrices in which one should search is unavailable (see [28]
for a partial discussion of this issue in the case of antipodal
processes).

To cope with this, we add constraints to the RLT, whose role
is cutting out of the feasibility space matrices that are trivially
unachievable. This produces a version of RLT problem that is
still a relaxation of the one we should solve, but hopefully a
tight one.

Note first that aj P t�1, 0,�1u and A � EraaJs
imply Aj,j � Era2

j s � Prtaj � 0u ¤ 1. Moreover
|Aj,k| � |Erajaks| ¤ mintPrtaj � 0u,Prtak � 0uu. In
fact, two ternary random variables are maximally positively
(negatively) correlated when the chance that they have the
same (opposite) sign is maximized, a chance that cannot
exceed the probability that each of them is non-zero, i.e., the
smallest of the probabilities of being non-zero. Hence, it must
be |Aj,k| ¤ mintAj,j ,Ak,ku, that, thanks to the symmetry of
A can be reduced to |Aj,k| ¤ Aj,j .

We use these properties as constraints to restrict optimiza-
tion to ternary-friendly correlation and to control the average
number of non-zeros at each position of a and thus ultimately
AT and PR. Formally speaking, we set Prtaj � 0u � Aj,j �
ηj for some given ηj P r0, 1s and j � 0, . . . , n�1. Therefore,
the parameters ηj will control the density of the resulting
acquisition matrix: the lower the ηj the lower the probability
that the j-th entry of each row of A is non-zero.

Altogether, the general optimization problem addressing the
Ternary Rakeness-Localization Tradeoff (T-RLT) is

max
A

tr pAX q
s.t. (5), (6), (7)
s.t. Aj,j � ηj j P N (16)
s.t. |Aj,k| ¤ ηj j � k j, k P N (17)

In such a problem, given a certain index ̄, we may force
ā to be purely antipodal (or, on the contrary, null) by setting
η̄ � 1 (or η̄ � 0).

T-RLT is different from the RLT that is classically used
for rakeness-based design [8], [15] since the implementation
requirement aj P t�1, 0,�1u is implicitly encoded in con-
straints (16) and (17). This prevents the spectral decomposition
of A to mimic that of X , thus impairing the eigenvector-
eigenvalue solution technique that is commonly pursued.

Yet, the objective function is linear, the average (16) and
ternary implementation constraints (17) are linear, and the
semidefiniteness constraint (6) is convex. Moreover, since

trpAq � °n�1
j�0 ηj , `, and Lx are fixed, (3) implies that the

localization constraint (7) is quadratic and convex. Hence, T-
RLT is a convex programming problem that can be numerically
attacked by using established and general-purpose modeling
strategies and convex solvers [29], [30].

Those tools are quite effective in finding provable optima in
reasonable time for n up to few tens (and thus for the number
of degrees of freedom in the hundreds). For larger values of
the signal dimensionality a specialized approach may be used,
as described in subsection VIII-A of the Appendix.

However solved, T-RLT allows us to obtain a correlation
matrix A for ternary-valued random vectors so that, once they
are generated accordingly and collected in the rows of the
projection matrix A, their application to a localized signal x
preserves most of its information in the measurements y.

What we address in the two following Subsections is
the generation of such vectors considering the architectural
options anticipated in the previous Sections.

A. Unstructured zeroing

In this case no constraint is put on the positions of the
zeros in A. What matters is only that A is sparse (with a
sparsity controlled by PR and AT) to avoid accumulations
corresponding to zero entries.

It is then sensible to proceed by solving T-RLT with proper
values 0   ηj   1 to obtain the matrix A that should regulate
the correlation of the rows of A. For example, if AT � 1{4
and m � 50 we want, on average, 4 non-null elements out of
50 in each column. This is mapped to ηj � p50 �1{4q�1 � 0.08
for j � 0, . . . , n� 1.

The generation of those rows, i.e., of ternary vectors with a
prescribed correlation matrix, can be pursued by generalizing
the methods proposed for antipodal vectors (see, e.g., [31],
[32], [33], [28]).

In particular, we focus on thresholding of Gaussian random
vectors [31], a method based on the early result in [34].
Though not completely general (not every feasible correlation
matrix can be obtained) such a method is very simple and
allows an almost equally simple generalization to the ternary
case.

For antipodal vectors generation, i.e., a P t�1,�1un, a
random Gaussian vector g is generated with zero mean, unit
variance and a correlation matrix G computed as

G � sin

�
π

2

nA
trpAq



(18)

where sin is applied componentwise. Then, the antipodal vec-
tor is simply obtained by computing the sign of the elements
of g.

To generate a ternary vector a, the procedure starts again
from a Gaussian random vector g whose entries have zero
mean, unit variances and a new correlation matrix G properly
designed to produce a � pa0, . . . , an�1qJ componentwise as
aj � τ t

θj
pgjq where

τ t
θj pgjq �

$'&
'%
�1 if gj ¤ �θj
0 if �θj   gj ¤ θj

�1 if θj   gj

(19)
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is a three level quantization function whose symmetric thresh-
old θj can be chosen differently for each entry of a. The
calculations generalizing (18) to go from the desired A to
G and θ � pθ0, . . . θn�1qJ for the ternary case is reported in
subsection VIII-B of the Appendix.

B. Structured zeroing
In this case, the implementation seeks further optimization

by requiring that the positions of the non-zeros in A satisfy
additional constraints that help reducing resources dedicated
to sampling and accumulation.

The most obvious structured zeroing is puncturing, that
zeroes whole columns, though other policies may be devised
depending on the features of the underlying implementation.

In any case, once the positions of the non-zeros in A are
given, one also knows the support Γp � tq|Ap,q � 0u of the
p-th row for p � 0, . . . ,m� 1.

Hence, we may proceed row-by-row and solve T-RLT with
ηj � 0 for any j R Γp. Constraints on the other diagonal
entries can be put depending whether further zeros are allowed
or not. If no other zeros are admitted further to what is set
either by puncturing or throttling, then we may set ηj � 1 for
j P Γp.

Once average constraints are decided, T-RLT gives us an
optimal correlation matrix A whose submatrix Ā collecting
rows and columns with indexes in Γp regulates the entries in
the random subvector ā containing the free components of Ap.

V. RAKENESS-BASED BINARY CS
An even more aggressive approach to resource saving is to

consider only binary projections, i.e., assume a P t0, 1un. As
an example, if A is sparse and binary, one needs to store only
the positions of the non-null entries instead of their positions
and values thus potentially halving the memory footprint.

In the binary case the rakeness maximization problem can
still be formulated if the bounds on the elements of A are
suitably adjusted to cut out of the feasibility space some
matrices that could not be achieved by a binary process. In
fact, though we have Aj,k ¤ mintηj , ηku the lower bound on
the same quantity is different.

More specifically, for binary variables Aj,j � Erajs �
Prtaj � 1u and Aj,k � Erajaks � Prtaj � 1 ^ ak � 1u.
Yet, the probability that the two binary random variables
aj and ak are simultaneously non-zero cannot be less than
Prtaj � 1u�Prtak � 1u�1. Hence, Aj,k ¥ pηj � ηk � 1q�
where p�q� � maxt0, �u.

The optimization problems addressing the Binary Rakeness-
Localization Tradeoff (B-RLT) is therefore

max
A

tr pAX q
s.t. (5) � (16)

s.t. pηj � ηk � 1q� ¤ Aj,k ¤ ηj j � k j, k P N (20)

where (20) replaces the ternary constraint (17).
The optimization problem B-RLT can be solved, either by

general convex programming tool or with the same projected-
gradient approach used for T-RLT that is specialized in

subsection VIII-C of the Appendix. This yields the optimal
correlation matrix A that should regulate the binary sensing
waveforms.

In the two following Subsections we detail how such binary
sensing vectors with the desired correlation matrix A can be
generated also considering the architectural options anticipated
in the previous Sections.

A. Unstructured zeroing

Binary random vectors with a prescribed correlation matrix
can be generated following the same path used for the ternary
case by defining

τb
θj pgjq �

#
0 if gj   θj

1 if gj ¥ θj
(21)

and by setting aj � τB
θj
pgjq starting from a proper choice

of the thresholds θ � pθ0, . . . , θn�1qJ and of the correlation
matrix G regulating the Gaussian, unit-variance vector g �
pg0, . . . , gn�1qJ.

How to go from the desired A to G and θ is reported in
subsection VIII-D of the Appendix.

B. Structured zeroing

Structured zeroing can be applied in the binary case only if
components that may be non-zero still have a probability to
be null. Otherwise no randomness survives the enforcement
of the structure and there is no statistics to optimize.

Beyond that, given the above procedure to generate binary
vectors with a prescribed correlation, the steps taken in the
case of structured zeroing of antipodal matrices can be re-
peated here to obtain optimized rows for A.

VI. EXAMPLES

The design flow described in Sections IV and V, concretizes
in a set of MATLAB c© functions available online1 along with few
demo examples. The two functions TRak and BRak solve,
respectively, T-RLT and B-RLT problems, and take as input
the signal correlation X , the average constraints ηj for j �
0, . . . , n�1, and the normalized localization constraint `. They
give the optimal correlation matrix A for ternary (TRak) or
binary (BRak) sensing waveform. In both functions, a zero
in the j-th position may be forced by setting ηj � 0 thus
allowing structured zeroing. Conversely, a non-zero may be
forced by setting ηj � 1.

The two functions TGau and BGau take as input the desired
correlation matrix A. They use the methods in, respectively,
Subsection IV-A and Subsection V-A to yield the correlation
G and threshold vector θ that allow to generate ternary or
binary vectors with a correlation as close as possible to A by
quantizing Gaussian vectors.

Such functions allow us to explore different options as far
as the computation of projections is concerned, thus sampling
the CR, AT and PR design space.

1http://cs.signalprocessing.it/download.html
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Fig. 3. ARSNR as a function of CR for different choices of projections and target signals. Plots (a),(b), and (c) are for LP target signals while plots (d),(e),
and (f) are for BP target signals. Note that in all plots the solid black track without any markers account for the antipodal projection rakeness-based CS, while
the dashed black track without any markers correspond to antipodal i.i.d. projection as for the standard CS case.

For throttling, we examine two options. The first is free
throttling (labelled FT), in which each column may have a
different number of non-zeros entries and the global parameter
AT is a true average of what happens over the whole matrix.
The second is strict throttling (labelled ST), in which we
ensure that the number of non-zeros in each column is the
same, and AT characterizes non only the average behavior
but also the behavior of each column. Clearly, free throttling
amounts to unstructured zeroing of the projection matrix while
strict throttling translates into a structured zeroing of the
projection matrix.

The reconstruction performance of each configuration is
assessed by Montecarlo simulation. Once the optimal statistic
for the projection waveform is established, 100 instances of
the matrix A are drawn and each of them is used to encode
a random instance of the target signal class. For all examples
(1) is solved by SPGL1 [35] with ε adapted to an intrinsic
signal to noise ratio (ISNR) equal to 40 dB.

Once (1) is solved, then reconstruction quality is assessed
as the ARSNR, i.e., the empirical average over the Montecarlo
trials of the reconstruction signal-to-noise ratio }ξ}2{}ξ� ξ̂}2.

A. Synthetic low-pass and band-pass sparse signals

A synthetic localized vector that is κ-sparse with respect to
the base S is generated starting from an n-dimensional random
Gaussian vector x1 with zero mean and correlation matrix X 1

with n � 128. Then we compute S�1x1 and keep in ξ the
κ � 12 largest modulus entries of the result, setting all the
others to zero. Finally, we set x � Sξ � ν, where the noise
vector ν is made of independent, zero mean Gaussian entries

whose variance is set to have a known intrinsic signal-to-noise
ratio ISNR=40 dB ensuring reproducibility and uniform trial
conditions.

If the eigenvalues of X 1 are not identical, x1 is local-
ized and this property is approximately propagated through
sparsification since only the n � κ smallest components of
S�1x1 are discarded. Empirical evidence suggests that a good
match between the localization set by X 1 and the one of x is
maintained for sparsity ratios n{κ up to 15.

Results are reported in Figure 3 where subfigures (a), (b),
and (c) deal with the LP signals while (d), (e), and (f) deal with
BP signals. All figures plot ARSNR against CR for different
values of AT and PR.

In all plots in Figure 3, the solid black track without any
markers (RAK) accounts for the performance of full, rakeness-
based, antipodal projections (i.e., with a correlation matrix that
is the solution of T-RLT with ηj � 1 for j � 0, . . . , n�1). This
is the reference case in which no additional degree of freedom
like zeroing is introduced but no saving is sought. The dashed
black track without any markers (RND) corresponds to what
would be the standard choice for classical CS sensing, i.e.,
projection by means of a matrix of independent and uniformly
distributed antipodal symbols.

Figures 3-(a)(c) show what happens for ternary rakeness-
based projections (solid tracks labelled RAK) when AT
changes and throttling is either free (FT) or it is strict (ST).

As a comparison and to assess the effectiveness of statistical
adaptation in each configuration, the purely random case is
also modified by introducing zeros with the same strategies
used for the rakeness-based case. The corresponding plots are
in dashed lines, are labelled RND and feature the same markers
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TABLE II
THE SAVING FIGURES OF THE SAMPLING, PROJECTION, AND DISPATCHING STAGES WHEN DIFFERENT STRATEGIES ARE EMPLOYED TO ACHIEVE A

TARGET ARSNR OF 34 dB FOR LP AND BP SIGNALS. LABELLED CONFIGURATIONS ARE RECALLED IN THE TEXT.

Antipodal Ternary: Puncturing Ternary: Throttling Ternary: Punct. + Throt. Binary

RND RAK RAK+P RAK+FT RAK+ST RAK+P+FT RAK+P+ST RAK+FT RAK+P+FT

LP signals
PR 1 1 1.11 1.25 1.43 1.67 A 1 1 1 1 1.1 1.43 1.1 1.43 C 1 1 1.1 1.1 1.25 1.25 D

PR�AT 0.021 0.033 0.035 0.036 0.038 0.035 0.25 0.5 0.25 0.5 0.37 0.476 0.37 0.476 0.25 0.5 0.275 0.55 0.312 0.625
CR 2.7 4.29 4 3.76 3.37 2.66 4.12 3.65 3.2 2.98 4 3.37 2.98 2.72 3.76 3.88 3.72 3.96 3.54 3.64

BP signals
PR 1 1 1.11 1.25 1.43 1.67 B 1 1 1 1 1.1 1.43 1.1 1.43 1 1 1.1 1.1 1.25 1.25
PR�AT 0.021 0.038 0.04 0.036 0.023 n/a 0.25 0.5 0.25 0.5 0.37 n/a 0.37 n/a 0.25 0.5 0.275 0.55 0.312 0.625
CR 2.66 4.92 4.57 3.76 2.06 n/a 4.74 4.26 3.55 3.05 4.27 n/a 2.84 n/a 3.55 3.65 3.21 3.56 2.44 2.48

as the RAK tracks to distinguish different options.
The gap between the random cases and the rakeness-

based cases shows that statistical adaptation has non-negligible
advantages. The gains are maintained even when AT increases,
though strict throttling causes a larger performance loss es-
pecially at extreme throttling values (note that AT � 0.25
implies that only 4 entries are non-zero in each column of A).

Figures 3-(b)(e) focus on ternary rakeness-based design and
consider both throttling (either free FT or strict ST) and punc-
turing (P). Though performance remains consistently better
than classical purely random sensing it is clear that increasing
the number of zeros (i.e., adding puncturing to throttling)
causes an increasing loss that is larger when throttling is strict.

Figures 3-(c)(f) focus on binary sensing. As in Figures
3-(a)(b) both rakeness-based and purely random cases are
reported. Rakeness-based design consistently yields gains,
though how much the maximum performance is affected by
savings depend on the signal.

Note that the availability of only two symbols yields, in
general, slightly poorer performance with respect to the ternary
case.

Table II shows how the machinery presented above can be
used to address the problem of saving on operating costs along
different directions. All figures refer to an ARSNR of 34 dB
(6 dB less than the ISNR, roughly corresponding to the loss
of one bit per sample in a standard acquisition scheme).

There are two groups of rows, one for LP signals and one
for BP signals. In each group there is a line for each stage in
the sensing chain reporting the corresponding figure of saving,
namely, PR for the sensing stage, AT �PR for the projection
stage, and CR for the transfer stage. Both LP and BP target
signals are considered. Note that BP signals are more critical
since in some of the configurations the target ARSNR cannot
be reached (marked as n/a in Table II).

The first two columns report the saving figures for the
two reference cases of full rakeness-based projections and
full purely random projections. Other columns refer only
to rakeness-based design that always dominates the purely
random approach.

The second group of columns deals with the effect of
puncturing alone. Columns are listed for increasing values PR
that correspond to skipping, respectively, 10% (PR � 1.11),

20% (PR � 1.25), 30% (PR � 1.43), and 40% (PR � 1.67)
of the samples while PR � 1 means no puncturing. Note
that there is a clear trade-off between PR and CR so that the
optimum design point depends, in this case, on the relative
operating cost of the sampling and transfer stages. In the
configuration labeled as A , rakeness-based design allows to
discard 40% of the samples while still achieving a CR almost
equivalent to what can be obtained by classical random ternary
acquisition.

The third group of columns deals with throttling alone,
either free or strict. Both can be increased up to 0.5 (meaning
only 2 non-zero entries per column) but free throttling yields
a larger CR. In general, there is a trade-off between throttling
and compression. In the case labeled as B CR � 4.74 is
obtained by only 1{AT � 4 signed sums per incoming sample.

The fourth group of columns deals with joint puncturing and
throttling, either free or strict. A global trade-off is present
since the increase in any of the saving figures implies a
reduction in the others. Yet, as shown by the case labeled
C , compression ratios close to 3 can be obtained by skip-

ping 30% of the samples (PR � 1.43) and performing not
more than 3 signed sums for each of the remaining samples
(AT � 0.476{1.43 � 0.333).

The fifth group of columns deals with binary projections
with either free throttling or puncturing and free-throttling
(strict throttling does not apply to the binary case).

Note that binary projections do not exhibit the same trade
off between the number of zeros and CR, actually they seem
more tolerant to zeroing if compared to ternary projections
though not always offering the same absolute level of perfor-
mance.

Yet, in the case labelled as D , rakeness-based design allows
to discard 20% of the samples (PR � 1.25) and treat each of
the others with only two sums (AT � 0.625{125 � 0.5) to
still achieve CR � 3.64.

B. Comparison with other methods
In [19] the authors proposed both a method to construct bi-

nary matrices A with promising properties and a reconstruction
mechanism tuned to ECG acquisition.

The matrix A is built by placing a certain number d of
non-zeros in each column so that the mutual coherence of
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED APPROACH AND

[19] IN THE CONDITIONS OF ITS SECTION III

m d CR � n{m AT � 1{d
average PRD

RAK is better[19] RAK

96 4 5.33 0.25 13.3% 10.7% 85%

128 5 4 0.2 8.85% 7.42% 80%

160 6 3.2 0.167 6.37% 5.81% 75%

256 8 2 0.125 3.40% 3.01% 83%

256 12 2 0.083 3.44% 3.09% 81%

the columns is kept as low as possible resulting in Minimal
Mutual Coherence (MMC).

The reconstruction algorithm substitutes the general spar-
sity criterion with a priori knowledge on the decay of the
coefficients of typical ECG signals when expressed on a
Daubechies-6 wavelet basis. The resulting algorithm is indi-
cated as Weighted `1 Minimization (WLM).

The overall approach is completely different from what
we propose here since A is given good but general purpose
properties, while adaptation to the signal is exploited at the
reconstruction and is strictly linked to ECG-like signals.

Yet, performance comparison is possible and we refer to
the setting of [19, Section III]. In particular, we consider the
MIT-BIH arrhythmia database [40] and acquire those signals
by means of binary matrices with n � 512 and either m � 96
with d � 4, or m � 128 with d � 5, or m � 160 with d � 6,
or m � 256 with d � 8, or m � 256 with d � 12. For
each configuration, MMC matrices are constructed by means
of [19, Algorithm 1] 2 and Rakeness-based matrices are built as
in subsection V.A with CR � n{m, AT � 1{d and ηj � d{m
for j � 0, . . . , n�1, sieving is used to ensure that the resulting
matrix has exactly nd non-zeros.

Comparisons are made encoding randomly selected win-
dows from the first tracks of each pair in the database
with a MMC matrix and with a rakeness-based matrix, and
decoding the two resulting measurement vectors with WLM.
Performance is measured by Percentage Root-mean-square
Difference (PRD) defined as 100� }ξ � ξ̂}{}ξ}.

Table III shows the result of such a comparison when 1000
trials are made for each configuration. The average PRD is
reported for the two encoding strategies along with percentage
of the times in which rakeness-based sensing outperforms
MMC sensing. It is evident that, though performance tend to
saturate to the same level, rakeness-based design is always
convenient with respect to minimum coherence design.

As a second example, in [42] the authors apply their
reconstruction algorithm called Block-Sparse Bayesian Learn-
ing (BSBL) to the difficult problem of acquiring a signal
coming from ECG sensor in which mothers’ and fetal tracks
superimpose, so that the latter can be retrieved by Independent

2The algorithm produces deterministic and highly structured matrices
yielding poor performance. Though not declared in [19] best performance is
obtained by shuffling columns to disrupt the unwanted structure while keeping
the low value of mutual coherence.

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED APPROACH AND

[42] IN THE CONDITIONS OF ITS SECTION III

m d CR � n{m AT � 1{d
average PCC

RAK is better[42] RAK

256 12 2 0.083 0.876 0.936 96%

205 10 2.5 0.1 0.793 0.858 97%

Component Analysis (ICA). To compare that method with the
one propose here, we consider the setting in [42, sub-Section
III.B], that is the most challenging one.

The ground truth is the fetal ECG extracted by ICA directly
from the non-compressed track.

We consider both matrices with d non-zeros per column
whose positions are drawn at random as in [42], and rakeness-
based matrices built as in the previous case with AT � 1{d.
Signal windows of length n � 512 are encoded by means of
either m � 256 with d � 12, or m � 205 with d � 10 (higher
compression ratios do not allow a high quality recovery of the
fetal track). The resulting measurement vectors are decoded by
means of BSBL, and ICA is applied on the resulting tracks to
find the fetal ECG. The quality of the acquisition is quantified
by the Pearson’s Correlation Coefficient (PCC) between the
ground truth and the extracted fetal ECG.

Table IV shows the result of such a comparison when
100 trials are made for each configuration. The average PCC
is reported for the two encoding strategies along with the
percentage of the times in which rakeness-based sensing
outperforms random sensing. Rakeness-based design is always
convenient.

VII. CONCLUSION

Early-digital compressed sensing can be used to limit the
resources needed by the acquisition and dispatch of sensor
information in nodes that aim at being autonomous.

Along this direction, we develop a systematic procedure
employing the rakeness concept and producing sparse sensing
matrices whose non-zero elements are only �1 and with
various structures addressing the resources needed by different
stages in the signal chain from the ADC to the transmitter. The
approach is extremely effective.

As an example, while the adoption of a rakeness-based de-
sign reduces the number of bits to be finally stored/transmitted
to 21% of the conventional number, throttling reduces the
amount of computation so that only 4 signed sums have to
be performed for each incoming sample (see the case labeled
B in Table II).

As a further example, puncturing can be called into play
to allow the switch-off of the ADC and its analog pre-
processing for entire sample times. Again, the use of rakeness-
based design allows to keep reconstruction performance almost
unaltered when, for example, up to 30% of the signal samples
are simply skipped (see the case labeled C in Table II).

Beyond these cases, the overall design flow has been tested
widely both on synthetic signals and on real-world ECG sig-
nals coming both from healthy and from pathological patients
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yielding non-negligible improvements over both conventional
general purpose techniques and over state-of-the-art methods
specialized to ECG acquisition.

Besides this empirical evidence, future work will have to
address the effect of our method on mutual coherence and,
especially, on the mutual entropy between the signal x and the
measurement y to formally quantify the amount of additional
information that rakeness-based design is able to put into
measurements.

VIII. APPENDIX

A. Solving T-RLT

To normalize the form of the T-RLT problem define L ��°n�1
j�0 ηj

	2 �
`Lx � 1

n

�
and rewrite the rakeness problem as

max
A

xA,X y
s.t. (5) � (17)

s.t. }A}2 ¤ L (22)

where we have recognized that for any two n�n real matrices
X and Y , trpXY q � xX,Y y is a scalar product with a
corresponding norm }X} �axX,Xy �atrpX2q, and (7) is
translated into (22) by means of (3) and the definition of L.

Then, define few convex subsets of the space of n � n
matrices, namely CPSD containing matrices satisfying (5) and
(6), CAve containing matrices satisfying (5) as well as (16),
CTer containing matrices satisfying (5) and (17), and CLoc

containing matrices satisfying (5) and (22).
With this, the rakeness problem further translates into

max
A

xA,X y
s.t. A P CPSD XCAve XCTer XCLoc

that is a classical case of a bounded-gradient objective function
(∇AxA,X y � X ) subject to convex constraint, i.e., something
that can be effectively tackled by a projected-gradient-ascent
[43].

To specialize such a method to our purpose indicate with
ΠC the projection operator on a set of matrices C, i.e., the
operator that takes any n � n matrix X and maps it into
the matrix Y � ΠCpXq such that Y P C and }X � Y } is
minimum.

Then start from Ap0q � diagpη0, . . . , ηn�1q and compute
iteratively

Apt�1q � ΠCPSDXCAveXCTerXCLoc

�
Aptq � δtX

	
(23)

for suitably non-increasing scalars δ0 ¥ δ1 ¥ . . . . It can be
proved that the sequence of Aptq converges to the optimal
solution as tÑ8.

The projection operator in (23) can be obtained by the
alternating projection method [44], [45] using the individual
projection operators on CPSD, CAve XCTer, and CLoc.

If X can be spectrally decomposed as X � EΛEJ, where
E is the matrix of orthornormal eigenvectors and Λ is the
diagonal matrix of the corresponding eigenvalues, then

ΠCPSDpXq � EmaxtΛ, 0uEJ

Moreover, if

Amax
j,k �

#
ηj if j � k

mintηj , ηku if j � k

and

Amin
j,k �

#
ηj if j � k

�mintηj , ηku if j � k

then

ΠCAveXCTer
pXq � maxtAmin,mintAmax, Xuu

Additionally, due to the spherical nature of (22), it is easy
to see that

ΠCLoc
pXq � X min

#
1,

?
L

}X}

+

All this allows an extremely efficient iteration of (23) to
rapidly approximate A � limtÑ8Aptq.

B. Gaussian-based generation of ternary vectors with pre-
scribed correlation

From the fact that each gj is a unit-variance Gaussian we
have that Prt|gj | ¥ θju � erfc

�
θj?

2

	
and from (19) we get

Prt|gj | ¥ θju � Prta2
j � 1u � Aj,j . Hence we must set

θj �
?

2erfc�1pAj,jq (24)

Then, consider that if the correlation γ between two unit-
variance jointly Gaussian random variable α and β is known,
then their joint probability density is

fpα, β, γq � 1

2π
a

1� γ2
e
�α2

�β2�2γαβ

2p1�γ2q

so that the correlation between τT
θ1 pαq and τT

θ2pβq, is

ErτT
θ1 pαqτT

θ2pβqs �

� 2

» 8
θ1

» 8
θ2
fpα, β, γqdαdβ � 2

» 8
θ1

» �θ2
�8

fpα, β, γqdαdβ

� 1?
2π

» 8
θ2
e�

β2

2 erfc

�
θ1 � γβa
2p1� γ2q

�
dβ

� 1?
2π

» �θ2
�8

e�
β2

2 erfc

�
θ1 � γβa
2p1� γ2q

�
dβ (25)

where we have exploited the fact that fp�α,�β, γq �
fpα, β, γq.

Pairing (25) and (24) we obtain a function Tη1,η2 such that
Aj,k � TAj,j ,Ak,k pGj,kq.
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Such a function cannot be given a fully analytical ex-
pression but has some recognizable properties. In particu-
lar, Tη1,η2pγq � Tη2,η1pγq � �Tη1,η2p�γq is continuous
and monotonically increasing in γ, and can be extended
by continuity in the domain r�1, 1s with Tη1,η2p�1q �
�mintη1, η2u. Moreover, coherently with [34], we have
T1,1pγq � 2

π sin�1pγq.
The range of Tη1,η2 is compatible with that of a correlation

between two ternary variables. Hence, any desired matrix A
can be transformed into a corresponding T�1pAq defined
componentwise as pT�1pAqqj,k � T�1

Aj,j ,Ak,kpAj,kq, where
T�1
Aj,j ,Aj,j is the inverse of TAj,j ,Ak,k .
If we indicate with COne the set of n � n real symmetric

matrices whose diagonal entries are equal to 1, we have that
by definition T�1pAq P COne.

Yet, the correlation matrix of a jointly-Gaussian, zero-
mean and unit-variance vector belongs both to COne and to
CPSD. To cope with both requirements it is sensible to set
G � ΠCPSDXCOnepT�1pAqq, use it to generate the jointly
Gaussian vector g, and obtain aj � τT

θj
pgjq.

Note that, further to the above described ΠCPSD
, if Y �

ΠCOne
pXq then Yj,k � Xj,k for j � k and Yj,j � 1 for

j � 0, . . . , n � 1. Hence, ΠCPSDXCOne can be obtained by
alternating projection methods [44], [45], [46] though even
faster Newton-based methods exist [47].

C. Solving B-RLT

To adjust the above approach to the binary case define CBin

as the subset of the n � n real matrices containing matrices
satisfying (5) and (20) and note that

ΠCAveXCBinpXq � maxtAmin1,mintAmax, Xuu
with

Amin
j,k

1 �
#
ηj if j � k

maxt0, ηj � ηk � 1u if j � k

D. Gaussian-based generation of binary vectors with pre-
scribed correlation

In this case, given (21), we must set

θj �
?

2erfc�1p2Aj,jq (26)

and observe that if two jointly-Gaussian zero-mean and unit-
variance random variables α and β have correlation γ then

ErτB
θ1 pαqτB

θ2pβqs �
» 8
θ1

» 8
θ2
fpα, β, γqdαdβ �

� 1

2
?

2π

» 8
θ2
e�

β2

2 erfc

�
θ1 � γβa
2p1� γ2q

�
dβ (27)

Following the same path that we used for ternary vectors,
we obtain a function Bη1,η2 that transforms the correlation
of jointly-Gaussian random variable in the correlation of
the corresponding binarized random variable with assigned
averages η1 and η2.

This function has the same favorable properties as the
function Tη1,η2 of the ternary case. In particular, Bη1,η2pγq �
Bη2,η1pγq is continuous and monotonically increasing in γ,
and can be extended by continuity in the domain r�1, 1s
with Bη1,η2p�1q � maxt0, η1 � η2 � 1u and Bη1,η2p1q �
mintη1, η2u.

Hence, any desired matrix A can be transformed
into B�1pAq defined component-wise as pB�1pAqqj,k �
B�1
Aj,j ,Ak,kpAj,kq, where B�1

η1,η2 is the inverse of Bη1,η2 .
By setting G � ΠCPSDXCOne

pB�1pAqq, we may generate
the jointly Gaussian vector g according to such a correlation
matrix, and obtain aj � τB

θj
pgjq.
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