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Energy Analysis of Decoders for Rakeness-based
Compressed Sensing of ECG signals

Fabio Pareschi, Member, IEEE, Mauro Mangia, Member, IEEE, Daniele Bortolotti,
Andrea Bartolini, Member, IEEE, Luca Benini, Fellow, IEEE, Riccardo Rovatti, Fellow, IEEE,

Gianluca Setti, Fellow, IEEE

Abstract—In recent years, Compressed Sensing (CS) has
proved to be effective in lowering the power consumption of
sensing nodes in biomedical signal processing devices. This is due
to the fact the CS is capable of reducing the amount of data to
be transmitted to ensure correct reconstruction of the acquired
waveforms.Rakeness-based CS has been introduced to further
reduce the amount of transmitted data by exploiting the uneven
distribution to the sensed signal energy. Yet, so far no thorough
analysis exists on the impact of its adoption on CS decoder
performance. The latter point is of great importance, since
body-area sensor network architectures may include intermediate
gateway nodes that receive and reconstruct signals to provide
local services before relaying data to a remote server. In this
paper we fill this gap by showing that rakeness-based design also
improves reconstruction performance. We quantify these findings
in the case of ECG signals and when a variety of reconstruction
algorithms are used ether in a low-power microcontroller or a
heterogeneous mobile computing platform.

I. INTRODUCTION

PERSONAL biometric monitoring systems is foreseen to
be one of the key technologies which will lead to a major

breakthrough in improving life quality in coming years. The
applications of this technology range from continuous patient
monitoring or elders caring, to athletes’ training improvement,
to stress detection during safety critical tasks. In all cases what
is needed is a wireless body sensor network (WBSN), which
consists of a set of low-power miniaturized bio-sensing nodes
connected to a gateway collecting the signals and processing
them [1], [2]. Commonly, the gateway is assumed to be
a remote powerful server or a desktop machine. However,
with the increasing computing capabilities present in today’s
smartphones and wearable devices (watches, goggles, etc.),
WBSN architectures may entail local gateways that provide a
first level of processing with a possible immediate feedback
to the user.
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Fig. 1. CS in the link between a sensing node and the local gateway.

As a result, the reception/decoding stages must be accounted
for in addition to the encoding/transmission ones in designing
the system. This becomes more prominent when the Com-
pressed Sensing (CS) approach is used, as in the typical
WBSN scenario of Fig. 1 that highlights the link between a
sensing node and the local gateway. In fact, from a power
consumption viewpoint, CS is an intrinsically asymmetric
method that can dramatically reduce the resources at the
sensing node while potentially making reconstruction at the
local gateway more expensive [3], [4].

Mathematically, CS is a dimensionality reduction sensing
technique that uses a linear, usually random, transformation
to map vectors of Nyquist rate samples into smaller vectors
of measurements that are enough to reconstruct the original
signal. The transmitter (the most power hungry stage in the
sensing node) benefits from treating a reduced amount of
data, while the amount of additional processing (a linear
transformation) is small and decreases as the compression ratio
increases [5]. At the receiver side, reconstruction is achieved
by adopting non-linear, typically iterative, procedures with a
computational complexity much higher than the one needed
at the encoding stage.

Recently, a CS system improvement has been proposed
exploiting the common property of real-world signals to be
non-white, i.e., of not distributing their energy uniformly
in the signal space [6]. CS can, in fact, be optimized by
adapting the statistics of the random linear mapping to such
a distribution. The driving concept here is rakeness, i.e., the
ability of the linear transformation to collect the energy of the
signal to acquire. With respect to this, the concept resembles
what happens in rake receivers in (chaos-based) DS-CDMA
communication, where spreading sequences, the corresponding
waveforms, and rake receiver taps, are jointly selected to
collect as much energy as possible at the received side [7]
[8]. As such, by adopting a rakeness-based design flow, one
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increases the amount of information that each measurement
carries about the original signal, thus reducing (in some cases
drastically) the number of measurements to be transmitted and
therefore the power required by the transmitter.

Several works have appeared in the recent literature propos-
ing low-power CS encoders with particular interest in biomed-
ical applications [9]. Commonly, Electroencephalographic
(EEG) [10], [11] or Electrocardiographic (ECG) signals [12],
[13] are considered. However, a very limited number of works
can be found proposing energy considerations on the decoder.
In [14] a reconstruction algorithm designed ad-hoc for ECG
signals has been optimized and hard-coded in a properly
designed 90 nm application-specific circuit.

In both [15] and [16] few considerations on decoder trade-
offs are presented for some common reconstruction algorithms
when the rakeness approach is used. In particular, [15] focuses
on the impact of the rakeness-based CS for three greedy
algorithms and for three convex optimization based algorithms.
In addition, authors evaluate the power consumption of one
of the tested greedy algorithms, namely FOCUSS, in different
design limit configurations. The main topic discussed in [16] is
the impact of the time window duration on the computational
cost of some greedy decoding algorithms for certain target
qualities of services. In [16] an analysis of the power cost
and conditions for satisfying the real-time constraints for
OMP and FOCUSS is also provided, thus confirming how the
window length affects the decoder performance. Both [15] and
[16] use a reference mobile platform for power consumption
estimation.

This paper is an extension of [15] and [16] and proposes
an analysis of the energy necessary for decoding ECG sig-
nals in a CS system assuming a general-purpose computing
architecture. Differently from both our previous works, we
consider here only iterative decoding approaches with low
computational requirements, since this represents the most
natural choice when energy or computational power at the
decoder side is an issue. In particular, we investigate the power
profile of each decoder to obtain power models that pave the
way for new trade-offs. In detail, we compare three algorithms,
namely OMP [17], CoSaMP [18] and IHT [19] where we
develop:
• develop a complete trade-off analysis with respect to

number of measurements, number of iterations, stan-
dard or rakeness-based CS approach and reconstruction
quality. Such analysis could be used as design flow for
different biosignals;

• introduce an innovative decoding approach merging low-
complexity requirements and prior information on the
acquired class of signals properly specialized for ECGs;

• define power models with respect to number of measure-
ments, number of iterations, standard or rakeness-based
CS approach and reconstruction quality for a low-cost
ARM architecture (Cortex-M4F);

• validate the proposed power models on a high-end het-
erogeneous multicore big/LITTLE platform designed for
mobile applications.

By combining data on reconstruction quality and energy re-
quirement we conclude that the choice of OMP is the optimum

trade-off between quality and energy, and that the rakeness
approach is beneficial not only at the encoder but also at the
decoder, allowing to reconstruct a signal with a chosen target
quality by using a lower amount of energy.

The rest of the paper is organized as follows. Section II
quickly recaps the CS mathematical background including
details on the rakeness approach and on some decoding
algorithms. Section III illustrates both the standard and the
rakeness approaches impact when synthetic ECGs and the
considered algorithms are used. In Section IV, real ECG
signals and more advanced decoding approaches are taken into
account. Power models in terms of energy requirements when
decoding algorithms are executed on two different platforms
are presented in Section V. Finally, we draw the conclusion.

II. BASICS OF COMPRESSED SENSING

In this paper CS is considered in its discrete-time formula-
tion. As such, signals are represented by samples at Nyquist-
rate 1/T . CS theory is developed referring to a chunk of n
consecutive samples, i.e., over a time window of length nT of
the original continuous time signal. Longer waveforms need to
be split into chunks of n samples defined over different time
windows. Without loss of generality, we consider 0 ≤ t ≤ nT ,
and the input signal x = (x0, . . . , xn−1)> ∈ Rn, where >

denotes vector transpose.
The key assumption behind the application of the CS

paradigm is that x is sparse. Mathematically, x is κ-sparse
if given a proper n-dimensional sparsity basis Ψ ∈ Rn×n,
then x = Ψα where α ∈ Rn have at most κ � n non-zero
components. The κ non-zero components of α are refereed to
the signal support. As one may expect, CS can also be applied
when κ� n components of α are significant, while the other
are negligible, i.e., when the sparsity condition only roughly
holds, as for many classes of real-world signals. In this case
we will indicate the signal x as compressible.

It is clear that for both sparse and compressible signals,
the amount of information carried by x is better estimated
by κ than by n. Fundamental results [3] show that the main
information content of x can be captured with of m < n
measurements achieved by a linear projection of x by means
of a sensing matrix A ∈ Rm×n, i.e.,

y = Ax+ ν = Bα+ ν (1)

where the m-dimensional vector y = (y0, . . . , ym−1)> ∈ Rm
is introduced to collect all m scalar measurements and B =
AΨ ∈ Rm×n is the operator that maps the collected mea-
surements with the sparse representation. The term ν ∈ Rm
is used to take into account all possible nonidealities of this
process such as noise or quantization.

It is possible to show that, despite the fact that A (and thus
B) is a dimensionality reduction operator, α (and thus x) can
be fully recovered from y when x is sparse (and of course
approximately recovered with very high accurancy when x is
compressible) [3], [4]. Roughly speaking, the rationale behind
this is that generic, κ-sparse vectors are mapped almost isomet-
rically [20] into the measurements; if this is true, the recovery
of the original signal x from y is possible by enforcing the a
priori knowledge that its representation is sparse.
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In detail, x is reconstructed as x̂ = Ψα̂, where α̂ is
the sparsest coefficient vector subject to the constraint that
the corresponding measurements are as close as possible to
the observed ones. In other words, the reconstruction task is
equivalent to the solution of a linear ill-posed problem, and CS
theory suggests to consider the sparsest vector α mapped into y
by the operator B with a proper tolerance due to measurements
nonidealities [3]. Sparsity is generally promoted by the `1
norm instead of the computationally intractable count of non-
zero components given by `0 norm. Such approach is called
basis pursuit with denoising (BPDn) and solves

min
α
‖α‖1 s.t. ‖Bα− y‖2 ≤ ε (2)

where ‖ · ‖p indicates the usual `p norm and ε is tuned on the
characteristics of the disturbance term ν.

One of the most interesting properties of CS is that re-
construction is guaranteed when A is composed by instances
of Gaussian (or Sub-Gaussian) random variables when a
minimum number of measurement is ensured, i.e., m =
O(κ log n).

Intriguingly, A can also be made only of antipodal symbols,
i.e., A ∈ {−1,+1}m×n. This constraint is of paramount
importance as it allows hardware-friendly architectures, where
expensive and cumbersome full multipliers are not required
anymore, and represents a key point in the design of effective
and parsimonious CS stages for biomedical sensing nodes
[13]. For this reason, in this manuscript we assume that the
projection matrix A is antipodal.

A. Improving CS Performance: The Rakeness Approach

CS performance depends on m: the higher m, the larger
the amount of information available, the easier the task of
retrieving x from y. Yet, m is also related to the compression
ratio CR = n/m and thus to the saving (in terms of energy,
bandwidth, etc.) that one may achieve when considering
the CS system performing the compression/encoding stage,
i.e., computing and transmitting the measurements vector y.
According to this point of view, the minimization of m (given
a target reconstruction quality) is a key factor.

This is what a rakeness-based design [6] does: it improves
sensing performance by generating each row of A indepen-
dently of each other, but with entries whose correlation is
adapted to the second-order statistic of the input signal x with
the aim of increasing the expected energy of the generic j-th
entry of y.

In other word, the proposed approach uses a set of m
rows aj , j = 1 . . .m of A that increases the average energy
collected (“raked”) by y. Such property is measured by the
rakeness ρ defined as

ρ(a, x) = Ea,x

[(
a>x

)2]
= tr(CaCx)

where tr(·) stands for matrix trace while Ca = E
[
aa>

]
and

Cx = E
[
xx>

]
are two n × n correlation matrices for the

generic row of the sensing matrix and for the input signal.
Moreover, Ea,x stands for the expectations with respect to
both vectors.

The approach, introduced and described in [6], maximizes
ρ preserving at same time the isometric property of the
projection under the assumption that x is not only sparse
but also localized, i.e. its energy content is not uniformly
distributed across the whole signal domain. This case is the
most common one when dealing with real world signals [13].
The maximization of ρ has as output the correlation matrix Ca

that identifies the stochastic process to be used for generating
sensing vectors aj .

Interestingly, the rakeness-based design is compatible with
the hardware-friendly constraint of having A made only of
antipodal symbols [21]1.

Many different approaches are possible to generate antipo-
dal sequences with a proper correlation profile. The simplest
one relies on thresholding of Gaussian random vectors [22],
[23]. In fact, given a n × n matrix CG, used to generate m
Gaussian vectors with zero mean and correlation matrix CG,
and defined as

CG = sin
(π

2
Ca
)

where the equality is meant componentwise, then the aj are
simply obtained by computing the sign of the elements of
these Gaussian vectors. Though not completely general2 this
approach is very simple, and suitable for offline generation of
the A (i.e., generated and stored into a local memory). This
is the approach used in this paper.

Conversely, in cases where online generation of a stream of
antipodal symbols with a given correlation profile is necessary,
the so-called linear probability feedback generator [24] can be
used.

Note that the sensing matrix design based on the rakeness
approach is completely different from others presented in
the literature [25]–[27], where optimized sensing matrices are
obtained by a proper specialization of A aiming to reduce as
much as possible the mutual coherence between the columns
of AΨ without any hypothesis on input signal statistics.

As discussed, the rakeness approach imposes randomness
to rows of A to guarantee an acceptable mutual coherence
with every possible Ψ and, with this constraint, to increase the
raked signal energy as much as possible with a non negligible
improvement in the fidelity between original and reconstructed
signals. Hence, methods in [25]–[27] adopts sensing to the
sparsity basis but not to the statistics of the signal to ac-
quire. This is the main reason why we may expect higher
performance with rakeness-based CS with respect to other
signal agnostic techniques, at least when localization is strong
enough. For the ECG signals, in [21] it is also proved that
rakeness-based CS outperforms the approch discussed in [27]
which, similar to our, is suitable for binary sensing matrices.
Others techniques (like [25], [26]) have a further limitation,
both approaches are not compatible with the antipodal symbol
constraints, thus requiring full multipliers at the encoder side.

Note that many other different CS optimization techniques
properly designed on a class of signals have been recently

1Matlab code to implement rakeness-based CS is online available at
http://cs.signalprocessing.it/

2The method does not guarantee that a process can be generated for each
feasible correlation matrix Ca.
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proposed. All of them work at the decoder side and are based
on a proper tuning of Ψ on the specific input signal. Even
if they can increase CS performance [28], they require a
noteworthy hardware complexity and are substantially out of
scope of our contribution. Nevertheless a comparison with one
of them with the introduction of a new low-computational cost
decoder paradigm is presented in Section IV.

B. Reducing Reconstruction Costs: the Greedy Approach

As already mentioned in the introduction, one of the most
important properties of the CS is the possibility to reduce
costs (particularly, in term of energy) at the encoder side with
respect to standard Nyquist-rate acquisition. This is however
counterbalanced by an increase of the reconstruction/decoding
cost, as solving the BPDn problem in (2) is a computationally
hard problem.

Therefore, when the energy consumption of the decoder
is an issue, instead of adopting general methods relying on
sparsity promotion by means of the `1 norm, one relies on
other greedy approaches that iteratively promote sparsity by
observing intermediate and approximate solutions. The latter
in fact, despite being less rigorous than general methods, en-
sure a much lower complexity and hence lower computational
costs.

Note that, since all iterative algorithms try to refine the
approximate solution at each iteration, the reconstruction qual-
ity is expected to be dependent also on the total number of
iterations ı̄. The higher ı̄, the closer the intermediate solution to
the (real) asymptotic one, but also the higher time and energy
required by the algorithm.

In this paper we analyze three among the most common
iterative approaches and evaluate their performance in terms
of energy required to reconstruct an ECG signal at a given
quality, when acquisition is performed both with the standard
and with the rakeness-based CS approach. More Specifically,
the algorithms we focus on are:
• Orthogonal Matching Pursuit (OMP), whose application

is described in [17];
• Compressive Sampling Matching Pursuit (CoSaMP) [18],

which is a variant of OMP with increased convergence
guarantees;

• Iterative Hard Thresholding (IHT), which is originally
proposed and discussed in [19]; we here consider its
normalized and more stable version described in [29].

The working principle of all algorithms is similar, and can
be described as follows. At the step i − 1, let us indicate
with α̂i−1 the approximate intermediate solution, and with
ri−1 = Bα̂i−1 − y the residual error vector between actual
and estimated measurements. The following step generates α̂i
by modifying some entries of α̂i−1 in a way that minimizes ri,
assuming that ri → 0 as i increases. In all considered cases,
α̂0 = 0, so that r0 = −y.

The main difference among the three algorithms is how α̂i
is computed from α̂i−1. In more details, OMP identifies at
each iteration a new element in the support of α̂. At the i-th
iteration the j-th column of B that is most strongly correlated
with ri−1 is added as the i-th column of an auxiliary matrix

Φi, and the index j is included into the support of α̂i−1

to generate the support of α̂i. The values of the i non-zero
elements of α̂i are computed to minimize ri as a solution of a
least squares problem. Since ri is always orthogonal to Φi, this
minimization step can be solved with marginal cost by using
the modified Gram-Schmidt algorithm exploiting a companion
system regulated by the orthonormalized matrix Φ̂i that is
constructed step by step along with the Φi. With this approach,
however, the solution of a full least squares minimization
involving the non-orthonormalized Φı̄ is required for the final
step in order to find the actual α̂ı̄. Note that, in order to ensure
the existence of the solution of the minimization problem, it
is necessary that i < m at each step, and thus that ı̄ < m.
A more detailed description of the algorithm can be found in
[17].

The CoSaMP and IHT algorithms work in a slightly differ-
ent way. Under the assumption that the signal to reconstruct
is K-sparse, with K approximating κ, they compel α̂i to
have only K non-zero elements. To this aim, in CoSaMP,
an auxiliary matrix Φi is built at the i-th step by collecting
the K columns of B corresponding to the support of α̂i−1,
and by the ∆K columns that are more strongly correlated to
ri−1, with typically ∆K = K or ∆K = 2K. The number
of columns of Φi at each step is signal dependent, and ranges
from max(K,∆K) to K+∆K. The support of α̂ is computed
as the elements corresponding to the columns of Φi. The
values of non-zero elements of α̂i are computed to minimize
ri as a solution of a least squares problem, and only the most
significant K are retained. Note that, similarly as in OMP,
the number of columns of Φi has to be smaller then the
number m of rows to allow the least squares problem to have
a solution. To ensure this in the worst case, it is mandatory
that K + ∆K < m. No final step is required.

The working principle of IHT is based on the iterative
function α̂i = HK

(
αi−1 + µB> (y −B α̂i−1)

)
, as described

in [19]. The non-linear function HK(·) is a hard thresholding
function that returns a vector where only the K larger elements
are preserved, and all others are zeroed. This algorithm is very
easy from the computational complexity point of view. The
choice of the step size µ > 0 is, however, critical for the
convergence. We consider the version proposed in [29], also
known as normalized IHT, that despite presenting a higher
complexity, is capable of computing µ at each step, thus being
able to guarantee the convergence of the method and also to
increase convergence speed.

In the next section we investigate how efficiently these three
algorithms can be used as reconstruction strategies in a CS-
based ECG acquisition system. In particular, we want to relate
performance with the values of m and ı̄ both when standard
and in a rakeness-based CS are employed.

III. EXPERIMENTAL SETTING AND RESULTS

To compare the performance of the reconstruction al-
gorithms MATLAB Montecarlo simulations have been per-
formed. The simulation setup is as follows.

A synthetic ECG generated as in [30] with average beat-
rate equal to 60 bpm is considered as input signal. ECGs are



F. PARESCHI et al.: ENERGY ANALYSIS OF DECODERS FOR RAKENESS-BASED COMPRESSED SENSING OF ECG SIGNALS 51

10 dB

1
0

d
B

3
5

d
B

3
5

d
B

OMP - ARSNR

40 50 60 70 80 90 100 110 120

0

10

20

30

40

50

60

70

m

ı̄
Standard CS
Rakeness-based CS

1

10 dB

1
0

d
B

3
5

d
B

3
5

d
B

CoSaMP - ARSNR

40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

18

20

m

ı̄

Standard CS
Rakeness-based CS

1

10 dB

1
0

d
B

35
d
B

35
d
B

IHT - ARSNR

40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

m

ı̄

Standard CS
Rakeness-based CS

(a) (b) (c)
Fig. 2. Performance in terms of ARSNR of the considered greedy algorithms in reconstructing the synthetic ECG signal for different values of number of
measurements m and iterations ı̄. (a): OMP; (b): CoSaMP; (c): IHT. In all contour plots we have highlighted reconstruction qualities ranging from 10 dB to
35 dB with 5 dB steps.

sampled at a rate equal to 1/T = 360 Hz, and quantized by
using 11 bits (i.e., 2048 levels), as this appears to be a common
setup adopted in many ECG online repositories [31]. The
reason to use a synthetic ECG instead of a real one is to start
from a noiseless signal so that reconstruction performance can
be accurately assessed. In fact, the unknown and unavoidable
noise present in any real signal will limit reconstruction
performance to a level that is strongly dependent on the
particular signal. In any case, in order to verify the correctness
of the approach, real signals from [31] will be considered in
Sections IV and V.

In the Montecarlo simulation, 1000 different instances of
length n = 256 samples (corresponding to a time window
length of nT = 711.1 ms) of the synthetic ECG has been
generated. The value n = 256 has been selected according
to [16], since this appears to be a good trade-off between
reconstruction complexity and reconstruction quality. Each
input signal instance has been encoded twice. First, 1000
different binary antipodal matrices A have been used, gen-
erated in purely random way (standard CS). Then, the same
input signal instances have been coded also by using 1000
different sensing matrices generated by using the Gaussian ran-
dom vector thresholding technique described in Section II-A
(rakeness-based CS). Finally, performance has been evaluated
by reconstructing the input signal instances using all three
considered algorithms. For the sake of simplicity, a fixed
sparsity basis has been used, i.e., Ψ has been assumed equal
to the orthonormal Symlet-6 wavelet basis [32].

For all considered approaches, the performance is computed
as a function of the value of m and of the number of iterations
ı̄. Note that CoSaMP and IHT require additional parameters
related to the sparsity of the reconstructed signal, i.e. K and
∆K (the latter used only in CoSaMP). We want to recall here
that the ECG actually belongs to the class of compressible
signals, so it is not possible to univocally define a value of κ.

Empirically, we found that the value K = ∆K = 40 ensure
optimal reconstruction in all considered cases, therefore in IHT
we use K = 40 while in CoSaMP, to satisfy the K+∆K < m
requirement, we chose K = ∆K = min(40, bm/2c − 1).

As a quality indicator, we use the average reconstruction

signal to noise ratio (ARSNR), defined as

ARSNR = EA,x

[(
‖x‖2
‖x− x̂‖2

)
dB

]
where EA,x implies averaging over all considered A and all
considered instances x of the ECG signal in the Montecarlo
runs. Practically speaking, for each couple (m, ı̄), the ARSNR
has been computed by averaging results related to 1000
couples (x,A).

Results are shown in Fig 2. We have limited the m range
to reasonable values, i.e., 40 ≤ m ≤ 128 to ensure that
compression ratio CR ≥ 2 (CR = 2 for m = 128) and
reconstruction is always guaranteed (m ≥ 40). The range of
ı̄ depends on the specific reconstruction algorithm, with the
additional constraint ı̄ < m for OMP. In all contour plots we
have highlighted reconstruction qualities ranging from 10dB
to 35dB with 5dB step.

The reconstruction quality is increasing with the number
of measurements m and with number of iterations ı̄. When
considering large values of ı̄ (so, when the solution has
almost reached the final asymptotic one), OMP gives rise to
better reconstructions with respects to both CoSaMP and IHT.
Given m, it is always possible to achieve a better ARSNR,
or conversely, a target ARSNR is achievable with a smaller
m. This may be intuitively explained by considering that the
ECG is actually a compressibile signal, not a sparse one.
While CoSaMP and IHT have a constraint given by K, OMP
increases the support of α̂i with i, automatically adapting the
solution to the different input signal instance. Convergence is
achieved for values of ı̄ between 30 and 40, thus confirming
the estimation of the average sparsity of the ECG signal. This
however leads to a slow convergence rate. CoSaMP requires a
much smaller ı̄ since its first iteration considers signals whose
support size is K, while OMP needs K iterations for this.
Conversely, the required ı̄ for IHT, due to its simplicity, is
much higher.

As expected and already observed in previous papers [5],
[6], [13], when considering the asymptotic solution, the rake-
ness approach outperforms the standard one in all considered
cases. The lower the m, the higher the advantage of the
rakeness approach.
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However, we can observe that in some configuration the
standard CS approach has a faster convergence rate, i.e., when
m is large enough, the convergence is faster with respect to
rakeness-based CS since ı̄ is lower.

A few reasonable questions follow from these observations:
• The comparison is made in terms of m and ı̄. However,

this does not allow a fair comparison of the three algo-
rithms, since each of their basic step has a very different
computational cost. Is it possible to add the required
energy to the comparison?

• The same performance level can be achieved either with
large m and small ı̄ (where standard approach is prefer-
able) or with small m and large ı̄ (rakeness preferable).
When considering the encoder side, typical guidelines
suggest to minimize m (and thus, the amount of informa-
tion that must be transmitted) for the energy optimization.
Is this still true when considering the decoding side and
greedy algorithms?

• Only generic greedy reconstructing algorithms have been
taken into account, i.e., no particular assumptions on
the class of decoded signals are made so that the same
design flow is suitable for any class of biosignal. How
does performance change when a state-of-the-art recon-
struction algorithm specifically tuned for ECG signals is
considered?

The last question is considered in Section IV, where ap-
proaches specialized in reconstructing ECG signals are intro-
duced. In order to answer the first two questions, Section V
develops an energy model for the considered decoding.

IV. ADAPTED DECODER FOR ECG
The hypothesis of using a generic greedy algorithm is

useful to maintain the computational complexity as low as
possible. However, this could not represent the optimum
in terms of reconstruction performance. To cope with this,
different approaches specialized to a proper class of biosignals
were presented so far in the literature. As an example, to
increase reconstruction performance in decoding EEG signals,
in [28] authors introduced an innovative approach based on
dictionary learning and on an additional pre-processing stage
that implements a technique, named Sapiros optimization, able
to decrease mutual coherence between the columns of AΨ.

For ECG decoding, in [33] authors use block sparsity
hypothesis to develop a decoder, the Block Sparse Bayesian
learning (BSBL), able to correctly decode signal details for
Fetal ECG applications. The approach presented in [14] uses
statistic characterization of the sparse representation of ECGs
to define an initial support in the OMP initialization, along
with a full custom hardware implementation. In [27] authors
propose a decoding algorithm for ECGs, the Weighted `1
Minimization (WLM), based on prior information on the
statistic characterization of the wavelet coefficients. Note that
the adoption of a decoder properly specialized on the ECG
reconstruction does not imply that the rakeness-based CS is
useless. As proved in [21] for BSBL and WLM, using an
adapted sensing matrix following the rakeness design-flow
further increases the performance of a properly specialized
decoding stage.

1

50 100 150 200 250 300
0

5

10

15

20

25

m

A
R

SN
R

[d
B

]

Rakeness-based CS + OMP
Rakeness-based CS + WOMP
Rakeness-based CS + WLM
Standard CS + OMP
Standard CS + WOMP
Standard CS + WLM

Fig. 3. Performance in terms of ARSNR of the WLM, OMP and of the
proposed WOMP in reconstructing record number 100 of the MIT-BIH
Arrhythmia on-line database as functions of the number of measurements
needed to encode a time window composed by n = 512 samples.

TABLE I
VALUES OF m TO RECONSTRUCT ECGS BY EITHER OMP OR WOMP

WITH SOME TARGET ARSNRS AND FOR BOTH STANDARD AND
RAKENESS-BASED CS, INCLUDING THE % SAVING CAUSED BY

RAKENESS-BASED CS FOR BOTH DECODING ALGORITHMS.

target ARSNR

15 dB 20 dB 25 dB

Standard CS + WOMP 123 174 316
Rakeness-based CS + WOMP 108 162 293
Standard CS + OMP 150 207 −
Rakeness-based CS + OMP 106 153 −

% saving (WOMP) 12.2 6.9 7.3
% saving (OMP) 29.3 26.1 −

Among the mentioned approach, we focus here on WLM.
As shown in [27], it is capable of outperforming IHT, OMP,
BSBL and other decoding approaches. In more details, the
WLM decoder aims at reconstructing ECG signals by solving
the following optimization problem.

α̂ = arg min
α

1

2
‖Bα− y‖22 + λ‖Wα‖1

where W is an n×n diagonal matrix whose entries are related
to the probability of each wavelet function to contribute to the
reconstruction of an ECG signal, λ is a normalization value
(set to 0.1 according to authors’ suggestion), while the signal
is reconstructed as x̂ = Ψα̂.

Using the settings proposed in [27] as reference, i.e., tak-
ing signals instances from the record 100 of the MIT-BIH
Arrhythmia database [31] and n = 512, we show in Figure 3
performance of the WLM in terms of ARSN for different value
of m compared with OMP performance in the same setting.
Results are obtained with montecarlo simulations averaged
over 1000 signal instances. For each signals two randomly
generated sensing matrices were adopted, one according to
standard CS and the other following rakeness-based CS, to
take into account both approaches.

As expected, WLM guarantees a non negligible improve-
ment in signal reconstruction with respect to OMP. Further-
more, the gain is maximized by simultaneously adopting the
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rakeness-based sensing at the encoder stage. Nevertheless, the
approach requires the solution of an optimization problem that
does not match our need to keep the decoding complexity
as low as possible. This motivates the introduction of a
new optimization procedure that merges the low complexity
property of OMP with the adoption of prior information on
the considered class of signals as in WLM. We refer to this
new decoding algorithm as Weighted OMP (WOMP).

The main difference between WOMP and OMP is how
a new element in the support is identified at each iteration.
As described before, at the i-th iteration of OMP the j-th
column of B that is most correlated with the residual vector
ri−1 is added in the support of the decoded signal, i.e., j
is the position of the maximum absolute value of the vector
B>ri−1. In the WOMP approach the decision is weighted by
the aforementioned matrix W so that j is the index of the
element of (BW )>ri−1 with the maximum absolute value.
The performance in terms of ARSNR as a function of m is
shown in Figure 3. With respect to OMP, WOMP increases the
ARSNR for all considered m values when the standard CS is
considered, while in case of the rakeness-based CS, WOMP
outperforms OMP only for the highest considered m values,
so that it could be taken into account when requirements in
terms of reconstructed signals quality are very strict. Same
results can be observed in Table I that reports for both greedy
algorithms the minimum m needed to reach some target
ARSNRs. The table also shows the percentages of saving in
the number of measurements. As it can be noted, significant
reduction of m are possible when Rakeness-based CS replaces
standard-CS.

As final remark, from the computational complexity point of
view, WOMP introduces negligible additional cost with respect
to OMP. The difference is only in the selection of the most
correlated column of B. This comes by looking at the n× 1
vector given by the matrix multiplication B>ri−1 for OMP,
and by (BW )>ri−1 = W>B>ri−1 for WOMP. Therefore,
in a clever implementation of WOMP, the only additional cost
with respect to OPM is the multiplication by the n×n diagonal
matrix W>, that is quantifiable in the storage of n values, and
n multiplications at each iteration step. For this reason we can
assume that any power model developed for OMP fits also for
the WOMP approach.

V. RECONSTRUCTION COST EVALUATION

A version of OMP, CoSaMP and IHT has been implemented
in C language and run in two different low power platforms
to evaluate reconstruction energetic costs.

More specifically, the algorithms have been written us-
ing single precision (32-bit) floating point variables. For
all considered algorithms, almost all operations are simple
vector/vector or vector/matrix multiplications. The only non-
standard operation required is the solution of a least squares
problem in OMP (final step) and CoSaMP (every step), that
has been implemented by computing a pseudoinverse. In
detail, assuming the system to be minimized in the canonical
notation Zζ = b, we solve Z>Zζ = Z>b by Gauss-Jordan
elimination relying on precomputed matrix Z>Z and vector
Z>b.

The three algorithms have been considered both from a
computational point of view and from a memory occupation
point of view.

Since Φ̂i increase of size at each step, computational
complexity of the i-th step of OMP is increasing with m and
i. These iterations are expected to be simple, while the final
step, requiring a least squares problem solution, is expected
to be computationally much more complex. The complexity
of a CoSaMP step depends on m and also on K and ∆K,
but it is clearly independent of i. Furthermore, a weak signal
dependency is now present due to the unpredictability of the
number of columns of Φi. Compared to OMP, it is reasonable
to assume that the complexity of a single iteration is higher (at
least, for reasonable values of i), as it requires the solution of
a least squares problem. Yet, it has been also already observed
that CoSaMP has a faster convergence. Finally, IHT is a very
simple algorithm whose step complexity is expected to depend
only on m. However, in the implementation proposed in [29],
a weak signal dependence in the computation of µ is present.

We can also consider some memory occupation aspects of
the algorithms, since in low-cost devices the amount of mem-
ory is usually limited. Neglecting B that can be reasonably
assumed constant and stored into a non-volatile memory, the
random access memory allocation in OMP is dominated by
Φ̂i, whose size m · i increases each iteration up to m · ı̄.
Note that it is not necessary to reserve a full memory space
for Φi as it is simply composed of some columns of B, and
can be retrieved by means of a column index array. Memory
occupation in CoSaMP is dominated by the least squares
problem that requires at least a temporary matrix whose size is,
assuming a worst case scenario, (K+∆K)×(K+∆K), while
as in OMP the Φi does not require memory allocation. IHT
is a very interesting algorithm from the memory requirements
point of view, as no intermediate matrices are required during
the computation, making this approach particularly suitable in
a low-resources environment.

A. ARM Cortex M4F

The first considered platform is an EK-TM4C1294XL
evaluation board developed by Texas Instruments [34].
This board is designed to evaluate the low-power low-cost
TM4C1294NCPDT microcontroller from Texas Instruments,
which embeds an ARM Cortex-M4F CPU, a single-precision
floating point unit, 256 kB RAM and 1 MB Flash ROM, and
can work with a clock up to 120 MHz. The microcontroller
requires a single 3.3 V power supply, and the board has a probe
point to be used for the direct measurement of the current
consumption of the microcontroller core.

The main limitation of this platform is the available memory
size. In a 256 kB RAM, in fact, it is possible to store
just a 256 × 256 matrix in single precision floating point
representation. By comparing parameters used in Section III
(i.e., n = 256, m ≤ 128 and ı̄ ≤ 72) and the memory require-
ments of the three algorithms accordingly to Section II-B, the
embedded RAM is barely enough to store temporary matrices
and vectors, and the m× n-size B matrix. Despite being not
necessary, moving B to RAM is convenient to speed-up the
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Fig. 4. Current profile of the TM4C1294NCPDT microcontroller while
decoding ECG signal using OMP algorithm, with n = 256, m = 68 and
ı̄ = 30. Vertical scale is 7.5 mA/div. The bottom trace (10 ms/div) is a
zoom of the top trace (100 ms/div), and allows a clear identification of the
30 OMP iterations and of the final step.

Fig. 5. Example for ECG signal encoded with the rakeness approach and
decoded by OMP, with n = 256, m = 68 and ı̂ = 30. The signal is taken
from the PhysioNet project, MIT-DIB database, record 100.

execution of the code, since Flash access time is much longer
than RAM access time.

The power consumption of the TM4C1294NCPDT micro-
controller, due to the internal architecture, is almost constant
and mainly depending on the running frequency and on which
peripherals are enabled. Actually, a small increment in the
power consumption can be observed when floating point oper-
ations are executed. Experimentally, the current consumption
while executing the decoding algorithms is observed to be
almost constant, and roughly equal to Iavg = 45.5 mA when
the system clock is set to fclk = 120 MHz. With this first order
approximation we can model the energy required for decoding
a time window as ED = VddIavgTd, where Vdd = 3.3 V and
Td is the decoding time.

As a visual example, Fig. 4 show the current profile mea-
sured during a signal decoding using OMP with n = 256,
ı̄ = 30 and m = 68. At the reference time t0 = 0
(trigger event), the processor starts the decoding. Note that 30
iterations can be observed, with increasing duration. A final
step, much longer with respect to the iterations and with a
different profile, is also identifiable. At the time t1 ≈ 68.7 ms
the reconstruction is complete, and the processor enters a low-

power sleep mode, up to the time t2 = nT ≈ 701 ms, when
the system is woken up and the decoding of the new time
window starts. An example of the reconstruction of an ECG
signal using OMP with n = 256, ı̄ = 30 and m = 68 is
in Fig. 5. The depicted ECG signal has been taken from the
PhysioNet database [31]. More precisely, it is a 2 seconds
length signal extracted from signal 1 of record 100 of the
MIT-DIB database. The rakeness CS approach has been used
to encode the signal.

By means of empirical observations, we developed a simple
model for estimating the number of CPU cycles required for
decoding a signal.

In OMP, the observed duration of the i-th iteration is almost
linearly increasing with i and with m. A good fit is achieved
by estimating the duration of the i-th iteration with

NOMP
i ≈ 7.5 · 103 + 2.9 · 103 ·m+ 44 ·m · i

OMP also requires a final step. Its length is dominated by the
least squares problem whose size is ı̄. The best fit we get is

NOMP
LS ≈ −5.3 · 105 + 103 · ı̄2 + 1.8 · 102 ·m · ı̄

The full decoding (i.e., after ı̄ iterations and the final step)
requires a number of CPU cycles equal to

NOMP =

ı̄∑
i=1

NOMP
i +NOMP

LS (3)

As a simple verification, we can consider m = 68 and ı̄ = 30
as in Fig. 4. With these values, it is NOMP = 8.23 · 106,
corresponding to an execution time of 68.6 ms with a CPU
clock fclk = 120 MHz. The value of 68.7 ms observed in
Fig. 4 is almost equal to the estimated one.

When considering CoSaMP, the duration of the i-th iteration
is not determined by i, but there is an uncertainty due to the
data dependency. For this reason, we focus on the average
number of cycles of the generic iteration given different input
signal instances, that has been found to be dependent on m
and on K + ∆K

NCoSaMP
i ≈ 5.6 · 105 + 9.2 ·m · (K + ∆K)

2

while the total number of cycles after ı̄ iterations is

NCoSaMP = ı̄ ·NCoSaMP
i (4)

Finally, also in the considered version of IHT we have to
compute an average number of CPU cycles due to the data
dependency. Empirically, the dependence on K is very weak
and be neglected, so that

N IHT
i ≈ 1.1 · 106 + 9.4 · 104 ·m

that leads to a total number of cycles

N IHT = ı̄ ·N IHT
i (5)

Comparing average performance results shown in Fig. 2 in
terms of m and ı̄ and limited to the most interesting cases
ARSNR = 25 dB, 30 dB and 35 dB, with energy consumption
achieved with the proposed model ED = VddIavgN/fclk

where the number of cycles N is computed accordingly to
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(a) (b) (c)
Fig. 6. Energy required for decoding a single time windows for the considered greedy algorithms in the TM4C1294NCPDT microcontroller running at
120 MHz for different values of number of measurements m and iterations ı̄. (a): OMP; (b): CoSaMP; (c): IHT. The plots also show the real-time constraint
curve, defined as the point for which the decoding time is equal to the time window length nT = 711 ms, and some performance curves at given ARSNR
taken from Fig. 2.

(3), (4) or (5), and fclk = 120 MHz, we get the plots shown
in Fig. 6 that can be commented as follows.

• OMP ensures not only better performance, but also lower
cost. Energy required for most of the configurations
ranges from 5 mJ to 20 mJ per reconstruction. CoSaMP
ranges from 20 mJ to 50 mJ, while IHT requires at least
70 mJ. Note also that, for many CoSaMP configurations
and for almost all IHT configurations, the real time
constraint is not satisfied;

• A fair comparison between reconstruction costs for the
standard and the rakeness approach is difficult, due to
the different operating points. Focusing on OMP, that has
been shown to ensure both the highest performance and
the lowest cost, it is easy to find a point ensuring the
minimum reconstruction energy given a target quality.
As an example, considering the rakeness approach, with
ARSNR = 30 dB, we get m = 68 and ı̄ = 30,
that are the parameters used in the example of Fig. 4
and 5. In this point, Ed = 10.4 mJ. With the standard
approach, the minim energy configuration is m = 85
and ı̄ = 26, with Ed = 10.7 mJ. Even if the decoding
energy is almost identical, the twenty percent smaller
m required by rakeness allow many system optimiza-
tion such as a reduced corresponding transmission and
reception cost and a lower amount of memory required
at the decoder side. Interestingly, two points ensuring a
minimum m value can be found not very far from the
already considered ones. For the rakeness approach, for
ARSNR = 30 dB, it is given by m = 65 and ı̄ = 37,
with Ed = 13.3 mJ, while for the standard approach is
m = 78 and ı̄ = 34, with Ed = 14.0 mJ. As in the
previous case, the difference in the decoding energy is
small, but the rakeness approach allows a 15% percent
reduction in terms of m.

B. ARM big.LITTLE

We profiled the OMP, CoSaMP and IHT algorithms on the
Hardkernel Odroid-XU3 board, an evaluation board based on
Samsung Exynos 5422, a multi-core CPU representative of
recent high-end smartphones. The Exynos 5422 implements
ARM’s big.LITTLE heterogeneous multiprocessing solution
with a cluster of four Cortex-A15, out-of-order ”big” pro-
cessors, and a cluster of four, in-order ”LITTLE” Cortex-A7
processors. Since both CPUs are architecturally compatible,
the reconstruction tasks can be allocated on demand to each
CPU, to suit performance needs. Nonetheless, the two clusters
have very different performance and power consumption.

The reconstruction algorithms, introduced in Section II.B,
were implemented in C to run on the ARM cores. On top of the
Odroid-XU3 runs Ubuntu 14.04.1 LTS (GNU/Linux 3.10.51+
armv7l) with gcc v. 4.8.2. To measure the energy consumption,
we make use of the on-board voltage/current sensors and split
power rails, which allow us to measure separately the power
consumption of the A15 cores, A7 cores, GPU and DRAM.
The readout of the sensors was implemented in a low-priority
thread, with a sampling interval of 25 ms and an average CPU
consumption below 3%.

Table II shows the results of our evaluation, comparing
the energy required by the three algorithms to reconstruct a
window of ECG samples with a target ARSNR of 30 dB (there
are three different couples of m and ı̄ for each algorithm that
achieve 30 dB) when running on two corner operating points
of the Odroid-XU3 board as well as on the TI board. As
expected OMP shows the best energy efficiency, while IHT
is the most energy consuming algorithm. In addition, from
Table II we can notice that for each algorithm the impact of
the different (m, ı̄) configuration on the energy consumption is
preserved across the different architectures. The higher energy
reported for the TI board comes from two factors: (i) we are
measuring the whole embedded system consumption (board
measurements) with respect to a CPU-only measurement from
the Odroid-XU3 sensors; (ii) the TM4C1294 is manufactured
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TABLE II
ENERGY CONSUMPTION [mJ] TO RECONSTRUCT AN ECG WINDOW WITH A TARGET ARSNR=30 dB FOR OMP, COSAMP, IHT RUNNING ON THE

ODROID-XU3 BOARD IN BOTH THE FASTEST (A15 AT 1.9 GHz) AND SLOWEST (A7 AT 0.8 GHz) CORNERS AS WELL AS ON THE TI PLATFORM. FOR
EACH ALGORITHM THERE ARE THREE DIFFERENT CONFIGURATIONS (m, ı̄) THAT LEAD TO 30 dB.

OMP CoSaMP IHT

m = 65 m = 80 m = 100 m = 95 m = 92 m = 117 m = 90 m = 100 m = 115
ı̄ = 37 ı̄ = 28 ı̄ = 27 ı̄ = 8 ı̄ = 12 ı̄ = 3 ı̄ = 95 ı̄ = 70 ı̄ = 55

A7 @ 0.8 GHz 1.36 1.13 1.32 6.22 9.28 2.49 29.61 23.91 19.32
A15 @ 1.9 GHz 6.01 5.06 5.89 23.19 35.08 9.55 144.02 127.95 88.33

M4F @ 120 MHz 13.31 11.08 13.07 61.22 89.19 27.78 228.57 176.47 148.15
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Fig. 7. Energy (mJ) for OMP to target three different quality levels (25, 30,
35 dB) on the different operating points available on the Odroid-XU3.

in 65 nm whereas the Odroid-XU3 in a 28 nm process, which
combined with the difference in reconstruction time (almost
one order of magnitude), justifies the disparity in consumption.

As a final experiment, we wanted to investigate how the
reconstruction quality (considering the minimum m possible)
affects the power consumption. We profiled the more energy-
efficient algorithm, i.e. OMP, on all the operating points on
the Odroid-XU3 for 3 target reconstruction qualities. Figure 7
shows the results of such analysis. First, as expected for both
A7 and A15 the reconstruction energy decreases proportionally
with the core frequency, with a linear trend for the A7 and
a superlinear trend for the A15. This is primarily due to
the voltage scaling associated with the frequency reduction.
Second, the energy-saving ratio achieved by reducing the QoS
is preserved on the different operating point. Thanks to that
Digital Voltage-Frequency Scaling is an effective knob to
trade-off reconstruction time, quality of service and energy
consumption.

VI. CONCLUSION

The benefits introduced by rakeness at the decoder side have
been discussed in a CS system designed for ECG signals.
Three iterative algorithms have been considered, and some
trade-offs including the number of measurements, the number
of iterations, reconstruction quality, and energy required by the
decoding on two different ARM architectures are considered.
In all cases, OMP shows to be the best choice in terms of
reconstruction algorithm both for the lower energy requirement
and for the higher reconstruction quality. Furthermore, the rak-
eness approach proves to be the a better choice with respect to
the standard approach also at the decoder side, as it is capable

to reach a target quality with the same amount of energy, but
with many advantages given by the lower required m, such as
the reduction of the encoder/decoder transmission/reception
costs or of the decoder memory requirements.
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