
28 January 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enriching Remote Control Applications with Fog Computing / Fiandrino, Claudio; Giaccone, Paolo; Mahmood, Ahsan;
Maioli, Luca (ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING). - In: Complex, Intelligent, and Software
Intensive SystemsSTAMPA. - [s.l] : Springer Verlag, 2018. - ISBN 978-3-319-61565-3. - pp. 475-486 [10.1007/978-3-
319-61566-0_43]

Original

Enriching Remote Control Applications with Fog Computing

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-319-61566-0_43

Terms of use:
openAccess

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-61566-0_43

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2680437 since: 2018-02-27T14:43:40Z

Springer Verlag

Enriching Remote Control Applications with
Fog Computing

Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

Abstract Fog computing has emerged in the recent years as a paradigm tailored to
serve geo-distributed applications requiring low latency. Remote Control (RC) ap-
plications allow a mobile device to control another device from remote. To enrich
Quality of Experience (QoE) of RC applications, in this paper we investigate the use
of fog computing as a viable platform to offload computation of tasks that would be
expensive if performed locally on a mobile device. The proposed approach, sup-
ported with next 5G communication systems, will enable a Tactile Internet experi-
ence. In this paper we study and compare offload policies to accommodate tasks in
the fog platform and analyze the requirements to minimize outages.

Key words: Fog computing; Mobile edge computing; Cellular networks.

1 Introduction

Mobile cloud applications are nowadays essential in our day lives. Among the oth-
ers, they are used for business and entertainment purposes. However, mobile devices
such as smartphones, laptops and wearables are resource constrained, i.e., they have
limited energy and computing capabilities at disposal. Mobile cloud and fog com-
puting paradigms overcome such issue through offloading [4, 11, 19]. Offloading is
a technique applied to traffic [8] or computation [14]. Computation offloading aug-
ments the capabilities of mobile devices by moving the processing of tasks to the
cloud. This allows the mobile devices to i) prolong the battery lifetime as process-

Claudio Fiandrino
Imdea Networks Institute, Madrid, Spain, e-mail: claudio.fiandrino@imdea.org.
Claudio developed this work as a PhD student at the University of Luxembourg.

Paolo Giaccone · Ahsan Mahmood · Luca Maioli
Dip. di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy e-mail: firstname.
lastname@polito.it

1

2 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

ing heavy tasks locally is energy-costly, ii) to run sophisticated tasks that the local
limited processing capabilities would not permit [12].

Remote Control (RC) applications allow a mobile device, typically a smartphone,
to control remotely another device such as a drone or a robot [15]. Typically the
control requires line of sight, however with future 5G networks the requirement
will not be necessary anymore. RC applications allow the controller to perform ac-
tions by means of the controlled device, e.g., taking a picture from a drone. Being
resource constrained, batteries and computing capabilities of both controller and
controlled devices are limited, thus enriching the applications with functionalities
that are non strictly necessary is difficult. For example, performing object detection
over a picture taken by the drone can be prohibitive for both the drone and the smart-
phone. Similarly, performing on-demand statistical analysis may improve robot and
automation systems, but it can only be feasible with the help of the cloud [10].
Through offloading, the task becomes then feasible. However it is important that
communication overhead is compatible with the small latency required by real-time
RC applications. For example, RC applications like drone control require latency to
be in the order of ms [3].

The expected requirements for future fifth-generation (5G) wireless systems fore-
see an improvement in latency from 15 ms of current 4G networks to 1 ms [2]. Lev-
ering the ultra-responsive connectivity of 5G systems, RC applications will become
an important part of the Tactile Internet vision [18]. Tactile Internet aims at shift-
ing the current content-delivery paradigm of the Internet into a skill-delivery. The
ultimate goal is to create a medium capable of transporting touch and other senses.
To illustrate with an example, real-time robot applications may suffer service in-
efficiency (e.g., environment recognition), which can be compensated with human
expertise (e.g., through video streaming on RC applications).

In this paper we advocate the use of fog computing to enrich the Quality of Expe-
rience (QoE) of RC applications in view of enabling a ultra-responsive Tactile Inter-
net experience. In more details, we investigate the process of allocating computing
resources required to perform the tasks1 such as object recognition that augment
the QoE. This process is network-aware, i.e., to maintain a tight synchronization
between the controller and the controlled device, communication resources need to
be carefully selected. In this work we rely on existing technologies, and not on 5G
systems, to verify feasibility constraints. We categorize the tasks according to their
suitability to be offloaded in the fog platform or not. Specifically, we identify tasks
that must be offloaded in the fog platform because of time constraints, tasks that
can be executed either in the fog or in the remote cloud, and tasks that cannot be
offloaded in the fog platform because of privacy concerns or because they require
external and proprietary software to be executed.

1 In the reminder of the paper, we use the terms tasks and jobs interchangeably.

Enriching Remote Control Applications with Fog Computing 3

2 A Primer on Fog Computing

The concept of fog computing was initially proposed by Cisco to render the network
edge capable of cloud computing [5], hence it is also known as edge computing. Fog
computing is specifically designed to cater for geographically distributed applica-
tions which have stringent low latency requirements and context awareness [17].
Consequently it is foreseen that fog computing will play a major role in the devel-
opment of Internet of Things (IoT) [6]. To this end, various research efforts are being
conducted on fog computing platforms supporting IoT applications to assess their
efficacy and resource management [1, 16]. The IoT front-end consists of mobile de-
vices which have different computing, networking and storage capabilities. Local
processing units called cloudlets can be utilized for temporary storage and process-
ing [7]; these include desktop PCs or notebooks. The cloud, which centralizes the
processing and backup, can receive the aggregated data from the cloudlets. In vehic-
ular networks, [13] proposes a fog computing approach to place content caches at
the network edges; the approach is shown to perform remarkably well as compared
to the centralized caching approach, in particular for location-specific applications.

3 Resource Allocation in the Fog Platform

The aim of this section is to present the problem of resource allocation for task
offloading in the fog platform. First, the general architecture and the main interact-
ing entities are described. Afterwards, the classification of the jobs that may must
be offloaded on the remote platforms is introduced. Lastly, the offload policies for
assigning the jobs either to the edge platform or to the external cloud are presented.

Network Architecture
In RC applications, the end-user devices, being resource constrained, are unable to
enhance the QoE perceived by the users. One viable solution is to offload the com-
putationally intensive tasks to external resources. Therefore, we envision a network
topology where computational platforms are placed both in the cloud and the edge.

The general network architecture, as shown in Fig. 1, is divided into three levels.
At the first (user) level, we have a generic user equipment, typically a tablet or a
smartphone, acting as controller, and a remote controlled device, typically a drone
or a robot. We assume both the devices are connected to the second (access) level
of the network through three possible access networks: (i) a generic WiFi network,
e.g. through an access point connected to the ADSL access network of an ISP; (ii)
an LTE cellular network; (iii) a telecommunication operator’s public WiFi network.
The last kind of network has been recently introduced by the operators in addition to
their existing cellular infrastructure [4]. We assume that edge servers, which users
can access to offload some of their jobs, are only available inside the LTE and the
operator’s WiFi networks.

4 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

Remote controlled
 device

LTE Network

User Level

Internet

P-GW

eNodeb eNodeb
AP AP

Edge
Servers

Edge
Servers

Operator's
WiFi Network

Generic
WiFi Network

Remote Cloud

User Equipment
(controller)

Access Level

Fig. 1 Network architecture and topology enabling fog-computing capabilities in LTE and opera-
tor’s WiFi networks.

Finally, the third level in the considered network architecture consists of the
global Internet where external cloud servers are available for the execution of users’
tasks as well.

Job Definition
In the following, we concentrate just on the jobs that must be offloaded, assuming
that other tasks are running locally in the user devices. Each job is associated with
a maximum allowed delay for its processing, denoted as job deadline. We assume
that the the users offload the jobs to the edge servers present in the LTE network
or in the public WiFi network, or to the external cloud present in Internet. The
range of jobs requested to be processed remotely depends on the scenario as well
as on the required processing capabilities. Example of such remote jobs are the
following: processing of raw data acquired by a robot, elaboration of digital media
(pictures or videos) taken by a drone, object recognition, tasks that require external
softwares and services of third-party companies. Moreover, there can also be latency
constraints associated with some jobs, limiting them to be processed only at the edge
instead of the cloud.

Taking into account the wide range of applications and the latency constraints,
we define three classes of jobs as explained in Table 1. Class C jobs are typically the
ones requiring third-party software or services, hence such jobs can only be executed
in the cloud. Class E jobs can be executed only in the edge platform due to strict

Enriching Remote Control Applications with Fog Computing 5

Table 1 Job classification

JOBS CLASS DESCRIPTION

C (Cloud) Job can be executed only in the cloud
E (Edge) Job can be executed only in the edge servers
H (Hybrid) Job can run either in the cloud or in the edge servers

latency constraints. Finally, class H jobs are the ones with no latency constraints, so
they can be run either in the cloud or in the edge platform.

When a new job arrives, there may not be enough resources available to run the
job and thus the offload allocation fails. This is denoted as blocking event.

Offload Allocation Policies
The allocation policy is responsible to choose where to run a particular job that
must be offloaded, based on two possible options: either on the edge servers, or on
the cloud. Based on our previous job classification, we consider only class H jobs,
for which the allocation decision is not immediate. In our work we formulate the
following four policies in order to handle class H jobs:

• First Fit (FF): Class H jobs are assigned to the edge servers as long as the
resources are available, otherwise they are assigned to the external cloud. The
idea is to exploit the resources in the edge servers as much as possible in order
minimize delays. As a consequence, the edge servers may become saturated,
due to the limited resources, and cause blocking of class E jobs.

• All Away (AA): Class H jobs are allocated to the external cloud. The aim is to
keep the resources, in the edge servers, available for class E jobs.

• Load Based (LB): Class H jobs are allocated to the external cloud only if the
load on the edge servers is over 50 percent, otherwise they are executed in the
edge servers.

• Balanced Split (BS): If the resources are available at the edge, class H jobs are
allocated to the edge servers with 0.5 probability, otherwise they are allocated
to the external cloud.

4 Performance Evaluation

We developed an ad-hoc event-driven simulator in C language in order to compare
the different offload allocation policies for a generic job arrival process.

The simulator was developed to capture the unique features of the proposed sys-
tem model explained in Section 3. Based on the network architecture shown in
Fig. 1, we deduced a simplified network topology, in which we associated a constant
communication delay between any pair of entities involved in the communication
process.

6 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

Job generated

Job blocked

Job belongs
to class C?

Send to cloud

Job in execution

Send results to user

Results arrived
 in time?

Job completed

Job failed

Job belongs
to class E?

Send job to edge platform

Sufficient resources
 in edge platform?

yes

no no

yes

no

no

yes

class H job
Policy
outcome?

yes

Edge

Cloud

Fig. 2 Workflow of the simulator

The workflow of the simulator is shown in Fig. 2. The first step is the random
generation of a job that belongs to one of the classes defined in Table 1. In the
simulations, we assume that all classes of jobs arrive with an equal probability,
following a Poisson process. We also assume that the cloud has always enough
resources to accommodate any number of jobs.

If the generated job belongs to class C, it is sent to the external cloud for exe-
cution. After the processing of the job, the results are delivered to the user. If the
computation results reach the user within the job deadline, the job is completed,
otherwise it is considered failed. If the generated job belongs to class E, the sim-
ulator checks the available resources in the edge servers. If not enough resources
are available, the job is blocked. Otherwise, the job is sent to the edge servers and
the results are sent back to the user, and checked if they satisfy the deadline. Lastly,
in the specific case of class H job, the offload policy, chosen among the four ones
described in Section 3, determines whether the job should be executed in the edge
platform or the cloud.

Table 2 describes all the set of the parameters used for our evaluation. The pa-
rameters are divided into three groups: network, edge platform and job related pa-
rameters. As shown in Fig. 1, the user devices are connected with the operator’s
WiFi, LTE and the generic WiFi networks present in the access level. Each of the
three networks presents a different access scenario characterized by different pa-
rameters. Therefore, we define the network parameters, such as delay, uplink rate
and downlink rate, separately for each access network.

As mentioned, the jobs can be allocated either to the edge platform or the cloud.
Differently from the cloud, equipped with unlimited computational resources, the

Enriching Remote Control Applications with Fog Computing 7

Table 2 Simulation Parameters

NETWORK PARAMETERS

Parameter Description Value

LTE delay LTE access and core network delay 5–9 ms
OP-WiFi delay Operator’s WiFi access and network delay 10–20 ms
G-WiFi delay Generic WiFi access and network delay 8–20 ms
Internet delay Delay in a one way trip over the Internet 15 ms a

Tx G-WiFi Uplink rate of the generic WiFi network 7.2 Mbps
Rx G-WiFi Downlink rate of the generic WiFi network 20 Mbps
Tx LTE Uplink rate of LTE network 3.3–5 Mbps b

Rx LTE Downlink rate of LTE network 20–50 Mbps b

Tx OP-WiFi Uplink rate of the operator’s WiFi network 3.2–4.4 Mbps
Rx OP-WiFi Downlink rate of the operator’s WiFi network 8.8–9 Mbps

EDGE PLATFORM PARAMETERS

Parameter Description Value

Max servers Number of edge servers 20
Max VCPUs Number of VCPUs available on each edge server 10
VCPU speed Processing speed of a single VCPU 1400 MIPS c

JOB PARAMETERS

Parameter Description Value

Job load Processing requirements of a job 700 MI (million instructions)
Input size Amount of data uploaded while requesting a job 3 MB
Output Size Amount of data downloaded while receiving results 1.1 MB

Deadline
Maximum amount of time at disposal to process
and deliver the job successfully 7 sec

a Verizon IP latency statistics. Available at: http://www.verizonenterprise.com/about/
network/latency/

b Verizon offered speed on LTE. Available at: http://www.
verizonwireless.com/mobile-living/network-and-plans/
4g-lte-speeds-compared-to-home-network/

c Amazon m3.medium vcpu benchmark. Available at: https://s3.amazonaws.com/
cloudharmony/geekbench3_3_1_6/aws:ec2/m3.medium/ebs/sa-east-1/
2014-11-12/2636/369105-9/geekbench.html

edge platform is composed of a limited number of servers available in the LTE
network and in the operator’s WiFi network. For each edge server, we define the
number of virtual CPUs (VCPUs) and their processing capabilities.

Finally, we have the job related parameters which depend on the kind of task
required to be processed. We assume a generic image processing job, where a user
sends a raw image to the edge platform or the cloud and requests to send the pro-
cessed image to the other user. The selected parameters in Table 2 reflect such
choice.

Given an allocation policy, 5000 simulation runs are executed. In each run, the
job arrival rate is increased, ranging from 1 to 5000 jobs per second. In addition,
for each of the simulation parameters that takes a range of values in Table 2, we
generate a uniformly distributed value in the considered range.

8 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.03

0.06

0.09

0.12

0.15

Job Arrival Rate (Jobs/s)

B
lo

ck
in

g
Pr

ob
ab

ili
ty

FF AA LB BS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

Job Arrival Rate (Jobs/s)

Fa
ilu

re
Pr

ob
ab

ili
ty

FF AA LB BS

Fig. 3a Global blocking probability Fig. 3b Global failure probability

4.1 Numerical Results

We start by comparing the four offload policies in order to find out the best pol-
icy among them. Then, we perform the server utilization analysis to evaluate the
minimum number of servers required in the edge platform for a given job arrival
rate.

Offload Allocation Policy Comparison

The allocation policies are compared in terms of their global blocking probability
and global failure probability as shown in Figs. 3a and 3b respectively. The global
blocking probability represents the fraction of blocked jobs, while the global fail-
ure probability represents the fraction of failed jobs, in the overall system. As a
reminder, the First Fit (FF) policy allocates the class H jobs to the edge platform
with a higher priority. This causes the edge servers to saturate sooner (in compari-
son to the other policies) and thus increasing the number of blocked jobs. However,
since more jobs get executed at the edge, the number of failed jobs reduces. On the
other hand, the All Away (AA) policy allocates all of the class H jobs to the cloud.
As a consequence, the number of blocked jobs are reduced, but at the expense of the
increase in the number of failed jobs. Therefore, AA and FF are the best policies in
terms of global blocking probability and global failure probability respectively. The
LB policy, which assigns jobs to the edge servers based on a given load, behaves
similarly to AA for high load. Indeed, when the job arrival rate is high, the load of
the class E jobs on the edge servers is high as well. Thus, almost all of the class H
jobs are allocated to the cloud. The behavior of the BS policy remains in between
FF and AA.

In order to find the overall best policy, we have computed the summation of
global blocking and failure probabilities (i.e. 1 minus the probability that the job is
completed) and based on this we have observed that AA policy is the best among
all the other offload policies. Thus, for the following investigations we will consider
only AA policy.

Fig. 4 shows the blocking and the failure probabilities in LTE and WiFi networks.
It is evident that the failure probability of WiFi networks is higher than that of LTE
network, due to the fact that the overall delay of WiFi network is greater than the

Enriching Remote Control Applications with Fog Computing 9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

Job Arrival Rate (Jobs/s)

Fa
ilu

re
an

d
B

lo
ck

Pr
ob

ab
ili

ty

LTE-Fail LTE-Block WiFi-Fail WiFi-Block

Fig. 4 Failure and blocking probabilities for LTE and WiFi networks for the All Away (AA) of-
floading policy

delay of LTE network. As a result, the processed jobs traversing WiFi networks are
more likely to arrive after the deadline. In addition, the downlink rate of LTE is
also higher as compared to that of the WiFi networks. Moreover, for low job arrival
rate, the blocking probability is zero in both LTE and the WiFi networks. This is
because there are sufficient resources available in the edge servers to accommodate
class E jobs, while both class C and class H jobs are allocated to the cloud. Once the
resources are exhausted, at a job arrival rate of about 3200 jobs/sec, class E jobs be-
gin to get blocked and the blocking probability starts to increase. This phenomenon
decreases the failure probability as the blocked jobs do not consume additional net-
work and computing resources, thus allowing more jobs that are executed in the
cloud to arrive at the user device within the deadline.

Server Utilization Analysis

This second part of results focuses on the server utilization in the edge platform.
Our design aim is to quantify the number of servers required to sustain a given
job arrival rate while maintaining the blocking probability under 1%. Here, we are
only interested in the blocking probability as it depends on the capacity of the edge
platform. The failure probability, on the other hand, depends mainly on the network
performance. Our previous results have shown that AA policy outperforms the other
policies in terms of blocking probability. However, to evaluate the worst case sce-
nario, useful for a safe design of the edge platform, we consider the FF policy which
gives the highest blocking probability, according to Fig. 3a.

We assume that the pseudo-sinusoidal traffic pattern during 24 hours of a working
day, as measured in [9], is followed by the job arrival rate, as shown in Fig. 5. In the
figure, the job arrival rate is normalized to its peak value.

We evaluate the required number of edge servers in two different scenarios: a
small community with few users and a peak arrival rate set at 1100 jobs/s; and a
large community, similar to a city, with a large number of users and a peak arrival

10 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

Fig. 5 Normalized arrival rate during 24 hours of a working day

 0

 10

 20

 30

 40

 50

 60

00:00 04:00 08:00 12:00 16:00 20:00 00:00

N
o

.
o

f
s
e
rv

e
rs

Hour

Servers available

 0

 50

 100

 150

 200

 250

 300

 350

00:00 04:00 08:00 12:00 16:00 20:00 00:00

N
o

.
o

f
s
e
rv

e
rs

Hour

Servers available

Fig. 6a Small community evaluation, block-
ing probability=1%, FF policy

Fig. 6b Large community evaluation, block-
ing probability=1%, FF policy

rate set at 100,000 jobs/s. Fig. 6a shows the number of servers needed to satisfy
the job requests at the blocking probability of 1% throughout the day for the small
community scenario. In this case, the number of servers required at the peak hour is
43. Similarly, Fig. 6b shows the number of servers for the large community scenario.
Here, the number of servers required at the peak hour is 262. It is worth to note
the step behavior of the number of required servers, due to the policy that tends
to consolidate the usage of the edge servers. Only when all the edge servers are
saturated, then a new set of servers is activated to accommodate the new requests.

5 Conclusion

Enriching remote control applications with advanced capabilities can be highly ex-
pensive, in terms of required computational power and energy, for a resource con-
strained user device. Fog computing is a promising alternative to offload compu-
tationally expensive jobs away from the user device to the edge. In this paper, we
present a network architecture where a communication infrastructure, based on LTE

Enriching Remote Control Applications with Fog Computing 11

and WiFi networks, is equipped with fog and cloud computing platforms. We cate-
gorize the jobs to be offloaded specifically in the edge (E), cloud (C) or in both (H)
according to their suitability. Moreover, we define a set of 4 offload policies to man-
age class H jobs. The All Away (AA) policy outperforms the other polices in terms
of the global blocking probability as it offloads all of the class H jobs to the cloud,
thus decreasing the load on the edge servers. In terms of the global failure probabil-
ity, the First Fit (FF) policy performs better than the other policies as it offloads the
class H jobs at a higher priority to the edge servers, thus reducing the latency and
meeting the deadline. Furthermore, we quantify the number of edge servers required
to sustain a given job arrival rate while maintaining the blocking probability under
1%, in two scenarios, consisting of small and large communities.

References

1. Aazam, M., Huh, E.N.: Fog computing micro datacenter based dynamic resource estimation
and pricing model for IoT. In: IEEE International Conference on Advanced Information Net-
working and Applications (AINA), pp. 687–694 (2015)

2. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.:
What will 5G be? IEEE Journal on Selected Areas in Communications 32(6), 1065–1082
(2014)

3. Asadpour, M., den Bergh, B.V., Giustiniano, D., Hummel, K.A., Pollin, S., Plattner, B.: Mi-
cro aerial vehicle networks: an experimental analysis of challenges and opportunities. IEEE
Communications Magazine 52(7), 141–149 (2014)

4. Balasubramanian, A., Mahajan, R., Venkataramani, A.: Augmenting mobile 3G using WiFi.
In: 8th International Conference on Mobile systems, applications, and services, MobiSys, pp.
209–222. ACM (2010)

5. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: A platform for Internet of Things
and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp.
169–186. Springer (2014)

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of
Things. In: 1st Workshop on Mobile Cloud Computing, MCC, pp. 13–16. ACM (2012)

7. Chen, M., Hao, Y., Li, Y., Lai, C.F., Wu, D.: On the computation offloading at ad hoc cloudlet:
architecture and service modes. IEEE Communications Magazine 53(6), 18–24 (2015)

8. Fiandrino, C., Kliazovich, D., Bouvry, P., Zomaya, A.Y.: Network-assisted offloading for mo-
bile cloud applications. In: IEEE International Conference on Communications (ICC), pp.
5833–5838 (2015)

9. Hohwald, H., Frı́as-Martı́nez, E., Oliver, N.: User modeling for telecommunication applica-
tions: Experiences and practical implications. In: International Conference on User Modeling,
Adaptation, and Personalization, pp. 327–338. Springer (2010)

10. Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and au-
tomation. IEEE Transactions on Automation Science and Engineering 12(2), 398–409 (2015)

11. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: Can offloading computation save
energy? Computer 43(4), 51–56 (2010)

12. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation of-
floading. IEEE Communications Surveys Tutorials (2017)

13. Malandrino, F., Chiasserini, C., Kirkpatrick, S.: The price of fog: A data-driven study on
caching architectures in vehicular networks. In: 1st International Workshop on Internet of
Vehicles and Vehicles of Internet, IoV-VoI, pp. 37–42 (2016)

12 Claudio Fiandrino, Paolo Giaccone, Ahsan Mahmood, and Luca Maioli

14. Ragona, C., Granelli, F., Fiandrino, C., Kliazovich, D., Bouvry, P.: Energy-efficient computa-
tion offloading for wearable devices and smartphones in mobile cloud computing. In: IEEE
Global Communications Conference (GLOBECOM), pp. 1–6 (2015)

15. Rouanet, P., Oudeyer, P.Y., Danieau, F., Filliat, D.: The impact of human-robot interfaces on
the learning of visual objects. IEEE Transactions on Robotics 29(2), 525–541 (2013)

16. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the
context of Internet of Things. IEEE Transactions on Cloud Computing (2015)

17. Sciarrone, A., Fiandrino, C., Bisio, I., Lavagetto, F., Kliazovich, D., Bouvry, P.: Smart prob-
abilistic fingerprinting for indoor localization over fog computing platforms. In: 5th IEEE
International Conference on Cloud Networking (CloudNet), pp. 39–44 (2016)

18. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: 5G-enabled tactile internet. pp.
460–473 (2016)

19. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge
networks: Convergence of computing, caching and communications. IEEE Access (2017)

