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MODEL ORDER REDUCTION IN COMPUTATIONAL
AEROACOUSTICS

Renzo Arina
Politecnico di Torino, Dipartimento di Ingegneria Meccanica e Aerospaziale, Torino, Italy
email: renzo.arina@polito.it

A reduced-order model for acoustic propagation is proposed. It is based on a Proper Orthogonal
Decomposition (POD) of a set of snapshots, obtained for different values of geometrical and
frequency parameters of the acoustic problem under study. The POD expansion coefficients,
functions of the parameters, are continuously extended in the parameter space by interpolation.
This approach is termed POD with Interpolation (PODI). The model is applied to the case of the
scattering of sound by a circular cylinder. The problem is formulated in the frequency space and
the parameter is the distance of the monopole source with respect to the circular cylinder.
Keywords: Model order reduction, proper orthogonal decomposition, Helmholtz equation, acous-
tic scattering

1. Introduction

Recent years have seen considerable progress in Computational AeroAcoustics (CAA). Models
of acoustic propagation based on the Linearized Euler equations (LEE) and Linearized Navier-Stokes
equations (LNSE) are now currently in use [1, 2, 3], leading to advances across a broad range of
engineering applications. Improvements in methodology, together with a substantial increase in com-
puting power, are such that real-time simulations and optimization of systems governed by LEEs, or
LNSEs, is now an attainable goal. In many cases, computational models for such applications yield
very large systems that are computationally intensive to solve. A critical element towards achieving a
real-time simulation capability is the development of accurate and efficient models that can be solved
sufficiently rapidly.

Model reduction is a powerful tool that allows the systematic generation of cost-efficient rep-
resentations of large-scale systems resulting from discretization of high-fidelity models. Reduction
methodologies have been developed and applied for many different disciplines, including controls,
fluid dynamics, structural dynamics, and circuit design. Considerable advances in the field of model
reduction for large-scale systems have been made and many different applications have been demon-
strated with success [4].

The choice of the particular Reduced-Order Model (ROM) however is quite critical, as it must
preserve the essential physics and predictive capability of the high-fidelity partial differential model.
The ROM definition can be sample based, employing statistical analysis, such as kriging, or based
on dimensionality considerations: if the solution of the partial differential problem evolves in a low-
dimensional manifold induced by the parametric dependence, the high dimensionality of the dis-
cretization space can be reduced constructing an approximation of this manifold. Among the meth-
ods based on dimensionality reduction, the Proper Orthogonal Decomposition (POD) is often used
for reduced order approximations. Given a series of high-fidelity snapshots of a system, a simple
algorithm produces an optimal linear basis which may be interpreted as a solution of a minimization
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of the projection error of the original system, as described by the snapshots, equivalent to maximizing
the energy in the projection [5]. If a problem is described by a representative number of high-fidelity
calculations from which a set of basis vectors may be extracted, the singular values become rapidly
small and a small number of basis vectors is sufficient to approximate the solution in terms of a set
of low rank basis vectors. The ROM is obtained using this reduced set. This linear basis can then
be used to compute new approximate solutions for arbitrary parameters at a significantly reduced
computational cost.

In fluid dynamics, the POD is usually employed to find a basis for the projection of the Navier-
Stokes equations and to obtain a ROM composed by a system of ordinary differential equations for the
time dependent POD expansion coefficients [6]. Less commonly, the POD is applied in the frequency
space [7] or in a parameter space. In this latter case, as an example, the POD can be used to describe
flow fields around modified body shapes, using the information about the flow past few selected
geometries of the body, which form the snapshots for the POD. Examples of this approach can be
found in the works of Legresley and Alonso [8], Bui-Thanh et al. [9], Mifsud et al. [10] and Tang and
Shyy [11]. The POD expansion coefficients are functions of the parameters, and can be continuously
extended in the parameter space by the Response Surface Method (RSM) [12]. This approach is
termed POD with Interpolation (PODI) [9].

The application of POD-based ROMs in the parameter space is quite recent and still under ac-
tive development. Moreover, to our knowledge, no systematic study of model reduction has been
presented in aeroacoustics yet, addressing a number of important issues, including the reliability of
reduction techniques, associated with the quality of the reduced models, and validity of the model
over a range of operating conditions.

In the next section the PODI method is described, and in Section 3 it is applied to the problem of
the scattering of sound by a circular cylinder. The problem is formulated in the frequency space and
the parameter is the distance of the monopole source with respect to the circular cylinder.

2. Proper Orthogonal Decomposition

Several POD methods can be found in literature: the Karhunen-Loève decomposition, the Princi-
pal Component analysis and the Singular Value Decomposition (SVD). It can be shown that they are
all equivalent [5].

POD basis vectors are computed using a set of m high-fidelity data called snapshots. m is the
number of realizations obtained combining different values of the parameters spanning the parameter
space θ, such as parameters defining the domain geometry or the position of the noise sources. Each
snapshot corresponds to a vector of dimension n, solution of a high-fidelity CAA calculation, where
n � m. This input choice is critical, since the resulting basis will capture only those dynamics
present in the snapshot ensemble.

In this work the POD snapshots are obtained from a frequency formulation of the CAA model.
The basis vectors ϕ are chosen so as to maximize the functional

ϕ = arg max
|(u,ϕ)|2

(ϕ,ϕ)
, (1)

where (u,ϕ) denotes the scalar product of the basis vector with the field u(θ, k), which depends
on parameter space θ and wave number k. A necessary condition for Eq.(1) to hold is that ϕ is an
eigenfunction of the kernel K defined by

K(θ, θ′) = u(θ, k)u∗(θ′, k) ,

where u∗ denotes the complex conjugate transpose of u. Instead of explicitly calculating the kernel
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K it is possible to adopt the snapshot method [13], approximating the kernel as

K(θ, θ′) =
1

m

m∑
i=1

ui(θ)u
∗
i (θ
′) ,

where ui(θ) = u(θi, k) is the snapshot corresponding to the i-th parameter configuration and the
number of snapshots m is sufficiently large. The basis ϕ, eigenvectors of K, are of the form

ϕ =
m∑
i=1

βiui ,

where the constants βi satisfy the eigenvector equation

Rβ = Λβ ;

R is the correlation matrix
Rij =

1

m
(ui,uj) ,

and Λ is the diagonal matrix with eigenvalues λj . The magnitude of the j-th eigenvalue describes
the relative importance of the j−th POD basis vector for reconstruction of the data contained in the
snapshot ensemble. For a basis containing the first p POD modes, an heuristic criterion based on the
ratio of the modeled to the total energy contained in the system is

ε(l) =

∑l
i=p λi∑m
i=1 λi

.

The vector uj ∈ Rn represents a vector of scalar functions of grid points (or cells), such as the
acoustic pressure. Each snapshot uj can be expanded as

uj =
m∑
l=1

αljϕl for j = 1, . . . ,m ,

where the projection coefficients
αlj = (ϕl,uj) ,

are discrete functions in the parameter space, with values defined at the points corresponding to the
individual snapshots uj . To use the derived ROM as a prediction tool, it is necessary to extend the
discrete functions αlj in continuous functions αl in the parameter space, and the field variable in a
generic point of the parameter space may be approximated by the linear combination

u =
m∑
l=1

αlϕl .

3. Numerical example: acoustic scattering

The PODI-ROM method described in the previous section is applied to a problem of acoustic
propagation in a homogeneous medium at rest, formulated in the frequency domain. The wave equa-
tion, in Cartesian coordinates and assuming the usual index summation convention,

1

c20

∂2p

∂t2
− δij

∂2p

∂xi∂xj
= −Qac , (2)
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describes the propagation of sound through a homogeneous medium at rest. p is the acoustic pressure,
c0 the sound speed evaluated at the medium conditions p0 and ρ0, constant through the medium.
Qac(t, xi) represents a source term (for example a line monopole source). Assuming harmonic time
dependence for the acoustic fluctuations

p = p̂ eIωt ,

with I =
√
−1 and ω being the angular frequency, Eq.(2) transforms in the complex Helmholtz

equation

δij
∂2p̂

∂xi∂xj
+ k2p̂ = Q̂ac , (3)

with wave number k = ω/c0. The acoustic pressure can be computed after the inhomogeneous
term Qac of Eq.(2) has been evaluated and Fourier transformed (Q̂ac(k, xi)) . In this way the range
of the wave number k ∈ [0, kmax] is introduced. For each value of k is associated the Helmholtz
problem (3) with the corresponding inhomogeneous forcing term Q̂ac(k, xi). The time dependent
acoustic pressure field is recovered performing an inverse DFT. Problem(3) is solved with a finite
element method applying the code FreeFem++ [14].

The scattering of sound by a circular cylinder is a useful test for the validation of the PODI-ROM
technique. The exact solution of the scatter of sound from a monopole line source, positioned at a
distance L, along the x-axis (xsource = L, ysource = 0), from a circular cylinder, centered in the origin
of the axis, with ray R, has been provided by Morris[15]. The corresponding Helmholtz problem (3)
has been solved on a square domain [−2π : 2π]× [−2π : 2π]. To avoid spurious reflections along the
exterior boundaries, Perfectly Matched Layer (PML) boundary conditions are imposed [16]. PML
regions are added outside the exterior boundaries, and fully reflecting conditions (∂p/∂n = 0) are
imposed along the cylinder wall.

Keeping a fixed wave number k = 10, corresponding to a frequency of 541.397 Hz, several
snapshots are obtained varying the distance of the line source with respect to the cylinder center.
With an unstructured grid of 36310 triangles, the numerical solution coincides with the analytical
solution within round-off accuracy outside the source region.

Five snapshots are obtained varying the distanceL/R: 1.50, 2.0, 2.5, 3.0 and 3.50. Once the POD
coefficients are obtained, the PODI-ROM is applied to reconstruct the solution for the case k = 10 and
L/R = 2.75. The POD coefficient are linearly interpolated to obtain the values corresponding to the
chosen parameter L/R. In Fig. 1 the comparison between the reconstructed solution and the numeri-
cal solution is reported. The agreement is quite good. The pressure field is slightly overestimated in
the region 1 < x/R < 2.75. Moreover in the source region some discrepancies are evident. The main
reason could be the presence of the source term in the numerical model. The reconstructed acoustic
field is very similar to the numerical one, as shown in Fig. 4, where the instantaneous pressure field
is reported, and in Fig. 4 displaying the SPL.

4. Conclusions

A reduced-order model for acoustic propagation has been proposed. It is based on a POD analysis
of a set of snapshots, obtained for different values of geometric and frequency parameters of the
acoustic problem under study. The POD expansion coefficients, functions of the parameters, are
continuously extended in the parameter space by interpolation. This approach is termed POD with
Interpolation (PODI). The model is applied to the case of the scattering of sound by a circular cylinder.
The problem is formulated in the frequency space and the parameter is the distance of the monopole
source with respect to the circular cylinder. This preliminary test shows the potentiality of the method.
Further analysis are needed to asses the accuracy of the method.
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Figure 1: Scattering of a monopole acoustic source from a circular cylinder. Instantaneous pressure,
along the line y = 0, k = 10. Comparison of the PODI-ROM reconstruction with the numerical
(FEM) solution.

(a) (b)

Figure 2: Scattering of a monopole acoustic source from a circular cylinder. k = 10. (a) Instantaneous
pressure [Pa] and (b) SPL [dB] of the PODI-ROM solution.
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