
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Low-Cost Security of IoT Sensor Nodes with Rakeness-Based Compressed Sensing: Statistical and Known-Plaintext
Attacks / Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - In: IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY. - ISSN 1556-6013. - STAMPA. - 13:2(2018), pp. 327-340.
[10.1109/TIFS.2017.2749982]

Original

Low-Cost Security of IoT Sensor Nodes with Rakeness-Based Compressed Sensing: Statistical and
Known-Plaintext Attacks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TIFS.2017.2749982

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2701974 since: 2018-02-27T15:36:25Z

Institute of Electrical and Electronics Engineers Inc.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Low-cost Security of IoT Sensor Nodes With
Rakeness-Based Compressed Sensing: Statistical

and Known-Plaintext Attacks
Mauro Mangia, Member, IEEE, Fabio Pareschi, Member, IEEE, Riccardo Rovatti, Fellow, IEEE,

Gianluca Setti, Fellow, IEEE

Abstract—Compressed Sensing has been proposed to both yield
low-cost compression and low-cost encryption. This can be very
useful in the design of sensor nodes with a limited resource budget
whose acquisition must be kept as private as possible. We here
analyze the susceptibility of Compressed Sensing stages that are
optimized to maximize compression performance by rakeness-
based design to ciphertext-only and known-plaintext attacks.
A trade-off between compression and security is highlighted.
Notwithstanding such a trade-off, rakeness-based Compressed
Sensing exhibits a noteworthy robustness to classical attacks.

I. INTRODUCTION

THE TERM Internet of Things (IoT) first appeared in
1999 and rapidly evolved into the label for the collective

systems arising from the exchange of information (mediated
by a communication network) between devices whose purpose
is to interact with the physical world in most diverse ways.

The aim of these systems is to provide smart functionalities
that would not be possible without the acquisition and ex-
change of such information and, today, we begin to design and
deploy smart grids, smart homes, smart water networks, smart
transportation infrastructures, etc., that deeply rely on the
intertwining of diverse physical interactions and information
processing.

A key ingredient in IoT aggregates is their ability of
autonomously gathering information about the real world by
means of a potentially large number of sensors either embed-
ded in objects or deployed ad-hoc. These sensors typically
work on extremely low resource budgets in terms of available
power, weight, etc. To limit their invasiveness with respect to
the phenomena they observe, they communicate the acquired
data wirelessly to the other elements of the IoT ensemble.

Hence, ability of designing extremely parsimonious wireless
sensing nodes is fundamental for the development of IoT sys-
tems. For example, low-level processing and elementary signal
compression is sought to limit the data rate of the transmission
that is often the main cause of power consumption.
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Yet, such a need for parsimony must cope with an intrinsic
downside of every distributed system in which information
is transferred between its components through public chan-
nels: a privacy issue. Malicious entities may be interested
in interfering with the data flow that makes IoT work, with
the aim of capturing sensible information (e.g., biological
data of patients being monitored), predicting system behavior
(e.g., knowing in advance whether or not an alarm will be
triggered as a consequence of some event), or even altering it
(e.g., preventing automatic responses to threats). In principle,
every sensor node should accommodate an encryption stage
designed to address the trade-off between the level of security
that is needed and the complexity of the stage itself.

To address the simultaneous need for compression and
privacy, the use of Compressed Sensing (CS) has been recently
proposed as a way to both reduce the amount of data to
transmit [1], [2] and make them computationally secure.

The main advantage of the approach is that CS entails only
very simple processing. The downside is that security is not
perfect and has to be assessed in terms of the computational
power needed by an attacker to break the encryption and reveal
the data. Such an analysis has been carried out for the classical
CS setting [3][4], but it is still an open problem for the im-
proved version of CS proposed in [5][6], in which compression
performance is significantly increased by adapting to second-
order features of the signal to acquire.

This paper fills the gap by analyzing the effect of such
an optimization on the security offered by the CS stage. In
particular we consider Ciphertext Only Attacks (COAs) in
which an eavesdropper observes only encoded signals and tries
to infer by statistical means some of the features of the true
signal. We also tackle Known Plaintext Attacks (KPAs) in
which the attacker has access to both the original and encoded
version of the signal in certain time windows, and tries to break
the encryption of future waveforms. This is an attack that is
particularly important for sensing nodes since the attacker may
think of temporary deploying an identical sensor close to the
one to attack to obtain the unencoded reading. These scenarios
are depicted in Figure 1.

Results shows that, especially for KPAs, there is a trade-off
between the compression performance and obtained security.
Yet, even when compression is significantly increased with
respect to classical CS, the computational resources needed
by an attacker to reveal the original signal appear to be well
beyond what can be reasonably spent to obtain protected
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Fig. 1. Block scheme of a WSN where the encoder (ENC) performs the
encryption and the decoder (DEC) retrieves the acquired signal. The picture
also shows two malicious users, one trying to recover the security key by a
know plaintext attack (KPA) (acquiring the same signal with another sensor
and eavesdropping the encrypted data) and a second one trying to recover the
sensed signal only by eavesdropping the encrypted data (the ciphertext only
attack, COA).

information with limited value like most sensor acquisition
are.

The paper is organized as follows. Section II recalls the
fundamental concepts of CS and describes the interplay be-
tween CS and encryption. Section III summarizes the so-
called rakeness-based design flow that optimizes compression
performance of CS by adapting to the second-order features of
the signal to acquire. Section IV describes the model we use
to perform the cryptanalysis. Section V applies such a model
to COAs while Section VI applies that to KPAs.

Some numerical examples are detailed in Section VII, in
which we consider both a class of synthetic signals allowing
the description of the compression-security trade off, and real-
world Electro Cardio Graphic (ECG) signals. In both cases
the effectiveness of the theoretical guarantee is assessed and
some estimation of the computational effort needed to break
the encryption is given.

Based on all the above, some conclusion are finally drawn.
The Appendix contains the proofs of few Lemmas that are

needed to develop the theoretical part.

II. COMPRESSED SENSING AND ENCRYPTION

The input waveform is represented by a set of n samples
collected in a signal x � px0, . . . , xn�1qJ P Rn. The
acquisition of such a waveform can benefit from CS when x
is known to be κ-sparse, i.e., when there is an n-dimensional
sparsity basis S P Rn�n such that expressing x � Ss yields a
vector s P Rn with not more than κ ! n non-zero components.

The number of true degrees of freedom in x is therefore
considerably smaller than n. Leveraging this property, funda-
mental results [7] have shown that the signal can be captured
by a set of m   n properly designed linear measurements.
We arrange these measurements in the m-dimensional vector
y � py0, . . . , ym�1qJ P Rm, obtained by applying a projection
matrix A P Rm�n to x, i.e., y � Ax � ASs. Passing from x
to y can be seen as an encoding of the signal to acquire into
m scalar quantities.
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Fig. 2. A scheme of the possible uses of CS in a sensor node: i) pure CS
encodes a vector of n samples into m scalars that can be transmitted and
used to reconstruct the original signal; ii) if the seed of the PRNG used to
generate the encoding matrix is kept secret, CS is also equivalent to a private-
key encryption: iii) if compression is increased by means of rakeness based
CS the matrix A is an additional information on the encoding that is publicly
available.

CS theory [7], [8] guarantees that s (and thus x) can be
recovered from y despite the fact that A (and thus AS) yields
a dimensionality reduction, provided that m � Opκ log nq.

This is done by exploiting the a priori knowledge on the
sparsity of s to identify it among all the vectors satisfying of
y � ASs. Algorithms performing this sparse signal recovery
have been explored and improved in recent years [7], [9], [10],
[11] and can be seen as a decoding stage inverting the linear
encoding.

This said, it is fair to state that most of the practical interest
in CS comes from two key facts. First, although theoretical
upper bounds exist on the error committed by signal recovery
algorithms depending on the features of A and S, and on the
amount of noise, their actual performance largely exceeds what
is predicted by formal guarantees, yielding signal recovery
from a much smaller number of measurements [6]. Second,
the mathematical conditions that allow sparse signal recovery
can be matched (with very high probability) by simply drawing
A at random. Although theoretical guarantees depend on the
choice of specific distributions [12], in practice a wide class
of random matrices allows for effective signal recovery [8].

These two points, jointly with the intrinsic simplicity of
the processing that CS requires at the sensing side (the
computation of Ax), suggests that CS can be a valid option
to reduce resource needs in sensing nodes since it provides a
non-negligible compression at a very low cost.

The general scheme is the one in the upper part of Figure 2,
i.e., that corresponding to the side label “i) CS”. The signal
vector is encoded and transmitted. Since encoding provides
compression, communication resources like time and energy
are reduced [13], [14]. Thanks to CS, this comes at the expense
of an extremely light computation that may be also optimized
[15] to become almost negligible, starting from the common
assumption A P t�1, 0,�1um�n that reduces multiply-and-
accumulate units to simple signed sums. In the following we
will assume A P t�1,�1um�n.

Further to this, researchers have realized that CS can be
exploited to provide also some form of security for the
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acquired data. In fact, recovery needs the knowledge of A
and this suggests looking at the encoding process as a private-
key encryption stage for which x is the plaintext, y is the
ciphertext and A is the shared secret. This is the core idea in
[17][18][19][20][21].

Practical implementations may follow the scheme at the
top of Figure 2 in the part labelled “ii) CS+encryption” in
which the actual key is the seed of a Pseudo-Random Number
Generator (PRNG) producing A (a different instance for each
set of n samples) both at the encoder and at the decoder.
Note that, according to the Kerchoff’s principle, the only
secret quantities in such a scheme are those with a shaded
background, i.e., the key and, consequently, the signal at
the sensing node and at the receiving hub. On the contrary
measurements, encoding strategy and PRNG structure are
known to attackers.

The robustness of such an encryption to some classical
attacks has been investigated (see, for example, [22], [20] and
[3]) for systems in which the PRNGs expand the key in a
stream of statistically independent symbols �1. Ciphertext-
only attacks (COAs) have been shown to be ineffective since,
when n is large, they may only reveal the average energy
of x. Hence, CS-based encryption enjoys asymptotic circular
secrecy, i.e., it is asymptotically Shannon-secure [20] when
leaking the energy of the ciphertext is not an issue.

Known-plaintext attacks (KPAs) have been also considered,
in which the attacker knows both x and y at certain instants
in time and aims at retrieving the corresponding A that is the
output of the PRNG. From such an output the attacker hopes
to identify the key and be able to seed a copy of the PRNG
to anticipate future encoding matrices and break encryption.
In conventional schemes, security hinges on the the proper
design of the PRNG. Yet, here we cannot exploit any known
techniques to deploy cryptographically-secure PRNG since i-
we aim at outputting non-independent symbols and thus need
specialized generation schemes, ii- coherently with the low-
cost sensor node setting typical of IoT, the resources devoted
to key expansion must be extremely limited. In this case,
robustness comes from the fact that each plaintext-ciphertext
is compatible with an enormous number of antipodal matrices
among which the true one sits like an indistinguishable straw
in a haystack. Hence, even if going from the PRNG output to
the key is not and hard task, the KPA still fails since inferring
the PRNG output from the plaintext-ciphertext pair may be
practically unfeasible.

III. RAKENESS-BASED CS IN A NUTSHELL

Rakeness-based design of CS improves on the classical
approach and on all known approaches to CS optimization by
noting that real-world signals x are usually not only sparse,
but also non-white or localized [6].

Their energy is anisotropically distributed in the signal
space, or, more formally, assuming Erxs � 0, their correlation
matrix X � ErxxJs is not a multiple of the identity (from now
on, calligraphic typefaces indicate correlation matrices). The
degree of such a localization can be assessed by computing
how much the eigenvalues ηj of X deviate from the isotropic
case, i.e.,

Lx �
n�1̧

j�0

�
ηj°n�1
k�0 ηk

� 1

n

�2

� tr
�
X 2

�
tr2pX q �

1

n
(1)

where trp�q stands for matrix trace and one can show that
0 ¤ Lx ¤ 1� 1

n .
When Lx � 0 all the eigenvalues of X are equal and the

signal is white. On the contrary, when Lx ¡ 0 the larger
eigenvalues of X correspond to directions along which the
signal is more likely to put energy. These are directions along
which projections may want to focus, though they should
remain able to explore other directions that on the average are
less energetic but may be important to reconstruct individual
instances of x.

This is what rakeness-based design of A does [5], [6],
assuming that A is made of independent and identically
distributed rows, whose entries may be given a non-white
statistics to improve acquisition performance. Formally speak-
ing, indicate with a � pa0, . . . , an�1qJ the random column
vector corresponding to a generic row of A so that aJx is the
generic measurement.

Then define the rakeness of a with respect to x as ρpa, xq �
Ea,x

��
aJx

�2
�
, i.e., as the average of the energy that mea-

surements capture from the signal. If A � EaraaJs, then
ρpa, xq � tr pAX q.

The correlation matrix A of a also controls its localization
since

La � trpA2q
tr2pAq �

1

n
. (2)

With this, the idea of favoring most energetic directions
while not neglecting the possibility of spanning the whole
signal space can be translated in finding the correlation matrix
A that maximizes ρpa, xq when La does not exceed a certain
threshold. To parameterize the localization of the projections
with that of the signal we required La ¤ `Lx for some
0 ¤ ` ¤ 1.

Note that setting ` � 0 implies La � 0 so that the sensing
vectors are forced to be white and, since they are antipodal,
made of independent entries as in classical CS.

The rakeness maximization problem with localization con-
straint can be solved analytically [5]. If X is spectrally
decomposed as X � °n�1

j�0 ηjqjq
J
j with ηj the eigenvalues

sorted in non-increasing order and qj the corresponding or-
thonormal eigenvectors, then the optimized correlation matrix
is A � °n�1

j�0 λjqjq
J
j for certain eigenvalues λj that, in the

simplest case, are given by

λj �
�

1�
?
`
	
� n

ηj°n�1
k�0 ηk

?
` (3)

where values of ` around 1{4 are usually employed. The
resulting maximal rakeness is

ρ�pa, xq �
n�1̧

j�0

ηjλj �
�

1� n
?
`Lx

	 n�1̧

j�0

ηj (4)

Once that A is known, a number of methods exist to
generate antipodal vectors a featuring a correlation matrix
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as close as possible to A [23], [24], [25]. The practical
effect of using the resulting vectors as rows of A is that the
amount of information that each measurement carries about the
signal increases. Hence, less measurements are needed to allow
signal reconstruction and compression is sensibly increased
with respect to conventional purely random approaches and
also with respect to other general purpose adaptation methods
available in the Literature [26].

There is, however, a drawback which is of particular impor-
tance for the analysis in this paper: it is no longer true that the
entries of A are independent since its rows are characterized by
a correlation matrix A. This situation is represented in Figure
2 globally labelled “iii) rakeness CS + encryption” where we
highlight that the A controlling the PRNGs both at the encoder
and at the decoder is known to attackers.

Intuitively, more information for the attackers means less
security, and the aim of the following discussion is to quantify
such a loss and ascertain that it does not impair the usability
of CS-based encryption in low-cost sensor nodes.

IV. MODEL AND ASSUMPTIONS FOR CRYPTANALYSIS

Most of our considerations will be for large n, i.e., in the
asymptotic condition n Ñ 8 that requires increasingly long
signals x and increasingly long rows a.

To cope with this we assume that the samples xj come
from a zero-mean, exponentially mixing (and thus ergodic and
stationary) stochastic process with power spectrum Sxpfq and
power

Erx2
j s �

» 1{2

�1{2
Sxpfqdf �Wx

We know from the main Theorem in [27, chapter 5] that

lim
nÑ8

1

n

n�1̧

j�0

ηj �
» 1{2

�1{2
Sxpfqdf �Wx (5)

As a regularity assumption we additionally require that
Sxpfq is square summable so that from the same Theorem

lim
nÑ8

1

n

n�1̧

j�0

η2
j �

» 1{2

�1{2
S2
xpfqdf � ξxW

2
x (6)

for some ξx   8. Non-white signals have ξx ¡ 1.
Since the xj model samples from real world-quantities, it

is also very sensible to assume

E
�
|xj |4�p

�
  8 (7)

for some p ¡ 0. Note that for random variables xj with a
bounded support (7) holds for any p ¡ 0.

As far as rows of A are concerned, we assume that a is
made of entries coming from a process that is also zero-mean
and exponentially mixing with power spectrum Sapfq. Since
a is antipodal we know that all the diagonal entries of A are
equal to 1 and thus

1

n

n�1̧

j�0

λj � 1

Yet, a straightforward calculation exploiting (6) and (3)
yields

ξa �
» 1{2

�1{2
S2
apfqdf � lim

nÑ8
1

n

n�1̧

j�0

λ2
j � 1� pξx � 1q ` (8)

It is worthwhile stressing that (6) and (8) are regularity
conditions in that, for example, exclude delta-like pulses in the
power spectra. Moreover, since both the process generating x
and the one generating a are assumed to be stationary, their
autocorrelation functions Cxpτq � Erx0xτ s and Capτq �
Era0aτ s, whose values populate the Töplitz matrices X and
A, are the Fourier inverses of the corresponding spectra. For
these functions, (6) and (8) jointly with the Parseval equality
give

8̧

τ��8
C2
xpτq � ξxW

2
x   8

8̧

τ��8
C2
apτq � 1� pξx � 1q `   8

that further confirm that we are dealing with weakly correlated
signals.

When needed, in the following we may work with vectors
that are normalized to have unit power, i.e. with x̄ � x{?nWx,
ā � a{?n, and ȳ � āJx̄.

In the next Sections we see that the parameters ` and Lx,
Wx and ξx control the statistics of the ciphertext and thus its
susceptibility to COAs, as well as the probability of success
of a KPA.

V. CIPHERTEXT STATISTICS AND COAS

Robustness againt COAs depends on the statistics of the
measurements that, in their normalized form, obey the Cen-
tral Limit Theorem for normalized sums of non-independent
variables. To show this we will mainly use results from [28].

Consider any two measurements y1 � a1Jx and y2 � a2Jx.
Since Era1s � Era2s � 0 both measurements have zero
mean. Thanks to the independence of a1, a2 and x, the covari-
ance between measurements is Ery1y2s � Era1JxxJa2s �
Era1sJErxxJsEra2s � 0.

Moreover, choose any two coefficients z1 and z2, build the
random variable Y � z1y1 � z2y2 � pz1a1 � z2a2qJx and
normalize it in Ȳ � Y{?n such that

Ȳ � 1?
n

n�1̧

j�0

pz1a1j � z2a2j qxj �
1?
n

n�1̧

j�0

Xj (9)

where the composite random variables Xj � pz1a1j � z2a2j qx̄j
remain implicitly defined. Clearly, ErXjs � 0 and from our
assumption (7) we get Er|Xj |4�ps   8. Moreover, if the
process generating a1 and a2 and the one generating x are
exponentially mixing, so is the process generating the Xj .
Hence, our normalized sum (9) satisfies all the assumptions
of [28, Theorem 4] and, as nÑ8, Ȳ asymptotically behaves
like a Gaussian random variable.
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Since the two coefficients are arbitrary, the asymptotic
Gaussianity of Ȳ implies that y1{?n and y2{?n are asymptoti-
cally jointly Gaussian. Since y1 and y2 have zero covariance
they are also independent and are equally distributed as
Gaussians with a variance that is the average energy of the
normalized measurements Ery12s{n � Ery22s{n. Since the
average energy of measurements due to rakeness-based design
is given by (4) we have from (6) that

Ery12s
n

� Ery22s
n

�
�

1� n
?
lLx

	 1

n

n�1̧

j�0

ηj

whose limit can be computed thanks to (1), (5), and (6) to
yield

y1?
n
nÑ8� y2?

n
nÑ8� N

�
0,
�

1�
?
` pξx � 1q

	
Wx

	
(10)

The same [28, Theorem 4] tells us that convergence speed
is only slightly impaired by the dependency between the
coefficients of a due to rakeness-based design. In fact, the
difference between the cumulative distribution function of the
measurements Φy{?n and the cumulative distribution function
of the limit Gaussian Φ0,p1�?`pξx�1qqWx

is bounded by

���Φy{?n � Φ0,p1�?`pξx�1qqWx

���
8
¤ Θ

log n?
n

for some constant Θ decreasing when p increases, that may be
compared with the Op1{?nq trend of the classical Berry-Esseen
bound [29].

This shows that rakenes-based CS used as an encryption
stage is asymptotically circularly secret as defined in [20],
since

�
1�?

l pξx � 1q
	
Wx is the only information that an

attacker may infer from the observation of the ciphertexts y.
The results in [20] are a special case of (10). In fact, recall

that an A made of i.i.d. antipodal entries is obtained by setting
` � 0 and in that case, the information that leaks is Wx.

What we get from (10) is that asymptotic circular security
holds also adopting a rakeness-based design flow as described
in Section III.

Note also that, since the measurements are asymptotically
independent and identically distributed, considering the statis-
tic of more than one measurement does not give any additional
information on the hidden vector x.

VI. SUCCESS PROBABILITY OF KPAS

In this case the attacker knows a plaintext-ciphertext pair
px, y � Axq and aims at reconstructing A. Despite it is
true that the very same matrix will not be used for future
encodings, its knowledge is still of use for an attacker. In fact,
subsequent matrices are generated by the same PRNG that
can be attacked to retrieve its seed and thus the key. If this
happens all subsequent ciphertexts can be decoded. The PRNG
has to presumably be a simple one, given the limited resources
available at the sensing node, but for the rakeness approach
it must be capable to generate sequences with a prescribed
second order statistics. A good candidate is described in [23].

The reconstruction of A must proceed row by row since, by
assumption, rows are generated as independent realizations of
the same process with correlation matrix A. Hence, the attack
concretizes in solving m equations of the kind y � aJx when
the scalar measure y and the signal vector x are given (note
that from now on, since we concentrate on only one measure,
y is a scalar).

In principle, solving such an equation is not a difficult task.
Yet, the solution is not unique and, among the extremely huge
amount of solutions, the chance of hitting one that is at least
close to the true one is negligible.

In [3], the authors show that if A and thus a is made of
antipodal i.i.d. entries, the number of solutions is large enough
to deter an attacker as no side-information can be exploited to
prioritize the search for the true one.

Yet, if A is not the identity, the attacker may exploit such
an information.

The strongest possible attack is able to generate guesses
aguess that simultaneously satisfy all the available information,
i.e., they satisfy the measurement equation y � aJguessx
and their second-order statistics is regulated by the known
correlation matrix A.

Since row guessing must be repeated for every row of A,
the attacker benefits also from the fact that we adopt rakeness-
based CS to increase the compression rate CR � n{m, i.e., to
decrease m while not impairing reconstruction performance.
With rakeness-based CS, CR is larger and thus the number
of rows of A to guess is smaller with respect to classical
CS, possibly easing the attacker task proportionally with the
increase in CR.

Our theoretical development focuses on the probability that
the informed guesses produced by the attacker are close to the
true row.

From this point of view, the chances of success of a KPA to
each row depend on the probability that two sensing vectors a
(the one used by the encoder) and aguess (the one guessed by
the attacker) independentely generated by the same antipodal
process characterized by the correlation matrix A, are very
similar. For antipodal vectors, the most natural measure of
similarity is their Hamming distance ∆pa, aguessq, i.e.,the
number of entries in which a and aguess disagree.

Regrettably the geometry of ∆pa, aguessq is not trivial and
exploiting the intuition in [32] we will derive approximate
bounds on the probability of a KPA success noting that

1

n
∆pa, aguessq � 1

4

���� a?
n
� aguess?

n

����
2

� 1

4
}ā� āguess}2

(11)
and relaxing the antipodality constraint on the normalized
sensing vectors to allow some analytical considerations.

The geometrical structure of the KPA attack we analyze is
reported, in normalized form, in Figure 3-(a). The vector x̄,
the vector used by the encoder (ā1) and the one guessed by
the attacker (ā2) are such that pā1qJx̄ � pā2qJx̄, i.e. they
form the same angle with x̄. Since }ā1} � }ā2} � 1 both ā1

and ā2 lie on the intersection between the unit n-dimensional
sphere and a cone centered on x̄, i.e. on a n� 1 dimensional
sphere orthogonal to x̄, centered in c � ȳx̄{}x̄}2, and with
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x̄
ȳ � āJx̄

ā

āguess
SKPApx̄, ȳq

(a)

x̄
ȳ � āJx̄

ā

āguessSKPApx̄, ȳq

(b)

Fig. 3. The first effect of rakeness-based design on KPA susceptibility: the
angle between x and the sensing vectors is typically smaller so that guesses
are typically closer.

1

x̄
ȳ � āJx

ā

āguessSKPApx̄, ȳq

fā|SKPA

(a)

x̄
ȳ � āJx

ā
āguess

SKPApx̄, ȳq

fā|SKPA

(b)

Fig. 4. The second effect of rakeness-based desing on KPA susceptibility: the
distribution of the guessed sensing vectors is not uniform and typical guesses
are closer.

radius r �
b

1� pȳ{}x̄}q2. We indicate such a sphere with
SKPApx̄, ȳq. This structure helps visualizing the two effects
that contribute to make rakeness-based CS more susceptible
to KPA with respect to conventional CS.

First, to increase compression, rakeness-based design flow
increases the average magnitude of the measurement, i.e., the
average magnitude of the scalar product between ā and x̄.
Since x̄ is fixed and }ā} � 1 this means decreasing the angle
of the cone defining SKPApx̄, ȳq thus decreasing its radius.
Candidates are therefore expected to be closer to each other.
This effect is visualized in Figure 3-(b).

As a second effect note that, in classical CS, the normalized
sensing vectors end up to be uniformly distributed over the n-
dimensional unit sphere and thus on SKPApx̄, ȳq so that all
relative positions between ā and āguess are equally probable.

On the contrary, rakeness-based design gives a non-isotropic
distribution to the sensing vectors that, when restricted to
SKPApx̄, ȳq, is also non-uniform. With this, it is more likely
that ā and āguess both appear close to the points in which the
restricted PDF has a maximum, thus decreasing their average
difference. This situation is visualized in Figure 4 where two
profiles for the conditioned PDF fā|SKPApx̄,ȳq are compared.

Our path to consider both the effects will be made of an
approximation step and some bounding steps, the idea being
that we are mainly interested in the probability

Pguess�Okphq � Pr

"
1

n
∆pa, aguessq ¤ h

*
(12)

from some small fraction of entries h ! 1. To allow an ana-
lytical development, such a probability will be approximated

and bounded by considering vectors that are not antipodal
but Gaussian and with the same correlation matrix A as the
antipodal rows.

We base our method on few mathematical facts that we
state as Lemmas whose proofs are given in the Appendix.
The results of the Lemmas are used in a less formalized path
leading to the final approximation.

Lemma 1. If γ is an n-dimensional, zero-mean Gaussian
vector with correlation a matrix A equal to the one of an
antipodal vector, and γ̄ � γ{?n then

}γ̄}2 nÑ8� N
�

1,
2ξa
n




Lemma 1 suggests relaxing the antipodal a into γ since, as
nÑ8, γ̄ has almost surely a unit length like ā and the two
vectors obey the same first and second-order statistics.

Yet, the attacker does not work with a generic ā (and thus
with a generic relaxed γ̄) but starts from guessed row vectors
aguess generated with the same statistics that generates the true
one a that also match the measurements equation ensuring
that aJguessx � y � aJx, i.e., that ā, āguess P SKPApx̄, ȳq, that
is an n � 1-dimensional sphere centered (and orthogonal to)
c � ȳx̄{}x̄}2.

From our relaxed point of view, we may model this by
considering vectors γ|ty � γJxu, i.e., vectors γ conditioned
to the hyperplane passing through c and orthogonal to it.
Actually, since the distance between any two such vectors
does not change if we shift them along the direction orthog-
onal to the hyperplane, it is convenient to consider vectors
γ̃ � γ|tȳ � γ̄Jx̄u � e with e � Erγ|tȳ � γ̄Jx̄us to discard
the average. Note that, in general e � c.

The following Lemma 2 bounds some first- and second-
order statistics of vectors γ̃.

Lemma 2. The random vectors γ̃ � γ|tȳ � γ̄Jx̄u � e are
zero-mean Gaussian vectors with correlation matrix Ã whose
eigenvalues λ̃j satisfy

1

n� 1

n�2̧

j�0

λ̃j
nÑ8¥ µ̃

1

n� 1

n�2̧

j�0

λ̃2
j

nÑ8¤ σ̃2

with

µ̃ � 1� 1� pξx � 1q`
n� 1

(13)

σ̃2 � 1� pξx � 1q `� r1� pξx � 1q `s2
n� 1

(14)

Starting from γ̃, we may consider the normalized ˜̄γ �
γ̃{?n�1 as relaxations of āguess and ā when āguess is produced
by the attacker. This is intuitively represented in Figure 5.

Lemma 3. Let’s G be a d � d correlation matrix G of a d-
dimensional random vector. Let the eigenvalues ζj of G be
such that
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x̄

ȳ � āJx̄

ā � γ̄

āguess � γ̄guess

e

c
r

SKPApx̄, ȳq

zero-mean
SKPApx̄, ȳq

˜̄γ

˜̄γguess

Fig. 5. Normalized true ā and guessed āguess rows approximated by Gaussian
vectors γ̄ and γ̄guess and restricted to SKPApx̄, ȳq to model the attack.
Since we are interested in the difference between vectors we may translate
SKPApx̄, ȳq so that its vectors have zero mean in stead of e.

lim
dÑ8

1

d

d�1̧

j�0

ζj � µ

lim
dÑ8

1

d

d�1̧

j�0

ζ2
j � σ2

lim
dÑ8

1

d3{2

d�1̧

j�0

ζ3
j � 0

for some quantities 0   µ, σ2   8.
If g1 and g2 are independent and such that

?
dg1,

?
dg2 �

N p0,Gq, then

}g1 � g2}2 dÑ8� N
�

2µ,
8σ2

d



(15)

Convergence is such that the maximum difference between
the cumulative distribution Φ}g1�g2}2 and the cumulative dis-
tribution Φ2µ,8σ2{d of the limit Gaussian is bounded by

���Φ}g1�g2}2 � Φ2µ,8σ2{d
���
8
¤ 39

d3{2

d�1̧

j�0

ζ3
j

Clearly, the vectors γ̃ satisfy the assumptions of Lemma 3
where the exact values of µ and σ2 are not known but are
bounded by Lemma 2. This allows to give an approximate
bound on the probability that once the attacker generates a
guess aguess satisfying the measurements equation, its Ham-
ming distance from the true a is small.

In fact, we may start from (11) and use the relaxation
described above to say that the vectors a satisfying the
measurement equation distribute approximately as the vectors
γ̃.

The main issue in doing this, is that aguess is a discrete-
valued random vector while its approximation γ̃ is a
continuous-valued one. For the two distributions to be alike,
it is necessary that the number of possible aguess is very
large, i.e., that the measurement equation has a large number

of possible solutions. In [3] a mathematical analogy between
KPA and the well-known subset-sum problem is established
to leverage what is known from the statistical approach to
combinatorial problems. In particular, one gets that, if bx is
the number of bits with which one encodes the absolute value
of the samples of the signal, the ratio δ � n{bx (indicated
as density) is the key parameter deciding how many rows
potentially satisfy the measurement equation.

Roughly speaking, if δ is larger than few units, then
the number of solutions tend to be extremely high and the
approximation improves. Some empirical evidence on this
phenomenon will be given in the Examples section. It is here
enough to notice that our applicative framework implies that
the samples of x come from a sensor and thus are typically
encoded with bx ¤ 20 while n is easily in the order of the
hundreds if not the thousands, yielding δ well in excess of 5,
and most probably larger than 10.

As a consequence, we may apply Lemma 3 to say that
1
n∆ pa, aguessq is approximately distributed as N

�
µ
2 ,

σ2

2pn�1q
	

and thus from (12)

Pguess�Okphq nÑ8� 1

2
erfc

�
� µ

2 � hb
σ2

n�1

�
 (16)

Starting from such an estimation, we may exploit the fact
that erfc is decreasing in its argument, as well as Lemma 2 to
get

Pguess�Okphq
nÑ8¤ 1

2
erfc

�
� µ̃

2 � hb
σ̃2

n�1

�
 (17)

for all those values h such that the argument of erfc in (17)
is smaller than the argument of erfc in (16), i.e., for

h ¤ µ̃

2

µ
µ̃

b
σ̃2

σ2 � 1b
σ̃2

σ2 � 1

Though it is not possible to compute such a limitation on
h given that µ and σ2 are unknown, it is safe to say that (17)
holds for the small h that are of interest. Such an expression
with the parameters in (13) and (14) can be used to give some
security guarantee as it ensures that the probability of success
of a KPA does not exceeed a certain level controlled by the
features of the signal (ξx) and the level of adaptation we used
in the design (`).

VII. EXAMPLES

In this Section we apply rakeness-based CS to the ac-
quisition of a number of signals and numerically assess the
susceptibility of the resulting encoding to COAs and KPAs
with the double aim of validating the theoretical predictions
and quantifying the computational resources needed by the
attacker to break the encryption.

We consider both synthetic and real-world signals. Rela-
tively low-dimensional, synthetic signals are generated ad-hoc
to be both sparse and localized and are used to explore the
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design space and demonstrate the general trade-off between
compression performance and security, as well as the capabil-
ity of our theoretical model to give guarantees on achievable
security. True ECG tracks are taken from [33], [34] to show
that the whole machinery applies to real-world cases in which
the dimensionality is large enough to validate asymptotic
trends.

For synthetic signals n � 64, localization is obtained
directly in the sparse domain considering x � Ss, with
S being the n � n Discrete Cosine Transform matrix, and
considering non-equal probabilities Prtsj � 0u that increase
as the frequency of the corresponding columns of S increase.

The κ � 6 non-null components in s are randomly selected
according to such probabilities. The magnitudes of non-null
components are taken as independent random values uniformly
distributed in r�0.5, 0.5s.

Clearly, directions associated to columns of S corresponding
to larger probabilities are those along which x puts more
energy. The resulting signal is therefore high-pass and its
localization (1) is Lx � 0.035.

The samples in x are first quantized using bx � 12 bit and
then encoded in the measurement vector y � Ax. Since each
row of A is made of n � 64 entries, each entry of y is encoded
with by � 12� log2pnq � 18 bit. This is a conservative choice
that does not take into account the possiblity to re-encode the
entries of y to save bits (see, e.g., [14], [35]) that is out of the
scope of this work.

Each row of the matrix A is generated as an independent
antipodal vector with a correlation A obtained by a rakeness-
based design flow parameterized by ` P r0, 0.25s. Recall that
when ` � 0 rakeness-based design yields the same sensing
vectors as conventional CS. As ` increases, the statistic of the
sensing vectors becomes more and more adapted to the signal
to acquire. Hence, considering systems with different values
of ` allow us to explore the trade-off between adaptation (and
thus compression efficiency) and security.

As far as ECGs are concerned, we consider the record #100
of the MIT online database [34] included in the Physionet
project [33]. Such a signal comes as a sequence of samples
at a rate of 360 sample/s, each of them quantized by using
11 bit. From that stream we extract 1000 windows of n �
256 samples each. The localization of these signals is Lx �
0.0242.

The statistical characterization of this signal, necessary
to generate the sensing rows a accordingly to the rakeness
approach, has been taken from [13], from where we have also
taken the suggested value ` � 0.25.

A. Empirical evidence on COAs

According to (10), measurements asymptotically
distribute as a zero-mean Gaussians with variance�

1�?
` pξx � 1q

	
Wx. Hence, any attack that relies on

the statistical analysis of the ciphertex cannot extract any
information but the variance of distribution. Since n and `
are known to the attacker, what actually leaks is only the

1
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Fig. 6. Comparison between the actual probability distribution of the
measurements taken from the synthetic signal and the asymptotic Gaussian
trend predicted by the theory. 1
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Fig. 7. Comparison between the actual probability distribution of the
measurements taken from the real-world ECG tracks and the asymptotic
Gaussian trend predicted by the theory. 1
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Fig. 8. Effectiveness of COA in estimating the average signal energy Wx

that is the only leaking information.
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estimation Ŵx of the actual signal power Wx computed as
follows

Ŵx �
σ̂2
y

1�?
`pξx � 1q

where the measurement variance σ̂2
y is computed over different

successive ciphertexts.
In Figure 6 we compare the empirical distribution of 108

sample measurements with the asymptotic distribution pre-
dicted by the theory for some values of `. Figures 7 does
the same comparison in the ECG case considering only the
classical CS (` � 0) and rakeness-based CS with ` � 0.25.

In Figure 8 we show how much the estimation of the average
energy of the signal, obtained by dividing the variance of the
measurements by 1�n?lLx, conforms to the true value Wx �
7.81� 10�3 for different values of `.

The same estimation can be tried for the ECG signals whose
average energy is Wx � 0.0324 mV2 giving the two very
close values Ŵx � 0.0323 mV2 for classical CS and Ŵx �
0.0326 mV2 for rakeness-based CS.

B. Empirical evidence on KPAs

Though this was not modeled in the derivation of the
theoretical guarantee, to practically test the effectiveness of a
KPA we must define how the attacker produces guesses aguess

that simultaneously satisfy the given measurement equation
y � aJguessx and feature the given correlation matrix A.

Though more efficient methods may exist, we tackle such a
problem in the simplest way, i.e., by generating candidate vec-
tors acandidate using the same generator used by the encoder
to produce the true row a, and promoting such candidates to
proper guesses aguess � acandidate when they satisfy the given
measurement equation.

Figure 9 gives a quantitative assessment of the trade-off
that can be expected between compression and security against
KPAs. Empirical statistics are computed based on Monte Carlo
simulations that generate a total of 1.5� 1010 candidates.

Figure 9-(a) reports the Average Reconstruction Signal
to Noise Ratio (ARSNR) that can be achieved applying a
rakeness-based design with different values of `. If x is the
original signal, y � Ax and x̂ is the signal recovered by the
decoder using y, A and the sparsity assumption, the ARSNR
is estimated as the empirical mean of }x}2{}x̂�x}2. Higher
curves in Figure 9-(a) correspond to better performance as
the quality of reconstruction is higher given the same number
of measurements. This fact is usually exploited the other way
around, i.e., by fixing a required ARSNR and using rakeness
to decrease the number of measurement and, ultimately, the
number of bits to transmit.

In our toy case, assuming we need an ARSNR of 60 dB,
rakeness-based design helps reducing the number of measure-
ments (see the Table at the bottom of Figure 9) from the 32
needed by classical CS (` � 0) to the 23 using ` � 0.25.
Though a thorough optimization of compression is out of the
scope of this paper, it is clear that in the observed range, larger
values of ` correspond to larger compressions.

Coming to KPAs, in Figure 9-(b) we plot the probability
that a candidate row satisfies the measurement equation and

has a Hamming distance from the true one not larger than
a certain H . In this case, higher curves mean lower security
since it is more probable that the attacker’s guesses are good
approximations of the true row. As highlighted in the zoom
window, as ` increases such a probability increases.

To assess whether the theoretical guarantees are able to give
a quantitative prediction of the level of security against KPAs,
note that the probability of success of an attack is

PKPA�OkpHq � Pguess�Ok

�
H

n



Pr

 
y � aJcandidatex

(
since we have a guess only when a candidate satisfies the
measurement equation.

The probability Pguess�Ok is bounded by (17) while
Pr

 
y � aJcandidatex

(
depends on the specific method the

attacker uses to generate guesses. Since probabilities are
bounded by 1 we have

PKPA�OkpHq ¤ Pguess�Ok

�
H

n




and (17) can be used to guarantee a minimum level of security.
To match such a bound with the empirical evidence we

collect, one needs to normalize plots like the one in Figure
9-(b) by Pr

 
y � aJcandidatex

(
that can be trivially estimated.

Figure 10 reports the resulting profiles for different values of
`, zooming in the low-H region that is the most interesting.

In each plot, the empirical probability is reported for values
of H that have appeared at least once in the simulation. The
empirical probability is then approximated by fitting (16) to
the available data to provide a very good approximation that
can be used to extrapolate the trend for lower values of H .
The theoretical (17) is also reported showing that it is an upper
bound for almost the whole left half of the H range.

Figure 11 reports the same profiles for the ECG case. Note
how the upper bound is still valid for small H though the
increase in n causes a strong decrease of the probability that
guesses are close to the true row.

Beyond these examples, the general validity of (17) de-
pends on an approximation that identifies the distribution of
the antipodal vectors a satisfying the measurement equation
y � aJx with that of Gaussian vectors with the same second-
order statistics. Section VI suggests that the quality of such an
approximation depends on the density δ of the measurements
equation, i.e. on the ratio between the dimensionality n of the
vectors a and x, and the number of bits bx used to encode the
samples in x. Note that in the previous cases δ ¡ 5.

Though lower values of δ are unlikely to appear since in
our framework bx is the number of bits encoding a sample
coming from the sensing of a real world signal, it is interesting
to see what happens when δ is reduced. To do so, instead of
increasing bx to unfeasible values we scale down n keeping
the statistic of the signals equal to that of the n � 64 case. In
particular, we perform Monte Carlo simulations with n � 24
and bx � 4, 8, 12, 16 to look into cases featuring a density
decreasing from 6 to 1.

In Figure 12 we report the probability that a guess has
a Hamming distances smaller than a certain H in the four
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Fig. 9. Empirical evidence on the trade-off between compression and security against KPAs. Different curves correspond to different values of
` P t0, 0.01, 0.04, 0.25u and thus of adaptation to the signal: (a) ARSNR plotted against the number of measurements m used for reconstruction; (b)
Overall probability that a candidate row differs in not more than H positions from the true one. The table at the bottom reports the number of measurements
needed to obtain ARSNR=60 dB and the probability that a candidate row satisfies the measurement equation.

different configurations, compared with their Gaussian fitting
and with (17) that is the same in all cases. As bx increases, the
quality of the Gaussian fitting progressively degrades and the
bound ceases to be valid. Yet, when bx decreases (and thus the
density increases) the Gaussian approximation becomes very
good and the bound holds in the low-H region as expected.

Overall, in the δ ¡ 5 region, that is the most natural setting
for a sensor, the bound is expected to work properly.

The availability of an analytical upper bound allows us
to establish some guarantees on the computational security
against KPAs.

In fact, if a KPA succeeds, the matrix A is revealed and we
may assume that this allows to identify the key (i.e., the seed of
the PRNG) and generate all the subsequent encoding matrices,
thus exposing future plaintexts. It is sensible to assume that
such an identification is possible when not more than H
entries are erroneously guessed in each of the m rows of the
matrix A, something that happens with a probability equal to
PmKPA�OkpHq. A KPA may be tempted each time a ciphertext-
plaintext pair is available to the attacker. The probability that
none of T attacks succeeds is

�
1� PmKPA�OkpHq

�T
.

From a system level point of view, the most natural coun-
termeasure to KPAs is changing the key. It is a potentially
expensive countermeasure whose frequency is an indicator
of the robustness of the encryption against the attacks. As a
design guideline we may think that a key change is not needed
until the probability of a successful KPA does not exceed a
certain threshold pmax.

By solving 1 � �
1� PmKPA�OkpHq

�T � pmax for T we
have that it is safe to keep the same key until the attacker has

T� � log p1� pmaxq
log

�
1� PmKPA�OkpHq

� (18)

attack opportunities. Since (17) gives an upper bound on
PKPA�OkpHq we are in the position of computing a lower

` m T� ¥
H � 0 H � 1%n H � 10%n

sy
nt

he
tic

n=
64

0 32 3.7 � 10241 8.1 � 10232 2.6 � 10162

0.01 27 1.4 � 10199 9.7 � 10191 6.0 � 10133

0.04 25 5.1 � 10173 3.0 � 10167 6.4 � 10116

0.25 23 8.3 � 10114 7.8 � 10110 1.1 � 1078

E
C

G
n=

25
6 0 134 1.8 � 103857 2.1 � 103710 7.4 � 102519

0.25 74 3.2 � 10560 3.9 � 10540 4.3 � 10378

TABLE I
THE NUMBER OF ATTACK OPPORTUNITIES THAT MAY BE SAFELY

TOLERATED WITHOUT LEAVING TO THE ATTACKER A PROBABILITY OF
SUCCESS GREATER THAN 10�4 . SUCCESS IS DEFINED AS THE

IDENTIFICATION OF THE ROWS OF THE MATRIX A WITH A NUMBER OF
ERRORS NOT LARGER THAN H .

bound for T� that acts as a security guarantee.
Table I reports the number of attack opportunities that can

be safely tolerated while being guaranteed that the probability
that the attacker succeeds remains lower than pmax � 10�4

for H � 0 (all entries of A must be matched), for H � 0.01n
(up to 1% of the entries of A may be mistaken), and for
H � 0.1n (up to 10% of the entries of A may be mistaken).
In the rows devoted to ECG we take from [13] the number
of measurements needed to reconstruct an ECG both with a
classical encoding and with a rakeness-based encoding.

Though a security degradation is easily appreciable when `
increases, even the smallest safety interval in Table I, T� ¥
1.1 � 1078, is of astronomical proportion. Even if one attack
could be performed each nanosecond, the resulting time would
be of the order of 1061 years.

VIII. CONCLUSION

CS can be used as both a compression and an encryption
stage in sensor nodes with a limited resource budget. A
properly optimized CS stage is able to yield significant com-
pression with a very limited computational complexity. Such
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Fig. 10. Matching the numerical evidence collected in the synthetic case with
the upper bound in (17).
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Fig. 11. Matching the numerical evidence collected in the ECG case with
the upper bound in (17) .
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Fig. 12. Effect of density on the quality of the Gaussian approximation and,
consequently, on the validity of (17).

an optimization relies on adapting the encoder to the statistical
features of the signal to acquire. This partially compromises
security since more information are available to the attacker.
By means of some theoretical considerations, fully confirmed
by the numerical evidence presented, we are nevertheless able
to show that the loss in security does not prevent the method
from exhibiting a noteworthy level of robustness with respect
to classical attacks.

IX. APPENDIX

Proof of Lemma 1. Without any loss of generality we may
think that the eigenvectors of A coincide with the coordinate
axes so that the j-th component of γ is an independent
Gaussian random variable with zero mean and variance λj .
This allows to write
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}γ̄}2 � 1

n
}γ}2 � 1?

n

1?
n

n�1̧

j�0

�
γ2
j � λj

�� 1

n

n�1̧

j�0

λj

Each of the γ2
j is an independent, shifted χ2 random variable

with average λj and variance 2λ2
j , hence the inner part of the

first term is a normalized sum of independent random variables
with zero mean and variance 2λ2

j . The Central Limit Theorem
implies that the limit behavior is that of a Gaussian with zero
mean and variance

1

n

n�1̧

j�0

E
��
γ2
j � λj

�2
�
� 1

n

n�1̧

j�0

Erγ4
j s�λ2

j �
2

n

n�1̧

j�0

λ2
j � 2ξ2

a

where we have exploited the fact that γj is Gaussian and thus
Erγ4

j s � 3E2rγ2
j s � 3λ2

j . Since 1
n

°n�1
j�0 λj � 1 we have

}γ̄} dÑ8� N
�

1, 2ξa
n

	
as required.

Proof of Lemma 2. Without any loss of generality we may
think that c aligns with the first coordinate axis. Then exploit
the symmetric and Töplitz structure of A to decompose it as

A �

�
����

1 αJ

α A{

�
���

The distribution of the vector γ conditioned to the knowl-
edge that ȳ � γ̄Jx̄ is still a Gaussian with mean e � pȳ{}x}2qα
and covariance matrix [36, Section 3.4] A{�ααJ. Considering
γ̃ � γ|SKPA�e leaves the covariance unaltered while making

the average null. Hence Ã � A{� ααJ and

Ã2 � A{2 � ααJααJ �A{ααJ � ααJA{

With this we have

1

n� 1

n�2̧

j�0

λ̃j �
tr
�
Ã
	

n� 1
�

tr

�
A{



� }α}2

n� 1

1

n� 1

n�2̧

j�0

λ̃2
j �

tr
�
Ã2

	
n� 1

�
tr

�
A{2



� }α}4 � 2αJA{α

n� 1

For the first term, note that tr

�
A{



� n�1 and that, if α �

pα0, . . . , αn�2qJ then the first row of A is 1, α0, . . . , αn�2.
Hence,

αj � A0,j�1 �
» 1{2

�1{2
Sapfqe2πifpj�1qdf

so that the Parseval equality gives

}α}2 �
n�2̧

j�0

α2
j

nÑ8�
» 1{2

�1{2
S2
apfqdf � 1 � ξa � 1 (19)

Therefore

1

n� 1

n�2̧

j�0

λ̃j
nÑ8� n� 1� ξa � 1

n� 1
¡ 1� ξa

n� 1

For the second term, since Ã is positive semidefinite we
have αJÃα ¥ 0 and thus

1

n� 1

n�2̧

j�0

λ̃2
j ¤

tr
�
Ã2

	
� }α}4

n� 1

Yet, from the structure of Ã and (8) we know that

tr
�
Ã2

	
nÑ8� pn� 1qξa (20)

.
and from (19) we have }α}4   ξ2

a so that

1

n� 1

n�2̧

j�0

λ̃2
j

nÑ8¤ ξa � ξ2
a

n� 1

The thesis can be obtained recalling that ξa � 1�pξx�1q`
(8).

Proof of Lemma 3. Without any loss of generality we may
think that the eigenvectors of G coincide with the coordinate
axes so that the j-th component of

?
ng1 and

?
ng2 are

independent Gaussian random variables with zero mean and
variance ζj . This allows to write

}g1�g2}2 � 1?
d

1?
d

d�1̧

j�0

��?
dg1j �

?
dg2j

	2

� 2ζj

�
�2

d

d�1̧

j�0

ζj

Since
?
dg1j and

?
dg2j are zero-mean independent Gaussian

random variables with variance ζj ,
?
dg1j �

?
dg2j is a zero-

mean Gaussian random variable with variance 2ζj .
Hence, the inner part of the first term can be written as

1?
d

d�1̧

j�0

2ζj
�
χ2
j � 1

�
(21)

where the χ2
j are independent χ-square random variable

with one degree of freedom. Therefore, the above summands
are zero-mean, with variance 8ζ2

j and 3rd-order moment

8ζ3
jE

���χ2
j � 1

��3�. Straightforward calculations give

E
���χ2

j � 1
��3� � 8

�
1� 3

c
2

eπ
� 2erf

�
1?
2


�
� 8.69

so that the 3rd-order moments of the summands are �
69.53ζ3

j .
Given the assumptions, the Central Limit Theorem ensures

that (21) tends to a Gaussian random variable with zero
mean and variance 8σ2. If Φ(21) is the cumulative distribution
function of the d-th term of the sequence in (21) and Φ0,8σ2

is the cumulative distribution function of the limit Gaussian
we know from [31] that
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��Φ(21) � Φ0,8σ2

��
8 ¤ 0.56� 69.54

1

d3{2

d�1̧

j�0

ζ3
j

Since }g1 � g2}2 can be obtained from (21) by scaling and
offset, we know that }g1 � g2}2 dÑ8� N

�
2µ, 8σ2

d

	
with the

same convergence rate.
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