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While deterministic age distribution models have
been extensively studied and applied in various
disciplines, little work has been devoted to
understanding the role of stochasticity in birth
and mortality terms. In this paper, we analyse a
stochastic M’Kendrick–von Foerster equation in
which jumps in mortality represent intense losses of
population due to external events. We present explicit
solutions for the probability density functions of the
age distribution and the total population and for the
temporal dynamics of their moments. We also derive
the dynamics of the mean age of the population and
its harmonic mean. The framework is then used to
calculate the age distribution of salt in the soil root
zone, where the accumulation of salt by atmospheric
deposition is counteracted by plant uptake and by
jump losses due to percolation events.

1. Introduction
Estimating the residence time (or age) of a substance
within a control volume has been of interest since early
studies in chemical engineering [1,2]. The mathematical
formalism, however, was mostly developed subsequently
in the population dynamics context, where birth and
death processes are expressed as explicit functions of
age [3–5]. Many authors, interested in finding the age
distribution of a substance within a system, then refined

2017 The Author(s) Published by the Royal Society. All rights reserved.
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the theoretical framework in both its linear [6–9] and nonlinear [10–12] formulations. Such
age distribution models have proved useful in different disciplines, e.g. to describe the age
distributions of stars in galaxies [13,14], to determine water quality in surface and subsurface
systems [15–19], as well as to model the dynamics of plant populations [20–22]. Further
applications ranged from the interpretation of isotopic data to determine the age of continental
crusts [23] and soils [24] to the analysis of cancer statistics [25].

While many of the systems where age distribution is important are subject to fluctuations
originated by randomness in birth or death processes, little attention has been devoted to
the effect of such random components on age distributions. On the one hand, birth may be
characterized by random reproduction mechanisms, which are modelled by means of branching
processes [26,27], or it may be given by a time-varying stochastic process independent of the
age distribution (e.g. rainfall for a watershed in which the water age is being tracked) [28]. On
the other hand, random mortality may arise as abrupt jump losses of population due to external
events [29–32]. A few examples are the dynamics of soil formation affected by landslides [33],
the growth of riparian vegetation disturbed by floods [34], the dynamics of soil salinity in which
salt is flushed away by leaching events [35] and the growth of biomass in forested ecosystems hit
by fires [36]. The existence and uniqueness of the solution for stochastic age distribution models
applicable to problems previously listed have been proved [37], and some numerical schemes
for their solutions introduced [38–41]. However, to our knowledge no work has been devoted to
the derivation of analytical solutions that would allow one to identify explicitly the role of the
stochastic mortality and the different parameters in the age distribution of the population.

Our goal is hence to analyse the age distribution dynamics with stochastic jumps in mortality.
In particular, we consider the M’Kendrick–von Foerster equation [4,5] with the addition of
a stochastic loss term in the form of Poisson jumps multiplied by the state of the system
(i.e. age distribution). Having in mind systems in which the input is not due to reproduction
mechanisms within the population, we assume that the input (birth) is a given function of
time and independent of the age distribution. Our results include analytical transient solutions
for the probability density function of age distribution and total population. We also analyse
the dynamics of the moments of the age distribution, the total population and the mean
age. The results are then extended to the case in which also the input is random. As an
application, we calculate the age distribution of salt in the soil root zone. Over long time scales,
the mass of salt contained in the root zone is the result of a balance between the input by
atmospheric deposition, the uptake rate by plants and the random occurrence of percolation
events which cause downward jumps of salt mass [35,42]. Here, we use the dynamics of salt
in soils as a prototypical example, but similar dynamics apply to other soil nutrients and
contaminants [43,44].

The remainder of the article proceeds as follows. Section 2 presents the differential equations
governing the dynamics of the age distribution, the total population and the mean age, while §3
shows the corresponding analytical solutions. The work is then extended to the case of random
input in §4. Lastly, in §5, we apply the theory to the salt dynamics in the root zone. We conclude
in §6 by summarizing the results and by highlighting possible extensions of this work.

2. Mathematical framework
Given a system Ω , we define the age τ of each element as the time elapsed since it entered Ω .
The population of Ω can be described in terms of the age distribution n(t, τ ), such that n(t, τ ) dτ
is the number of elements having age between τ and τ + dτ at time t, and

∫∞
0 n dτ = w is the

total population. The temporal dynamics of n is governed by the M’Kendrick–von Foerster
equation [4,5],

∂n
∂t

+ ∂n
∂τ

= −n0, (2.1)

 on November 11, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170451

...................................................

0
0

2

100

050100

4

150200
200

h

t

n

x
t

Figure 1. Time evolution of a population along the characteristic line η, according to equation (2.2). At time t = ξ , the
population ι enters the system with age η= 0 and starts decaying along η due to the deterministic and stochastic (jumps)
mortality.

in which n0(t, τ ) represents the age distribution of the elements leaving Ω , and its integral with
respect to τ yields the total output, o(t) = ∫∞

0 n0 dτ . The age distribution of the output can be
expressed as n0 =μn, where μ is a specific output (mortality) rate μ, also called the loss function.
In general, the latter can be a function of t, τ , w, n and so on; however, we limit our analysis to
cases where the output rate is only a function of time and age, i.e. μ=μ(t, τ ).

To introduce the stochasticity in the mortality term, we assume μ(t, τ ) to be composed of
a deterministic term μd(t, τ ) and a random term ν(t), μ(t, τ ) =μd(t, τ ) + ν(t). In particular, we
assume that ν(t) is a shot noise given by the time derivative of a marked Poisson process,
ν(t) =∑Nt

i=1 hiδ(t − ti), in which hi is the size of the i-th jump, ti is its time of occurrence and Nt is
the number of jumps that occurred up to time t [45]. The frequency of the jumps is λ, whereas their
marks hi are assumed to be exponentially distributed with mean γ−1. With these assumptions, the
M’Kendrick–von Foerster equation becomes a stochastic equation (capital letters indicate random
variables),

∂N
∂t

+ ∂N
∂τ

= −μd(t, τ )N − ν(t) ◦ N, (2.2)

in which the symbol ◦ indicates that the multiplication of the noise ν (white noise) by N, which
is now a random function, is interpreted in the Stratonovich sense. This interpretation results
from taking the zero limit of the time scale of the coloured noise term and has the advantage that
the rules of calculus hold [46–49]. Equation (2.2) has initial condition N(t = 0, τ ) and boundary
condition N(t, τ = 0) = ι(t), the input to Ω .

By introducing the variables η= τ and ξ = t − τ , equation (2.2) reduces to an ordinary
differential equation,

dN
dη

= −μd(ξ + η, η)N − ν(ξ + η) ◦ N, (2.3)

which for a single realization of the stochastic process can be solved in the Stratonovich
prescription by classical integration. The solution in the original variables reads [6,7,50]

N(t, τ ) =
⎧⎨
⎩

N(0, τ − t) e− ∫ t
0(μd(u,τ−t+u)+ν(u)) du t< τ

ι(t − τ ) e− ∫ τ
0 (μd(t−τ+u,u)+ν(t−τ+u)) du t> τ .

(2.4)

Along the characteristic lines η, given by dt/dη= 1 and dτ/dη= 1, the population evolves
deterministically, according to an exponential decay at rate μ, and is perturbed by instantaneous
jumps that cause abrupt losses of population. See figure 1 for an example of a realization of such
a process.

To obtain the probabilistic description of the stochastic process, we need to consider the
equation for the temporal dynamics of the single time, single age probability density function
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of N, pN(n; t, τ ). Differently from the case of additive noise in which the derivation of the master
equation is unambiguous [51,52], for a multiplicative noise such as in equation (2.2) the master
equation is formulated according to the prescription considered [48]. Remaining in the ξ and η
variables for mathematical convenience, the master equation in the Stratonovich prescription for
the evolution of pN(n; ξ + η, η), associated with equation (2.3), reads

∂pN(n)
∂η

= ∂(μdnpN(n))
∂n

− λpN(n) + λγnγ−1
∞∫

n

pN(u)u−γ du, (2.5)

where the dependencies on ξ and η are dropped for the sake of conciseness. Once solved, it is
straightforward to return to the original variables, pN(n; t, τ ). According to equation (2.5), the
evolution of pN(n) is determined by a contribution given by the drift μdn, a loss of probability
due to the instantaneous jumps away from n and a contribution due to the jumps to n.

The evolution equation for the total population, W = ∫∞
0 N dτ , can be derived by integrating

equation (2.2) with respect to τ ,

dW
dt

= ι(t) − od(t) − ν(t) ◦ W, (2.6)

where ι(t) = − ∫∞
0 (∂N/∂τ ) dτ = N(t, τ = 0) is the input, od = ∫∞

0 μdN dτ is the output due to the
deterministic loss and the last term is the stochastic output due to instantaneous jumps. The
Chapman–Kolmogorov forward equation governing the temporal evolution of the single time
probability density function pW(w; t) is obtained as

∂pW(w)
∂t

= −∂(ι− od)pW(w)
∂w

− λpW(w) + λγwγ−1
∫∞

w
pw(u)u−γ du. (2.7)

Again, the first term on the right-hand side determines the contribution of probability to pW(w)
due to the deterministic drift (ι− od), while the last two terms represent the contribution by the
jumps.

The mean age T̄ for Ω is defined as T̄ = M/W, M = ∫∞
0 τN dτ being the first moment of

N. Multiplying (2.2) by τ and integrating with respect to τ , the temporal dynamics of M is
obtained as

dM
dt

= W(t) − θd(t) − ν(t) ◦ M, (2.8)

where θd = ∫∞
0 τμdN dτ can be interpreted as the first moment of μdN, which represents the age

distribution of the deterministic output. In turn, by differentiating the definition of T̄, the time
evolution of the mean age reads

dT̄
dt

= 1 − 1
W

(θd + T̄ι− T̄od). (2.9)

Note that, although the noise ν is not explicitly present in (2.9), T̄ is still a random variable because
the randomness enters through θd and W.

3. Solutions
To obtain an analytical solution to (2.5), it is convenient to divide equation (2.2) by N, so as to
obtain an equation with additive noise for the variable Y = ln N. The equation describing the
temporal dynamics of pY(y; ξ + η, η) is given by

∂pY

∂η
= ∂(μdpY)

∂y
− λpY + λγ

∫∞

y
pY(u) e−γ (u−y) du. (3.1)
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Figure2. (a) Probability density functionpN(n; η), fromequation (A 5), plotted for different values ofη. Theprobability density
functions are plotted for input ι= 3, deterministic loss functionμd = 0.05, frequency of the jumpsλ= 0.1 and mean mark
of the jumps γ = 10 (dimensionless). (b) Probability density function pW (w), from equation (3.5), for different couples of
parameters λ and γ (dimensionless), input ι= 3 and deterministic loss functionμd = 0.05. For the sake of generality, the
units are not specified. (Online version in colour.)

Equation (3.1) can be analogously obtained by introducing Y = ln N directly in equation (2.5).
From the solution of (3.1) (shown in appendix A), the probability density pN (for t> τ ) can be
obtained as

pN(n; t, τ ) = 1
n

e−γψ(t,τ )−τλ
(
δ(ψ(t, τ )) +

√
γ τλI1(2

√
γ τλ

√
ψ(t, τ ))√

ψ(t, τ )

)
n ≤ ι(t − τ )ϕ(t, τ ), (3.2)

in which ϕ(t, τ ) = e− ∫ τ
0 μd(t−τ+u,u) du, ψ(t, τ ) = ln(ϕ(t, τ )ι(t − τ )/n) and I1(·) is the modified Bessel

function of the first kind of order 1.
The equation describing the temporal evolution of the moments of N can be obtained by

applying the expectation operator E[g(x)k] = ∫∞
0 g(x)kpX(x) dx to equation (2.5) (see appendix B),

∂N̄k

∂t
+ ∂N̄k

∂τ
= −μdkN̄k − λN̄k + λγ

γ + k
N̄k, (3.3)

where N̄k is the kth order moment of N, N̄k = ∫∞
0 nkpN(n) dn. The solution of (3.3) is

N̄k(t, τ ) =
⎧⎨
⎩

n(0, τ − t)k e−k
∫ t

0 μd(u,τ−t+u) du−λt+(λγ /(γ+k))t t< τ

ι(t − τ )k e−k
∫ τ

0 μd(t−τ+u,u) du−λτ+(λγ /(γ+k))τ t> τ .
(3.4)

The previous results, equations (3.2) and (3.4), are obtained for a time-dependent input ι(t) and
a generic specific mortality rate μ(t, τ ). On the contrary, equation (2.7) for the total population W
presents some analytical difficulties and we were able to find an explicit solution only for constant
values of ι and μd and in steady state. Under these conditions, the solution (see appendix C for
the derivation) reads

pW(w) = ι−γ−λ/μdμ
γ+1
d

B(γ + 1, λ/μd)
wγ (ι− μdw)λ/μd−1 w ≤ ι

μd
, (3.5)

where B(a, b) is the Beta function with shape parameters a and b. Note that (3.5) is defined on
the interval [0, ι/μd], where the upper bound represents the value of w if there are no stochastic
losses. The probability density pW(w) is plotted in figure 2b for different values of λ and γ . For
low frequency and mean marks of the jumps, the distribution localizes on the upper side of the
interval (close to the upper bound) and asymptotically becomes an atom at w = ι/μd for λ/γ → 0.
On the contrary, for higher frequency and mean mark of the jumps it spreads over lower values of
W. By applying the expectation operator to equation (2.7), the equation for the temporal dynamics
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of the kth order moments of W is analogously obtained,

dW̄k

dt
= ιμk−1

d kW̄k−1 − kμk
d

(
γ + λ/μd + k

γ + k

)
W̄k, (3.6)

according to which the average population W̄1 satisfies

dW̄1

dt
= ι− μd

(
γ + λ/μd + 1

γ + 1

)
W̄1, (3.7)

with explicit solution

W̄1 = e−αtμd (ι eαtμd + αW0μd − ι)
αμd

, (3.8)

W0 being the initial population and α= (γ + λ/μd + 1)/(γ + 1).
Lastly, for conditions of statistical stationarity, an interesting result for the harmonic mean of

T̄, T̄h, can be obtained by dividing equation (2.8) by M,

1

T̄
= θd

M
+ ν(t), (3.9)

and averaging,

T̄h =
(

1

T̄

)−1

=
(
θd

M
+ λ

γ

)−1

. (3.10)

4. Age distribution with stochastic mortality and input
We have shown so far that a system driven by a time-dependent input ι and subject to both a
deterministic and a stochastic loss, the latter in the form of a shot noise, has a single time, single
age probability distribution of N given by (3.2). When, however, the input ι is also stochastic (i.e.
I), the probability distribution function p∗

N(n) (the asterisk indicates that there is stochasticity also
in I) needs to account for both sources of randomness. As I represents a time-varying parameter,
(3.2) remains valid for a given realization of I. On the other hand, given the single time probability
density function of I, pI(ι; t), from Bayes’ theorem [53] it is straightforward to consider all the
possible realizations of I as

p∗
N(n; t, τ ) =

∫∞

0
pI(ι; t − τ )pN(n; t, τ , ι) dι. (4.1)

As shown in equation (2.4), for τ > t, the age distribution does not depend on ι and fluctuates
only because of the loss term ν(t). Equation (4.1) thus yields

p∗
N(n; t, τ ) = pN(n; t, τ )

∫∞

0
pI(ι; t − τ ) dι= pN(n; t, τ ). (4.2)

On the other hand, for t> τ , the age distribution depends upon the value of ι, so that substituting
(3.2) into (4.1) yields

p∗
N(n; t, τ ) =

∫∞

0
pI(ι; t − τ )

1
n

e−γψ(t,τ )−τλ
(
δ(ψ(t, τ )) +

√
γ τλI1(2

√
γ τλ

√
ψ(t, τ ))√

ψ(t, τ )

)
dι, (4.3)

where the dependence on the parameter ι is contained in ψ . It then follows that the k-th order
moment of the age distribution, N̄∗

k , is given by

N̄∗
k =

∫∞

0
pI(ι; t − τ )N̄k dι= ῑ(t − τ ) e−k

∫ τ
0 μd(t−τ+u,u) du−λτ+ λγ

γ+k τ , (4.4)

where equation (3.4) for N̄k was used. Equations (4.3) and (4.4), interestingly, complete the
previous work by Porporato & Calabrese [28], in which the randomness was accounted for ι but
not in the mortality. An example of the above results is shown in figure 3.
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Figure 3. (a) Single time probability density function pI(ι; t). The distribution is exponential with mean ῑ= 3. (b) Age
distributions, shown along the characteristic line η, obtained from multiple realizations of the stochastic process described
by (2.2) with random input ι distributed as in (a) (grey lines). Mean age distribution, N̄∗, computed from equation (4.4) (dashed
black line). (c) Probability density function p∗N (n; η), from equation (4.3), for η= 20. The plots are generated for mean input
ῑ= 3,μd = 0.05,λ= 0.1 and γ = 10 (dimensionless). For the sake of generality, the units are not specified.

5. Application to stochastic soil salinity
We apply the theory outlined above to compute the age distribution of salt in the soil root zone.
Over long time scales, the dynamics of the mass of salt contained in the root zone Wsalt per unit
ground area is governed by Suweis et al. [42],

dWsalt

dt
= Id − μupWsalt − ν(t) ◦ Wsalt, (5.1)

where Id is the atmospheric deposition, μup is the rate of uptake by plants and ν is the shot
noise accounting for the flushing of the soil by percolation events. Frequency λ and mean mark
γ−1 of the shot noise (percolation events) depend on rainfall characteristics, soil properties (e.g.
porosity, root zone depth, soil field capacity) and withdrawal by plants via transpiration. Other
soil nutrients, e.g. nitrates, or contaminants are subject to dynamics that are analogous to the one
depicted in equation (5.1), so that the results can be easily extended to them. Examples of time
evolutions of salt mass in the root zone calculated through equation (5.1) are shown in figure 4a,
where we used the same values of the parameters as in [35,42].

In what follows, we first consider a constant plant uptake rate μup and then analyse the case
in which the uptake is negligible, i.e. μup = 0. We also focus on large times (t> τ ), for which the
system has no memory of the initial condition and has reached conditions of stochastic steady
state (statistical stationarity), i.e. t → ∞. The age distribution Nsalt is still a function of time and
age and fluctuates because of the stochastic term ν(t), whereas the probability density pNsalt (n; τ )
is constant in time and varies only with respect to the parameter τ .

(a) Constant plant uptake rate
The M’Kendrick–von Foerster equation for the age distribution of salt Nsalt in the root zone can
be written as

∂Nsalt

∂t
− ∂Nsalt

∂τ
= −μupNsalt − ν(t) ◦ Nsalt, (5.2)

such that integration with respect to τ readily yields equation (5.1). In equation (5.2), μup and ν
are not functions of age, meaning that, after deposition, salt is taken up by plants at constant rate
μup and flushed away by percolation at rate ν regardless of its age [5,50,54].
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Figure 4. (a) Time evolution of total salt massWsalt(t) in the root zone for different realizations of the shot noiseν (grey lines).
Sample realization of Wsalt(t) (black line). Time evolution of the mean total salt mass, described by equation (3.7) (dashed
line). (b) Probability density function pWsalt computed analytically (red line). Frequency histogram computed through numerical
simulations (grey histogram). (c) Time evolution of mean age T̄salt(t) of salt in the root zone for different realizations of the shot
noise ν (grey lines). Sample realization of T̄salt(t) (black line). Time evolution of themean T̄salt(t) (dashed line). Harmonic mean
of T̄salt(t), T̄h,salt (dotted line). (d) Frequency histogram for mean T̄salt(t) computed from numerical simulations. The plots are
generated for input ι= 0.054 g m−2 d−1,μd = 3 × 10−4 d−1,λ= 0.018 d−1 and γ = 10. (Online version in colour.)

From equation (2.4), for a single realization, the salt in the root zone has an age distribution

Nsalt(t, τ ) = Id e−μupτ−
∫ τ

0 ν(t−τ+u) du. (5.3)

Introducing the survival function, ϕ(τ ) = e−μupτ , (5.3) can also be written as

Nsalt(t, τ ) = Idϕ(τ ) e− ∫ τ
0 ν(t−τ+u) du, (5.4)

where the deterministic, Idϕ(τ ), and the stochastic, e− ∫ τ
0 ν(t−τ+u) du, components can be

distinguished. From equation (A 5), the probability density function of the age distribution
reduces to

pNsalt (n, τ ) = 1
n

(
Id

n

)−γ
e−(λ−γμup)τ

×
(
δ

(
ln
(

Id e−μupτ

n

))
+

√
γ τλI1(2

√
γ τλ

√
ln((Id e−μupτ )/n))√

ln(Id e−μupτ /n)

)
n ≤ Idϕ(τ ). (5.5)

The average age distribution N̄salt,1, from (3.4), is given by

N̄salt,1 = ι e(−μup−λ+λγ /(γ+1))τ , (5.6)
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Figure 5. Age distributions obtained frommultiple realizations of the stochastic dynamics as from equation (2.2) with constant
μup (grey lines). Mean age distribution computed from the analytical solution (5.6) (dashed black line). Age distribution in the
absence of jumps, given by n= Idϕ(τ ) (solid back line). The insets show the probability density function pN , from equation
(5.5), for τ = 1000, τ = 2000, τ = 3000 d. The plots are generated for input ι= 0.054 g m−2 d−1,μd = 3 × 10−4 d−1,
λ= 0.018 d−1 and γ = 10.

while, because θd = od =μupWsalt, the equation for the mean age reduces to

dT̄salt

dt
= 1 − Id

Wsalt
◦ T̄salt, (5.7)

whereas the harmonic mean

T̄h,salt =
(
μup + λ

γ

)−1
= γ

γμup + λ
. (5.8)

The results are summarized in figure 5. In particular, the figure shows multiple realizations of
Nsalt along with the average distribution N̄salt,1 and the realization in which no jump occurs (black
solid line), n = Idϕ(τ ), which sets the upper bound for Nsalt. The probability density function pNsalt ,
which spreads over lower values of n as the age τ increases, is shown for three values of τ . The
probability density function for the total population, pWsalt , given by expression (3.5), is instead
illustrated in figure 4a, while multiple realizations of the time evolution of T̄salt are illustrated
in figure 4c, showing how T̄salt fluctuates around its mean value (dark grey dashed line) and its
harmonic mean T̄h (dark grey dotted line).

(b) No plant uptake
When plant uptake is negligible, equation (5.1) reduces to

dWsalt

dt
= Id − Wsalt ◦ ν(t), (5.9)

in which only the percolation events compensate for the accumulation by atmospheric deposition.
The age distribution for such a system becomes

Nsalt(t, τ ) = Id e− ∫ τ
0 ν(t−τ+u) du. (5.10)

In equation (5.10), the survivor function ϕ = 1, namely the upper bound, is now constant with
respect to t and τ , and is simply given by Id. The probability density function is obtained by
setting μup = 0 in equation (5.5),

pNsalt (n, τ ) =
(

Id

n

)−γ
e−λτ

(
δ

(
ln
(

Id

n

))
+

√
γ τλI1(2

√
γ τλ

√
ln(Id/n))√

ln(Id/n)

)
n ≤ Id, (5.11)
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0 (grey lines). Mean age distribution computed from the analytical solution (5.6) (dashed black line). (b) Probability density
function pN , from equation (5.11), for τ = 2000 d. (c) Probability density function pWsalt computed from equation (3.5) (solid
red line). Frequency histogram computed by generating multiple realizations of the stochastic dynamics (grey histogram). The
plots are generated for input ι= 0.054 g m−2 d−1,λ= 0.018 d−1 and γ = 10. (Online version in colour.)

and the average age distribution simply reduces to

N̄salt,1 = Id e−λτ+(λγ /(γ+1))τ . (5.12)

With regard to the total mass of salt, evolving according to (5.9), its probability density can
be obtained as a limiting case of expression (3.5) [42]. Specifically, by taking the limit of (3.5) for
μd → 0,

pWsalt (w) = lim
μup→0

I
−γ−λ/μup

d μ
γ+1
up

B(γ + 1, λ/μup)
wγ (Id − μupw)λ/μup−1 = (λ/Id)1+γ

Γ (1 + γ )
e−λw/Id wγ , (5.13)

which is a Gamma distribution, defined on [0, ∞), with mean value (Id/λ)(1 + γ ) that is in
agreement with equation (3.7).

As θd = od = 0, equation (2.9) for the mean age again reduces to

dT̄salt

dt
= 1 − Id

Wsalt
◦ T̄salt, (5.14)

while the harmonic mean

T̄h,salt = γ

λ
. (5.15)

Our findings are shown in figure 6. It can be seen that, for each realization, the age distribution
with respect to τ is composed of horizontal segments separated by the downward jumps
determined by the noise ν(t). The probability density functions pNsalt and pWsalt are shown in
figure 6b,c, respectively.

6. Conclusion
We have analysed the role of stochastic jumps in the mortality rate in the age distribution
dynamics. The master equations governing the evolution of the probability density function of
the age distribution N and the total population W, together with the equation governing the time
evolution of the mean age T̄, are derived in §2. Their exact solutions are shown in §3, along with
the differential equations for the temporal dynamics of the moments of N and W; see equations
(3.2)–(3.6). We have also shown that, when the input is also a random variable, the probability
density function of the age distribution can be obtained from Bayes’ theorem (equation (4.1)).
This complements the previous work on stochastic input [28]. The results have then been applied
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to the age distribution dynamics of salt in the root zone, in which the stochastic mortality is due
to percolation events.

The framework can be further extended to explore the role of w- or n-dependencies in the
mortality term μd or an age dependence in the shot noise ν. Lastly, stochastic mortality in the
form of a renewal process (i.e. abrupt extinction) can also be included.
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Appendix A
We solve equation (3.1) for pY(y). Introducing a new variable z = y0 − y, where y0 = ln(n(ξ , η= 0)),
equation (3.1) becomes

∂pZ

∂η
= −∂(μdpZ)

∂z
− λpZ + λγ

∫ z

0
pZ(u) e−γ (z−u) du, (A 1)

and by applying a Laplace transform, f ∗(s) = ∫∞
0 e−sxf (x) dx, it reduces to

∂p∗
Z∗

∂η
= −μdz∗p∗

Z∗ − λp∗
Z∗ + λγ

z∗ + γ
p∗

Z∗ , (A 2)

where we set pZ(0) = 0. Integrating (A 2), one obtains

p∗
Z∗ (z∗) = p∗

0,Z∗ e−z∗ ∫η
0 μd(ξ+u,u) du−λη+λγ η/(z∗+γ ), (A 3)

where p∗
0,Z∗ represents the Laplace transform of the boundary condition pZ(z; η= 0). Specifically,

as y(ξ , η= 0) = y0(ξ ) = ln(n(ξ , η= 0)), we have z0 = z(ξ , η= 0) = 0 and pZ(z; η= 0) = δ(z), and thus
p∗

0,Z∗ = e−z0z∗ = 1. By applying an inverse Laplace transform to (A 3) and substituting back
y = y0 − z, pY(y) reads

pY(y) = ϕ(ξ + η, η)−γ eγ (y−y0(ξ ))−ηλ(δ(−y + y0(ξ ) + lnϕ(ξ + η, η))

+
√
γ ηλI1(2

√
γ ηλ

√−y + y0(ξ ) + lnϕ(ξ + η, η))√−y + y0(ξ ) + lnϕ(ξ + η, η)

)
(A 4)

for y ≤ y0(ξ ) − ∫η
0 μd(ξ + u, u) du, where I1(·) is the modified Bessel function of the first kind of

order 1, and ϕ(ξ + η, η) = e− ∫η
0 μd(ξ+u,u) du is the survivor function [36,54]. The probability density

pN can be obtained as

pN(n; η) = 1
n

e−γψ(ξ+η,η)−ηλ
(
δ(ψ(ξ + η, η)) +

√
γ ηλI1(2

√
γ ηλ

√
ψ(ξ + η, η))√

ψ(ξ + η, η)

)
n ≤ ι(ξ )ϕ(ξ + η, η),

(A 5)
with ϕ(ξ + η, η) = e− ∫η

0 μd(ξ+u,u) du and ψ(ξ + η, η) = ln(ϕ(ξ + η, η)ι(ξ )/n). In particular, the
survivor function is the exceedance probability (i.e. the probability of surviving up to a time
equal to η) for a cohort entering at η= 0 and subject exclusively to the deterministic decay. The
product ι(ξ )ϕ(ξ + η, η) thus represents the value of N in the absence of jumps and sets the upper
bound in (A 5). The probability density pN(n, η) in fact is a mixed distribution with an atom of
probability along the deterministic path (no jumps), i.e. n = ι(ξ )ϕ(ξ + η, η), and a continuous part.
As figure 2a shows, the probability that a cohort does not experience a jump decreases along
the characteristic line η, as probability is transferred from the atom to the continuous part of the
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distribution. Substituting back ξ = t − τ and η= τ into (A 5) gives

pN(n; t, τ ) = 1
n

e−γψ(t,τ )−τλ
(
δ(ψ(t, τ )) +

√
γ τλI1(2

√
γ τλ

√
ψ(t, τ ))√

ψ(t, τ )

)
n ≤ ι(t − τ )ϕ(t, τ ), (A 6)

where ϕ(t, τ ) = e− ∫ τ
0 μd(t−τ+u,u) du and ψ(t, τ ) = ln(ϕ(t, τ )ι(t − τ )/n).

Appendix B
We derive equation (3.3) for the kth order moment of N. By applying the expectation operator
E[g(x)k] = ∫∞

0 g(x)kpX(x) dx to equation (2.5), we obtain

dN̄k

dη
=μd

∫∞

0
nk ∂npN

∂n
dn − λN̄k + λγ

∫∞

0
nγ−1+k

∫∞

n
pN(u)u−γ du dn. (B 1)

The first integral on the right-hand side is solved by first expanding the derivative with respect
to n and then integrating by parts,

μd

∫∞

0
nk ∂pN

∂n
dn =μd

∫∞

0
(nkp + nk+1 ∂pN

∂n
) dn =μdN̄k + μd

∫∞

0
nk+1 ∂pN

∂n
dn

=μdN̄k − kμdN̄k − μdN̄k = −kμdN̄k. (B 2)

By using the product rule, the integrand in the last term can be expressed as

nγ−1+k
∫∞

n
u−γ pN(u) du = 1

(γ + k)
d

dn

(
nγ+k

∫∞

n
u−γ pN(u) du

)
+ nkpN(n)

(γ + k)
, (B 3)

and, after integration with respect to n,

∫∞

0
nγ−1+k

∫∞

n
u−γ pN(u) du dn = 1

γ + k
N̄k. (B 4)

Substituting back into (B 1) yields

dN̄k

dη
= −μdkN̄k − λN̄k + λγ

γ + k
N̄k. (B 5)

Returning to the original variables,

∂N̄k

∂t
+ ∂N̄k

∂τ
= −μdkN̄k − λN̄k + λγ

γ + k
N̄k. (B 6)

Appendix C
We solve equation (2.7) in steady-state conditions for constant boundary condition, n = ι, and
constant deterministic loss function, μd. Introducing new variables [35], W = ι/μd eX, t = t̄/μd
and λ= λ̄μd, equation (2.7) becomes

d(1 − e−X)pX

dX
− λ̄pX + λ̄γ eγX

∫∞

X
pX(u) e−γu du = 0. (C 1)

Multiplying (C 1) by e−γX, differentiating with respect to X and then integrating once gives

X(e−X − 1)pX + d(1 − e−X)pX

dX
− λ̄pX = C, (C 2)
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where C is the integrating constant. As the left-hand side goes to zero as X → ∞, C must be equal
to zero. Finally, integrating again yields

pX(X) = R eX(γ+1)(1 − eX)λ̄−1, (C 3)

where R is the normalization constant. Transforming back to the original variables gives equation
(3.5) of the main text,

pW(w) = Rι−γ−λ/μdμ
γ+1
d wγ (ι− μdw)λ/μd−1 w ≤ ι

μd
, (C 4)

where, by imposing the normalization condition, R = 1/B(γ + 1, λ/μd), B(a, b) being the Beta
function with shape parameters a and b.
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