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Summary    

This PhD thesis aims at investigating the possibility to detect landmines using 

hyperspectral imaging. Using this technology, we are able to acquire at each pixel 

of the image spectral data in hundreds of wavelengths. So, at each pixel we obtain a 

reflectance spectrum that is used as fingerprint to identify the materials in each pixel, 

and mainly in our project help us to detect the presence of landmines.    

  The proposed process works as follows: a preconfigured drone (hexarotor or 

octorotor) will carry the hyperspectral camera. This programmed drone is 

responsible of flying over the contaminated area in order to take images from a safe 

distance. Various image processing techniques will be used to treat the image in 

order to isolate the landmine from the surrounding. Once the presence of a mine or 

explosives is suspected, an alarm signal is sent to the base station giving information 

about the type of the mine, its location and the clear path that could be taken by the 

mine removal team in order to disarm the mine.  

 This technology has advantages over the actually used techniques:  

• It is safer because it limits the need of humans in the searching process and 

gives the opportunity to the demining team to detect the mines while they 

are in a safe region.   

• It is faster. A larger area could be cleared in a single day by comparison 

with demining techniques   

• This technique can be used to detect at the same time objects other than 

mines such oil or minerals. 

  First, a presentation of the problem of landmines that is expanding worldwide 

referring to some statistics from the UN organizations is provided. In addition, a 

brief presentation of different types of landmines is shown. Unfortunately, new 

landmines are well camouflaged and are mainly made of plastic in order to make 

their detection using metal detectors harder. A summary of all landmine detection 

techniques is shown to give an idea about the advantages and disadvantages of each 

technique.  

 In this work, we give an overview of different projects that worked on the detection 

of landmines using hyperspectral imaging. We will show the main results achieved 

in this field and future work to be done in order to make this technology effective.  



  Moreover, we worked on different target detection algorithms in order to achieve 

high probability of detection with low false alarm rate. We tested different statistical 

and linear unmixing based methods. In addition, we introduced the use of radial 

basis function neural networks in order to detect landmines at subpixel level. A 

comparative study between different detection methods will be shown in the thesis. 

  A study of the effect of dimensionality reduction using principal component 

analysis prior to classification is also provided. The study shows the dependency 

between the two steps (feature extraction and target detection). The selection of 

target detection algorithm will define if feature extraction in previous phase is 

necessary.  

  A field experiment has been done in order to study how the spectral signature of 

landmine will change depending on the environment in which the mine is planted. 

For this, we acquired the spectral signature of 6 types of landmines in different 

conditions: in Lab where specific source of light is used; in field where mines are 

covered by grass; and when mines are buried in soil. The results of this experiment 

are very interesting. The signature of two types of landmines are used in  the 

simulations. They are a database necessary for supervised detection of landmines. 

Also we extracted some spectral characteristics of landmines that would help us to 

distinguish mines from background.



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgment   

   I would like to express my deep gratitude to my supervisors Prof. Rafic Younes, Prof. Clovis 

Francis, Prof Tiziano Bianchi and Prof. Massimo Zucchetti for their continuous support, 

kindness and availability during the three years of work on the thesis. I would like to thank the 

reviewers Prof. Maria Greco and Prof. Ali El-Zaart for accepting the participation in the final 

dissertation and for their valuable comments that helped me in improving the quality of the 

report. I want to thank also the examiners Dr. Luisa Verdoliva and Dr. George Sakr for their 

positive contribution in the jury. A special thank goes to Prof. Fahed Abdallah and Colonel 

Pierre Bou Maroun that honored me with their participation in the final defense. 

   Also, I would like to thank the Lebanese army for providing real samples of landmines 

extracted from minefields in Lebanon. These samples were used in the collection of spectra of 

landmines in different conditions. Also I would like to thank Dr. Mohammad Awad for his help 

in the acquisition of the landmines’ spectra using the spectroradiometer. A special thanks goes 

to Lebanese University and Erasmus Committee for the financial support in Lebanon and in 

Italy. 

 Finally, the constant support of my family, friends and colleagues allowed me to successfully 

conclude this PhD. 

   

 

Thank you            

     

 



7 
 

  

  

  

Contents 
 

Summary ............................................................................................................................ 3 

Acknowledgment ............................................................................................................... 6 

List of Figures .................................................................................................................. 10 

List of Tables ................................................................................................................... 12 

1. Introduction .............................................................................................................. 13 

2. Problem of landmines and existing solutions ........................................................... 15 

2.1. Problem of Landmines ................................................................................................. 15 

2.1.1. Landmine contamination and impact ................................................................... 15 

2.1.2. Types of landmines .............................................................................................. 18 

2.2. Landmine detection techniques .................................................................................... 19 

2.2.1. Electromagnetic Methods ..................................................................................... 20 

2.2.2. Ground Penetrating Radar (GPR) ........................................................................ 20 

2.2.3. Infrared/Hyperspectral Systems ........................................................................... 21 

2.2.4. Acoustic/Seismic method ..................................................................................... 21 

2.2.5. Nuclear Quadruple Resonance (NQR) ................................................................. 21 

2.2.6. Vapor sensors ....................................................................................................... 22 

2.2.7. Mechanical methods ............................................................................................. 22 

3. Hyperspectral Imaging: Introduction to landmine detection and processing 

techniques ........................................................................................................................ 23 

3.1. Introduction to Hyperspectral imaging ........................................................................ 23 

3.1.1. Broadband, Multispectral, Hyperspectral and Ultraspectral Imaging .................. 23 

3.1.2. Hyperspectral Image Scanning Modes ................................................................. 24 

3.1.2.1. Whiskbroom or Across Track scanner ......................................................... 24 

3.1.2.2. Pushbroom or Along Track scanner ............................................................. 25 

3.1.3. Important hyperspectral camera ........................................................................... 26 

3.2. Previous projects on landmine detection using HI ....................................................... 27 

3.2.1. Defence Research and Development Canada projects ......................................... 27 

3.2.2. Equinox Corporation fusion test .......................................................................... 30 

3.2.3. Hyperspectral Mine Detection program HMD ..................................................... 31 

3.2.4. Hyperspectral Mine Detection Phenomenology program .................................... 31 

3.2.5. Joint Multispectral Sensor Program (JMSP) ........................................................ 32 

3.2.6. Night Vision and Electronics Systems Directorate (NVESD) ............................. 32 

3.2.7. Defense Science and Technology Laboratory DSTL countermine project .......... 33 



8 
 

3.2.8. Indian Test to detect landmines using infrared images ........................................ 33 

3.2.9. NATO project ....................................................................................................... 33 

3.2.10. Humanitarian DEMining (HUDEM) and Belgian Mine Action Technology 

(BEMAT) ............................................................................................................................. 34 

3.2.11. FOI Multiple-Optical Mine detection System (MOMS) project .............................. 34 

3.2.12. TELOPS test to detect buried object using airborne thermal hyperspectral images 35 

3.3. Hyperspectral Image Processing .................................................................................. 37 

3.3.1. Contrast enhancement .......................................................................................... 38 

3.3.1.1. Histogram equalization ................................................................................ 38 

3.3.1.2. Morphological Contrast Enhancement ......................................................... 39 

3.3.2. Filtering ................................................................................................................ 39 

3.3.2.1. Wiener filter ................................................................................................. 40 

3.3.2.2. Adaptive 3D Wiener filter ............................................................................ 40 

3.3.2.3. Multiway filtering ........................................................................................ 41 

3.3.3. Segmentation ........................................................................................................ 42 

3.3.3.1. Watershed Algorithm ................................................................................... 42 

3.3.3.2. Hierarchical segmentation ............................................................................ 42 

3.3.4. Feature extraction ................................................................................................. 43 

3.3.4.1. Principal Component Transformation (PCT) ............................................... 43 

3.3.4.2. Linear Discriminant Analysis (LDA) ........................................................... 44 

3.3.5. Classification ........................................................................................................ 44 

3.3.5.1. Support vector machine (SVM) ................................................................... 45 

3.3.5.2. K means clustering ....................................................................................... 46 

3.3.5.3. Orthogonal subspace projection (OSP) ........................................................ 46 

3.3.5.4. Matched Filter (MF) ..................................................................................... 46 

3.3.5.5. Constrained energy minimization (CEM) .................................................... 48 

3.3.5.6. Multiple Target CEM (MTCEM) ................................................................. 48 

3.3.5.7. Winner take all CEM (WTACEM) and Sum CEM (SCEM) ....................... 48 

3.3.5.8. Adaptive Coherent/Cosine estimator (ACE) ................................................ 49 

3.3.5.9. Fully constrained least square (FCLS) ......................................................... 49 

3.3.5.10. Adaptive Matched Subspace Detector (AMSD) .......................................... 50 

3.3.5.11. Hybrid Unstructured Detector (HUD) .......................................................... 51 

3.3.5.12. Spectral Angular Mapper (SAM) ................................................................. 51 

3.3.5.13. Spectral Information divergence (SID) ........................................................ 51 

3.4. Recent developments in target detection using hyperspectral images. ........................ 52 

4. Experiments and Results .......................................................................................... 53 

4.1. Preliminary test of applicability of hyperspectral images for landmine detection ....... 53 

4.1.1. Detection Using VNIR, SWIR AND TIR ............................................................ 53 

4.1.2. Supervised and unsupervised classification ......................................................... 55 



9 
 

4.1.3. Experiments .......................................................................................................... 55 

4.2. Full pixel and subpixel mine detection ........................................................................ 58 

4.2.1. Data description.................................................................................................... 58 

4.2.2. Classification Results ........................................................................................... 60 

4.2.3. Discussion ............................................................................................................ 62 

4.2.4. Conclusions .......................................................................................................... 63 

4.3. Effect of PCA Feature Selection Prior To Detection ................................................... 63 

4.3.1. Data Description ................................................................................................... 63 

4.3.2. Results .................................................................................................................. 64 

4.3.3. Conclusions .......................................................................................................... 66 

4.4. Effect of spectral variability on landmine detection .................................................... 66 

4.4.1. Data description.................................................................................................... 66 

4.4.2. Results .................................................................................................................. 66 

4.4.3. Conclusions .......................................................................................................... 68 

4.5. MLP Neural network for landmine detection using hyperspectral imaging ................ 68 

4.5.1. Multi-Layer Perceptron (MLP) Neural networks ................................................. 69 

4.5.2. MLP training and application ............................................................................... 69 

4.5.3. Conclusions .......................................................................................................... 73 

4.6. Multi Target Detection Using Neural Networks .......................................................... 73 

4.6.1. Neural Networks based Target detection ............................................................. 74 

4.6.2. Experiment on simulated data .............................................................................. 76 

4.6.2.1. Data description ............................................................................................ 76 

4.6.2.2. Results .......................................................................................................... 77 

4.6.3. Real target experiment ......................................................................................... 80 

4.6.3.1. Test Image .................................................................................................... 81 

4.6.3.2. Results .......................................................................................................... 81 

4.6.4. Conclusions .......................................................................................................... 82 

4.7. Created Spectra method ............................................................................................... 83 

4.7.1. Spectrum creation ................................................................................................. 83 

4.7.2. Conclusions .......................................................................................................... 86 

4.8. Field Experiment .......................................................................................................... 87 

4.8.1. Reflectance spectra of landmines acquired in the lab .......................................... 88 

4.8.2. Reflectance spectra of landmines acquired in grass Field .................................... 95 

4.8.3. Reflectance spectra of landmines acquired in soil Field .................................... 100 

4.8.4. Conclusions ........................................................................................................ 105 

5. Conclusions and Future Work ................................................................................ 106 

References...................................................................................................................... 109 

 

 

 



10 
 

List of Figures 
 

 

Figure 1: Mines/erw casualties by civilian/military status in 2014 ......................................... 16 

Figure 2: Mines/erw casualties by age in 2014 ........................................................................ 16 

Figure 3: Comparison between AT and AP landmines ........................................................... 18 

Figure 4: Landmine detection with metal detector .................................................................. 20 

Figure 5: GPR principle ........................................................................................................... 20 

Figure 6: Amplitude of Surface Vibration of Ground in response to sound waves: over a Mine 

(solid line) and a Blank (dashed line) ...................................................................................... 21 

Figure 7: Difference between broadband, multispectral, hyperspectral and Ultraspectral 

Imaging .................................................................................................................................... 24 

Figure 8: Wiskbroom scanning principle [132] ....................................................................... 25 

Figure 9: Pushbroom scanner principle ................................................................................... 25 

figure 10: VNIR reflectance spectra of mines and background materials [103]. .................... 54 

Figure 11: VNIR and SWIR reflectance spectra of mines and background materials [105] ... 54 

Figure 12: The reflectivity spectrum of one pixel of Salinas ground, mine1, mine2. ............. 56 

Figure 13: Detection performance of supervised methods: Normalized Cross Correlation 

(left) and Orthogonal Subspace projection (right) ................................................................... 56 

Figure 14: Detection performance of unsupervised methods: Kmeans (left) and Fuzzy 

Cmeans (right) ......................................................................................................................... 57 

Figure 15: Kmeans clustering after several run (left) and FCM clustering (right) in case of 

subpixel target .......................................................................................................................... 58 

Figure 16: Effect of PCA on FAR ........................................................................................... 64 

Figure 17: Effect of PCA on computation time ....................................................................... 65 

Figure 18:  Example of multilayer perceptron NN .................................................................. 69 

Figure 19: Average Probability of detection ............................................................................ 72 

Figure 20: Average False Alarm Rate ..................................................................................... 72 

Figure 21: Average computational time .................................................................................. 73 

Figure 22: Multi-layer RBF Neural network ........................................................................... 75 

Figure 23: Reflectance spectrum of the vs-2.2 mine (target) inserted in the image ................ 77 

Figure 24: Reflectance spectrum of the pmn mine (target) inserted in the image ................... 77 

Figure 25: Average computational time /algorithm ................................................................. 79 

Figure 26: average FAR/ algorithm ......................................................................................... 79 

Figure 27: Created reflectance spectrum ................................................................................. 84 

Figure 28: Created spectrum performance ............................................................................... 85 

Figure 29: Performance of created spectrum method when applied on another image ........... 86 

Figure 30: Samples of landmines used for acquiring their reflectance spectra ....................... 87 

Figure 31: Acquisition of the reflectance spectrum of TM-46 landmine ................................ 90 

Figure 32: trying different incident angle ................................................................................ 91 

Figure 33: PMN reflectance spectrum taken in LAB .............................................................. 92 

Figure 34: VS 50 reflectance spectrum taken in lab ................................................................ 92 

Figure 35: PMD-6 reflectance spectrum taken in lab .............................................................. 93 

 

 

file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049292
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049293
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049295
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049296
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049297
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049297
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049299
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049301
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049302
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049303
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049304
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049304
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049305
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049305
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049309
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049313
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049314
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049315
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049323


11 
 

figure 36: M411 reflectance spectrum taken in lab ................................................................. 93 

Figure 37: VS 2.2 reflectance spectrum taken in lab ............................................................... 94 

Figure 38: TM 46-reflectance spectrum taken in lab ............................................................... 94 

Figure 39: AP mines planted in grass ...................................................................................... 95 

Figure 40: Grass reflectance spectrum ..................................................................................... 96 

Figure 41: grass reflectance spectrum including in water absorption bands ........................... 96 

Figure 42: PMN reflectance spectrum when covered by grass ................................................ 97 

Figure 43: VS50 reflectance spectrum when covered by grass ............................................... 97 

Figure 44: PMD 6 reflectance spectrum when covered by grass............................................. 98 

Figure 45: M411 reflectance spectrum when covered by grass ............................................... 98 

Figure 46: VS 2.2 reflectance spectrum when covered by grass ............................................. 99 

Figure 47: TM-46 reflectance spectrum when covered by grass ............................................. 99 

Figure 48: four AP mines exist in this scene. Could you localize them all? ......................... 100 

Figure 49: Holding the device on my back, we acquired the spectra of the landmines after 

burying them in the soil ......................................................................................................... 101 

Figure 50: Landmines buried in soil ...................................................................................... 102 

Figure 51: Untouched soil reflectance spectrum ................................................................... 102 

Figure 52: PMN reflectance spectrum when buried in soil ................................................... 103 

Figure 53: VS 50 reflectance spectrum when buried in soil .................................................. 103 

Figure 54: PMD 6 reflectance spectrum when buried in soil ................................................ 104 

Figure 55: M411 reflectance spectrum when buried in soil .................................................. 104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049330
file:///C:/Users/Ihab/Desktop/new%20Phd%20Thesis-%20corrected%20after%2012-12-2017%20-%20Copy.docx%23_Toc502049341


12 
 

 

List of Tables 
 

 

Table 1: States/Areas With Mine/Erw Casualties In 2014 ...................................................... 17 

Table 2: Summary of projects studied landmine detection using infrared and hyperspectral 

imaging. ................................................................................................................................... 35 

Table 3: FAR (nb of false alarms/m2) ..................................................................................... 61 

Table 4: Computation time in seconds..................................................................................... 61 

Table 5: Numberb of false alarms and computation time obtained when applying each 

algorithm .................................................................................................................................. 81 

Table 6: FieldSpec 4 Hi-res spectroradiometer specifications ................................................ 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

 

 

 

Chapter One  

1.Introduction 
 

Landmines and cluster munition constitute a main obstacle against the development of the 

societies and return to normal life after the ceasefire is achieved. The fear of death and the 

destruction won’t stop with the end of war, but will continue with the existence of threat of 

cluster munitions, landmines, unexploded ordnance and improvised explosive devices. This 

type of weapons doesn’t know when the war is ended and remain active for years or even 

decades menacing innocent people in their everyday life 

According to recent statistics [1], 80% of the casualties of landmines are from children that 

have nothing to do with the war or its causes. Therefore, there is a need to ban the use of 

this type of blind weapons. The efforts to ban landmines has started and we have an 

international campaign to ban landmines and cluster munitions with numeral signees 

countries [130]. However, nobody can control the situation during the war and the 

landmines are being used during recent conflicts (ex. In Libya and Syria 2016). Therefore, 

there is a need to find detection techniques that are fast and reliable.  

Different techniques have been addressed in order to detect landmines. Each method has 

its advantages and inconveniences. One of the earlier and most used methods is the metal 

detector. Due to electrical induction phenomena, this type of detectors is able to detect the 

objects that contains metal under the soil. Although this technique is cheap, it has several 

drawbacks: it detects all metals, either landmines or inert metals so it has very high false 

alarm rate; new landmines contains less metals so they are harder to be detected. Other 

techniques used for landmine detection will be mentioned in the next chapters.  

 In this thesis, we are addressing this problem with a new technique named Hyperspectral 

Imaging or Imaging spectroscopy. This technique gives the ability to measure at each image 

unit (pixel) the portion of light reflected in hundreds of wavelengths. Thus, we will obtain 

a hypercube composed of two spatial dimensions and a third dimension that contains 

spectral information. This technique is well used in remote sensing field for different 

purposes like mapping, agriculture, astronomy, food monitoring, surveillance and others. 

When light hits an object, it is either absorbed or reflected. The portion of light that is 

reflected depends on the size of the molecules of the object that is reflecting on, the 

intermolecular distances in addition to the wavelength of the radiation. Each material 

composed of different components could reflect light of various wavelengths in a different 
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manner. Therefore, we have the ability using this technology to identify the materials 

remotely. In our case, we will use the spectral and spatial information of the hyperspectral 

images to detect landmines and cluster munitions without the presence of deminers on field. 

Several approaches exist for target detection using hyperspectral imaging: some are 

supervised where the spectrum of the data is known before; other are unsupervised based 

on searching for targets that are spectrally different from their surroundings. The latter type 

of information does not necessitate the knowledge of the target spectrum in advance. 

However, this type of detectors is characterized by a high false alarm rate as we will see in 

the next chapters because rare events in the image different from their background will be 

marked as targets. 

  During the work on this PhD thesis, we studied different scenarios of supervised and 

unsupervised detection, taking into consideration image preprocessing techniques like 

feature selection and dimensionality reduction. Knowing the target reflectance spectra will 

not make its detection a straightforward process due to several reasons: 

 1) Spectral variability: the spectrum registered in lab conditions will not be necessary 

the same in field condition due to effect of weather and illumination conditions. 

 2) Noisy images. 

3) Low spatial resolution that make the reflectance detected in a pixel composed by a 

mixture of endmembers reflectance spectra.  

We worked on different types of supervised and unsupervised detection algorithms 

based on probabilistic and linear mixture models. In addition, we worked on artificial 

neural networks in order to detect landmines using hyperspectral images in a fast and 

more accurate way. 

In Chapter 2, we analyze the problem of landmines and show the existing methods currently 

used to address this issue. An introduction to hyperspectral imaging with stat of art of 

landmine detection using hyperspectral imaging and different tools used in hyperspectral 

image treatment are shown in Chapter 3. In Chapter 4, we present all experiments done 

during my work on the thesis with the results achieved. The conclusions are drawn in 

Chapter 5. 
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Chapter Two:  

2.Problem of landmines and existing 

solutions 
 

 

2.1. Problem of Landmines 
 

This chapter presents an introduction concerning landmines contamination issues, crisis, 

legacy, and action. We conduct an analysis of mine action, national and international programs. 

It is consequential to survey the foundation of the mine activity area since its start. We 

introduce the problem of landmines and how action is taken to face these problems. A concise 

abridgement of the expedition to ostracize killing mines is additionally included. In addition, 

we show the main types of landmines. 

Part of the information shown here is published in [129]. 

2.1.1. Landmine contamination and impact 
 

Several countries suffer from the existence of millions of landmines in their territories. These 

landmines have indefinite life, and may still cause horrific personal injuries and economic 

dislocation for decades after a war has finished. Therefore, there is a growing demand by these 

countries for reliable landmine inspection systems.   

 This problem affects the social and economic development of the regions, diminishes the areas 

to be cultivated [2], [3], [4], [5]], and also risks killing innocent people; triggered by the fact 

that mines do not know truce [[6], [7], [8], [9]]. As known, mines lead to hundreds of thousands 

of deaths or to amputation of limbs. For instance, in Cambodia there are more than 35000 

amputees affected by landmine explosion [[2], [5]]. Some of the injured people die in the fields 

from bleeding or lack of transport to reach the hospital [5]. Mines can decrease the area to be 

cultivated, also prevent the income of valuable foreign currency coming from tourist’s visit, 

which lead to economic regression. 

Various obstacles are faced in removing these landmines, such as the loss or absence of maps 

or information about the landmine types used or the areas where they were originally emplaced, 
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the change of landmines locations due to climatic and physical factors, the large variety of 

types of landmines, and the high cost of locating and removing landmines. The landmines 

sensitivity to explosion with time or atmospheric factors also poses a great danger to 

individuals.   

Landmines are victim-activated and indiscriminate. Mines emplaced during a conflict against 

enemy forces can still kill or injure civilians decades later. Land mines, cluster munitions, and 

other explosive remnants of war (ERW) continue to kill or injure at least 4,300 people every 

year [3]. The vast majority of recorded casualties are civilians (80% in 2015) as shown in Fig. 

1 of which 39% are children (Fig 2). Between 1999 and 2012, more than 1,000 deminers have 

been killed or injured while undertaking demining operations [10]. 

  

 

States with causalities in 2015 are shown in the next table: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mines/erw casualties by civilian/military 
status in 2014 

Figure 2: Mines/erw casualties by age in 2014 
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Table 1: States/Areas With Mine/Erw Casualties In 2014 

 

 

The total casualties in 2015 denoted the most yearly recorded losses since 2006. Year 2015 

additionally denoted the most noteworthy number of yearly losses by extemporized mines 

recorded by the Monitor [5]. 

  When a landmine explodes, the impact of the explosion weakens as the distance increases 

from the mine. The blast wave generated by to explosion has a peak power at the beginning 

and loses its power while moving in the atmosphere. Accordingly, it is possible that get a high 

killing power from a mine containing small amount of explosives in close contact, (for 

example, a mine under the foot) while encountering considerably less damage from a 

significantly bigger dangerous charge a few meters away. There is consequently a colossal 

assortment in the scope of touchy wounds from landmines and UXO. Mine/UXO wounds have 

two fundamental effects. Firstly, they influence the lives of the wounded and their family; 

furthermore, they have impacts on the medicinal foundation of the influenced nation. The 

fundamental monetary impact on the casualty is the constraining of capacity to acquire wage 

to bolster themselves and their family. In addition to evident physical wounds, the setback may 

endure mental harm. Female setbacks are viewed as being especially helpless as the broad 

physical harm can seriously restrict their odds of marriage. The impacts are not constrained to 

the setback or their close families. Treating mine wounds depletes the neighborhood 

therapeutic foundation of developing nations, as these sorts of wounds unavoidably wind up 

noticeably tainted and typically requires 2-3 operations to debride the wounds.  Every loss will 
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require prosthesis or a wheelchair on the chance to recover portability. The prostheses will 

likewise require concentrated physiotherapy to figure out how to utilize the counterfeit 

appendage. Moreover, most amputees will require another appendage ever 2-3 years as the old 

ones destroy. 

 

2.1.2. Types of landmines 
 

Mines can be outlined either as ‘anti-personnel’ or as ‘anti-tank'. Anti-personnel (AP) mines 

are intended to be actuated by individuals, while anti-tank (AT) mines are expected to thrash 

tanks or other shielded vehicles [11].  

Anti-tank mines are designed to be triggered by heavy vehicles such as tanks. They are large 

(usually bigger than a person’s shoe) and heavy (weighing more than 5 kilos). These mines 

contain enough explosives to destroy the vehicle that runs over them and as a result also 

frequently kill people in or near the vehicle. Anti-tank mines are laid where enemy vehicles are 

expected to travel: on roads, bridges and tracks. 

Anti-personnel mines are triggered much more easily and are designed to wound people. They 

have less explosives and are much smaller and lighter than anti-tank mines—they could be as 

small as a packet of cigarettes, weighing as little as 50 grams. Anti-personnel mines come in 

all shapes and colors and are made from a variety of materials. 

Although AP mines may kill a person, they are primarily designed to cause severe injury—a 

wounded person must be assisted and this takes more of the enemy’s time and resources. Anti-

personnel mines can be laid anywhere and can be set off in a number of ways—stepping on 

them, pulling on a wire or simply shaking them. Anti-personnel mines may also explode when 

an object placed over them is removed. [12] 

 

 

 

 

 

 

 

 
Generally, there are two types of AP mines: blast mines and fragmentation mines.  

BLAST MINES  

Blast landmines are buried close to the surface of the soil and are generally triggered 

by pressure. When a person steps on a blast mine and activates it, the mine's main 

charge detonates, creating a blast shock wave consisting of hot gases travelling at 

extremely high velocity. A famous type of blast mines is scatterable mines.[13] 

 

type  AP landmine   AT landmine  

weight  Light(100g-4Kg)  Heavy(6Kg-11Kg)  

size  6-20cm  20-50cm  

target  Human  Vehicle  

Case material  Plastic,metal,wood  Plastic,metal  

Operating 

pressure  

5Kg  120Kg  

Figure 3: Comparison between AT and AP landmines 
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FRAGMENTATION MINES 

This type of landmines release fragments in all directions, or can be arranged to send fragments 

in one direction. These landmines can cause injuries up to 200m away and kill at closer 

distances. The fragments used in these landmines are either metal or glass. [13] 

Anti-tank mines are designed to immobilize or destroy vehicles. All anti-tank mines are blast 

mines, because the goal of the anti-tank mine is to destroy the tank's tracks and body. There's 

no need for a fragmentation anti-tank mine. 

Most countries and armies try to possess landmines to protect the main installations and key 

basis from enemy intruders. When a military base is constructed in an open area, it will be 

vulnerable to attacks by the enemy from all sides. In such cases, the landmines are used to limit 

the reachable zones and focus the defensive forces in one side. Mines can also be used as part 

of the support system for heavy artillery. 

However, while landmines may have readily identifiable military applications, the nature, 

design, and deployment of large numbers of mines will necessarily lead to civilian casualties 

The neutralization of mines requires specialized training and remains a tedious and dangerous 

process.  Mines are often designed and deployed in order to make their detection as difficult as 

possible.  Furthermore, advances in technology are exacerbating the problem because most 

modern mines are now made with plastics and may contain only traces of metal, if any.  Newer 

models may also contain sophisticated electronic fuses that make them more hazardous to 

remove. 

 

2.2. Landmine detection techniques 
 

  In this section, we show the main detection techniques used in the detection of landmines. 

The goal of this section is to show the techniques already used, their pros and cons and compare 

their performance with the hyperspectral image technique. 

The most widely used method for detecting mines follows the same techniques developed 

during the Second World War, and directly involves human beings. The typical deminer’s tool 

kit today largely resembles those used more than 50 years ago (It consists of a metal detector 

and a prodding instrument).  

 Several techniques have been designed and developed for demining. Each technique is suitable 

for detection under some conditions depending on the type of the mine case, the explosive 

material and the soil. 

  As we are studying the potential of hyperspectral imaging for landmine detection, we will 

describe the detection techniques currently used. The rationale of this section is not to go 

through the complicated physics principles of how the sensors work but to give some brief 

information about these techniques stating their strengths and limitations, in order to highlight 

the advantages of hyperspectral imaging over other techniques.  
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 Generally, most of the landmine detection techniques consist of three main units; a sensor to 

capture a signature of the landmine, a signal or image processing unit to arrange the acquired 

data and a decision making unit to decide whether a landmine exists or not.  

The sensor may be electromagnetic, acoustic, nuclear, biological, chemical or mechanical. 

2.2.1. Electromagnetic Methods 
 

The deminer holds the handle of Electro-Magnetic Induction 

(EMI) detector (Fig.4) close to the ground and sweeps it slowly 

around the area being investigated. Electrical current flowing 

through the first coil, the “transmit coil,” induces a time-varying 

magnetic field in the ground. This primary magnetic field, in turn, 

induces electrical (eddy) currents in buried metal objects. The 

currents from the buried objects create a weaker, secondary 

magnetic field. The second coil, the “receiver coil,” detects 

changes in voltage induced by the secondary magnetic field as 

shown. The detector then converts these changes in the electric potential to an audible 

signal. [13] 

 

2.2.2. Ground Penetrating Radar (GPR) 
 

  Difficulty in detecting tiny amounts of metal in a plastic land 

mine with a metal detector has led to the development of this 

technique. GPR detects buried objects by emitting radio waves 

(ranging from about 10 MHz to a few GHz) into the ground and 

then analyzing the return signals generated by reflections of the 

waves at any subsurface discontinuity with different indexes of 

refraction such as at the boundary between soil and a landmine or 

between soil and a large rock. The GPR technique (Fig.5) uses an 

antenna pair (transmitter and receiver separated by a small fixed 

distance) to send short pulses of electromagnetic energy into the 

subsurface and then record the returning signals. The return signal 

is interpreted using a computerized signal processing system that 

gives an audio image to determine the object’s shape and position.  

[[13],[14]   

 

 

 

 

 

Figure 4: Landmine detection with 
metal detector 

Figure 5: GPR principle 
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2.2.3. Infrared/Hyperspectral Systems 
         

Infrared radiation consists of wavelength of 0.7𝜇𝑚 to 1𝑚𝑚 in microwave regions.  

Infrared/hyperspectral methods detect anomalous variations in electromagnetic radiation 

reflected or emitted by either surface mines or the soil and vegetation immediately above buried 

mines. Two modes of action, including active and passive irradiation using a broad range of 

electromagnetic wavelengths: A passive IR system detects natural radiation from the object 

whereas active systems are provided with heat source and detects radiation from heated object. 
Thermal detection methods exploit diurnal variations in temperatures of areas near mines 

relative to surrounding areas. The physical activity of emplacing mines changes the natural soil 

particle distribution by bringing small particles to the surface, which in turn affects the way in 

which the soil scatters light. Systematic changes in vegetation moisture levels immediately 

above buried mines also may have influence [13]. 

2.2.4. Acoustic/Seismic method 
 

These methods are unique among detection methods 

that identify the mine casing based on the 

mechanical properties and are not based on 

electromagnetic properties. The A/S technique is 

used for the detection of landmines by vibrating 

them with acoustic or seismic waves that are 

generated and received by non-contact (acoustic) 

and contact (seismic) transducers, respectively. The 

transmitting system may be composed of acoustic 

loudspeakers or electrodynamic shakers. When the 

receiver senses a reflected energy that means an 

object possibly a landmine is buried. (Fig.6) [15]. 

2.2.5. Nuclear Quadruple Resonance (NQR)  
 

This is a radiofrequency-based technique used to detect specific chemical compound like 

explosives. It is composed of an emitter that sends a radiation with a frequency that corresponds 

to the frequency of resonance of the explosive material. By this, the nuclei of the component 

is excited and when it returns to the stable state, it emits another radiation that induces an 

electric potential at the receiver coil. By this, the presence of a landmine is noticed by the 

detection of the presence of explosives [16]. 

 

 

 

 

Figure 6: Amplitude of Surface Vibration of Ground in response 
to sound waves: over a Mine (solid line) and a Blank (dashed 
line)  
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2.2.6. Vapor sensors 
 

A small percentage of the explosive manages to get out, as vapor, through fissures and shield 

structures of mines. The idea is to detect the presence of vapor from explosives. There are 

two research lines in this topic: biological and chemical. 

Biological detection methods involve the use of mammals, insects, microorganisms, or plants 

to detect explosives. Each of the different methods operates on a different set of principles and 

is at a different stage of development. 

A variety of possible non-biological mechanisms for detecting low concentrations of 

explosives in air or in soil samples have been investigated in recent years leading to the 

development of highly sensitive odor detection devices. When a sample of air containing 

explosives passes between the slides of the sensor, some of the explosive binds to the polymer 

and reduces the amount of fluorescent light that one slide emits. This reduction in the intensity 

of radiation received is detected by a small photomultiplier device giving notice the existence 

of explosive material.[13],[15] 

2.2.7. Mechanical methods 
 

In some cases, if the terrain and soil conditions are suitable, it is possible to use large armored 

vehicles in order to clean the minefields. This method is preferred by the army during the time 

of conflict as there is no much time to localize, identify and isolate the mines. It necessitates 

the use of large and expensive vehicles. The risk is minimized as the demining personnel are 

either in a well shielded place or are remotely controlling the vehicles. However, this technique 

leaves the area virtually destroyed. In addition, a landmine may be buried deeper or partly 

damaged making it more dangerous. [15] 
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Chapter Three 

3.Hyperspectral Imaging: Introduction to 

landmine detection and processing 

techniques 
 

3.1. Introduction to Hyperspectral imaging 
 

Hyperspectral imaging is a trending technique in the field of remote sensing. It is based on 

acquiring images in quasi-continuous bands in the visible and infrared domain. By this, we 

get at each pixel a reflectance spectrum that help us to identify the constituents of the 

materials in the image. This type of imaging is a developed version of the multispectral 

imaging technique. In this section, we would like to show the origin of hyperspectral 

imaging, different data acquisition processes used to acquire the hypercube in addition to 

main hyperspectral imaging cameras used in this field. 

 

3.1.1.  Broadband, Multispectral, Hyperspectral and Ultraspectral 

Imaging 
 

  Hyperspectral imaging is the result of development in the field of electro optics. The 

development in sensor manufacturing made the image acquisition in hundreds of 

wavelengths possible. The first imagers were broadband imagers that sense the light 

intensity in a wide range of spectrum. These imagers detect the light intensity in a wide 

range of frequencies in the visible or infrared domain. After that, the eighties and nineties 

became the era of multispectral imagers were the imagers were able to acquire image slices 

in tens of frequencies (Fig.7). The development of photodetectors made possible to acquire 

image slices in even narrower bands. This have increased the spectral resolution of the 

imager and improved the possibility to distinguish more materials. 
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Figure 7: Difference between broadband, multispectral, hyperspectral and Ultraspectral Imaging 

3.1.2.  Hyperspectral Image Scanning Modes 
 

 Generally, to acquire a multispectral or hyperspectral images, two types of scanners are usually 

used: Wiskbroom scanners and Pushbroom scanners. These two scanners differs in the 

technology used to detect the light of different wavelengths. In both techniques, we use the 

forward motion of the platform to record successive scan lines and build up the 2 dimensional 

images. In the following, we will some of the characteristics of each technology. 

3.1.2.1. Whiskbroom or Across Track scanner 

  Whiskbroom scanners collect measurements from one pixel in the image at a time. A rotating 

reflecting device moves forth and back to reflect the incident light from different angles to the 

single sensor that the scanner have. This allows the scanner to measure the energy from one 

side of the aircraft to the other. The Instantaneous Field of View (IFOV) is scanned 

perpendicular to the direction of motion of the sensor to form one spatial rom of the spectral 

image [132]. The incoming energy is separated into several spectral components that are 

independently sensed. 
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3.1.2.2. Pushbroom or Along Track scanner 

A push broom scanner collects data along track using a row of sensors arranged perpendicular 

to the direction of travel. The data are collected row by row. The imager scans a slit on the 

ground in across-track direction. The slit image is focused and spectrally dispersed onto a two 

dimensional array of image sensors. 

 

Figure 9: Pushbroom scanner principle 

Whiskbroom imager have inherently inferior spatial resolution compared to pushbroom 

imagers. In addition,  pushbroom imager has better geometry than wiskbroom imagers due to 

fixed distance among detector elements. However, in pushbroom imager more detectors need 

to be calibrated before use. 

Figure 8: Wiskbroom scanning principle [132] 
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In new hyperspectral imagers, instead of using the dispersive elements to measure the energy 

in different wavelengths, spectral filters in the fore optics at the focal plan are used to switch 

between wavebands. 

 

3.1.3. Important hyperspectral camera 
 

  Several hyperspectral imagers gained a large reputation in the field of hyperspectral imaging. 

The number of companies that manufacture hyperspectral cameras is increasing as the use of 

this technology is expanding to new domains. Now this technique is used in different unrelated 

domains like chemistry, mapping, military, food quality monitoring, agriculture and other. 

Therefore, the number of buyers is increasing and the number of the manufacturers so. Some 

of the main hyperspectral cameras are: 

  AVIRIS: Airborne Visible Infrared Imaging Spectrometer is operated by Jet Propulsion 

Lab (JPL) of NASA. This sensor acquires hyperspectral images in 224 bands between 0.4 

and 2.5 µm. the spectral resolution is about 10nm. It is a pushbroom sensor that have field 

of View FOV=30° distributed on 614 pixels. The instantaneous field of view IFOV equal 

to 1mrad and could be calibrated to 0.1mrad. 

 HyMap sensor: it works from visible to thermal infrared range. The spectral resolution is 

about 10-20nm in the VNIR and SWIR regions and about 100-200nm in TIR. The FOV 

vary between 30 and 65° distributed on 512 sample with IFOV between 1 and 3 mrad. This 

sensor is fabricated by Integrated Spectronics and mainly used for earth observation. 

 COMPASS: this sensor is developed by the Night Vision and Electronic Sensors 

Directorate (NVESD) of the US army. It works between 400 and 2350nm in 256 samples. 

 HYDICE: Hyperspectral Digital Imagery Collection Experiment. It acquires hyperspectral 

images in 210 bands between 400 and 2500 nm. It is manufactured by the NAVAL 

Research Lab. 

 CASI: Compact Airborne Spectrographic Imager. It is one of series of sensors 

manufactured by ITRES research limited in collaboration with Defence Research and 

Development Canada (DRDC). It detects image slices between 400 and 1000nm with 10 

nm spectral resolution. Other imagers also manufactured by the same company cover other 

ranges like SASI (1000 to 2500nm) and microTABI (3700 to 4800nm). 

 NVIS: Night Vision Imaging Spectrometer is a pushbroom imager that uses two co-aligned 

imaging spectrometers covering together the range between 400 and 2350 nm with 384 

spectral bands. The cross-track FOV is 13° composed of 256 pixels with IFOV about 0.9 

mrad. 

 EPS-H: It is a sensor manufactured by GER Corporation. It is composed of several imagers 

that covers the range between visible 430nm to thermal infrared 12500nm. The spectral 

resolution changes in each range. 
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3.2. Previous projects on landmine detection using HI  
 

This research was published in the journal paper ISPRS journal of photogrammetry and 

remote sensing [17]. 

Our goal in this section is to describe past projects that used infrared hyperspectral imaging for 

landmine detection and that have been presented in conferences proceedings and journal 

articles. Note that additional military research may exist in this field. Such projects, however, 

are not described herein due to lack of information.  

3.2.1. Defence Research and Development Canada projects  
 

  One of the earlier projects doing research on landmine detection using infrared wavelengths 

took place at Defence Research & Development Canada (DRDC). DRDC started their research, 

in support of the Canadian army on landmine and unexploded ordnance detection in 1978 and, 

in collaboration with Itres Research, on hyperspectral imaging for landmine detection in 1989. 

Detection of sparse targets using optical imaging was previously studied. Algorithms 

developed during this project could be applied to preprocessed images of hyperspectral 

imagers. An early project proposed a hierarchical image-processing algorithm to detect 

sparsely distributed bright region of several pixels wide in a monochromatic image [18]. A 

preprocessing operation is performed in order to remove distortions, dropouts, overlapping 

areas, misregistration, and any other artifacts and imperfections. Non suspected areas are 

discarded to reduce the data size. Then, suspected regions are segmented into homogeneous 

sub-regions and the morphological features of the sub-regions are extracted. Based on the 

extracted features, sub regions are classified. Finally, the spatial relationships between mine-

like objects are determined. A supervised method analyzes these relationships and classifies 

the areas as a minefield providing a specific likelihood ratio. This hierarchical method can 

potentially achieve real-time detection of surface-laid mines. With the aim of improving the 

detection system, scientific research was focused on two topics: the first one dealt with the 

enhancement of the detection algorithms in order to achieve real-time detection, while the 

second one was related to the improvement of proper imaging technologies in order to obtain 

a higher image quality. 

After the development of Visible and Near Infrared (VNIR) hyperspectral imagers (400-1000 

nm), several experiments showed their compatibility with the detection of surface-laid and 

buried landmines. While testing the possibility to detect surface-laid mines, it was found that 

their spectral reflectance has similar behavior under different illumination conditions with 

different scaling factors and offsets. More precisely, a linear correlation exists between the 

mine spectra under different incident illuminations if the spectral vector is confined between 

500nm and 680nm [21]. For classification purposes, the authors tested two methods: Linear 

Cross Correlation (LCC) and linear spectral unmixing. LCC is better in the case of high spatial 

resolution images. The linear unmixing method has a higher Probability of detection in the case 

of subpixel sized mines; but has also a higher false alarm rate. 

Other tests led to study the possibility of detecting buried landmines using a VNIR imager. It 

was noticed that buried mines could not be detected by calculating the shift of the red edge of 

vegetative spectra. However, by using linear correlation, some mines with low vegetative cover 
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were detected [18]. It was also noticed that Anti-Tank surrogates were more detectable than 

Antipersonnel surrogates, presumably due to the increased area of disturbance required to bury 

the former [20]. The probability of detection (PD), intended as the number of mines detected 

over all existing mines in the image, obtained during the experiment varies between 33% and 

100% and the False Alarm Rate (FAR), measured as the number of falsely detected mines per 

unit area, varies between 0.1 and 0.52/m2. According to the authors of [20], improving the 

classification algorithms and optimizing the spectral vectors, involving a systematic pattern 

classification study and emphasizing discriminant analysis and feature analysis, are possible 

steps to achieve better PD and lower FAR. 

The spatial resolution of the image affects the performance of the detection algorithm [22]. As 

the pixel size gets closer to the size of the mine, the possibility to isolate landmines increases. 

This has been proven by the research team of DRDC in [23]. The authors acquired two types 

of images using a VNIR imager: Medium resolution images at the altitude of 300m and high-

resolution images at the altitude of 6m in a different place. In the medium resolution 

experiment, they obtained a 100% PD and 0.00034/m2 FAR. In the high-resolution experiment, 

all mines were detected with a false alarm rate of 0.0043/m2. Linear Cross Correlation (LCC) 

and Orthogonal subspace projection (OSP) were used in classification. The best detection is 

achieved when taking the result of the combination of the two techniques. 

In order to have quasi real-time detection of surface-laid mines using a VNIR imager, the 

authors in [24] proposed a system consisting of two modes: in the first mode, the system learns 

the target spectra. In the second mode, the system looks for the targets by acquiring spectral 

data for each pixel and then applying comparative algorithms to the candidate pixels, using the 

stored reference spectra. The processing platform involves a system that generates the results 

of data acquisition and target analysis to an operator by displaying probability information 

alongside the base imagery. The entire process (data acquisition - radiometric correction - data 

fusion from different systems) finishes within few time frames of acquisition (a time frame is 

approximately 15-35 ms). The radiometric and target identification processes can be applied 

independently to each frame, so the processing of a frame will not affect the results related to 

the processing of other frames [24]. 

In [25], which is a continuation of the research in [24], we find the first experiment that aims 

at detecting landmines from an airborne hyperspectral imaging system in real time. The above 

paper describes how software and hardware improvements can achieve real time detection from 

an airborne platform. First, radiometric correction is applied on raw data, then custom 

classification algorithms are applied to the corrected data. A spectral signature library provides 

reference spectral vectors. The classification results are stored and displayed in real time. The 

first real time landmine detection system was mounted on a slow vehicle (1-2 km/h) [24].  A 

display system shows selected bands including corrected spectral bands, partial data results or 

final target bands. The second real-time detection system was an improvement of the first 

system to be compatible with airborne imaging data rates. A hardware/software system was 

implemented measuring the change in slit contamination (filings, dust, paint flecks) relative to 

the slit performance during calibration and modifying the correction matrix accordingly during 

radiometric conversion. Detection rates were not the prime concern of the test. The authors 

wanted to test the ability to detect landmines from an airborne platform in real time. There are 

no indications regarding the algorithms used for data correction, band selection, and 

classification. 
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Short wave infrared (SWIR) bands (1000-2500nm) have also been considered to detect 

landmines. As the spectrum is wider with the inclusion of SWIR bands, the possibility to 

distinguish landmines is higher. A simple classification boundary should be able to distinguish 

surface-laid mines from many human-made artifacts and natural materials. However, old 

buried landmines are hard to be detected using SWIR [26]. 

A project studying Long Wavelength Infrared (LWIR) hyperspectral imaging of landmines led 

to the development of a commercially available LWIR hyperspectral imager suitable for 

airborne landmine detection [27]. The instrument was used to collect imagery of surface and 

buried mines and improvised explosive devices over full diurnal cycles in arid, desert-like 

conditions and was found to provide some advantages over broad-band imaging in the detection 

of buried threat objects [28]. 

The team of DRDC started in 1997 a project testing the combination of various detection 

technologies called Improved Landmine Detector Project ILDP. Since a single detection 

technique will not be able to detect all types of landmines in all conditions, the fusion of various 

techniques can be more effective [29], [30]. The authors tested a small teleoperated vehicle 

carrying four types of detectors: Forward Looking Infrared imager, down looking 

electromagnetic induction detector, down-looking Ground Penetrating Radar (GPR) and finally 

a thermal neutron activation detector used as confirmatory detector of suspected targets. In 

order to apply sensor data fusion, several methodologies were used, including spatial 

correspondence and custom designed navigation. The above system was intended for anti-

vehicle landmines, but not for anti-personnel mines. In order to address the latter, a smaller 

system with different sensors was proposed. Therefore, using a high mobility robotic platform, 

the authors proposed a system that contains five separate technologies: 2 hyperspectral cameras 

(thermal infrared (TIR) and VNIR), a scanning sensor imaging system which is mounted on a 

custom built articulated robotic scanner, and a nuclear confirmation sensor [31]. The role of 

each technique is as follows:  

 Forward looking SWIR or TIR cameras should detect thermal contrast between a 

landmine and its surroundings. 

 VNIR camera should detect spectral reflectance differences between disturbed and 

undisturbed soil and the presence of a trip wire.  

 Articulated Robotic Scanner affords the mechanical precision to provide images from 

scans of a lightweight non imaging sensor. 

 Nuclear imaging is used for confirmation. 

 High mobility platform helps in moving the sensor payload. 

In order to handle the enormous volume of data generated by hyperspectral imaging, the 

authors proposed to use real-time techniques and algorithms described in [24],[25] to compress 

the hyperspectral images into single band images,  which could  then be processed by the 

minefield  detection algorithms described in [18]. The results of these projects were 

encouraging and show that a teleoperated replacement of a human operator may be possible in 

the future. 

A discussion of the results obtained after landmine detection tests using VNIR, SWIR, and TIR 

imagers by DRDC and Itres was presented in [32]. Reliable surface-laid mine detection in 

various weather conditions was achieved using VNIR and SWIR spectra, even if not in real 

time. Reliable buried landmine detection was not achieved. There is no huge difference in the 
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VNIR range between the signatures of buried landmines and background materials, however 

they could be indirectly detected by observing differences in reflectance between compact soil 

over mines and background. 

DRDC and Itres presented a review of the research on infrared and hyperspectral technologies 

for landmine detection in [33]. Besides providing the theoretical background for the detection 

of surface-laid and buried mines and the results of their experiments, the authors also described 

examples of Hyperspectral Imagery (HSI) images of trace amounts trinitrotoluene (TNT) and 

Cyclotrimethylenetrinitramine (RDX) distributed on the ground surface. The mechanism of the 

distribution of the trace explosives by ants is further discussed in [34], [35]. 

The Canadian research and development conducted a project between 2004 and 2008 called 

Shield ARP 12rl in order to develop and exploit optical imaging sensors for mine detection. 

Airborne tests of real time hyperspectral imaging and a SWIR HSI imaging phenomenology 

study were completed in October 2006. Tests on vehicle mounted optical tripwire imager and 

development of Thermal infrared hyperspectral imager were completed on March 2008 [36]. 

After the realization of simultaneous imaging in VNIR and SWIR bands, the ability of 

classifiers to separate camouflage coatings from background improves when the VNIR and 

SWIR spectra are combined. Simultaneous collection of SWIR and TIR images from an 

airborne platform in an environment with minimal infrastructure has also been done. In vehicle-

mounted trip wire detector tests, the SWIR provided better wire/background contrast than the 

VNIR band. The above report describes the tests and the results obtained during the project 

without mentioning the algorithms used or the way the real time airborne detection is 

performed. 

DRDC and Itres proposed in [37] a new design of hyperspectral camera with a range-gated 

intensifier and combined the camera with selected pulsed lasers. The authors showed that it is 

possible to relate the reflected signal to specific light matter interactions, like induced 

fluorescence. This approach is independent of the ambient light conditions and can be 

customized to specific wavelengths. In addition, it could help in surveying a specific area in 

order to increase the SNR. The preliminary results indicate that the false alarm rate associated 

with this scenario might be too high for ground area scanning speeds of practical interest. 

DRDC also began a project in 2005 to demonstrate the military utility of space-based reflective 

hyperspectral imagery (0.4-2.5 microns), especially in the domain of target detection and 

identification for land and marine mapping applications. The results achieved are encouraging 

and show that target abundance can be retrieved with high accuracy at the subpixel level using 

the Constrained Energy Minimization (CEM) algorithm. The fact that the estimated 

abundances are generally lower than the true abundances is consistent with an error introduced 

during the manual delineation of targets area, by assigning to targets larger areas than their true 

area [38]. 

3.2.2. Equinox Corporation fusion test  
 

The fusion of visible and SWIR bands could give better detection results. A basic fusion of two 

spectrum bands produces acceptable segmentation of objects against background, irrespective 

of illumination conditions.  In other words, selecting a set of two or three spectral image bands 

has been found to be just as effective in differentiating man-made objects from background as 
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using all spectral bands at once [39]. Such fusion has the potential to detect mine-like objects 

in an image using an integrated camera with visible and SWIR sensors and more sophisticated 

and specialized detection algorithms.  

 

3.2.3. Hyperspectral Mine Detection program HMD 
 

  In [40], a Defense Advanced Research Project Agency (DARPA) sponsored experiment 

testing the potential to detect buried landmines using hyperspectral Mid-wave Infrared 

(MWIR) (3 to 5 µm) and Long-wave Infrared (LWIR) (8 - 12 µm) bands is described. The 

project emphasizes the detection of surface disturbances due to landmine burying. Previous 

experiments showed the capability of VNIR and SWIR imagers to detect surface 

disturbances [19], [20],[26]. However, the problem was the high false alarm rate induced by 

surrounding vegetation and rocks. According to the authors, the main rationale behind the 

detection of buried landmines using the spectral properties is that the surface proprieties are in 

some way different from the properties of subsurface soil. The soil exposure at the surface 

changes some of its physical and chemical properties. These experiments showed that spectral 

information are necessary for landmine detection. 

In addition, the researchers of the Hyperspectral mine detection program HMD tried to detect 

buried landmines by evaluating the contrast in thermal reflectivity between the mine and the 

soil in just two bands of the thermal IR region [41]. They noticed that recently buried landmines 

could be seen in thermal infrared imaging as bright spots because the disturbed soil has an 

apparent temperature different from that of the surrounding undisturbed soil. In addition, they 

claimed that even mines buried for a very long time could be detected in some types of soil as 

the subsurface mine will have different thermal properties. 

3.2.4. Hyperspectral Mine Detection Phenomenology program 
 

The American army also started the project “Hyperspectral mine detection phenomenology 

program” (HMDP). Their main objective was to determine the existence of spectral 

characteristics that are useful for landmine detection [42]. Therefore, they collected high 

quality hyperspectral signatures of background materials and mines, measured temporal effects 

on buried landmines and measured a statistically significant set of hyperspectral signatures of 

surface and buried mines in natural soils, under variations of controlled variables. The spectral 

analysis results obtained during the HMDP project recordings are presented in [43]. The 

authors concluded that uncontrolled variables, mainly wind and rainfall, usually affect the 

results. The mines affected by more rainfall continue to produce a signature distribution that is 

different from the background. Also, it is remarkable that the temporal evolution of vegetation 

around landmines is too complex and makes the characterization of temporal signature 

evolution extremely difficult. The following general observations were made: 1) A light shower 

won't significantly reduce the signature; 2) The signature is reduced by one-half inch of rain, 

3) One-inch of rain further reduces the signature, but does not eliminate it, and 4) For some 

conditions, several inches of rain may not eliminate the signature. Overall, the VNIR and LWIR 

spectral regions show the most consistent and highest performance. SWIR and LWIR show 
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good performance for some conditions. MWIR showed the least consistent and lowest 

performance. 

3.2.5. Joint Multispectral Sensor Program (JMSP) 
 

  The goal of the research presented in [44] is to test the design of multispectral and 

hyperspectral imagers that are able to obtain better detection performance by respecting the 

requirements and conditions of target detection. For target detection, it is necessary to detect 

targets both in daylight and nighttime conditions. Panchromatic or multispectral images in 

VNIR and SWIR ranges give this capability during daylight. However, for military use, the 

MWIR and LWIR ranges are necessary for nighttime operation. Due to high correlation of 

spectral bands of background materials in all background conditions, the possibility to detect 

targets is high using MWIR and LWIR ranges.  After testing dual bands in MWIR and LWIR 

ranges, the authors concluded that thermal multispectral images would give a better target 

detection and false alarm rate than a single band infrared sensor.  Tests showed that 

appropriately chosen small bands could provide good detection, the optimal bands range being 

between 8 and 10.5 micrometers. There is a significant increased utility of using LWIR with 

MWIR compared to the use of MWIR alone. Thanks to the obtained results, the authors 

manufactured a new hyperspectral imager called SEBASS that works in the ranges 2.9 to 5.2 

micron and 7.8 to 13.4 micron. The Aerospace Corporation is still using this sensor to take 

remote hyperspectral images in MWIR and LWIR ranges.  

3.2.6. Night Vision and Electronics Systems Directorate (NVESD) 
 

  Night Vision and Electronics Systems Directorate (NVESD) has conducted during the fall of 

2002 and spring of 2003 a wide variety of tests to examine airborne sensors for landmine 

detection [45]. The examined hyperspectral sensors were the Airborne Hyperspectral Imager 

(AHI) of the University of Hawaii, which is a Long-wave Infrared (LWIR) imager, and the 

Compact airborne hyperspectral sensor (COMPASS) which is an NVESD VNIR/SWIR sensor. 

In addition, a high frequency Synthetic Aperture Radar (SAR) and GPR have been used. The 

authors tested two methods for classification: Signature based and anomaly detection. Further, 

for anomaly detection two approaches were considered: Local like Reed-Xioli method and 

Global like NFINDR. The latter is an unmixing model method and alone is not sufficient for 

classification since it produces only abundance fractions as output. For that purpose, the authors 

proposed to use it with a Stochastic Target Detector (STD). The output of STD is a detection 

stochastic map that can be thresholded. The tests showed the capability of LWIR and reflection 

bands to detect landmines with the use of proper algorithms. The detection of landmines at 

subpixel level is challenging, but indeed possible with the use of high quality hyperspectral 

instruments and algorithms. 

Using the LWIR hyperspectral images acquired by AHI, another test has been conducted by 

researchers at the Georgia Institute of Technology to detect a grid pattern of landmines and to 

use this information to improve the detection performance. First, an anomaly detector is applied 

to the hyperspectral data; in this case, the authors used the Dual Window-based Eigen 

Separation Transform (DWEST). Then, pattern parameters are extracted and used to form a 

pattern projection image. Finally, a pattern-based false alarm reduction is performed [46]. 
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Using this process, higher probability of detection at lower false alarm rate is obtained. 

Therefore, the results prove that the inclusion of spatial pattern information in anomaly 

detection improves the detection of landmines in minefields [46]. 

3.2.7. Defense Science and Technology Laboratory DSTL 

countermine project 
 

  A project similar to those of DRDC and DARPA was started in Britain with the goal to detect 

landmines using a VNIR imager [47]. The program was called DSTL countermine project. 

Using the VNIR hyperspectral camera SOC 700 mounted on a tripod, the team took high spatial 

resolution images of landmines. However, the data is mainly used to investigate different 

processing methods and not to evaluate the PD and the FAR of the sensor. For data processing, 

the authors used Principal Component Analysis (PCA) for dimensionality reduction and 

anomaly detection method for classification. The authors avoid the use of spectral comparisons 

between the target and each pixel of the image, as it will be very time consuming due to the 

low target/background ratio. The results were still preliminary, however the authors concluded 

that VNIR has the potential to distinguish surface-laid landmines from background. 

3.2.8. Indian Test to detect landmines using infrared images 
 

  In India, researchers proposed a hierarchical algorithm to detect landmines from infrared 

images that consist of preprocessing (contrast enhancement- filtering- smoothing), 

segmentation, feature extraction, and ANN based classification [48]. The authors tested the 

algorithm on surface-laid mines in two types of soil: black cotton and sand. During the 

preprocessing, the image is converted to gray level. The two most important preprocessing 

stages are the contrast enhancement and noise removal. Segmentation is the process of 

grouping homogenous pixels sharing some common attributes such as color, intensity or 

texture in an image. The aim is to separate the image into regions of interest and background, 

in order to make further analysis easier. Clustering, edge detection, and threshold based region 

growing are the main three categories encompassing the various existing image segmentation 

techniques [48]. Therefore, feature extraction and further processes are applied on the clusters 

that are deemed mine like. A Neural Network (NN) based algorithm is used to classify the mine 

from the surrounding. During the tests, the authors used a small NN of 1 hidden layer and 4 

neurons. The results provided on a simple dataset are good, however the algorithm is not 

expected to work well on another field or type of soil as the data used during the phase of 

learning are not rich enough. 

3.2.9. NATO project 
 

  In the Netherlands, a project took place in cooperation with NATO to make a remote detector 

of landmines. The main objective was to obtain near real time minefield detection during a 

conflict using an Unmanned Aerial Vehicle (UAV) at a typical altitude of 100 m.  First, the 

authors presented the imaging technologies available at that time: Radar, Microwave 

radiometers, visible wavelengths, near, middle and far infrared. After that, the authors showed 

the principal signal processing techniques used for mine detection at that time. The main steps 

involved can be categorized as: 
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* image enhancement 

* edge detection 

* segmentation 

* feature extraction and classification 

* morphology 

At the end of the report, the authors gave the following main recommendations based on 

various experimental results [49] 

1. Conventional medium-resolution imaging radars are less suitable for remote mine 

detection. 

2.  Microwave radiometry detection principle is promising for remote mine detection.  

3. The characteristics of visible and near infrared imaging are often requested. This is 

because imaging systems in these bands are often low cost, compact, have a high spatial 

resolution and can be used in real time detection.  

4. The mid- or long-wave infrared wavelength band is a promising band for remote mine 

detection.  

5. As Meteorological conditions (such as rain showers) can make mine and minefield 

detection in mid- and longwave infrared wavelength bands difficult, it is better to 

combine several wavelength bands. 

6.  A study on the best processing techniques and a reliable and accurate interpretation of 

the images of a remote mine detection system has to run in parallel with the 

development of a mine (field) detection system. 

3.2.10.Humanitarian DEMining (HUDEM) and Belgian Mine Action 

Technology (BEMAT)  
 

  In Belgium, a research project focused on using the fusion of data from multiple sensors 

(Ground penetrating radar, metal detector and infrared sensor) [50]. In the above paper, the 

authors presented their views regarding multi-sensor data fusion potentials in improving the 

close-in detection of landmines and reduction of mined area. Modelling and fusion of the 

extracted features are based on belief function theory and possibility theory. After modelling, 

the fusion part is performed in two steps: the first step consists in analyzing all data measured 

by one sensor. The second step combines the results of the three sensors. The final part of the 

fusion approach is the decision. According to the authors, the final decision about the identity 

of the object should be left to a human observer with field experience. Therefore, the fusion 

output is an informative decision. The experience showed that the fusion gives better detection 

than any input sensor used alone.  

3.2.11.FOI Multiple-Optical Mine detection System (MOMS) project 
 

  FOI, A Swedish defense research agency, worked on a project for the Swedish armed forces 

called Multi-Optical Mine detection System (MOMS). The objective of the project was to 

provide knowledge and competence for fast detection of surface-laid mines using multiple 

optical sensors [50]. The authors conducted research to test the feasibility of detecting 
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landmines using optical sensors and the possibility to combine multiple sensors. According to 

the authors, hyperspectral imaging is an encouraging candidate for automatic detection and 

recognition of exposed and semi-hidden mines, when a priori knowledge of the target spectral 

signature is available. However, the detection performance is limited when the targets are 

camouflaged by natural vegetation or hidden under other objects. In addition, the authors claim 

that no single detection architecture is able to meet the performance needed under all operating 

conditions; the choice of the particular sensors and algorithms will depend on environmental 

and operations conditions [51]. 

3.2.12.TELOPS test to detect buried object using airborne thermal 

hyperspectral images 
 

  In 2015, a Canadian research company specialized in infrared and hyperspectral imaging 

named TELOPS proved the possibility to detect buried objects using an airborne LWIR 

hyperspectral imager [52]. From an aircraft platform, they acquired thermal hyperspectral 

images of areas that contain man-made objects previously buried. They found that the disturbed 

soil right above a buried target is warmer than the undisturbed soil area next to it [52]. By 

comparing the emissivity data obtained through the Temperature-Emissivity separation, the 

buried target sites show up as part of the hottest ground area within the scene but further 

classification or additional information are needed to discriminate the buried objects from other 

naturally hot areas. 

A summary of the above projects and of the results obtained is given in Table 2.  

Table 2: Summary of projects studied landmine detection using infrared and hyperspectral 
imaging. 

Research Project Type of data Techniques Used Comments 

Detection of 

surface-laid 

minefields using 

a hierarchical 

image processing 

algorithm 

(DRDC) 

Infrared 

monochrom

atic Image 

Hierarchical image 

processing 

Method would be useful as follow-on 

stage to process airborne hyperspectral 

imagery after preprocessing in order to 

reduce the hyperspectral image to a 

single band. 

Surface laid 

Landmine 

detection using 

VNIR (DRDC) 

VNIR  LCC & Linear 

Unmixing 

Surface-laid mines have consistent shape 

in VNIR bands; LCC performs well in 

case of high spatial resolution images; 

Unmixing techniques have higher PD in 

the case of subpixel target at the price of 

higher FAR 

Buried 

Landmines 

detection using 

VNIR (DRDC) 

VNIR  LCC  Using VNIR, buried mines are not 

directly detected, however the change of 

soil characteristics and vegetative stress 

due to mine burying is detectable. 
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Effect of Spatial 

resolution on 

mines detection 

(DRDC) 

VNIR  LCC & OSP LCC performs better when the pixel size 

is smaller than mine size. OSP is better 

when mine size is smaller than pixel size. 

Best detection is achieved when the result 

of two methods are combined. 

Surface-laid 

Landmine 

detection using 

VNIR in real 

time (DRDC) 

VNIR  Pipeline image 

processing 

the proposed suite of algorithms proves 

the possibility to detect landmines in 

quasi real time using an airborne platform 

Landmines 

detection using 

SWIR bands 

(DRDC) 

SWIR LCC Similarly to VNIR bands, the use of 

SWIR is beneficial to detect surface-laid 

mines and recently buried landmines. 

Landmines 

detection using 

LWIR bands 

(DRDC) 

LWIR (TIR) Spectral 

comparison 

LWIR hyperspectral imaging provides 

advantages over broadband LWIR 

Multiple sensors 

mounted on a 

robot (DRDC) 

Fusion of 

VNIR, 

SWIR, 

LWIR HSI 

and other 

sensors 

Dynamic range 

detector and 

contrast 

enhancement 

A proposed system employing 

hyperspectral imagers for close-in anti-

personnel mine detection. 

Active 

hyperspectral 

imaging 

(DRDC/Itres) 

VNIR  Casi imager with 

intensifier 

With the addition of external 

illumination, the FAR increases as 

reflectivity of background increases.  

Equinox Project Fusion of 

visible and 

SWIR 

Thresholded Ratio 

vegetation index 

Here a ratio between two or three bands 

is used. More bands using other 

approaches may improve the results. 

DARPA project 

to detect buried 

landmines 

MWIR and 

LWIR  

spectral 

comparison 

LWIR and MWIR are more suitable to 

detect buried landmines. 

Hyperspectral 

mine detection 

phenomenology 

program 

VNIR,SWI

R,MWIR,L

WIR 

Data collection 

using 

spectrometers 

Weather conditions affect the intensity of 

the reflected spectra. The effect of rain is 

more important than other effects. 

Joint 

Multispectral 

Sensor Program  

VNIR,SWI

R,MWIR,L

WIR 

Fourier Transform Thermal sensor are beneficial for target 

detection at nighttime. LWIR bands are 

more effective than MWIR 

airborne sensors 

tests (NVESD) 

VNIR,SWI

R,MWIR,L

WIR 

RX and NFINDR 

with STD anomaly 

detection. Grid 

pattern detection of 

landmines 

LWIR gives a good detection with the use 

of proper algorithms. The inclusion of 

spatial pattern information in anomaly 

detection improves the detection 

performance. 

DSTL 

countermine 

project 

VNIR PCA more tests and other algorithms shall be 

tested to evaluate the effectiveness of 

VNIR bands in landmine detection 
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Indian Test to 

detect landmines 

using infrared 

image 

Infrared  

Image 

Hierarchical image 

processing 

More images are needed to train the 

Neural network based classifier. A more 

complex one may be used in complex 

situations. 

 NATO project VNIR,SWI

R,MWIR, 

LWIR 

Hierarchical image 

processing 

Radars are less suitable for airborne mine 

detection. Combination of bands is 

necessary to overcome the 

meteorological effects. Improvement of 

algorithms and techniques in parallel is 

necessary. 

Humanitarian 

demining 

(HUDEM & 

BEMAT) 

GPR, metal 

detector, 

infrared 

sensor 

belief and 

possibility theory 

Fusion of sensors may give better results 

than single sensor. 

FOI (MOMS) VNIR,SWI

R,MWIR, 

LWIR, 3D 

LADAR. 

Anomaly 

detection, Support 

Vector Machines 

Hyperspectral imaging is useful for 

automatic detection of open and semi-

hidden mines. 

The choice of sensor suite and algorithms 

depends on environmental and 

operational conditions. 

TELOPS LWIR Temperature-

Emissivity 

separation, Linear 

Unmixing to study 

the mineral 

distribution 

Soil above landmines is warmer than 

surrounding undisturbed soil. 

Complementary information are needed 

to reduce the FAR. 

 

3.3. Hyperspectral Image Processing 
 

  In this section, we will introduce the detection algorithms used for target detection in 

hyperspectral imagery. In addition, we will introduce several preprocessing steps and 

hyperspectral data treatment usually used in a preliminary phase to simplify further detection 

or classification. Most of these methods were developed during research on general problems 

regarding the processing of hyperspectral images and are not specific for the landmine 

detection problem. However, advances in that research will directly affect the success of 

landmine detection using hyperspectral imaging. A review of different processing techniques 

used for data fusion, spectral unmixing, classification and target detection could be found 

in [53]. 

After the acquisition of a hyperspectral image, the data pass through several steps. First, the 

image is preprocessed to remove impurities, noise, and to reduce the size of the image. The 

main pre-processing steps are contrast enhancement, filtering and smoothing. Then, 

segmentation is done to separate useful data from background. After that, feature extraction is 

applied to extract the most appropriate features for classification. Finally, classification or 

clustering methods are applied to locate a target. In the following, we present the main 

algorithms used for target detection using hyperspectral images. Many other methods may be 

used in each phase. However, in this chapter we detail the most commonly used ones. 
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3.3.1.  Contrast enhancement 
 

  The image enhancement process consists of a collection of techniques that try to improve the 

visual appearance of an image or to convert the image into a better form suited for analysis by 

a human or a machine [54]. Image enhancement methods are divided into two main categories: 

spatial domain methods and frequency domain methods. Spatial domain methods are applied 

directly on the pixels of the image. In frequency domain methods, the image is processed in 

the frequency domain after applying the Fourier transform on the original data. Contrast 

enhancement is one of the most commonly used image enhancement methods. For the mine 

detection case, the role of contrast enhancement is to enhance the difference between the 

landmine and the background materials [55]. The main contrast enhancement methods used 

are: 

 

 

3.3.1.1. Histogram equalization  

 

  Histogram Equalization (HE) is the most widely used contrast enhancement technique due to 

its simplicity and effectiveness. The aim of HE is to make the probability distribution of gray 

levels approximately uniform in the output image. It is a global method that flattens the 

histogram and stretches the dynamic range using the cumulative density function of the 

image [55]. 

The probability of the kth gray level in an image f can be described as  𝑝𝑓(𝑓𝑘) =  
𝑛𝑘

𝑛
 

where k ∈ [0, L-1], L is the number of gray levels in an image, nk is the number of times the 

kth level appears in the image, and n is the total number of pixels in the image. The histogram 

is the plot of 𝑝𝑓(𝑓𝑘) versus k, and the goal of the histogram equalization is to obtain an image 

with a uniform histogram. The uniform histogram can be achieved by  

𝑔𝑘 = 𝑇(𝑓𝑘) = ∑
𝑛𝑗

𝑛

𝑘

𝑗=0

= ∑𝑝𝑓 (𝑓
𝑗
)

𝑘

𝑗=0

 

Keeping two conditions, 

(a) T(fk) is single valued and monotonically increasing in the range k ∈ [0, L-

1]. 

(b) T(fk) should be T(fk)∈ [0,L-1] for k ∈ [0,L-1]. 

The drawback of HE is that the brightness of the image is changed. To overcome this drawback 

and improve the performance, many derivations of this method were proposed. Among them, 

we list the following: 

Brightness Bi-Histogram Equalization (BBHE) [56], Dualistic Sub Image Histogram 

Equalization (DSIHE) [57], Minimum Mean Brightness Error Bi-Histogram Equalization 

(MMBEBHE)[58], Recursive Mean Separate Histogram Equalization (RMSHE) [59], Multi 
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Histogram Equalization (MHE)[60], Brightness Preserving Dynamic Histogram Equalization 

(BPDHE) [61], Recursive Separated and Weighted Histogram Equalization (RSWHE) [62], 

Global Transformation Histogram Equalization (GHE) [63] and Local Transformation 

Histogram Equalization (LHE)[63]. 

3.3.1.2. Morphological Contrast Enhancement 

 

  Morphological theory has been introduced in image processing to overcome a number of 

problems like image distortion due to noise. The first step in morphological contrast 

enhancement is to find peaks and valleys in the original image. Peaks are light shades of gray 

tone image, while valleys are dark ones. Peaks are obtained by subtracting the opening from 

the original image, and valleys are obtained by subtracting the original image from the closing 

as 

 p(f) = f −γ ( f ),  

v(f) = ϕ( f )− f , 

 

where p(f) denotes the peaks, v (f) denotes the valleys, γ(f) denotes the opening, and ϕ(f) 

denotes the closing of an image function f. Basic definitions of morphological methods and 

operators (erosion, dilation, opening and closing) could be found in [59]. To improve the 

contrast, the peaks and valleys are multiplied by constants as follows: 

p′( f ) = p(f)× c1 , v ′( f ) = v (f)× c2 where: 𝑐1 = |
max(𝑓)−max (𝐼)

max [𝑝(𝑓)]
| and 𝑐2 = |

min(𝑓)−min(𝐼)

max [𝑣(𝑓)]
| 

where I indicates the gray level. In the case of 8 bit gray levels, max(I)=255 and min (I)=0. 

The contrast-enhanced image is obtained as the summation of the original image, the peaks, 

and the negative valleys f ′ = f + p′( f )− v ′( f ) [55]. 

3.3.2. Filtering 
 

Filtering is an operation that allows to reduce the noise or to sharpen blurred areas in an image 

in order to make it clearer and more suitable for further processes. In the filtering of 

hyperspectral images, several techniques usually used in image processing have been upgraded 

to obtain multichannel restoration. For example, the well-known Wiener filter used in image 

processing has been extended to be used in hyperspectral images. There are two groups of 

filters: One is based on the assumption that the within-channel information is separable from 

between-channel information, i.e., spectral and spatial information are separable. These filters 

are called Hybrid filters. In this case, the first step is to decorrelate channels using Fourier 

Transform or PCA and then apply a classic 2D restoration method such as Wiener filter or 

Static Wavelet Transform. The other group consists of a few proposed filters that do not rely 

on the assumption of spectral and spatial separability [64]. 
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3.3.2.1. Wiener filter  

 

  The Wiener filter is a widely used filter based on minimum mean square estimation. The 

original image is obtained from the received image by minimizing the mean square error. It 

assumes that the acquired image is composed of the original image and a white noise 

component that has a zero-mean Gaussian distribution [65]. 

   g (t)= f(t) + n(t)   Where f(t) is the original image, g(t) the acquired image and n(t) the noise. 

The estimation of f(t) is 𝑓(𝑡) =  ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 . It is estimated using L samples taken 

from the received signal. h(k) is a variable independent of time to be found. It is calculated by 

minimizing the approximation error  

 𝐽 = 𝐸(𝑒2(𝑡)) = 𝐸 [(𝑓(𝑡) − 𝑓(𝑡))  2] = 𝐸[{𝑓(𝑡) − ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 }

2
] 

The minimum is achieved by 
𝜕𝐽

𝜕ℎ(𝑖)
= 𝐸 [2{𝑓(𝑡) − ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1

𝑘=0 }
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
] = 0   

and  
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
= −𝑔(𝑡 − 𝑖) 

We can reformulate it in a matrix form: 

H=[h0,h1, h2,…..,hL-1]
T and G(k)=[g(k) g(k-1) … g(k-L+1)]T 

Thus  
𝜕𝐽(𝐻)

𝜕𝐻
= 2 RH-2P   => H*=R-1P. This is called Wiener-Hopf equation.  

Note that R is the autocorrelation of G. It is a symmetric Toeplitz matrix and therefore it is 

positive definite and non singular so R-1 has a solution. P is the cross-correlation between H 

and the input image. 

3.3.2.2. Adaptive 3D Wiener filter 

 

  As most of the filters used while preprocessing hyperspectral images are based on the 

assumption of spectral and spatial separability, Gaucel et al [64]proposed a new filter for 

hyperspectral images    relying on spectral and spatial information simultaneously.   

  First the authors assume that the channel vector v(n1,n2) represents the zero-mean white 

Gaussian noise, uncorrelated with the original image f(n1,n2). The received image is 

g(n1,n2)=f(n1,n2)+v(n1,n2). Then, they apply the filter in local regions in which the signal-pixel 

vector f(n1,n2) is assumed homogeneous. So f could be modelled as f(n1,n2)= mf +w(n1,n2),  

where mf is the local mean of f(n1,n2) and w(n1,n2) a zero mean white noise. 

The linear solution of Wiener filter is  𝑓 = 𝑚𝑓 + Γ𝑓𝑔Γ𝑔𝑔
−1(𝑔 − 𝑚𝑔) where Γ𝑓𝑔 is the covariance 

of f and g, and Γ𝑔𝑔 is the variance-covariance matrix of g. From the received image we could 

estimate Γ𝑔𝑔. But as the noise and the signal are uncorrelated, Γ𝑔𝑔 = Γ𝑓𝑓 + Γ𝑣𝑣 and Γ𝑓𝑔 = Γ𝑓𝑓 

Since the noise is zero-mean, mf=mg and the equation becomes  

 𝑓 = 𝑚𝑔 + 𝐻(𝑔 − 𝑚𝑔) and 𝐻 = (Γ
𝑔𝑔

− Γ𝑣𝑣) Γ𝑔𝑔
−1 
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Using the local region model, Γ𝑔𝑔 is estimated and mg is updated at each pixel. 

 

3.3.2.3. Multiway filtering 

 

Multiway filtering is another reformulation of the Wiener filter based on modelling the 

hyperspectral image by a third order Tensor.  

The collected hyperspectral image R is modeled as the sum of the desired original image X and 

the additive white and Gaussian noise N  

𝑅 = 𝑋 + 𝑁 

The goal is to estimate the original image by applying multidimensional filtering on the 

received data  

�̂� = 𝑅1𝐻12𝐻23𝐻3 

Where n represents the n-mode product. The n-mode product between a data tensor R and 

matrix Hn represents the consecutive matrix product between matrix Hn and the In-dimensional 

vectors obtained from R by varying index in and keeping the other indexes fixed [66]. 

In order to determine the optimal n-mode filters H1, H2 and H3, the criterion used is the 

minimization of the mean squared error between the estimated signal �̂� and the original one 𝑋. 

e(H1,H2,H3)= E[||X − 𝑅1𝐻12𝐻23𝐻3||2] 

To estimate Hn, an Alternative Least Square algorithm is used, consisting of the following 

steps [66]: 

1. Initialization k = 0: R0 = R ⇔ H0
n = IIn for all n = 1 to N (=3 in this case). 

2. ALS loop: while ||X − Rk||2 > thr, with thr > 0 fixed a priori. 

(a) for n = 1 to N: 

i. Rk
n = R ×1 H1

k · · · ×n−1 Hn-1
k ×n+1 Hn+1

k . . . ×N HN
k. 

ii. Hn
k+1=argmin ||X−Rk

n×nQn||
2 subject to 𝑄𝑛 = H1

𝑇𝐻1⨂…H𝑛−1
𝑇 𝐻n−1⨂H𝑛+1

𝑇 𝐻𝑛+1⨂. . . H𝑁
𝑇𝐻N 

Qn∈ R In×In. 

 

(b) Rk+1 = R ×1 H1 
k+1 · · · ×N HN k+1, k ← k + 1. 

3. Output: �̂� = 𝑅1𝐻12𝐻23𝐻3 

  

Step (2)(a)(ii) of the ALS algorithm can be decomposed into the following sub-steps: 

1.n-mode unfold Rk
n into Rn

k =Rn(H1
k⊗…Hn

k−1⊗Hn
k+1...⊗HN

k),and R 

into Rn; 

2. Compute γRR
n = E(Rn

kRn
T), perform its eigenvector decomposition (EVD) and place the 

eigenvalues in λγ
k, for k = 1 to In; 
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3. Estimate Kn using Akaike Information Criterion or Minimum Description Length criterion. 

4. Estimate σ γ
 (n)2

  by computing 
1

𝐼𝑛−𝐾𝑛
∑ 𝜆𝑘

𝛾𝐼𝑛
𝑘=𝐾𝑛+1  and estimate βi by computing  λγ

i- σ γ
 (n)2 for 

i= 1 to Kn; 

5. compute ΓRR (n) = E(Rn 
kRn 

kT ), perform its EVD, keep in matrix Vs
n the Kn eigenvectors 

associated with the Kn largest eigenvalues of ΓRR (n), and keep the Rn largest eigenvalues λn
Γk 

for 

 k = 1 to Kn; 

6. Compute the (k + 1)th iteration of n-mode Wiener filter Hn 
k+1 using the expression of n-mode 

Wiener filter. 

This method has been tested in [66] on different images and proved its efficiency by increasing 

the SNR by about 3dB. However, one of the main drawbacks is an increased complexity and 

computational time.  

 

3.3.3. Segmentation 
 

  In the remote sensing community, segmentation is defined as the process of searching for 

homogenous regions in an image, that is later followed by the classification of these 

regions [67]. In image processing, there are many methods used for segmentation, however not 

all of them are applicable to multispectral and hyperspectral images.  Some methods like 

watershed algorithms have been upgraded in order to segment hyperspectral images. Globally, 

segmentation algorithms are divided into two categories: Boundary-based and Region-based. 

Boundary based methods detect the boundary using the discontinuity property. In region-based 

algorithm, pixels in a region are grouped using the similarity property. In the following, we 

present the main methods used in hyperspectral image segmentation. 

3.3.3.1. Watershed Algorithm 

 

  The watershed algorithm is a powerful tool usually used for mathematical morphology 

segmentation. In [68] the authors proposed to use spatial gradients and spectral markers for 

segmentation. The algorithm works as follows: 

First, to avoid obtaining a large number of minima while flooding the watershed using the 

gradient function (over-segmentation), they determine markers for each region of interest using 

Clara Clustering algorithm [69]. Then, the Factor Correspondence Analysis FCA [70] data 

reduction method is applied to remove the redundancy of channels and filter the image. Next, 

a chi-squared distance based gradient is performed on the filtered image, then watershed 

segmentation is computed. This approach works well and proves that an adapted data reduction 

is necessary for multivariate gradient segmentation. 

3.3.3.2. Hierarchical segmentation 

 

In 1989, Beaulieu and Goldberg [71] proposed a hierarchical process to segment images based 

on hierarchical step-wise optimization. Hierarchical segmentation is defined as a set of 
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segmentations of the same image at different levels of detail in which the segmentations at 

coarser levels can be produced from a simple merging of regions at finer levels [71]. First, each 

pixel is assigned to a region label. Then, spatially adjacent regions with small dissimilarity 

value are merged. The dissimilarity between new spatially adjacent regions are calculated and 

the pairs with smallest value are merged. The process is repeated until the number of regions 

needed is obtained or all values of dissimilarity are below a predefined threshold. The drawback 

of this method is the long computational time while dealing with large data.  

Tilton in 1998 [72] proposed a new hierarchical segmentation method called HSEG. The main 

improvement of this method is that non-adjacent regions could be merged together and the 

dissimilarity function is selectable. Another recursive version of this algorithm called RHEG 

was proposed in [73] to overcome the problem of long computational time of HSEG. These 

algorithms are registered patents for US government.  

3.3.4. Feature extraction 
 

Feature extraction consists in transforming the data from a high dimensional space to a lower 

dimensional space chosen in such a way as to conserve as much as possible the information of 

interest in the data. Feature extraction is used in hyperspectral image analysis to overcome the 

problem of a low number of data training samples in comparison to the high spectral resolution 

of the image and to reduce the computational time. There are many feature extraction 

algorithms that are introduced; some are linear while others are nonlinear. While working on 

landmine or target detection, not all feature extraction algorithms are useful, because the targets 

of interest are generally sparse and the feature extraction may remove the key features of the 

target. In the following, we are going to list some of these algorithms, their implementation 

and their advantages. 

3.3.4.1. Principal Component Transformation (PCT) 

 

Principal Component Transformation, also called principal component analysis, Hotelling 

transformation or Karhunen-Loeve transformation is a dimensionality reduction method based 

on the minimization of the representation error. The idea is to choose the most representing 

bands with the help of the eigenvalue decomposition of the covariance matrix of the 

hyperspectral image [74]. The first step of PCT is the calculation of the covariance matrix of 

the image matrix. Then, the eigenvalues of the covariance matrix are calculated and the 

eigenvectors are extracted. Finally, the image matrix is projected onto the new subspace formed 

by the k orthogonal eigenvectors corresponding to the highest eigenvalues.  Y=WT x where x is 

a d x1 -dimensional vector representing one image pixel,  y is the transformed k x1-

dimensional sample in the new subspace and W is the transformation matrix of k orthogonal 

eigenvectors. 

Note that while computing the PCT algorithm, the variance of the projections along the 

principal components is equal to the eigenvalues of the principal components. In theory, PCT 

transformation affects the classification of hyperspectral images. However, the overall effect 

on classification does not  change  the general  class  patterns  and,  therefore, the  dominating  

classification  result  remains correct. 
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3.3.4.2. Linear Discriminant Analysis (LDA)  

 

Linear discriminant analysis is a statistical based method often used for feature extraction and 

dimensionality reduction. It is also named Discriminant Analysis Feature Extraction (DAFE). 

It is an extension of the well-known Fisher discriminant analysis, which is limited to binary 

class decomposition. LDA computes an optimal transformation by minimizing the within-class 

distance and maximizing the between-class distance simultaneously, thus achieving maximum 

class discrimination [75]. Therefore, the first step is to calculate the within-class, between-class 

and total scatter matrices. A transformation matrix is then defined and computed by applying 

the eigenvector decomposition on the scatter matrix [76]. The main disadvantage of this 

method is that it requires that the scatter matrix of the data be nonsingular. This method has 

also other drawbacks: the maximum number of features extracted is equal to the number of 

classes minus one. The number of training samples should be large enough to estimate the 

between-class and within-class scatter matrix reliably. The between-class will be biased toward 

the class that has very different mean value. Also, it is very time consuming compared to other 

methods. In addition, it requires more training samples for hyperspectral images to calculate 

the class statistical parameters at full dimension [77]. Many LDA extensions have been 

proposed to deal with the singularity problem like PCA+LDA, regularized LDA (RLDA) , null 

space LDA (NLDA) , orthogonal centroid method (OCM) , uncorrelated LDA (ULDA) , 

orthogonal LDA (OLDA), LDA/GSVD, etc. [78].  

 

In addition to the main methods we described above for feature extraction of hyperspectral 

images, many other techniques exist like matched pursuit [77], dimensionality reduction with 

rare event preserving [79], hybrid methods [80] and nonparametric methods [81].   

 

3.3.5. Classification 
 

  It is the most important step in landmine and target detection. The performance of the 

algorithms used in each of the previous steps and in the classification phase are evaluated by 

the study of the classification results. The classification phase in an image based target 

detection process could be defined as the step in which the pixels are discerned between target 

and non-target. Globally, the classification algorithms are divided into two main classes: 

Supervised and unsupervised. Supervised classification methods are based on the knowledge 

of the target and the use of training samples. Unsupervised classification methods consist of 

grouping pixels that have similar properties without the knowledge of target properties.  

Considering the way the classifier computes the information in the pixels, classification 

algorithms are divided into per pixel classifiers, subpixel classifiers, per-field classifiers, 

knowledge based classifiers, contextual and multiple classifiers [82]. In landmine detection, 

unsupervised classification techniques are used when there is no information on the type of 

mine present in the field or when there is the possibility that a particular type of mine is 

deployed but its reflectance spectrum is not in the library of known spectra. However, 
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unsupervised classification methods do not work well in every possible condition and suffer 

from high false alarm rate due to the generally low number of target pixels compared to 

background pixels. While the use of unsupervised methods could help in detecting unknown 

types of landmines, the use of supervised classification methods is necessary for the 

identification of mines. In the following, we are going to mention the major classification 

methods used in landmine detection: 

 

3.3.5.1. Support vector machine (SVM) 

 

Support vector machine is a powerful non-parametrical supervised classification method. 

Firstly, it was proposed for binary classification and regression [83]. Then, it has been used in 

the classification of hyperspectral images [84]. SVM consists in finding the best separation 

between two classes based on the separation of representative training samples called support 

vectors. In addition, SVM does not suffer from Hughes effect and may perform separation of 

classes having very close means even with a very small number of training samples [85]. First, 

we start with a couple of training samples (xi,yi) where yi is a class label equal to ±1 which 

indicates the class of the pixel and xi is a d-dimensional vector which represents the spectrum 

of the pixel in d wavelengths in the case of hyperspectral images. If the classes are linearly 

separable by a hyperplane, the SVM classifier is represented by the function f(x)=w.x+b where 

w is a vector ∈ Rd and b is a real bias ∈ R that could separate the classes without errors. The 

decision is made according to the sign of f. The SVM approach consists in finding the 

separating hyperplane that has the largest distance from the closest training samples.  This 

distance is expressed as 1/||w||. The margin is defined as 2/||w||. So to calculate W and b, the 

following optimization must be calculated: min{1/2 ||w||2} with yi(w.x+b)≥1, for all samples. 

By introducing the Lagrangian formalism, the problem is transformed to the dual problem:  

Max of: ∑ 𝛼 𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖. 𝑥𝑗)

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1  with the condition ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1  𝑎𝑛𝑑 𝛼𝑖 ≥

0.  Where 𝛼𝑖 are Lagrange multiplier that can be estimated using quadratic programming. 

If the samples are not linearly separable, suitable kernel functions are used to project the data 

into a higher dimensional feature space in which the data could be linearly classified. Profiting 

from this transformation, the inner product in the maximization (𝑥𝑖 . 𝑥𝑗)is replaced with the 

function 𝑘(𝑥𝑖 . 𝑥𝑗).  

There are many types of kernel functions, including: polynomial: K(xi, xj) = (1 + xi.xj)q 

;Gaussian radial basis K(xi, xj) = exp(−||xi−xj||2/(2σ2)) ; Laplacian radial basis K(xi, xj) = 

exp(−||xi−xj||/(2σ2)) ; Sigmoidal K(xi, xj) = tanh(α0(xi.xj) + σ2). In the case of multiclass 

classification, two approaches could be used: One against all, where each class is discriminated 

using the samples of all classes. One against one, where a larger number of classifiers are 

computed using each time the training samples of two different classes. 
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3.3.5.2. K means clustering 

 

K means clustering is one of the most used clustering methods for hyperspectral images. In k 

means clustering, the pixels of the image are grouped into classes based on spectral similarity. 

First, k random centroids are assigned. Then each pixel is assigned to the closest centroid. The 

norm used to calculate the distance between the pixel and the centroid could be the Euclidian 

distance, Manhattan distance, max distance, or linear combination of the above distances. After 

that, new centroids are found by calculating the mean value of each cluster. Then, the clusters 

are reformulated. This process is repeated until the total number of iterations is achieved or the 

total distance between classes is minimized [86]. 

3.3.5.3. Orthogonal subspace projection (OSP) 

 

Orthogonal subspace projection is a supervised classification method used to detect targets in 

hyperspectral images at subpixel level. This method is based on the theory of spectral unmixing 

which consists in subdividing the reflectance spectra of each pixel into endmembers spectra. 

This method was proposed by Harsanyi and Chang in 1994 [87] in order to exploit a priori 

knowledge of the target and facilitate the target detection. Suppose the image pixel is modeled 

by the equation: x=ta +Bα+ξ where: 

x = spectral vector characterizing the pixel 

t = spectral vector associated with the target 

a = unknown fractional abundance of the target within the pixel 

B = matrix of vectors of the scene endmembers (materials found in the scene background) 

α = unknown fractional abundance of each basis vector 

ξ = residual error associated with this model. 

After the background suppression, OSP uses the matched filter to determine if the target 

spectrum is a part of the pixel spectra by calculating its abundance. This is done using the OSP 

operator δOSP(x)= tTPB
┴x   where PB

┴=I-BB# is the orthogonal background operator, and I is 

the identity matrix. The fractional abundance of the target within the pixel can be computed as 

follows: �̂�=Tosp(x)= (tTPB
┴t)-1 δOSP(x) [87]. 

 

3.3.5.4. Matched Filter (MF)  

 

This technique is based on the statistical approach. The problem is posed as a hypothesis testing 

problem between the two hypotheses: 

H0: Mine absent (Background material) 

H1: Mine present 

In the statistical model, the background and the target mine are usually considered to be 

following a Multivariate normal distribution (MVN) as follows [88]: 
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𝐻0: 𝑥~𝑁(𝜇𝑏 , 𝜎
2Σ𝒃) 

                          𝐻1: 𝑥~𝑁(𝑎𝑆𝑡, 𝜎
2Σ𝒕)      

Where 𝜇𝑏  is the background mean vector, 𝑆𝑡  is the target spectrum, Σ𝑏  and Σ𝑡 are the 

variance-covariance matrices of background and target respectively, a and 𝜎  are scaling 

factors. 

The detectors should satisfy the Generalized Likelihood Ratio Test (GLRT)  

                                    𝐿(𝑥) =
𝑓(𝑥 𝐻1)⁄

𝑓(𝑥 𝐻0)⁄
   

where 𝑓(𝑥 𝐻𝑖), 𝑖 = 0,1⁄  is the conditional probability density function (PDF) of the input x 

given hypothesis Hi. The unknown parameters of the PDFs are replaced with their maximum 

likelihood estimates.   

  In order to simplify the model, we consider that the target and the background have the same 

covariance matrix. In addition, we remove the mean of the background from all pixels and from 

the target. The new hypotheses are as follows [89]: 

𝐻0: 𝑥~𝑁(0, 𝜎2Σ𝒃) 

                              𝐻1: 𝑥~𝑁(𝑎𝑆, 𝜎2Σ𝒃)      

Where S=St-µb.  

The conditional density functions are:  

𝑓(𝑥 𝐻0) =⁄
1

(2𝜋)
𝑝
2|Σ𝑏|

1
2(𝜎2)

𝑝
2

exp (−
1

2𝜎2
𝑥𝑇𝛴𝑏

−1𝑥)    

                       𝑓(𝑥 𝐻1) =⁄
1

(2𝜋)
𝑝
2|Σ𝑏|

1
2(𝜎2)

𝑝
2

 exp (−
1

2𝜎2
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆))  

To simplify the calculation of the maximum likelihood ratio, a monotonic function (usually 

logarithmic) is applied without affecting the performance of the matched filter [90]. The 

derivative of the logarithmic of the likelihood ratio is equal to 

𝐿′(𝑥) = −
1

2𝜎2
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) +
1

2𝜎2 𝑥𝑇Σ𝑏
−1𝑥   

expanding L’(x) we will arrive to the MF detector 

𝑦
𝑀𝐹=

𝑆𝑇Σ𝑏
−1𝑥

√𝑆𝑇Σ𝑏
−1𝑆

   
 

In the literature, we may find the MF defined as a finite impulse response (FIR) filter y=hTx 

where  

h𝑇 =
𝑆𝑇Σ𝑏

−1

√𝑆𝑇Σ𝑏
−1𝑆
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3.3.5.5. Constrained energy minimization (CEM) 

 

  This algorithm is derived from a different point of view than the MF but in the end, it provides 

a very similar solution. The main difference is that CEM uses the correlation matrix instead of 

the covariance matrix. Therefore, there is no need in CEM to subtract the mean of image scene 

from all pixels. 

 The objective of CEM is to design a FIR linear filter W=(w1,w2…,wL)T  that maximizes the 

response for a given target d while minimizing the output power [91].  

𝑑𝑇𝑤 = 1                           

The output of the filter is given by: 

𝑦 = 𝑤𝑇𝑥 = ∑ 𝑤𝑖𝑥𝑖
𝐿
𝑖=1                  

The average output power is equal to: 

1

𝑁
∑ 𝑦𝑖

2𝐿
𝑖=1 =

1

𝑁
∑ (𝑟𝑖

𝑇𝑤)𝑇𝑟𝑖
𝑇𝑤 = 𝑤𝑇(𝐿

𝑖=1
1

𝑁
∑ 𝑟𝑖𝑟𝑖

𝑇)𝑤 =  𝑤𝑇𝑅𝐿𝑥𝐿𝑤
𝐿
𝑖=1      

where RLxL is the autocorrelation matrix of the samples. 

The solution is found using the Lagrange multipliers methods as shown in [92]. 

The optimal filter coefficients are: 

𝑤𝑜𝑝𝑡 =
𝑅𝐿𝑥𝐿

−1 𝑑

𝑑𝑇𝑅𝐿𝑥𝐿
−1 𝑑

 

 

3.3.5.6. Multiple Target CEM (MTCEM) 

 

This is an extended version of the CEM algorithm that supports the detection of multiple 

targets. Suppose we have a matrix D=[S1,S2,…Sp] that contains the signature of p targets. The 

objective now is to minimize the output energy with the constraint DT. w=1. Where 1 is a px1 

column vector of ones. 

The solution is given in [93]by: 

𝑦𝑀𝑇𝐶𝐸𝑀 = (𝑅𝐿𝑥𝐿
−1 𝐷(𝐷𝑇𝑅𝐿𝑥𝐿

−1 𝐷)−1𝟏)𝑇. 𝑥 

 

 

3.3.5.7. Winner take all CEM (WTACEM) and Sum CEM (SCEM) 

 

Another two techniques for multitarget detection based on CEM are Winner take all CEM and 

Sum CEM [93]. These algorithms necessitate running the CEM algorithm each time for each 

target. Then the results of the detectors are summed up in SCEM or we take the maximum 

among other detectors in case of WTACEM. One advantage of WTACEM over SCEM is that 

if the results are noisy, the noise is not summed up in the final detector. 
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3.3.5.8. Adaptive Coherent/Cosine estimator (ACE) 

 

  In the derivation of the Adaptive Coherence Estimator, we will use the same procedure we 

used in the case of MF. However, in deriving the ACE we will assume that the covariance 

matrix in the two hypotheses is scaled by different factors 𝜎0
2 𝑎𝑛𝑑 𝜎1

2 . Therefore, the 

hypotheses are drawn as follows [88]: 

 

𝐻0: 𝑥~𝑁(0, 𝜎0
2Σ𝒃) 

𝐻1: 𝑥~𝑁(𝑎𝑆, 𝜎1
2Σ𝒃) 

The likelihood ratio will be: 

𝐿(𝑥) = (
𝜎1

2

𝜎0
2)

−𝑝/2

𝑒𝑥𝑝 {−
1

2𝜎1
2 
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) +
1

2𝜎0
2 𝑥𝑇Σ𝑏

−1𝑥}                                                

 

The MLE of the scaling factors 𝜎0
2 𝑎𝑛𝑑 𝜎1

2 are obtained by differentiating  f(x|H0) and f(x|H1) 

with respect to 𝜎2. 

The results are: 

𝜎1
2 =

1

𝑝
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) 

𝜎0
2 =

1

𝑝
𝑥𝑇Σ𝑏

−1𝑥 

The MLE of a is given by: 

𝑎 =
𝑥𝑇Σ𝑏

−1𝑆

𝑆𝑇Σ𝑏
−1𝑆

  

 

By replacing these estimates in the likelihood ratio equation, we can arrive to the ACE detector 

given by the equation: 

𝑦𝐴𝐶𝐸 =
𝑥𝑇Σ𝑏

−1𝑆(𝑆𝑇Σ𝑏
−1𝑆)−1𝑆𝑇Σ𝑏

−1𝑥

𝑥𝑇Σ𝑏
−1𝑥

 

 

ACE could be considered as a little extension of the MF algorithm where the result is 

normalized by the length of the whitened input pixel √𝑥𝑇Σ𝑏
−1𝑥 [133]. 

3.3.5.9. Fully constrained least square (FCLS) 

 

This is another method based on the linear mixing approach. As its name suggests, the 

abundances in this method are calculated so as to respect all abundances’ constraints: the non-
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negativity and the sum-to-one constraints. This makes the method useful for material 

quantification in hyperspectral imagery [94].  

Returning to the linear mixing model, each pixel is written as: 

𝑟 = 𝑀𝛼 + 𝑛 

Where r represents the spectrum of the pixel, M is a concatenation of target and backgrounds 

signatures, 𝛼 is the abundance factor and n represents the noise. 

The least square cost function is given by:  

𝐽 =
1

2
(𝑟 − 𝑀𝛼)(𝑟 − 𝑀𝛼)𝑇 − 𝜆(∑𝛼𝑗

𝑝

𝑗=1

− 1) 

𝜆  is Lagrange multiplier. Differentiating the cost function with respect to α and making it equal 

to zero we obtain: (𝑀𝑇𝑀)−1𝑀𝑇𝑟 −  𝜆=0 

We obtain 𝜆 = (1 − 𝟏𝑇�̂�)/(𝟏𝑇𝑠)   with s=(𝑀𝑇𝑀)−1𝟏 and �̂� = (𝑀𝑇𝑀)−1𝑀𝑇𝑟. The solution 

of FCLS is found using the following procedure [94]: 

 Calculate �̂� 

 Compute 𝜆 and set 𝛼𝐹𝐶𝐿�̂� = �̂� −  𝜆𝑠 

 If all components of �̂�𝐹𝐶𝐿𝑆 are positive, the algorithm stops. 

 If not, divide each negative value of �̂�𝐹𝐶𝐿𝑆 by its corresponding component in the vector 

s, set the maximum absolute fraction to zero and remove its corresponding endmember 

signature. Return to step 1. 

3.3.5.10. Adaptive Matched Subspace Detector (AMSD) 

 

This technique is based on Generalized Likelihood Ratio Test between the two hypotheses. 

The noise is supposed to be a zero-mean normal distribution with covariance matrix 𝜎2𝐼 [88]. 

𝐻0: 𝑥~𝑁(𝑈𝛼𝑈, 𝜎0
2𝑰) 

𝐻1: 𝑥~𝑁(𝑆𝛼𝑆 + 𝑈𝛼𝑈, 𝜎1
2𝑰) 

By replacing the unknown with their MLE in the likelihood ratio we arrive to the AMSD 

detector given by:  

𝐷𝐴𝑀𝑆𝐷(𝑥) =
𝑥𝑇(𝑃𝑈

˔ −𝑃𝑍
˔ )𝑥

𝑥𝑇𝑃𝑍
˔ 𝑥

   

 

𝑃𝑈
˔ = 𝐼 − 𝑈(𝑈𝑇𝑈)−1𝑈𝑇 𝑎𝑛𝑑 𝑃𝑍

˔ = 𝐼 − 𝐸(𝐸𝑇𝐸)−1𝐸𝑇      

 

E is defined as the concatenation of the background and target signatures. 
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3.3.5.11. Hybrid Unstructured Detector (HUD) 

 

  HUD is based on mixing both statistical and physical models. The first step is to calculate the 

abundances using non-negative least square or FCLS. By this, we use the physical model 

information. The obtained abundances are then used as inputs of statistical based detector like 

ACE. The detector is written as follows [88]:  

𝐷𝐻𝑈𝐷(𝑥) =
𝑥𝑇Σ𝑏

−1𝑆�̂�

𝑆𝑇Σ𝑏
−1𝑆

  

 

Where �̂� is the abundance estimate obtained using constrained least squares. 

3.3.5.12. Spectral Angular Mapper (SAM) 

 

  Like Euclidian distance, spectral angular mapper is a measure of similarity between two 

vectors. For hyperspectral target detection, SAM is used to calculate the angle between the 

target reflectance spectra and pixel reflectance spectra treated as vectors. The smaller the angle, 

the more similar the pixel is to the target. The angle is calculated using the following 

equation [93]: 

𝐷𝑆𝐴𝑀 = cos−1(
�⃗� .�⃗� 

‖�⃗� ‖‖�⃗� ‖
 )  

 

where �⃗�  is the pixel vector and �⃗�  is the target vector. 

 

3.3.5.13. Spectral Information divergence (SID) 

 

Another way to detect the presence of a target in the hyperspectral image is to calculate the 

similarity between each pixel and the target using spectral information divergence. This 

technique is inspired from information theory where the degree of similarity is calculated using 

the entropy formula [95]: 

𝑆𝐼𝐷(𝑥, 𝑦) = 𝐷(𝑥||𝑦) + 𝐷(𝑦||𝑥) 

Where 𝐷(𝑥||𝑦) = ∑ 𝑝𝑙log (
𝑝𝑙

𝑞𝑙
)𝐿

𝑙=1  and 𝑝𝑙 =
𝑥𝑙

∑ 𝑥𝑙
𝐿
𝑙=1

              

As in the SAM case, the result of the detection depends on the precision of the target reflectance 

spectra and is sensitive to the spectral variability. 
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3.4. Recent developments in target detection using 

hyperspectral images. 
 

  In recent years, researchers proposed various new algorithms to detect targets in a 

hyperspectral image. Although the different approaches are devoted to generic target detection, 

they represent promising candidates for improving the performance of current landmine 

detection techniques. As a matter of fact, landmines constitute a special type of targets, since 

they are usually rare and sparse in the scene, and they have different shapes, colors and 

reflectance spectra. For example, various approaches to model a hyperspectral image, in 

addition to a comparison between supervised Matched filter and unsupervised Reed-Xioli 

target detection algorithms, are presented in [89]. A nonlinear version of the algorithm Target 

Constrained Interference Minimized Filter based on kernels is recently proposed in [96]. 

In [97], the authors propose a new endmember extraction process to detect anomalies in a 

hyperspectral image. Some researchers proposed new models to interpret the hyperspectral data 

in order to simplify the target detection process. Here we mention: Forward modelling working 

in radiance space [98], Sparse Representation Based Binary Hypothesis Model (SRBBH) [99], 

Sparsity and Compressed sensing based models [100] and spatio-spectral Gaussian random 

field modeling [101]. 
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Chapter Four 

4.Experiments and Results 
 

4.1. Preliminary test of applicability of hyperspectral 

images for landmine detection 
 

 In this chapter, we will show the first tests done in order to verify the applicability of 

hyperspectral imaging for the detection of landmines. Here we did a test on simulated data 

in order to precise the spectral information in the hypercube that helps in distinguishing 

landmines from background materials. In addition, we tested both Supervised and 

unsupervised classifiers in order to highlight the pros and cons of each type of approach. 

The results were mainly presented in [102]. 

4.1.1. Detection Using VNIR, SWIR AND TIR 
 

  Even if sometimes mines are just laid on the surface or very close to it, they are still hard 

to be detected. New mine casings are made similar to the background and hard to be visible 

by naked eye at visible wavelengths. Because of that, visible wavelengths are not sufficient 

to detect landmines, especially the buried ones, so we will use infrared bands.  While 

camouflage matches mine coating reflectivity to that of the background in an average sense, 

exact matches only occur at a few points across the visible and near infrared spectrum 

(Fig.10)[103][32] . It is difficult to match a coating to a background over a wide range of 

the spectrum. Quite narrow bands may have large differences in reflectivity between mines 

and background. Such subtle mismatches between mine and background spectra in VNIR 

range can be discerned if the spectral range is finely divided [104].  
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  The differences between surface-laid mines and background are more important in the SWIR 

spectral region. Earlier studies have shown that the reflectivity of many mine coatings and 

background materials is significantly lower in the VNIR than in the SWIR region (Fig.11) [26]. 

For example, the reflectivity of the AP landmine is very close to that of a healthy leaf in the 

visible spectrum, but different in most of the infrared region. In order to achieve better 

detection, we may focus on the SWIR spectrum as in this range the contrast  between 

background materials and man-made objects is much larger. Plastic mines and painted 

unexploded ordnance have special pigments in their reflectance spectrum that allow simple 

classifiers to distinguish synthetic objects from natural features such as vegetation and soil.   

 

  Thermal infrared hyperspectral (TIR, 8000 to 12000 nm wavelength) have the potential to 

detect buried mines in certain types of recently disturbed soils. The most common mineral 

constituent of sand in the Earth's continental crust is quartz (SiO4 silicon–oxygen tetrahedra); 

Soil disturbance has measurable impact on the quartz reflectance spectrum, presumably due to 

mixing of different soil particle sizes [103]. The presence of other materials, such as carbonates, 

may also cause similar reflectivity changes in the TIR region, which also may be suitable for 

figure 10: VNIR reflectance spectra of mines and background materials [32]. 

Figure 11: VNIR and SWIR reflectance spectra of mines and 
background materials [26] 
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detection of soil disturbance. However, the use of TIR images for the detection of disturbance 

depends on results of other unfinished researches that should precise the effect of weather 

changes and time on the disturbance detection in different types of soil. 

4.1.2. Supervised and unsupervised classification 
 

  An approach to analyze a hyperspectral image is to attempt to match each pixel spectrum 

individually to one of the reference reflectance spectra in a spectral library. This is the 

supervised classification method. Correlation-based classifiers work well with multipixel-sized 

mines, whereas spectral unmixing methods can detect subpixel-sized mines [105]. Some 

supervised algorithms are shown in section 3.3.5. 

  Unsupervised classification, or learning, is a term for grouping objects with similar properties 

together, without any foreknowledge of those properties. Clustering can be used for 

classification on multi-dimensional images. The image clustering result is an assignment of 

each spatial position to a spectral class based on the values of the different points in the image 

bands. The results of clustering can be used to determine the location and number of classes 

present. A supervised connection can later be applied to the results with available spectral 

reference data.  

4.1.3. Experiments 
 

To compare between the two types of algorithms we did a test in order to detect the spectrum 

of landmine in a hyperspectral scene. The experiments were done on the image SalinasA 

(which could be found on the website [106]. This scene has 224-band over Salinas Valley, 

California, and is characterized by high spatial resolution. It includes vegetables and bare soils. 

It comprises 50*50 pixels and includes six classes. In this preliminary experiment, we 

substitute the spectrum of one pixel with the spectrum of the landmine. The reflectance spectra 

of the landmines inserted and bare soil are shown in figure 12: 
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The application of two supervised classification methods Normalized Cross correlation and 

orthogonal subspace projection are shown in fig 13. Note that Red circles designate pixels 

classified as mine type1 and magenta stars are mine type2. 

  

Figure 12: The reflectivity spectrum of one pixel of Salinas 
ground, mine1, mine2. 

Figure 13: Detection performance of supervised methods: Normalized Cross Correlation (left) and Orthogonal 
Subspace projection (right) 
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  Same procedure is done but using the Kmeans and Fuzzy Cmeans unsupervised classification 

techniques and the results are shown in the fig.12. Red circles are for pixels classified as mine 

type1 and mine type2. A supervised connection can later be applied to the results with available 

spectral reference data to discriminate between type1 and type2. 

All the mines are detected with a 100% probability of detection and no false alarm rate. The 

discrimination is accomplished easily in our work because the spectral data of the implemented 

mines are  spectral data of two types of plastic mines. Also the implemented spectra are not 

covered with any ambiguities as for the real case where mines are covered with dirt or 

vegetation or even camouflaged to match surrounding.  

So the pixels that contain the reflectance of the mines show great difference in the reflectivity 

spectrum than the surrounding (Fig. 12). 

There is a need for real images of minefields to investigate accurately the classification and 

clustering methods.   

The tested processing methods showed the potential for a high probability of detection, 

although further investigation is required for detection in more difficult scenarios. The 

performed experiment shows that mines possess spectral features that allow them to be 

distinguished from other materials. Successful surface landmine detection in the VNIR has 

been shown using spectral signatures. However, the graphs showed that there is more 

distinguishing spectral characteristics in the SWIR than in the VNIR. More spectral 

characteristics may increase the detection and identification rates and lower the false alarms. 

Although reliable detection is not obtained yet, TIR HS imagers suggests promise for buried 

landmine detection. 

  In another scenario, the planted spectrum was mixed with the reflectance spectrum of 

background material. We mixed the reflectance spectrum of landmines by a portion of 0.3 

background and 0.7 mine. We applied the two supervised method (NCC and OSP) and the two 

unsupervised clustering methods (Kmeans and Fuzzy Cmeans) on the new scene. Using the 

two supervised methods, we were still able to detect landmines with 0 FAR. However, using 

Figure 14: Detection performance of unsupervised methods: Kmeans (left) and Fuzzy Cmeans (right) 
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the unsupervised method, many FA showed up (see Fig.15). In case of k means, if we run it 

several times, few false alarms at the borders shows up (Fig. 15 left). But if we run the FCM 

several times, same large number of false alarms will show up every time.  A possible 

explanation is that by implanting the mixed spectrum (landmine + background), the contrast 

between the implanted target and surrounding background is reduced in such a way that the 

implanted spectrum could not be distinguished in a specific cluster. In addition, other rare 

events that exist in the scene and were not planted are marked as targets. 

 

Figure 15: Kmeans clustering after several run (left) and FCM clustering (right) in case of subpixel target 

 

4.2.  Full pixel and subpixel mine detection 
 

  In this section, we describe the simulation tests done in order to emulate a hyperspectral scene 

of a minefield and evaluate the performance of different types of supervised detection 

algorithms. In the first part, we present the image used in addition to the methodology that we 

followed to simulate a minefield. In the second section, we present the results of this simulation 

followed by a discussion and conclusions deducted out of this experiment. 

4.2.1. Data description 
 

In this experiment, we use a part of an AVIRIS image scene named f100902t01p00r03 

available on the following website (http://aviris.jpl.nasa.gov). This image was acquired by the 

airborne AVIRIS sensor that acquire hyperspectral images in 224 bands ranged between 395 

nm and 2500nm with 10nm spectral resolution. The spatial resolution of the image is 0.8m. 

The original size of the image was 995 samples and 8716 lines. A part of the original scene 

containing grass and sand in the background was taken. The size of the chosen area is 148x123 

pixels (118.4 x 98.4m= 11651 m2). In order to emulate a minefield, the spectrum of a landmine 

is inserted in different locations of the hyperspectral image scene. 

http://aviris.jpl.nasa.gov/
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 In the first step, as the image is given in radiance unit, it is converted to reflectance domain. 

This process is called atmospheric correction. Usually working in the reflectance domain is 

preferred because the reflectance value is independent of the illumination and weather 

conditions. Then we spatially upsample the image to arrive to a pixel size equal to the size of 

the landmine to be inserted. For this, we use the bicubic interpolation. By upsampling the 

image, we increase the number of pixels per unit area and the spectrum of the added pixels are 

interpolated according to the spectra of the surrounding pixels. So we obtain an image with 

lower Ground Sample Distance (GSD) where each pixel represents smaller area but have the 

same characteristics of the original one (same components).  

On the other hand, the information acquired in some bands are too noisy as these bands 

correspond to the water absorption bands. We may remove these bands in order to reduce the 

noise and reduce the size of the image at the same time.  

After that, depending on the surrounding background material, we replace some pixels in the 

image with the reflectance of the landmine. By this, we implant the mines in the scene. Now 

we can apply the classification algorithms on this image to detect the full-pixel target. 

In order to simulate the case of subpixel target, the same classification algorithms are applied 

on downsampled versions of the image. The downsampling was done by grouping the neighbor 

pixels using bicubic interpolation after using an anti-aliasing low pass filter. The downsampled 

images have the same area size of the original one but the pixel size is larger. Therefore, the 

reflectance spectrum of the mined area now is the reflectance of the mine mixed with 

surrounding background spectra. 

Finally, to study the effect of downsampling, we apply the same algorithms on images that 

have the same size of downsampled images but have pixel size equal to the size of the mine. 

In this case, we try to detect full-pixel targets in smaller images. However, the area covered by 

these images is smaller.    

Each time we apply a classification algorithm, we obtain a metric for each pixel that represents 

the degree of similarity between the pixel and the target that we are searching for. After that, 

we choose a threshold to classify the suspected regions from clean ones. Changing this 

threshold will change the probability of detection and the False Alarm Rate (FAR). In this 

study, we chose the threshold in a way to detect all targets and then we registered the FAR 

obtained when using each algorithm. To note that by FAR here we mean the number of wrongly 

detected landmines per square meter. 

The following chart resumes the characteristics of the images on which we tested the 

classification algorithms: 
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Due to water absorption, here we use 189 of 224 bands. The deleted bands are between 1353 

nm & 1443nm and between 1812 & 1958 nm. 

4.2.2. Classification Results 
 

In this section, we show the results obtained after we applied the following classification 

algorithms: 

 SAM: Spectral Angular Mapper   

 OSP: Orthogonal Subspace Projection   

 ACE: Adaptive Coherence Estimation  

 CEM: Constrained Energy Minimization  

 SID: Spectral Information Divergence  

 FCLS: Fully Constrained Least Square 

 AMSD: Adaptive Matched Subspace Detector 

 MF: Matched Filter 

 HUD: Hybrid Unstructured Detector 

 

 Table 2 contains the FAR obtained after applying different algorithms on the 5 images. The 

computation times in each case are registered in Table 3.  

 

 

 

 

 

 

 

Original image (809340 pixels, 
GSD=12cm, Total area=11654 

m2)

Downsampled image 2 
times (202540 pixels, 

GSD=24cm, 
Area=11654 m2)

Downsampled image 
4 times (50635 

pixels, GSD=48cm, 
Area=11654 m2)

2 times smaller 
image(202540pixels, 

GSD=12cm, area= 
2916.6m2)

4 times smaller 
image (50635pixels, 

GSD=12cm, area= 
1458 m2)
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Table 3: FAR (nb of false alarms/m2) 

 Original  D2 D4 S1 S2 

CEM 0 0 0.0049 0 0 

MF 0 0 0.0058 0 0 

ACE 0 0 0.0003 0 0.0048 

OSP 0.001 2.3236 2.4261 0.0014 0 

SID 0 3.6867 2.7836 0 0 

AMSD 0 16.5982 4.151 0 0 

FCLS 0.443 12.0172 3.6171 0.2859 0.6076 

HUD 0.3782 0.9234 3.738 0.5119 0.4786 

SAM 0 4.8432 3.1551 0 0 

 

 

 

Table 4: Computation time in seconds 

 Original  D2 D4 S1 S2 

CEM 19.8 4.62 2.22 4.8 2.17 

MF 23 5.12 2.37 5.7 2.1 

ACE 28.8 6.63 2.65 7 2.5 

OSP 19 4.54 2.1 5 2 

SID 27.2 6.5 2.9 7 2.5 

AMSD 27.3 6.83 2.72 6.8 2.4 

FCLS 177 19.66 6.43 42 11.2 

HUD 152 38 11.6 39 10.4 

SAM 23 5.15 2.3 5 1.68 

 

  As we can notice from the tables, ACE, MF and CEM show the best performance for detecting 

the landmines in the hyperspectral images because even when the image was spatially 

downsampled by a factor of 2, the FAR remained zero at full detection. When the image was 

downsampled by a factor of 4, few false alarms appeared whereas for the other algorithms the 

FAR is too high to consider the detection as useful. Moreover, the computation times of these 

algorithms are acceptable and are lower than other algorithms.  
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As we have seen in section 2, the coefficients of the filter in CEM and MF methods are very 

similar. They differ in using the correlation matrix or the covariance matrix. This explains why 

the computation time and the FAR obtained when applying CEM and MF algorithms are very 

close. 

 In addition, we can see that the OSP algorithm, which is based on linear unmixing model, is 

sensitive to the target abundance. The detection was good in case of full-pixel target but the 

FAR increased significantly in case of subpixel target in D2 and D4 images. AMSD 

performance shows the same behavior, but in addition to its sensitivity to target abundance, the 

computation time is a bit higher. 

Spectral information divergence (SID) and spectral angular mapper (SAM) belongs to the same 

family of detectors as both measure the difference between the target and the pixel. Globally, 

SAM has higher FAR than SID but has a lower computation time. A comparison between both 

techniques could be found in [95]. 

Fully constrained least square (FCLS) algorithm is used to calculate the abundances of the 

background and the target at each pixel. Therefore, it takes the reflectance spectra of the 

background materials and of the target as input and calculates the abundance of each 

component in every pixel of the image taking into consideration the non-negative and sum-to-

one constraints of the abundances. It is a complex process, which explains the long computation 

time. The high FAR obtained using this method demonstrates that the estimated abundance of 

the target could not be used alone as a decision metric of the presence of the target. As the 

background and target spectra are used in FCLS processing, the detection results depend on 

the quality of the input spectra and the number of background materials used in the input.  

Finally, The two-step detection process of the hybrid unstructured detector (HUD) explains the 

high computation time. The high false alarm rates may be due to errors in estimating the 

abundances as in the case of FCLS. 

4.2.3. Discussion 
 

  Several approaches have been proposed for target detection using hyperspectral imaging. 

Some of these approaches are based on linear mixing model where the reflectance of each pixel 

is made of mixing the endmembers’ reflectance spectra in different abundances with additional 

white noise. OSP, FCLS are algorithms based on this approach. However, the detection 

performance of these algorithms is too sensitive to the choice of the endmembers. If the number 

or the type of the endmembers was wrongly chosen, the detection will be difficult. 

 Another approach simulates the spectral variability of the targets and background materials 

using statistical models like MF and ACE. This approach proves its efficiency in detecting the 

mines at subpixel level in an acceptable computation time. 

MF and CEM methods do not require other information than the reflectance spectrum of the 

target. This makes the detection of the target faster and simpler but makes it dependent on the 

precision of the spectrum used in the search. When the spectrum of the target in the acquired 

scene is different from the spectrum that we are looking for, the detection performance get 

worse. This may occur due to differences in weather and illumination conditions at the moment 
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of registering the spectral response of the landmine (maybe taken in lab conditions) and at the 

moment of image acquisition. 

4.2.4. Conclusions  
 

 In this study, we arrived to the preliminary result that the CEM, MF and ACE algorithms are 

three of the best algorithms to be used when trying to detect landmines using hyperspectral 

imagery. This result is in agreement with the results obtained in the hyperspectral target 

detection tests [107] that proofs the effectiveness of ACE in target detection.  Linear mixing 

model based algorithms depend on the definition of the endmembers and the fill fraction of the 

target. The definition of the endmember may differ between images and between users 

changing the detection results. In the future, we will try to improve the detection of the 

algorithms in the case of a multi-target scenario as we will see in chapter 4.6. 

4.3. Effect of PCA Feature Selection Prior To Detection 
 

  In another experiment, we tested the effect of dimensionality reduction prior to detection on 

the classification performance. Here we used the Principal component analysis (PCA) to 

choose the most representative bands out the 224 bands of the image and then we applied 

different detection methods.  Our goal is to evaluate the consistency of the detection algorithms 

if less information is used in the detection. 

4.3.1. Data Description 
 

Here we use a part of the same AVIRIS image scene named f100902t01p00r03 used in the 

previous test. However, in this experiment we chose another part of the scene where the main 

background material is sand. The size of the chosen part is 588 samples and 1430 lines 

(238.4x262.4 m). Here we chose a larger area in order the see the effect in computation time.  

As in the previous test, the image is pretreated before implanting the mines. First, atmospheric 

correction is applied to transform it from radiance into reflectance domain. Then, the image is 

upsampled in order to obtain pixel size equal to the size of landmine. After that, the bands 

corresponding to water absorption bands are discarded. In the resultant image composed of 189 

bands, we implant the spectral reflectance of landmines. Then, we made another copy of the 

image reduced to 100 bands with the use of Principal Component Analysis algorithm.  By 

applying the PCA algorithm, we are taking the bands that have the largest variability. Thus, 

these bands contains most of the information in the hypercube. 

The same algorithms used in the previous chapter were applied in this test. We applied them 

on the reduced and normal image. Also in this test, we chose the threshold to discriminate 

between target ad background so as to detect all planted mines, and then we registered the False 

alarms and computation time. The results are shown in the next section. 
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4.3.2. Results 
 

In this section we present the results obtained when the classification algorithms are applied on 

the original and reduced image using PCA. the tests were done on Windows server with the 

following characteristics: CPU quad Core 2.9 GHz, 32 GB RAM and 1TB Memory. 

The variation of FAR when using each algorithm is shown in fig 14 and the Computation time 

in Fig 16: 

 

 

 

Figure 16: Effect of PCA on FAR 
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Figure 17: Effect of PCA on computation time 

As we see in the charts, after dimensionality reduction using PCA, the performance of ACE, 

MF and CEM did not change in terms of FAR. Zero FAR rate is obtained in both cases. 

However, in case of OSP, AMSD and HUD too many false alarms show up after the size of 

the image is reduced. In case of SID and FCLS, the number of false alarms became too high to 

consider the detection as effective. So in these algorithms, we lost the information useful to 

distinguish the targets from background. To note that the false alarm here is higher than the 

300000 limit that we considered as maximum value to consider the detection as useful. 300000 

is almost half of number of pixels of the image. An algorithm is not effective if half of the field 

is considered as landmine, because it is not a realistic result. Usually landmines are rare in the 

scene. In addition, in the case of landmine detection, each false alarm will require about one 

hour of work to take the necessary precautions before starting the deactivation process. 

Therefore, if we have a high FAR, the wasted time is too long making the detection using other 

preliminary techniques more effective.  

Talking about the computation time, here we register the computation time needed to perform 

both the dimensionality reduction and the classification. We see that the computation time is 

reduced about 48.5% in case of ACE and is reduced about 37.5% in case of MF. In both cases, 

the FAR remained zero after the use of PCA. However, in case of CEM, the total time to 

perform PCA and apply CEM on reduced image is higher than the time needed to compute the 

detection on the original image. This phenomena is repeated with OSP, SID and FCLS however 

using these algorithms, the FAR became higher after using PCA. So reducing the size of the 

data prior to use these algorithms is not beneficial in terms of both FAR and computation time. 
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4.3.3. Conclusions    
 

As in the previous test, ACE and MF showed the best performance. Even if the image was 

reduced to 100 bands we were still able to detect all landmines with 0 FAR. In addition we 

gained some time in the computation time. This performance improvement do not apply to 

CEM: even though the FAR obtained is zero in case of reduced image, the computation time 

in the two steps (reduction+classification) algorithm is higher than when applying the detection 

on all image. 

Spectral unmixing based methods are too sensitive to the dimension of data used. As we see 

here, when we applied the OSP AMSD and HUD on reduced image, the FAR obtained was too 

high. So the use of these algorithms on reduced images won’t be effective.  

If we would like to use a dimensionality reduction method prior to classification in a real target 

detection scenario, as on board of a quadrotor while acquiring the hyperspectral image, we 

should verify if the use of reduction method is useful. Because using some methods, we may 

have increased computational time as in case of OSP and we may have large FAR. 

4.4. Effect of spectral variability on landmine detection 
 

  In this part, we will test the same algorithms but on images in which the mines were planted 

with different errors. Here we would like to test the possibility to detect landmines if their 

spectral signature in the hyperspectral image is not exactly the same signature that we have in 

a library. This very usual case occurs when the mine is covered by another background material 

like sand, soil or vegetation, or happens in the case of low spatial resolution image. So the 

reflectance spectrum in the pixel where the mine exists is a mixture of the signature spectrum 

of landmine and other background material. 

4.4.1. Data description 
 

In this test, we use a small part of AVIRIS image named f100902t01p00r03. The chosen part 

contains mainly vegetation and soil. The size of the chosen area is 494x410 pixels (59.28 x 

49.2 m). In different locations of the image, we planted the spectrum of the PMN landmine 

mixed the spectrum of green leaf ( vegetation) that is the background material most dominant 

in the scene. We mixed the target and the background material in different proportions: 0.5 

PMN+0.5 leaf; 0.6 PMN+0.4 leaf; 0.8 PMN+0.2 leaf. In the following section we show the 

results. 

4.4.2. Results 
 

In this paragraph, we will show the results obtained when we tried to detect the PMN signature 

in the hyperspectral image in which the PMN was planted in different proportions. As in the 

previous tests, the threshold was set in such a way as to detect all landmines and then we 

registered the number of false alarms and the computation time. 
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In this test, the graph of computation time do not have any differences between images of 

different abundance factor because the images have the same number of pixels. But it helps to 

compare between different detection algorithms.  

In consistency with previous tests, even in this test, CEM ACE and MF show the best 

performance as using these algorithms, we are still able to detect landmines with 0 FAR even 

when the abundance factor of target is 0.5. In addition, AMSD show the same performance in 

this test.  

In OSP case, even when the abundance factor of landmine is 0.8, we did not detect the landmine 

without false alarms. The number of false alarms increases if we are searching for mines with 
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lower abundance.  The same could be deduced in case of HUD algorithm. This may be due to 

linear unmixing step in which the abundance of targets was wrongly estimated. 

By using the FCLS, the computation time is too high by comparison with other algorithms. In 

addition the FAR is high. Therefore this method is not preferred for landmine detection case. 

SID and SAM methods are similar as they both compare between target signature and pixel 

signature based on similarity measure. SAM uses the angular distance between the spectra 

while SID measures the mutual entropy between them. However, these methods are sensitive 

to target abundance. Because of that, we see 0 FAR in case of pure target or target with 

abundance factor of 0.8, but the detection become harder and too many false alarms will show 

up in case we try to detect the landmine with  abundance factor of 0.6 or 0.5. 

4.4.3. Conclusions  
 

  In this test, we arrived to almost same result of previous tests that ACE CEM and MF are 

some of the best algorithms to detect landmines with different abundance factors. 

The linear unmixing based methods like OSP do detect the landmines but a right definition of 

background endmembers is necessary to reduce the false alarm rate or to detect landmines with 

low abundance factor. We can say the same conclusion for the hybrid detector (HUD) where 

the first step of its computation is based on linear unmixing model. 

SAM, SID or other similarity or distance calculation methods are not reliable for landmine 

detection, because if the abundance of target is 0.6 or less, the detection of targets is possible 

but we will have several false alarms. This is not practical especially in case of landmines 

where each false alarm will take at least one hour of precautions and land preparations. 

 

4.5. MLP Neural network for landmine detection using 

hyperspectral imaging 
 

  In this chapter, we present the tests done in order to detect landmines in hyperspectral images 

using MLP neural networks. In order to have good performance (reduce the FAR at full 

detection), we did several tests. In each test, we change some factors that affects the results. 

These factors are: 

 Training data set 

 Number of neurons in the hidden layer 

 activation function of the neurons  

 Error minimization strategy used in the training phase. 

In the following, we will present a brief introduction about the multi-layer perceptron used in 

this experiment. Next to it, we will show the results when applied on 17 images and finally the 

conclusions are provided.  
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4.5.1. Multi-Layer Perceptron (MLP) Neural networks  
 

  The general structure of MLP NN is presented in section 11.1. It is a kind of feed-forward 

neural networks constituted of at least three layers: Input layer, Hidden layer and output layer. 

Feed-forward neural networks provide a general framework for representing non-linear 

functional mappings between a set of input variables and a set of output variables [126]. The 

network may have an arbitrary number of hidden layers, which in turn may have an arbitrary 

number of perceptrons [127].  

The activation function of the hidden layer could be linear, hyperbolic tangent, sigmoid or 

other. Usually sigmoid activation function is preferred as the output of the perceptron are 

limited between zero and one so they can be considered as probabilistic values. To train a MLP 

NN, usually supervised learning is used. The error function to be minimized by 

backpropagation in the learning process tested here are the sum-of-square errors and cross-

entropy. In general, we got a better performance in case we used cross entropy error function. 

 

4.5.2. MLP training and application 
 

  In order to train the MLP NN, we used a part of AVIRIS hyperspectral image composed of 

280 rows, 150 columns that contain green leaf and sand in the scene. We use the most useful 

189 bands out of 224 bands after excluding the water absorption bands. In addition, we test the 

trained NN on the same 17 images used in chapter 4 section 6. 

  Here in follow, to give a nomenclature of the results, the training image used in this test will 

be named TI. The 17 images on which the resultant neural networks are tested are named 

according to the number of the field number in our data set. The 17 images are named 

respectively: field2, field3, field4, field51, field52, field53, field54, field55, field56, field61, 

field62, field63, field64, field71, field72, field73, field10. We used 17 images that have 

different background materials in order to test the performance of the neural networks in 

different case studies. 

Figure 18:  Example of multilayer perceptron NN 
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  In this experiment, the simulation are performed using MATLAB simulation tool. I referred 

to NETLAB toolbox [128]. It contains a group of functions prepared to simplify setting up the 

network parameters.   

  In the first test, we trained a NN using data from TI. The input is composed of 189 neurons 

corresponding to the reflectance bands. The size of the output is 3: 100 for PMN, 010 for M20 

and 001 for background. The hidden layer is composed of 115 neurons. The training dataset is 

composed of 200 entry referring to PMN reflectance spectrum, 100 entry referring to M20 and 

200 background pixels from TI. The network is composed of 2 hidden layers. This NN is named 

“netTI”. When applied on TI, all mines in the training image are detected with 0 FAR. When 

we used this network to detect landmines in the 17 images, all mines in all images were 

detected. However, in some images some FA appeared. The average FAR obtained is 0.121/m2 

the detection was done in 3.64seconds. 

 In the second test, I used the data from images field3 field4 field51. The dataset were 

composed of all pixels of these images including the pixels were the landmines are inserted. 

This NN is named “netfield3451”. When applied on all fields, the obtained Pd was 0.85 with 

FAR 1.385/m2. the computational time is on average 6.5 s. 

In the third test, in an attempt to increase the Pd and decrease the FAR, I used for training the 

images field2 field3 field4 field51. The input for training was the reflectance spectrum of each 

pixel in these images. This NN is named “netfield23451”. By comparison with the previous 

test, the probability of detection has increased to 0.94, the FAR has also increased to 7.3074/m2. 

the computation time was 6.65s. 

In a fourth test, I trained a NN using the data of images field4 field71 field72 field73 field9 

field10. The number of neurons in the hidden layer is fixed to 115. This network is named 

“net4717273910withoutpmn”. When this NN is applied on all fields, the average Pd obtained 

is near 1 (0.99) but the FAR was High (29.31 / m2). 

  Then I build another NN in an attempt to reduce the FAR using the pixels of field4 field71 

field72 field73 field9 field10 in the training phase. In addition, I introduced in the training 

phase 500 replica of the spectrum of PMN. The number of neurons in the hidden layer is 115. 

The trained NN is named “net4717273910”. This strategy didn’t work well. The probability of 

detection was near zero and the FAR so.  So introducing the spectra of the targets several times 

will not improve the detection. After that, I trained another NN with the same data of the same 

fields with addition replica of PMN landmines spectra with abundance factor 0.9 mixed with 

other background material. This NN is named “net4717273910with9”. The results are similar 

to the results of previous neural networks where the Pd and FAR obtained is near zero. 

  In another test, I trained the data of the fields that usually had high Pd and low FAR in other 

tests. So in this test I trained a NN using the data of field2 field51 field52 field53 field56 

field62. The NN is named “net25152535662”. When applied on all fields, the average Pd and 

FAR were close to zero. 

As I found that training data of TI give better results than training few images from the test 

images, I choose to use it in the training. This time I trained a NN named “n1” using 20 spectra 

of PMN mine, 10 spectra of M20 mine, and 20000 spectra of background from TI image. The 

number of hidden neurons was 2. Using this NN, we were able to detect all landmines in all 
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fields. But in some images we got some false alarms. the average FAR obtained is 0.464. The 

detection is done in an average of 3.8 seconds. 

To reduce the FAR obtained when using “n1” NN, I used the same data used in the previous 

test.  The training set is composed of 20 spectra of PMN mine, 10 spectra of M20 mine, 20000 

spectra of background materials in addition to 150 pixel spectra of background road from image 

field3 usually marked as FA this time is included in the training. To note that the new samples 

included in the training of “n2” and successive NN are not used for testing the NN performance. 

When “n2” is used to detect the landmines in all fields, we detected them all landmines. The 

FAR is reduced to 0.142/m2. The average computational time is 3.36. So including some FA 

in training may help to reduce the FAR. The same NN named “n2” was applied on all images 

but this time the fields contains mines with different abundances. The results are showed under 

name n2_2. We got the same FAR as in case of n2 but the Pd dropped to 0.35. 

To improve the results of “n2”, I took the pixels that were marked as false alarms using n2 and 

add them to the training sample. So the training set of “n3” is composed of 20 spectra of PMN, 

10 spectra of m20, 20000 background spectra from TI and pixels marked as FA when using 

“n2”. When I applied this NN on all fields, all mines are detected in 4.18 seconds. The average 

FAR obtained is 0.609. So the FAR did not decrease as expected. 

After that, instead of using all false alarms found in case of n2, I used in the training of “n4” 

the data used to train “n2” in addition to FA obtained with fields4 52 53 54 and 55. In this case, 

I got Pd=1with FAR=0.397/m2 in 3.673s. So in this case, the FA is reduced by comparison 

with the results of “n2”. 

Finally, I used in the training of new NN  named “n5” the same data used to train “n2” in 

addition to pixels marked as FA in case of when “n2” was applied of field54 field55 field72 

field9. when “n5” is applied on all fields, all mines are detected in 3.68s with slightly high FAR 

of 3.797/ m2. 

  In a new series of experiments, we first applied a feature extraction method to reduce the size 

of the image prior to train the MLP NN. Here I used the Net analyte signal presented in section 

11.1 to choose the best bands that represent the landmines. In the first test, I chose 20 bands 

using this method. then I trained a MLP NN names “net_nas20” using the data in the image 

field3. This NN when applied on all fields we got low Pd=0.12 with FAR of 0.209 in 0.58 

seconds. So using this method, the computational time is reduced but the detection performance 

has decreased. 

Then I trained another NN this time using 50 bands chosen using Net analyte signal. I used the 

data in field2 in the training. The resultant NN is named “net_nas50_f2”. This network when 

applied on all fields, we detected all mines but with very high FAR of 65.74. To decrease the 

FAR, I used the same 50 bandswidth a training data set composed of the pixels of the fields 

field2 field3 field4. When I applied this NN named “net_nas50_f234” on all fields, all mines 

were detected with FAR of 6.214. 

 The charts that resume all results obtained are shown in the following figures: 
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Figure 19: Average Probability of detection 

 

Figure 20: Average False Alarm Rate 
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Figure 21: Average computational time 

4.5.3. Conclusions 
 

Referring to all tests done in this experiment, we can deduce the following: 

 Repeating the spectra of the targets in the training sample is not necessary as we 

obtained similar performance when using n2 and netTI. 

 The training should be rich and included almost all cases in which a landmine could be 

in the hyperspectral scenes in order to be detected using MLPNN.   

 The use of few neurons in the hidden layer with more representative data is more 

effective than using too many neurons with intensive Training samples. this is 

concluded when comparing between 'net4717273910withoutpmn' that have 115 

neurons and ‘n2’. 

  When the landmines in the image have different abundance factors, the training sample 

used to train the MLP NN must include several samples of targets with low abundance 

factor. Without this, the Probability of detection won’t be sufficient as happened in case 

of n2_2. 

 

4.6. Multi Target Detection Using Neural Networks 
 

  In this chapter, we evaluate different classification algorithms used for multitarget detection 

using hyperspectral imaging. We take into consideration different scenarios of landmine 

detection in which we compare the performance of each method in various cases. In addition, 
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we introduce the detection of targets using artificial intelligence based methods in order to 

increase the probability of detection, to reduce the false alarm rate and to foster the detection. 

These algorithms were tested on simulated data where the spectra of landmines is planted in 

different proportions with respect to the pixel size in a hyperspectral image scene. We retested 

these algorithms on real image with real targets. The results show that we can use a well-trained 

radial basis function (RBF) neural network in order to detect targets using hyperspectral 

imagery. 

Several algorithms have been proposed for target detection in hyperspectral imagery. Some of 

them are mentioned in the fifth section of chapter 5. Most of them do not support multitarget 

detection unless we run them several times each run for a specific target. However, this will be 

a time-consuming process especially if the number of targets is high. Some algorithms were 

extended for multitarget case e.g the Constrained Energy minimization (CEM) algorithm 

originally made to give an estimation of the abundance of the target, has several extension to 

fit the multi target detection: multiCEM, SumCEM, Winner-take-all CEM (WTACEM) and 

others [108].  Other unsupervised algorithms may be used to detect targets without referring to 

their reflectance spectrum [109]. But it has been proved that this type of algorithms usually 

have high False alarm rates as some inert low frequency pixels may be marked as targets while 

they are not. 

In this chapter, we test different supervised classification algorithms used for multitarget 

detection in a landmine detection scenario and show the possibility of detecting targets using 

artificial intelligence based techniques. A comparison of the results will be discussed. The types 

of tests will be carried out: the first one uses images where the targets have been spectrally 

added to an AVIRIS image while the second one uses real images containing manmade targets. 

4.6.1. Neural Networks based Target detection 
 

In this section, we will introduce the use of artificial intelligence in order to detect targets in 

hyperspectral imagery. Specifically, we will work on neural networks (NN). This approach is 

adopted due to several reasons: 

First, to construct a neural network classifier, two phases are needed: training and 

classification. The training phase could be done offline and then the detection is achieved 

online during image acquisition. Therefore, this method may be optimized for real time 

detection as most of the workload is done offline in the training phase. Secondly, we can 

customize the detector to detect a large number of targets in one scan, which means that the 

detection of several targets is fast and requires only one scan. In addition, the network could 

be customized for different types of backgrounds i.e. we could have several trained neural 

networks, each for different types of scenes (background, water, sand or forest); therefore, we 

reduce the FAR by taking the combination of results of several NN. 

Artificial Neural Network (ANN) is a computational model used for various machine learning 

and computer vision tasks. It is designed to work in the same way as the neural networks of the 

human brain work [110]. It is composed of a network of connected units called “neurons” 

where each connection has a weight. The neurons are grouped into layers. In addition to the 

weights, each layer has a bias that plays a crucial role in the detection [111]. A basic NN is 

composed of two layers: input layer and output layer. This type of NN is called Single layer 
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NN. Other type of NN may have additional hidden layers between the input and output layers. 

In this category, we can find the Multi Layer Perceptron. This kind of ANN has the ability to 

solve nonlinear complex problems that the single layer NN will not be able to solve [111].  

Another type of neural networks is the Radial basis functions neural networks. It has the same 

structure of layers as the MLP. However, in the hidden layer, the activation function is a kernel 

function (usually Gaussian) [112]. Usually, MLP NN are faster than RBF NN as their 

computation do not necessitate the use of kernels and therefore is simpler. However, in case of 

high dimensional data, as in our case where the pixel is of 189 band dimensions, the RBF 

performs better. RBF showed better performance in our case and thus we will adopt this method 

in the comparison.   

Here, we used two-layers RBF neural networks. The activation function of the first layer 

(hidden layer) is Gaussian. The activation function of the output layer is linear. The number of 

neurons is empirically estimated to minimize the global problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Several studies introduced the use of deep learning neural networks for target detection using 

hyperspectral imaging [113]. However, this will not be our work in this study. Here we focus 

on ordinary neural networks due to several reasons: First, the main objective of our test is the 

detection of landmines at subpixel level, therefore extracting some features from a window of 

pixels as in the preliminary step of convolutional neural networks will make the detection 

harder. Secondly, we are dealing in this paper with hyperspectral images where each pixel is 

composed of hundreds of bands. So by mixing several bands we loose some spectral 

information that are necessary in the detection. In addition we are searching for a simple 

solution to make the detection faster. 

In order to reduce the size of the neural network, our first step will be the feature mapping. In 

this stage, some key features of the hypercube will be chosen in such a way to reduce the size 

of the input image and rely on useful information. For this objective, there are several methods 

that could be used: Principal Component Analysis (PCA), matched pursuit [114], neighborhood 
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Figure 22: Multi-layer RBF Neural network 



76 
 

embedding [115], Sammon’s mapping [116], multicriteria method [117], nonparametric 

weighted feature extraction [118] linear discriminant analysis (LDA) and others [119]. In this 

experiment, we use the concept of Net analyte signal introduced by Lorber 1986 in order to 

specify the unique part of an analyte signal in chemical spectrum analysis. The idea is to find 

the part of the signal that belongs to the orthogonal plane of all materials other than the target. 

By this, we choose the most representative bands of the target. These bands will be used as 

input to the neural networks in order to detect the targets instead of detecting the complete 

signal spectrum.  

The chosen bands are calculated as follows [120] 

                                          nj =( I -S-j (S
T

-j S-j )
-1 ST

-j ) sj 

where sj is the target spectrum, S-j  is a matrix of background analyte spectra and  nj  is the 

portion of sj that is orthogonal to S-j. First we estimate all endmembers spectra of the image 

using Automatic Target Generation Process (ATGP) algorithm [121], S-j is obtained after 

removing the endmembers corresponding to the targets. 

4.6.2. Experiment on simulated data 
 

4.6.2.1. Data description 

 

In the first scenario, we tested the target detection algorithms on 17 hyperspectral images taken 

using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) of JPL NASA Laboratory. 

These scenes are available online on the site [122]. The spatial resolution of the images depends 

on the altitude of the airplane during image acquisition. We can find different scenes of 

different spatial resolutions. In the chosen scenes, we introduced in different locations the 

spectrum of manmade targets that will be  PMN landmine (Fig.24) and VS-2.2 mine (Fig.25). 

The reflectance spectra of the landmines were taken in our Lab using Field Spec 4 Hi-Res 

spectroradiometer. This device is able to acquire the reflectance spectrum between 350 and 

2500 nm with spectral resolution of 1nm. We took the spectral signature in different conditions: 

in lab where specific source of light is used, in grass field and in soil field during a sunny day. 

Here we plant the spectral reflectance taken when thin layer of grass covered the landmine in 

the AVIRIS scenes. The insertion was done after several image-preprocessing steps: firstly, 

atmospheric correction is done to convert the image from radiance domain that depends on the 

illumination and weather conditions into unified reflectance domain scaled between 0 and 1. 
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Some bands characterized by low SNR due to vapor absorption are discarded. Then the image 

is up sampled in order to increase the spatial resolution of the image to arrive to pixel size 

equivalent to the size of the mine.    

  In order to test the full pixel and subpixel cases, the targets were planted in different 

proportions in the images. The signatures of the targets were mixed with the neighbor pixel 

signatures in different fill fractions: 𝑃𝑆 = 𝛼 ∗ 𝑇 + (1 − 𝛼)𝐵 where PS represents the planted 

spectrum in the image, T is a vector containing the target reflectance spectrum, B the 

background reflectance spectrum and 𝛼 the target fill fraction varying between 0.6 and 0.9. In 

the 17 images, the total number of pixels with landmine abundance factor of 𝛼 = 0.6 (PMN& 

VS-2.2) is 136, 170 have landmine abundance factor 𝛼 = 0.7, 102 have landmine abundance 

factor 𝛼 = 0.8  and 110 pixels have landmine abundance factor 𝛼 = 0.9 . By this, we evaluate 

the ability of a target detection technique to detect subpixel targets. 

As the target in this scenario is a landmine, the risk of missing a target is much dangerous than 

having a FAR. Therefore, the decision threshold to discriminate between target and background 

material is set such a way to detect all targets (Pd=1) and then the FAR is registered. Therefore, 

a technique is said to be more efficient if it has lower FAR giving that all targets have been 

detected. 

4.6.2.2. Results 

 

  In this part, we show the results obtained when applying the detection techniques on all images 

that contain targets in different abundances. We show the average false alarm rate and 

computation time at full target detection. The tests where done on Dell server with 64 cores, 

128 GB RAM and 1TB Memory. 

The tested algorithms are the following: 

 SAM: Spectral Angular Mapper   

Figure 24: Reflectance spectrum of the pmn mine (target) 
inserted in the image 

Figure 23: Reflectance spectrum of the vs-2.2 mine (target) 
inserted in the image 
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 OSP: Orthogonal Subspace Projection   

 ACE: Adaptive Coherence Estimation  

 CEM: Constrained Energy Minimization  

 MTCEM: Multiple target CEM 

 WTACEM & SCEM:Winner take all CEM and Sum CEM 

 SID: Spectral Information Divergence  

 MF: Matched Filter 

 RBF NN: Radial basis function Neural Network 

In case of neural networks, the best NN in terms of false alarm rate was individuated after 

several tests where we took into consideration different training samples and spread values. 

First, we randomly divided the 17 images between training and testing data where we used 

some images in order to train the NN and the other images to evaluate the performance. Using 

this strategy, the training was very intensive process, took a long time, necessitates large 

number of neurons to consider all possible cases and we did not arrive to zero FAR. To make 

sure that we are training the useful data without repetition, we decided to use another strategy. 

We found that training few pixels that represent the image endmembers is sufficient to obtain 

a NN able to estimate the abundance of targets and background in each pixel. The input training 

dataset is the background reflectance spectra automatically estimated using Automatic Target 

Generation Process (ATGP) algorithm [121]. The PMN reflectance spectra and the VS-2.2 

reflectance spectra. The training data is composed as follows: 377 spectra represents various 

background materials, 5 spectra of PMN landmine and 5 spectra of VS-2.2 landmine. The 

corresponding output are respectively: 001,100 & 010. To note that the reflectance spectrum 

of the targets exist with different fill fraction in the scene (0.6 0.7 0.8 &0.9). However, in the 

training phase, the pure reflectance spectrum of the target is introduced. Using this training 

strategy, the output for each pixel will be abundance fraction of PMN, VS-2.2 or general 

background. 

 

The following charts represent the results of the adopted methods: 
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Figure 25: Average computational time /algorithm 

 

 

Figure 26: average FAR/ algorithm 

In figure 25, we see the average time needed for each algorithm to detect all the targets in the 

17 images. As we see in the figure, to detect both types of targets using ACE we needed about 

349 seconds while the computation time of MF is 250.77 s and is 238 s for CEM. About the 

same time is needed using SCEM and WTACEM as these algorithms are based on running the 

same detector 2 times each run to detect one target. They differ in the decision making step as 

follows: in case of CEM we set a threshold for each target; in case of SCEM, we add the outputs 

of the detectors and set one threshold for the sum; or we take the maximum of the outputs and 

set the threshold accordingly as in WTACEM. SAM and SID are faster than other algorithms 

but they have very high FAR as we see in Fig 26.  
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Talking about the FAR, we see that almost all algorithms could detect the targets with very low 

FAR except for SID and SAM that have high FAR. Both algorithms are based on comparing 

the spectrum of pixels with the target’s spectrum both treated as vectors. Thus, they depend on 

how similar the pixel is to the target. In case of target with abundance 0.6, they are too much 

different causing this high false alarm rate. 

The other algorithms show very good performance even in case of small abundance factor 

where few FA shows up when trying to detect low abundance targets using MF and CEM.  

ACE algorithm gives the ability to detect all targets with 0 FAR. This confirms the previous 

tests used for target detection [107],[123].    

It is worth to note that when applying CEM 2 times and setting a threshold for each target, we 

got false alarm of 0.00027. Most of the false alarms refer to VS-2.2 targets. However, when 

we took the sum of the results or their maximum as in SCEM and WTACEM, no more false 

alarms are obtained. This is due to the increased contrast between targets and background in 

case of Sum CEM or by ignoring noise effect while taking most valuable results in case of 

WTACEM.  

On the other hand, MTCEM has better performance as all targets are detected without any false 

alarms with lower computation time. It should be pointed out that, using ACE MF CEM SID 

SAM and OSP, we have an additional advantage when identifying the targets since using these 

algorithms we are able to distinguish between PMN and VS-2.2  targets. While using the other 

algorithms, we can know the presence of a target without knowing its type. This type of 

information is crucial in some target detection tasks, especially in case of landmine detection 

in order to determine the best strategy to isolate the landmine according to its blast and fuse 

type. However, this ability comes at an additional cost in terms of time and/or computational 

resources. 

As we see in the charts, using the adopted training strategy, we got an RBF NN able to detect 

the landmines without any false alarm. By setting a large value of spread while training the 

NN, the output was less sensitive to the spectral variability of the input pixel and able to 

distinguish the presence of target even with low abundance factor. 

On the other side, the computation time needed to get this result is lower than ACE that has 

also 0 FAR, but is higher than other multitarget detection algorithms MTCEM, SCEM and 

WTACEM. However, using RBFNN, we are able to distinguish between targets whereas in 

these algorithms we are not. 

 

4.6.3. Real target experiment 
 

In this section, we show the results obtained when we applied previously mentioned algorithms 

in order to detect targets in real hyperspectral images. This is done in order to prove the 

applicability of these algorithms in real case scenarios. Even if it has been proven in [124]that 

the target implant method does provide accurate relative predictions in terms of both target 

difficulty and detector performance, but reliably predicting the actual number of false alarms 

for a given target at a given fill fraction is difficult or impossible [124]. 
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4.6.3.1. Test Image 

 

Target detection algorithms tested in previous sections will be applied on the hyperspectral 

data collected over Viareggio city, Tuscany, Italy by Centro Interforze Studi e Applicazioni 

Military (CISAM) in collaboration with university of Pisa [125].  The image that we worked 

on is named D1_F12_H1 and contains 5 different targets (2 panels and 3 vehicles).  The data 

has spectral resolution of about 1.2 nm between 400 nm and 1000 nm with 0.6 m spatial 

resolution. The targets are as follows: two green colored panels made of carton named P1 and 

P2, Ford fiesta car named V1, a FIAT DUCATO mini commercial vehicle named V3 and a 

Ford Focus car named V4. These targets are located in different positions of the image scene. 

The positons are given in a ROI file for performance evaluation. The spectra of the targets are 

also given. The first step we did is to convert the image from radiance into reflectance. Then, 

some bands are chosen to reduce the error. In case of RBF NN, we used  in the training phase, 

the endmembers of the image automatically extracted through the ATGP algorithm, knowing 

that the spectra of the targets are given in the file. The total training sample is composed of 396 

background pixels and 5 spectra corresponding to the targets. 

In the next paragraph, we will show the results of FAR and the computation time. 

4.6.3.2. Results 

 

  Here we will show the results obtained when we applied the previously mentioned algorithms 

on the image containing real targets. Note that as in the previous case, the threshold for 

classifying targets is chosen in such a way in order to detect all the targets and then we compare 

the false alarms obtained in each method. 

Table 5: Nb of false alarms and computation time obtained when applying each algorithm 

Algorithm/Target P1 P2 V1 V3 V4 Total Time 

(s) 

ACE 0 0 0 3 0 3 63.7 

MF 6 3 3 7 0 19 35.8 

CEM 8 3 3 7 0 21 28 

OSP 544 0 0 24 0 568 25.8 

SID 43608 11309 10 12 30 54969 27 

SAM 19498 111 1 46 0 19656 5.37 

MTCEM NA NA NA NA NA 44 29 

SumCEM NA NA NA NA NA 24 28 

WTACEM NA NA NA NA NA 40 28 

RBFNN 0 0 0 0 0 0 37 

 

As we see in Table 5, similarly to the previous section, SID and SAM have a high false alarm 

rate in comparison with other techniques. These algorithms are too sensitive to the spectral 

signature of the targets and; therefore, will not be able to distinguish it in case of mixture with 

other spectra. Thought the computation time of SAM is minimal; the high false alarm rate 

makes this algorithm useless for this task.   
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ACE algorithm is one of the best algorithms to use in order to detect the targets because it 

shows very low FAR (just 3 pixels marked as V3), but its computation time is high (63.7s) in 

comparison with other techniques. The performance of CEM and MF in terms of FAR and 

computation time is similar. Both have an acceptable false alarm rate with a small advantage 

for CEM over MF in terms of computation time and vice versa (for MF over CEM) in terms of 

FA. This is due to the similarity in the model in which they only differ in using the correlation 

matrix in case of CEM, while the covariance matrix is used in case of MF.  

In addition, in case of OSP, we found out that several FA appeared especially while searching 

for P1 target. This is because there are three panels in the scene, so we lowered the threshold 

in order to detect the third panel that exists in the scene with low abundance fraction. This 

caused this high number of false alarms; however, we didn’t notice this huge change when 

using other algorithms. 

When using the multi target versions of CEM MTCEM, SCEM and WTACEM, we couldn’t 

identify the target using this type of algorithms because we were setting one threshold for the 

mixture of all detectors. For this reason, the false alarms under these algorithms are marked as 

Non Available (NA) in the table. However, an additional similarity test may help us in 

identifying their type. In comparison with the results obtained in the simulated image test, we 

were setting one threshold to discriminate the two types of landmines from background. Here 

in this image we have 5 different types of targets so we are setting the same threshold for the 5 

detectors corresponding to each target. This causes the appearance of more FA as the number 

of targets is higher. 

When applying the proposed type of NN, we were able to detect all targets without any false 

alarm for all of them. Even though the computation time is a bit high (37 s) in comparison with 

other multitarget detection algorithms, however detecting all targets without false alarms is 

more important for this kind of application. It is worth noting that when training the RBFNN 

to detect the targets in this image, we used Gaussian activation function in the hidden layer 

with high spread value to overcome the spectral variability of the targets in the scene. The 

results prove the advantage of using RBFNN with the above-mentioned training strategy in 

order to detect several targets using hyperspectral imagery in one scan. 

 

4.6.4. Conclusions 
 

In this experiment, we tested some supervised multitarget detection algorithms using 

hyperspectral imagery. We tested simulated data where the reflectance spectrum of the target 

was planted in the scene in different proportions and, at the same time, when applied on real 

hyperspectral image with real targets.  

Some of the tested algorithms (ACE, MF, CEM, OSP, SAM, SID) are designed for the 

detection of one target. They were applied several times each run for each target. This may be 

a time consuming process, especially if the number of targets is high. This is why we addressed 

the multitarget detection in this paper. When using some of the multitarget detection process, 

we lose the privilege of identifying the type of the target. However, this can be recovered by 

an additional similarity test to classify each target. 
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SAM and SID are similarity measures between pixel signatures and target reflectance 

spectrum. The former calculates the angle between the target spectrum and the pixel spectrum, 

while the latter calculates the entropy between them. When the pixel spectrum is a linear 

mixture of target and other background material, the similarity measure will differ according 

to the abundance fraction of the target making the detection process harder. This is the reason 

of the high false alarm rate that appeared in the simulated data and real image tests. 

ACE is one of the best algorithms for target detection. It showed few false alarms by 

comparison with other algorithms in this test and previously done tests [[107],[123]]. However, 

its computation time is high. This limits the use of this algorithm in such situation where the 

detection should be fast like the case of real-time detection. 

Using RBFNN, we are able to detect, identify the targets and to estimate the abundance fraction 

without any problem. The proposed strategy for training an RBF NN has reduced the size of 

the used NN making also possible to estimate the abundance fraction of the targets. In both 

tests shown in this test, we got a full detection rate without any false alarm rate. This was not 

achieved by any of other algorithms, which proves the advantage of using NN for target 

detection in the proposed. On the other hand, the computation time is a bit higher than other 

techniques, but it can be reduced if the size of the NN is reduced. 

 

4.7. Created Spectra method 
 

  In this test, we propose a new algorithm for multi target detection using hyperspectral 

imaging. The objective is to detect the presence of two signatures referring to 2 types of 

landmines in one scan. The idea here is instead of running the classification algorithm to detect 

the spectrum of the target two times each run for each target, we run the algorithm one time for 

both. In this only one run, we search for a synthetic new spectrum that represents both targets. 

The details about how this spectrum is created in addition to results of tests are shown in the 

next paragraph. 

4.7.1. Spectrum creation  
 

As said in the introduction of this section, in this experiment we create a new spectrum out of 

the reflectance spectrum of the landmines that we are searching for in order to detect several 

targets in one scan. Our goal in this step is to foster the detection process to arrive in the future 

to real target detection at the same time during image acquisition.  

In the same AVIRIS scene used in the previous simulated data tests, here we implanted the 

spectrum of 2 types of landmines: PMN anti-personnel mine and M20 anti-tank mine. The 

scene is composed of 987x 820 pixels with 0.12 m spatial resolution. The total number of 

planted mines 30: 15 PMN mines and 15 M20 mines. 

In this experiment, we will test the difference in probability of detection, false alarm rate and 

computation time when applying the CEM, ACE and MF algorithms 2 times each time for each 

target and when applying the detection algorithms once searching for the created spectra.  
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Having the image and the reflectance spectrum of landmines in 189 bands between 395 and 

2500nm, to create the representative spectrum of the two target, firstly we calculate the distance 

between the two vectors PMN-M20 and we sort it in increasing order. We take 5 bands where 

the distance is maximum to represent the PMN mine, we take the 5 bands where the distance 

is minimum to represent the m20 and we take 70 bands where the distance in near zero. The 

new spectrum is composed of 80 bands. An image of the created spectra is shown in the next 

figure: 

 

Figure 27: Created reflectance spectrum 

Then we applied the classification algorithm ACE, CEM and MF in addition to MultiCEM on 

reduced image to 80 bands. The results are shown in the following chart: 
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Figure 28: Created spectrum performance 

  As we see in the chart, in the three algorithms, the created spectra method has the same 

performance in terms of Pd and FAR as if we applied the algorithms two times. However, we 

have a gain of more than 57% in computation time. Using this method, we would be able to 

detect both landmines in less time. To note that in case of CEM, the method of created spectrum 

is even faster than the MultiCEM that is specified to detect multiple targets. 

We applied the same procedure on another image 870x1330 pixel that have different 

background materials. We got similar results: 
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Figure 29: Performance of created spectrum method when applied on another image 

 

However, when we applied these algorithms on downsampled images by a factor of two, so 

the spectrum of landmines in the image is corrupted by neighbor pixels, the detection of 

landmines became harder. Too many false alarms show up making the use of this method in 

case of subpixel targets inefficient.   

4.7.2. Conclusions 
 

Using the new method, the computational time has decreased up to 60% while conserving 

100% Pd and FAR=0 when applied on original image with full pixel targets. This method does 

not perform well when applied on downsampled image or on in case of subpixel targets because 

we are taking part of the information to distinguish the landmines and this part is corrupted 

while downsampling. 

The number of bands taken to represent each mine affect the Probability of detection. So we 

may take more bands to represent each landmine in the resultant spectrum. The number of 

common bands also affects the detection probability. If we use more bands to produce the 

created spectrum, we may have better detection but with lower false alarms. This depends on 

the type of the spectra that we are trying to mix and how much they are similar.  

A study to apply this method in case of three or more targets and different types of targets must 

be conducted in order to optimize the bands selection and spectra creation. 
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4.8. Field Experiment   
 

  In order to study the spectral characteristics of landmines and how they may change according 

to the environment conditions and the type of background where they are planted, it was 

necessary to collect mines, plant them and acquire their reflectance spectra using a 

spectrometer in different conditions. For this purpose, we contacted the Lebanese army to get 

some samples of landmines already found in the Lebanese territory that have been deactivated. 

After we got the necessary permissions, the Lebanese army gave us 6 samples of 6 types of 

landmines. 4 are anti-personnel mines and 2 are anti-tank mines. (see Fig. 30 ) 

 

 

Figure 30: Samples of landmines used for acquiring their reflectance spectra 

 

To collect the reflectance spectra, we used a high-resolution spectroradiometer named 

FieldSpec 4 HI-RES. This device is made by ASD Inc. Company. It has the capability to detect 

the spectrum in the range between 350 and 2500 nm. The specifications of the 

spectroradiometer are given in table 5. 

 The device is composed of several components:  

 The main radiometer in which is connected the probe via 1.5m fiber connected wire. 

 Power bank battery to supply the radiometer and very useful in case of field experiment 

where no power source is near. 

  Computer with specialized software to control the instrument and register  the data 

  White board used to calibrate the device before registering the data. 

VS-2.2 

TM-46 

PMN 

PMD-6 

VS 50 M411 
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There are other optional accessories. To note that the connection between the computer and the 

spectrometer is wireless. This made simpler the data collection in the field.  

Table 6: FieldSpec 4 Hi-res spectroradiometer specifications 

Spectral Range 350-2500 nm 

Spectral Resolution 3 nm @ 700 nm 

8 nm  @ 1400/2100 nm 

Spectral sampling 

(bandwidth) 

1.4 nm @ 350-1000 nm 

1.1 nm @ 1001-2500 nm 

Scanning Time 100 milliseconds 

Stray light specification VNIR 0.02%, SWIR 1 & 2 0.01% 

Wavelength 

reproducibility 

0.1 nm 

Wavelength accuracy 0.5 nm 

Maximum radiance VNIR 2X Solar, SWIR 10X Solar 

Channels 2151 

Detectors VNIR detector (350-1000 nm): 512 element silicon array 

SWIR 1 detector (1001-1800 nm): Graded Index InGaAs 

Photodiode, Two Stage TE Cooled 

SWIR 2 detector (1801-2500 nm): Graded Index InGaAs 

Photodiode, Two Stage TE Cooled 

Input 1.5 m fiber optic (25° field of view). Optional narrower field of 

view fiber optics available. 

Noise Equivalent 

Radiance (NEdL) 

VNIR  1.0 X10-9  W/cm2/nm/sr @700 nm 

SWIR 1  1.4 X10-9  W/cm2/nm/sr @ 1400 nm 

SWIR 2  2.2 X10-9  W/cm2/nm/sr @ 2100 nm 

  

Weight 5.44 kg (12 lbs) 

Calibrations Wavelength, absolute reflectance, radiance*, irradiance*. All 

calibrations are NIST traceable. (*radiometric calibrations are 

optional) 

Computer Windows® 7 64-bit laptop (instrument controller) 

 

The Remote Sensing department of the National Research Council in Lebanon owns this 

device. They helped us in the acquisition of the spectra of landmines.  

To test the variation of the reflectance spectra in different conditions, we acquired the 

reflectance spectra in Lab, in grass field and in soil field as we will show in the next sections. 

 

4.8.1. Reflectance spectra of landmines acquired in the lab  
 

  In a first step, in order to register the reflectance spectrum of the landmines that we have, we 

acquired the spectrum in Lab conditions. By this, we mean that in a lab room, we used a specific 

source of light that produces light of different wavelengths between 350 and 2500nm of the 

same intensity. It is designed to produce stable output with a smooth spectral curve into the 
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SWIR range and to minimize backscatter and any change of lamp energy output over time 

[131]. The lamp produces a well-defined beam to maximize the amount of light energy on a 

sample area while minimizing stray light from surrounding surfaces [131].  

The Illuminator benefits as stated by the manufacturer are [131]: 

 The 70 watt quartz-tungsten-halogen light source with integrated reflector produces 

stable illumination over the 350 to 2500 nm range 

 Stable output yields accurate and dependable reflectance measurements 

 Well-defined beam maximizes light energy on sample area 

 Precise voltage regulation for high stability light output 

 Multiple mount options for lab stands or tripods 

The source of light is used in order to avoid the noise and other artifacts that we may face in 

the field. In addition, the sunlight when reaches the soil, it will not have the same intensity at 

all wavelengths due to CO2 ,water vapor and other pollutants that absorb radiations of specific 

wavelengths. 

 

This experiment was done in Scientic research center in Engineering at Lebanese University 

faculty of Engineering. 
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Figure 31: Acquisition 
of the reflectance 
spectrum of TM-46 
landmine 
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Figure 32: trying different incident angle 
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As we see in the image, to acquire the reflectance spectrum of the landmines, we used the 

source of light shown in the figures. First, the detector is calibrated on the white board. The 

calibration is necessary so after it is achieved, the registered spectra are automatically 

converted from radiance into reflectance value according to the reflection of light on the white 

board. 

We registered the reflectance spectra of the 6 mines. The results are as follows: 

 

Figure 33: PMN reflectance spectrum taken in LAB 

 

 

Figure 34: VS-50 reflectance spectrum taken in lab 
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Figure 35: PMD-6 reflectance spectrum taken in lab 

 

 

figure 36: M411 reflectance spectrum taken in lab 
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Figure 37: VS 2.2 reflectance spectrum taken in lab 

 

Figure 38: TM 46-reflectance spectrum taken in lab 

As we can see in the images, each landmine has a specific reflectance spectrum. This proves 

the utility of hyperspectral imaging technique in landmine detection because by profiting from 

the spectral information in the hyperspectral images, we are able to detect the landmines and 

in addition to distinguish their type. 

Another thing we can notice is that metal cased landmines like the TM46 antitank mine have 

an increasing reflectance value as the wavelength increases in the VNIR and SWIR domains. 

However, other plastic cased mines, like VS50 M411 and PMD6 have a decreasing value in 

the VNIR and SWIR ranges. In the next section, we will see how these reflectance spectra will 

change when landmines are planted in grass. 
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4.8.2. Reflectance spectra of landmines acquired in grass Field 
 

In this part, we show the spectra of reflectance of the landmines when they were planted in 

grass field. This experiment was done at Lebanese university campus-Hadath in a sunny day. 

The weather was clear and sunny without clouds in the sky. Here we planted all mines in the 

field. In addition, we acquired the reflectance spectrum of the grass just to compare the 

signature with and without landmines. 

The reflectance spectrum of the grass is as follows: 

 

Figure 39: AP mines planted in grass 
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Figure 40: Grass reflectance spectrum 

In this test, we removed the bands that corresponds to water absorption bands. In these bands, 

the data collected is too noisy. Just for example, the complete reflectance spectrum of the grass 

including the water absorption bands is as follows: 

 

Figure 41: Grass reflectance spectrum including water absorption bands 

It is clear that the reflectance spectrum contains some erroneous registrations as we see that the 

reflectance value in some bands is higher than one. This is not possible as at maximum an 

object can reflect the entire incident light (reflectance value =1). These erroneous values are 

registered in the wavelengths that correspond to water absorption bands. So the humidity in the 

air causes this error. 

The reflectance spectrum of the landmines in the grass field is as follows: 
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Figure 42: PMN reflectance spectrum when covered by grass 

 

 

Figure 43: VS50 reflectance spectrum when covered by grass 
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Figure 44: PMD 6 reflectance spectrum when covered by grass 

 

Figure 45: M411 reflectance spectrum when covered by grass 
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Figure 46: VS 2.2 reflectance spectrum when covered by grass 

 

Figure 47: TM-46 reflectance spectrum when covered by grass 

 

As we notice in the figures, when landmines are covered with grass, the reflectance spectrum 

changes and became more similar to grass. The maximum reflectance value sensed in case of 
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pure grass is 0.58. However, in case of landmine presence, the maximum achieved is lower 

than 0.5. 

In the case of plastic mines, we notice that the reflectance values at high wavelength value 

(1500 nm- 2500 nm) are lower than the case of grass material and have similar shape to 

landmine (especially in case of PMN). However, in case of metallic antitank mine (TM-46), 

the reflectance values are a bit higher.  

These are some key points that we noticed in this test. Many other details would help us to 

estimate the abundance of landmine in the sensed pixel. 

 

Figure 48: Four AP mines exist in this scene. Could you localize them all? 

 

4.8.3. Reflectance spectra of landmines acquired in soil Field 
 

  During the same day when we acquired the reflectance spectra in the grass field, we acquired 

the reflectance spectra of landmines in another field made of soil only and surrounded by trees 

of pines. Also this test was done at Lebanese University Campus in the same weather 

conditions. 
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Figure 49: Holding the device on my back, we acquired the spectra of the landmines after burying them in the 
soil 

In this test, we acquired the reflectance spectrum of four anti-personnel mines. In the following 

some figure of the landmines buried in the soil: 
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The spectrum of soil without landmines is as follows: 

 

Figure 51: Untouched soil reflectance spectrum 

The reflectance spectra of the landmines buried in soil are as follows: 

Figure 50: Landmines buried in soil 
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Figure 52: PMN reflectance spectrum when buried in soil 

  

 

Figure 53: VS 50 reflectance spectrum when buried in soil 
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Figure 54: PMD 6 reflectance spectrum when buried in soil 

 

Figure 55: M411 reflectance spectrum when buried in soil 

 

 

We see in these spectra, that once the mines are covered by soil, the reflectance spectrum will 

have an aspect very similar to the spectrum of inert soil without landmine. Just the small details 
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in the spectrum will help to distinguish the presence of landmine as untouched soil will have a 

spectral response different than returned or excavated soil.  

In the visible domain, the spectral response is almost identical for all types of mines and is 

similar to the response of the soil. That is expected, as all mines look like soil to naked eye. 

In case of M411, VS 50 and PMD 6 we arrived to maximum reflectance spectra of higher than 

0.3 whilst in case of bare soil, the maximum is less than 0.3. This gives a sign of presence of 

another material other than soil and led us to suspect the presence of landmines. 

 

4.8.4. Conclusions 
 

In this field experiment, we collected the spectral reflectance of 6 different types of landmines 

in various background conditions. Some of these spectra are used in the experiment shown in 

chap. 4.6.  

In real experiments, we are relying on the sun to acquire data. Sun do not produce light of same 

intensity at all wavelengths. Also, there are other artifacts that may affect the detection mainly 

the water absorption and CO2 absorption bands. These artifacts cause the difference in spectral 

signatures of landmines when acquired in Lab or in another fields. 

When the landmine is covered by another material like grass or soil, the spectral signature will 

change also. The changes will depend on the proportion of background material covering the 

mine. However, it has been shown that we still have some spectral characteristics that help in 

the detection of landmine. 

The spectral response of landmines with plastic case have different shape than the reflectance 

of background material. This gives an advantage of hyperspectral imaging technique over the 

well-known metal detectors in the detection of plastic mines as nowadays most landmines are 

made of plastic that the metal detector is not able to detect. 
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Chapter Five 

5. Conclusions and Future Work 
 

 The main contribution of this thesis is that we proved the applicability of hyperspectral 

imaging to detect surface laid mines. Landmines buried by soil or in grass are still detectable 

but proper classifiers must be  used. 

The problem of landmines is expanding worldwide. Although it is necessary to ban the use of 

landmines immediately, there is a need to find a new solution able to detect landmines of 

different types and shapes and is at the same time safe, fast and reliable. Hyperspectral imaging 

technology is a good candidate for this purpose. The mostly used technique until now is the 

metal detector thanks to its low cost. However, most of landmines nowadays are made of 

plastic, which made their detection using the metal detector harder.  One of the advantage of 

hyperspectral imaging technique is that it detects the presence of landmines whatever the type 

of the case is. The hyperspectral imagers are too expensive, but when mounted on a UAV to 

scan minefields on large scale, its efficiency will be comparable to other techniques especially 

if the time of detection is considered in the comparison. It is expected that the price of 

hyperspectral cameras decreases as more companies fabricates this type of devices in addition 

to finding new technologies that makes the fabrication of optical devices cheaper.   

 Every material has its special spectral signature. Therefore, knowing the mine spectral curve, 

by comparison between the mine spectrum and the pixel spectrum, we can decide on the 

presence or the absence of the mine at that specific position.  
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It has been shown in the previous tests that using VNIR band, recently buried landmines could 

be detected. Also, the fusion of VNIR and SWIR could give better results. Landmine burying 

changes the thermal properties of the upper level of some type of soils. It also changes its 

surface reflectivity and stresses vegetation. Hence, buried landmines can be detected by 

measuring the change of reflectivity both between manipulated soil and background and 

between stressed and unstressed vegetation. Consequently, as anti-tank mine deployment is 

done by digging up a larger area of surface (soil and/or vegetation) and a larger volume of soil 

is disturbed, the possibility of detecting them is higher than with anti-personnel mines. MWIR 

and LWIR bands are also used to detect buried landmines. Even if SWIR and VNIR alone 

could detect soil disturbances due to buried mines, MWIR and LWIR can reduce the false alarm 

rate. However, the use of SWIR bands is more common since the majority of manufactured 

imagers operates in the VNIR and SWIR bands.  After testing several hyperspectral imagers of 

different bands, it was found that imagers in LWIR bands have the potential to detect buried 

landmines with the use of proper algorithms. The algorithms could be supervised or 

unsupervised based on the data availability. Note that this does not eliminate the possibility to 

detect landmines with the use of other bands. However, proper algorithms and thresholds 

should be used for each case.  

If we consider high spatial resolution images, which means the image has ground sample 

distance close to the size of landmine, the possibility to detect a landmine is higher as the 

reflectance spectrum of the pixel will result only from the reflectance of the mine, or at least 

the reflectance of the landmine will be present with a high abundance. In addition, military 

target detection could be achieved at subpixel level using hyperspectral images. This means 

that by acquiring images from high altitude, using UAV or aircrafts, fast target detection is 

possible even if the target constitutes a small part of the pixel. 

In order to attain quasi real-time detection, all the processes involved, starting from 

geocorrection until classification, must be studied and organized so as to reduce the 

computational time. Since the detection performance will be possibly affected by some 

optimizations, a tradeoff between computational time and detection performance has to be 

achieved.   

Several factors affect the reflectance signature obtained by the imager. Wind and rain are the 

main factors, but the effect of rain is the dominant one. In the case of buried landmines, rainfall 

decreases the reflected portion of the thermal energy and therefore the reflectance signal 

received. However, the shape of the signature remains the same. More rainfall will result in 

more reduction and therefore the reflected signal will be more and more similar to the 

background. 

The use of PCA or other feature extraction method prior to classification do not always reduce 

the total computational time. Depending on the target detect algorithm used in the following 

step, reducing the dimension of the data may be effective or not. For example, the 

computational time have been reduced and the good detection performance have been 

preserved if we used PCA with ACE algorithm. However, the performance became worse when 

using similarity-based detection methods like SAM and SID. 

The use of supervised detection methods is preferred over unsupervised detection techniques 

because usually higher FAR is obtained in case of unsupervised techniques as low frequency 

elements in the scene are marked as targets while they are not. However, supervised detection 
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techniques necessitates knowing the target reflectance spectra and sometimes the reflectance 

spectrum of the background materials prior to detection. This kind of information is not always 

present. 

There are different types of supervised detection techniques. Some may be less tolerant to the 

spectral variability or the abundance fraction of the target as in case of ACE, CEM and MF. 

Other techniques will not be able to detect the target if the spectral signature is slightly different 

from the reference spectra as in the case of SAM detector. 

To detect several targets in one scan, we may run single target detection algorithm several 

times, each run to detect one target. However, this may be time consuming and not effective 

for real time detection. Other target detection algorithms supports the detection of several 

targets simultaneously.  

After several experiments, we proved the advantage of using neural networks in landmine 

detection using hyperspectral imaging. Even if the abundance of landmines was about 0.6, an 

RBF neural network trained with few background endmember data and target spectra was able 

to detect the landmines, identify them and estimate their abundance.  Also MLP neural 

networks were examined to detect the spectra of landmines in hyperspectral scenes. The results 

are obtained in a very fast computational time using this type of NN, but we were not able to 

detect all landmines with 0 FAR. So MLP NN have a good potential to be used in real-time 

detection but proper preparation of training data and network parameters calculation must be 

conducted first in a future work. 

In the field experiment, we collected valuable data of landmines reflectance spectrum in 

different environment. We acquired the reflectance spectrum of 4 types of AP mines and 2 

types of AT mines. The experiment shows how much the reflectance spectrum change when 

taken in lab conditions and in field situation where too many factors affects the registration. 

The main factors that changes are the sun emission spectrum that is not uniform in all 

wavelengths, the water vapor and CO2 in the air that absorb light in some specific bands, in 

addition to other artifacts and noise. 

In a future work, a scan of real minefield using hyperspectral imager mounted on an UAV must 

be conducted in order to validate the algorithms proposed and developed here in real case 

scenario. 

In addition, MLP training must be optimized to obtain 0 FAR. 

Also, we would collect data in new background scenarios to study the possibility to detect 

landmines in situations other than we can find in Lebanon like in desert. 
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