
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the quantification and visualization of transient periodic instabilities in pulsatile flows / Khan, Muhammad Owais;
Chnafa, Christophe; Gallo, Diego; Molinari, Filippo; Morbiducci, Umberto; Steinman, David Andrew; Valen Sendstad,
Kristian. - In: JOURNAL OF BIOMECHANICS. - ISSN 0021-9290. - 57:(2017), pp. 179-182.
[10.1016/j.jbiomech.2016.12.037]

Original

On the quantification and visualization of transient periodic instabilities in pulsatile flows

Publisher:

Published
DOI:10.1016/j.jbiomech.2016.12.037

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2662908 since: 2018-02-20T12:06:12Z

Elsevier Ltd



Author’s Accepted Manuscript

On the Quantification and Visualization of
Transient Periodic Instabilities in Pulsatile Flows

Muhammad Owais Khan, Christophe Chnafa,
Diego Gallo, Filippo Molinari, Umberto
Morbiducci, David A. Steinman, Kristian Valen-
Sendstad

PII: S0021-9290(16)31330-6
DOI: http://dx.doi.org/10.1016/j.jbiomech.2016.12.037
Reference: BM8070

To appear in: Journal of Biomechanics
Accepted date: 21 December 2016

Cite this article as: Muhammad Owais Khan, Christophe Chnafa, Diego Gallo,
Filippo Molinari, Umberto Morbiducci, David A. Steinman and Kristian Valen-
Sendstad, On the Quantification and Visualization of Transient Periodic
Instabilities in Pulsatile Flows, Journal of Biomechanics,
http://dx.doi.org/10.1016/j.jbiomech.2016.12.037

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/jbiomech

http://www.elsevier.com/locate/jbiomech
http://dx.doi.org/10.1016/j.jbiomech.2016.12.037
http://dx.doi.org/10.1016/j.jbiomech.2016.12.037


On the Quantification and Visualization of1

Transient Periodic Instabilities in Pulsatile Flows2

Muhammad Owais Khana,d,∗, Christophe Chnafaa, Diego Gallob, Filippo Molinaric, Umberto Morbiduccib,3

David A. Steinmana, Kristian Valen-Sendstadd
4

aDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada5

bDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy6

cDepartment of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy7

dComputational Cardiac Modeling Department, Simula Research Laboratory, Lysaker, Norway8

Abstract9

Turbulent-like flows without cycle-to-cycle variations are more frequently being reported in studies of cardio-

vascular flows. The associated stimuli might be of mechanobiological relevance, but how to quantify them

objectively is not obvious. Classical Reynolds decomposition, where the flow is separated into mean and

fluctuating velocity components, is not applicable as the phase-average is zero. We therefore expanded on

established techniques and present the idea, analogous to Reynolds decomposition, to decompose a flow with

transient instabilities into low- versus high frequency components, respectively, to discriminate flow insta-

bilities from the underlying cardiac pulsatility. Transient wall shear stress and velocity signals derived from

computational fluid dynamic simulations were transferred to the frequency domain. A high-pass filter was

applied to subtract the 99% most-energy-containing frequencies, which gave a cut-off frequency of 25Hz. We

introduce here the spectral power index, and compute the fluctuating kinetic energy, based on the high-pass fil-

tered velocity components, both being frequency-based operators. The efficacy was evaluated in an aneurysm

model for multiple flow rates demonstrating transition to turbulent-like flows. The frequency-based opera-

tors were found to better correlate with the qualitatively observed flow instabilities compared to conventional

descriptors, like time-averaged wall shear stress or oscillatory shear index. We demonstrate how the high

frequencies beyond the physiological range could be analyzed and/or transferred back to the time domain for

quantification and visualization purposes. We have introduced general frequency-based operators, easily ex-

tendable to other cardiovascular territories based on a posteriori heuristic filtering that allows for separation,

isolation, and quantification of cycle-invariant turbulent-like flows.

Keywords: Hemodynamics, Cycle-Invariant Turbulent-Like Flows, Visualization, Spectral Power Index,10

Fluctuating Kinetic Energy11

1. Introduction12

Hemodynamic forces, particularly wall shear stress (WSS), are thought to contribute to vessel wall13

adaption and remodeling (Malek et al., 1999; Morbiducci et al., 2016). Since direct measurements of these14

stresses are difficult, medical image-based computational fluid dynamics (CFD) (Taylor and Steinman, 2010)15
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has been extensively used in the investigation of vascular pathology. Except for aortic flows with Reynolds16

numbers (Re) in the thousands (Nerem et al., 1972), cardiovascular flows have conventionally been considered17

laminar and stable; however, recent advances in imaging tools, as well as focus on numerical accuracy have18

highlighted the presence of transitional and turbulent-like flows (Valen-Sendstad et al., 2011; Chnafa et al.,19

2014; Valen-Sendstad et al., 2014; Zajac et al., 2015), consistent with experimental evidence (Roach et al.,20

1972; Yagi et al., 2013) and clinical observations (Ferguson, 1970; Kurokawa et al., 1994). The arterial21

stimuli from such turbulent-like flows have been linked, both in vivo (Fry, 1968) and in vitro (Davies et al.,22

1986), to adverse vascular remodeling. However, there appears to be no consensus in the literature on how23

to robustly quantify such turbulent-like flows.24

While methods for decomposing the mean and transient parts of truly turbulent flows are well under-25

stood (Pope, 2000), for pulsatile flows this can only be applied in a phase-averaged sense, for flows with26

instabilities that vary from cycle to cycle (Chnafa et al., 2014; Poelma et al., 2015). Proper orthogonal27

decomposition (Grinberg et al., 2009) is an alternative method that allows for distinction between flow28

phenotypes and higher fluctuating components in cycle-invariant flows. However, the mechanobiological rel-29

evance of hemodynamic stresses reconstructed from high-mode velocity fields requires further investigation.30

Instead, initial ad hoc attempts in the biomedical literature have been focused on analyzes or visualizations31

of 1D velocity-time traces from selected points (Valen-Sendstad et al., 2013; Bozzetto et al., 2015; Varble32

et al., 2016). However, these traces are subjectively placed, provide a limited amount of information, and33

do not allow for additional post-processing or make complete use of the available 3D flow field.34

Conventional hemodynamic WSS-based descriptors like time-averaged WSS and Oscillatory Shear Index35

(OSI) were originally developed for unsteady laminar flow regimes, and thus are not necessarily adequate36

descriptors of turbulent-like flow stimuli. The aim of the current study was to investigate a robust approach37

to quantify and visualize these turbulent-like flows. We propose frequency-based operators, which, analogous38

to Reynolds decomposition, decompose a signal into low- and high-frequency components. We demonstrate39

how this method can be applied to detect, characterize, quantify, and visualize high-frequency instabilities40

of volumetric and surface quantities, focusing on a cerebral aneurysm as a representative example.41

2. Methods42

We took advantage of methods frequently used, e.g., in turbulence research (Pope, 2000), where any43

signal can be transferred from the time domain to the frequency domain. Taking this approach, any heuristic44

filter can be applied to analyze the low versus high frequency components, and (potentially) transfer the45

harmonics back to the time domain for additional analyses and visualization purposes. Analogous to Reynolds46

decomposition, the signal reconstructed from low- versus high-frequencies are comparable to the phase-47

average versus fluctuating components, respectively.48

Figure 1 illustrates this principle where the 1D time-velocity trace in red was decomposed using a high49

pass filter. The low frequency physiological ’carrier’ signal is shown in black, while the high frequency50
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residual is shown in blue, reflecting the ’unphysiological’ fluctuating components. We emphasize that this51

applies to any 1D signal, like velocity, pressure, or WSS trace, but can also be assembled to surface and52

volumetric quantities, respectively.53

Figure 1: Visual representation of a cycle-invariant unstable flow and the of subtraction of the 99% most energy-containing-

frequencies. The inset equation shows the analogy to Reynolds decomposition where Ulo is equivalent of the phase-average

while Uhi is equivalent of the fluctuating component.

Inspired by the harmonic index defined as the fraction of harmonic amplitude spectrum arising from

pulsatile flow component (Gelfand et al., 2006), we defined the spectral power index (SPI):

SPI =

∑+∞
n=nc

|Y [nω0]|2∑+∞
n=1 |Y [nω0]|2

(1)

Where |Y [nω0]| is the magnitude of the Fourier-transformed signal, ω0 is the fundamental angular fre-54

quency of the periodic signal, nc is the harmonic corresponding to the cut-off frequency. To objectively55

determine nc in order to exclude frequencies in the normal physiological range, we subtracted harmonics56

that contained 99% of the energy in the driving flow rate waveform, which resulted in a cut-off frequency57

of nc=25Hz. We emphasize two key differences from the harmonic index by Gelfand et al. (Gelfand et al.,58

2006): i) SPI does not include the pulsatile waveform mean in the denominator, such that summation begins59

from the first harmonic, ii) SPI is based on the power of the signal instead of the energy, to better highlight60

energy content at higher frequencies. SPI is, therefore, a normalised quantity having the desirable property61

of being on the interval [0 − 1]; zero meaning that there are no flow instabilities while the scalar value 162

would reflect a completely unstable flow. Analogous to turbulence kinetic energy (TKE), we also computed63

the time-averaged fluctuating kinetic energy (FKE), defined as:64

FKE =
1

2
(u2

hi + v2hi + w2
hi) (2)
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In contrast to Varble et al. (2016) who used a steady inflow, we here applied eq. (2) to a pulsatile65

waveform where uhi, vhi and whi are the high-pass filtered velocity components and the overline refers to the66

time average. To evaluate the efficacy of frequency based operators, we chose an aneurysm model from the67

open-source Aneurisk database (Aneurisk-Team, 2012). We specified a fully developed Womersley velocity68

profile at the inlet, with a cross sectional mean velocity of .27 m/s (Valen-Sendstad et al., 2015) giving a base69

flow rate of Q = 5.37mL/s with a period of 0.951s. The flow rate was also reduced to .75Q, .5Q, and .25Q to70

demonstrate the onset of flow instabilities. The Vascular Modelling ToolKit (Antiga et al., 2008) was used71

to generate a mesh with four boundary layers that consisted of three million tetrahedron cells, equivalent in72

spatial resolution to the ’Medium’ (HR5) simulations in (Khan et al., 2015), previously demonstrated to be73

sufficient to resolve WSS and OSI.74

Pulsatile CFD simulations were performed using the CFD solver Oasis, taking 10,000 time steps per cy-75

cle. Oasis uses a projection scheme where special care has been taken to maintain a second-order accuracy76

in space and time (Simo and Armero, 1994) to obtain a solution that preserves kinetic energy while mini-77

mizes numerical dispersion and diffusion errors. For details regarding the implementation and order-optimal78

convergence results, we refer to (Mortensen and Valen-Sendstad, 2015). Post-processing was based on 250079

time steps, corresponding to Nyquist limit of 1314Hz. SPI applied to WSS-time traces (SPIWSS) and FKE80

were then compared against nominal descriptors like the WSS normalised to the parent artery (TAWSS)81

and OSI.82

3. Results83

Figure 2 (a) shows the chosen model and velocity magnitude traces in the carotid siphon, middle cerebral84

artery and the aneurysmal sac for 0.25Q, 0.5Q, 0.75Q and Q. While traces for 0.25Q and 0.5Q do not85

feature evident high-frequency fluctuations, the complexity of the traces for 0.75Q and Q are indicative of a86

turbulent-like flow, especially in the aneurysm sac.87

From the corresponding qualitative maps shown in Figure 2 (b), we note only a modest increase in the88

parent artery normalised TAWSS maps with increasing flow rates. Regions of elevated OSI were found89

for relatively stable flows 0.25Q and 0.5Q, but also for turbulent-like flows, 0.75Q and Q. This is reflected90

through the inset traces showing the WSS magnitudes recorded at a location on the sac dome marked with91

a circle. In short, locations of high OSI are relatively unaffected by flow rate; what is affected is their extent,92

but approximately linearly with flow rate. Broadly, these maps indicate that both TAWSS and OSI are93

unable to discriminate laminar from turbulent-like flow stimuli.94

On the other hand, a distinct increase in SPIWSS was observed between 0.5Q and 0.75Q, consistent95

with the appearance of higher-frequencies observed in filtered WSS time-magnitude traces, cf., inset figure.96

Evident from these plots is that SPIWSS is sensitive to flow destabilization and is able to discriminate97

between stable and unstable stimuli. Similar trends were observed for cycle-averaged volumetric FKE maps;98
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Figure 2: A) Chosen model and velocity traces at various locations normalised by the cycle mean. B) The hemodynamic indices

TAWSS, OSI, SPIWSS , and FKE for increasing flow rates.

no FKE is observed for 0.25Q and 0.5Q. However, distinct regions of FKE were observed for 0.75Q and Q,99

correlating with the presence of high-frequency instabilities in the flow.100

Focusing now on quantitative results shown in Table 1, we note that while sac-averaged values of TAWSS101

and OSI increase approximately linearly as a function of flow rate, SPIWSS and FKE show a sharp increase102

between 0.5Q and 0.75Q, correlating with the appearance of high-frequency flow fluctuations. Being primarily103

interested in the differences between 0.5Q and 0.75Q, we observe that SPIWSS showed a 6-fold increase from104

0.5Q to 0.75Q whereas TAWSS and OSI only increased by 20% and 70%, respectively.105

Finally, as shown in the online supplementary material, animation of the high-pass filtered reconstructed106

velocity field better highlights the flow instabilities due to a narrower dynamic range, compared to an107

animation of the complete velocity field.108

4. Discussion109

Although all of the building blocks are well-known, we have described here general frequency-based110

operators for filtering, visualization, and analysis of turbulent-like flow features that can be assembled on111

surfaces and volumes. The concept is readily extendable to cycle-invariant turbulent-like flows of other112

cardiovascular territories, allowing for objective separation, isolation, and quantification of flow instabilities.113
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Table 1: Sac surface- or volume-averaged indices quantifying the marked increase for SPIWSS and FKE, whereas TAWSS and

OSI increase linearly with flow rates and/or time-averaged parent artery Reynolds number.

Flow rate 0.25Q 0.5Q 0.75Q Q

Re [-] 97.5 195 292.5 390

TAWSS [-] 0.46 0.71 0.86 0.91

OSI [-] 0.013 0.024 0.041 0.096

SPIWSS [-] 0.004 0.037 0.220 0.325

FKE [m2/s2] 0 0 0.003 0.011

In addition, this method can also be used for flows harbouring cycle-to-cycle fluctuations to separate inter-114

cycle and intra-cycle variations.115

OSI is frequently argued to be a metric of ’disturbed flow’, and has been demonstrated to be effective (Ku116

et al., 1985) even if incomplete descriptor (Gallo et al., 2016). However, it cannot discriminate slow, unidirec-117

tional oscillatory flow from fast, multidirectional variations, as shown in Figure 2 and discussed in previous118

studies (Peiffer et al., 2013; Valen-Sendstad and Steinman, 2014; Khan et al., 2015). As mentioned in the119

introduction, turbulent-like flows have been linked both in vitro and in vivo to adverse vascular remodel-120

ing. As an example, we previously reported an “intriguing albeit incidental” correlation between TKE and121

aneurysm rupture status (Valen-Sendstad et al., 2013), under steady state inflow. SPI is an example of a122

metric that is reduced to a single number allowing for mapping of hotspots of turbulent WSS under more123

realistic pulsatile flows. SPI could also be integrated volumetrically (e.g., over the aneurysm sac) as a single124

objective marker of unstable flow phenotype. Rank-ordering turbulent-like flows based on SPI is indeed125

possible. That being said, we have only demonstrated this in a single aneurysm case. Furthermore, one126

limitation is that while SPI is a good descriptor of the most ’active’ regions of the WSS, using our exact127

definition one cannot distinguish between various frequencies. Namely, it cannot discriminate low broad-128

band fluctuations from a high narrowband ’spike’, nor does it provide information about which frequencies129

are dominant. One could, however, decompose SPI into frequency bands, which could be used to highlight130

instabilities at different frequency ranges. By definition, if those bands are contiguous, those individual SPI131

would add up to the total SPI. Finally, the cut-off frequency described in the methods was adopted because132

it can be applied objectively to any driving flow waveform, although future biological investigations may133

uncover specific frequency bands of interest, and in a broader sample of vascular applications.134

5. Conclusion135

We have described general frequency-based operators that are easily extendable to other cardiovascular136

territories, allow for easy separation, isolation, quantification and visualization of low Reynolds number137

cycle-invariant transient flow instabilities, based on any signal applicable to all spatial dimensions.138
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