
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network Slices for Vertical Industries / Casetti, CLAUDIO ETTORE; Chiasserini, Carla Fabiana; Deiß, Thomas;
Frangoudis, Pantelis A.; Ksentini, Adlen; Landi, Giada; Li, Xi; Molner, Nuria; Mangues, Josep. - STAMPA. - (2018).
(Intervento presentato al convegno 2018 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW): The First Workshop on Control and management of Vertical slicing including the Edge and Fog Systems
(COMPASS) tenutosi a Barcelona (Spain) nel April 2018).

Original

Network Slices for Vertical Industries

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2697805 since: 2018-01-19T18:14:50Z

IEEE

Network Slices for Vertical Industries
Claudio Casetti, Carla Fabiana Chiasserini

Politecnico di Torino, Italy

Pantelis A. Frangoudis, Adlen Ksentini
EURECOM, France

Xi Li
NEC, Germany

Nuria Molner
IMDEA Networks Institute and Universidad Carlos III

de Madrid, Spain

Thomas Deiß
Nokia Solutions and Networks, Germany

Giada Landi
Nextworks, Italy

Josep Mangues
Centre Tecnologic de Telecomunicacions de

Catalunya, Spain

Abstract—Network Slicing allows to simultaneously support

the specific needs of vertical industries with a diverse range of
networking and computing requirements. Network Functions
Virtualization (NFV) has been defined to deploy multiple
network services on a common infrastructure. We extend the
NFV concept to vertical services, i.e. services implemented on top
of network services and providing the applications of the
verticals. We present a component of the 5G-Transformer
system, named vertical slicer, which acts as the interface to
verticals. The vertical slicer has two main functionalities:
allowing verticals to define vertical services based on a set of
service blueprints and arbitrating among several vertical services
in case of resource shortage.

Keywords—network slicing, vertical service, arbitration

I. INTRODUCTION
Networking slicing is an inherent concept in the definition

of 5G networks. Three slice types are supported: enhanced
mobile broadband (eMBB), ultra-reliable low-latency
communication (URLLC), and massive IOT (mIOT) [1].
There can be several slices of each type and a UE can signal
when establishing a PDU session to which slice this should be
connected. The network functions in a slice can be deployed
differently depending on the requirements of the service. E.g.,
an eMBB core network function, such as a user plane function
(UPF), can be deployed in a central cloud to increase
scalability, whereas for a slice supporting URLLC the UPF
can be deployed in an edge cloud to reduce latencies. For
verticals with different needs different network slices can be
provided for each of the slice types.

To ease operation of the slices this should be automated as
much as possible. Ideally, a vertical itself would define its
vertical service as virtual functions (VF) connected by virtual
links (VL) to a forwarding graph (FG). The virtual links could
again be defined as network services (NS), e.g. as a virtual
evolved packet core (EPC). Once a vertical service is defined,
the vertical should be able to trigger its instantiation on an
infrastructure, monitor it while it is operating, update it, and
eventually terminate it. All these operations should be possible

without detailed knowledge of the infrastructure, service
orchestration, etc. Ultimately, a new service could be rolled
out within minutes or hours as compared to weeks or months
if manual operation is needed.

In this paper we focus on defining services and arbitrating
among them in case of resource shortage, assuming that an
orchestrator and managers for virtual functions and for the
infrastructure are in place. In Section II we present an
overview of the 5G-Transformer system and relate it in
Section III with the ETSI NFV framework. In Sections IV and
V we present the main functionalities of the VS and in Section
VI we presents conclusions.

II. 5G-TRANSFORMER SYSTEM
The 5G-Transformer project [2] explores how network

slicing can help verticals and mobile (virtual) network
operators (M(V)NO), acting as customers, to deploy their
services more quickly. The system also allows providers to
share the 5G mobile transport and computing infrastructure
efficiently among verticals and M(V)NOs. We envision a
system consisting of three major components: vertical slicer
(VS), service orchestrator (SO) and mobile transport and
computing platform (MTP), see Figure 1.

The VS is the common entry point for all verticals into the
5G-Transformer system, being part of the operating and
business support systems (OSS/BSS) of the administrative
domain of a given provider. The VS coordinates and arbitrates
the requests for vertical services. Vertical services are offered
to the verticals through a high-level interface focusing on the
service logic and needs of vertical services. It allows
composing vertical services from a set of vertical-oriented
service blueprints, which along with instantiation parameters
will result in a vertical service instantiation request. Then, the
VS maps descriptions of vertical services and requirements at
the vertical application level onto a network service descriptor
(NSD), which is a service graph composed of a set of V(N)Fs
chained with each other and fine-grained instantiation
parameters (e.g., deployment flavor) that are sent to the SO.

The SO [3] provides end-to-end orchestration of services
accross multiple administrative domains. It receives requests
from the VS or directly from the M(V)NO. Depending on the

This work has been partially funded by the EU H2020 5G-Transformer Project
(grant no. 761536). * Corresponding author email: thomas.deiss@nokia.com

use case, both network service (NFV-NSO) and resource
(NFVO-RO) orchestration may be used for both single and
multi-domains [6]. In turn, based on the request, the SO may
decide to create a new network slice instance or to reuse one
previously created by the provider to be shared. Therefore, it
manages the monitoring and allocation of virtual resources to
network slices, be it for vertical services or for network
services of an M(V)NO. If needed (e.g., not enough local
resources), the SO interacts with the SOs of other
administrative domains (federation) to take decisions on the
end-to-end (de)composition of virtual services and their most
suitable execution environment. Even if a service is deployed
across several administrative domains, e.g., if roaming is
required, a vertical still uses one VS to access the system, and
so, the SO hides this federation from the vertical. The NFVO-
RO functionality of the SO handles resources coming from the
local MTP (real or abstracted) and from the SOs of other
administrative domains (abstracted). The orchestration
decision for creating or updating a network slice includes the
placement of V(N)Fs over such virtual networks with virtual
nodes and links, as well as the resources to be allocated. The
SO will then request the MTP to create the slice instance.

The MTP [4] is responsible for orchestration of resources
and the instantiation of V(N)Fs over the infrastructure under
its control, as well as managing the underlying physical
mobile transport network, computing and storage
infrastructure. The computing and storage infrastructure may
be deployed in central data centers as well as distributed, as in
Multi-Access Edge Computing (MEC) [5]. The MTP provides
support for slicing, enforces slice requirements coming from
the SO and provides physical infrastructure monitoring and
analytics services. Depending on the use case, the MTP may
offer different levels of resource abstraction to the SO via the
MTP resources abstraction component, which in turn forwards
the SO requests to the right entity accordingly (as single point
of contact): VIM/WIM, VNMF or PNF, or NFVO [6].
1) Case 1: the MTP exposes virtual resources and the

possibility to instantiate entire VNFs through the VNFM.
2) Case 2: the MTP exposes PNFs that can be just

configured but not instantiated (e.g. a physical BTS). At

the VIM/WIM level the MTP just instantiates virtual
resources related to networking.

3) Case 3: the MTP abstracts an entire network service to the
SO and it takes care internally about how to orchestrate it,
through the NFVO – VNFM - VIM/WIM stack.

III. VERTICAL SLICER IN RELATION TO ETSI NFV
In the ETSI NFV architecture [6] the VS acts as a client of

the NFV orchestrator (NFVO), where NFVO functionalities
can be mapped onto the SO component. The VS can be
considered as an internal function of the OSS that helps the
vertical to request and manage its services, mediating the
interaction with the NFV-MANO platform. The two main
algorithmic blocks that we envision within the VS are the NSD
selector and the arbiter.

The VS provides the vertical with an interactive interface
to access a service blueprints catalogue and a programmable
interface that simplifies the instantiation, monitoring and
operations of services, using a technology- and resource-
independent information model. The NSD selector within the
VS translates these requests into lifecycle actions to be
performed on less abstract entities that can be described in
terms of ETSI NFV Network Services (NFV-NS). The
original service descriptor, based on application level
requirements, is thus mapped to a NFV-NS descriptor (NSD)
selected from the catalogue shared between VS and SO. The
NSD format follows the specification of Network Service
Templates [8], where the Network Service is defined in terms
of VNFs and/or physical network functions (PNF), virtual
links among them and VNF Forwarding Graphs (VNFFG) for
traffic steering. Similarly, VNFs are described following the
VNF Packaging Specification [13]. In terms of language, both
YANG or TOSCA models can be adopted to formally describe
the NSD and VNFD information models. The related work is
currently in progress in ETSI NFV.

In the mapping between service descriptor and NSD, the
application level requirements are translated in a resource-
centric view (e.g. number of VNF instances, vCPU and RAM
of a VNF instance, QoS properties of a virtual link, etc.). The
resource-related aspects of the service are then managed
entirely at the NFVO in the SO, without the need to know the
details of the service logic that is kept hidden at the VS level.

The interface between VS and SO relies massively on the
modelling of the Os-Ma-Nfvo reference point [14]. This
interface is used by the VS to request the instantiation and
termination of the NFV-NS instances that implement the
services requested by the verticals. The VS can also request
additional operations during the lifecycle of an NFV-NS
instance, when triggered by service level events like an SLA
update, the need to share an existing NFV-NS instance with a
new vertical service or potential conflicts among several
services belonging to the same vertical and competing for a
limited set of resources declared in the SLA. The arbiter
component arbitrates among services competing for resources.

The decisions of the VS to request operations on the NFV-
NS instances may involve the reconfiguration of VNFs or
VNFFGs or the scaling of VNFs, but still within the limit of
the configurable parameters and maximum/minimum number

So‐So
SO

Administrative domain 1
across multiple technology domains (TDs)

OSS/BSS
VS

Vertical’s OSS/ BSS
Oss‐Vs

Vs‐So

So‐Mtp

SO
Single‐/Multi‐

domain
NFVO‐NSO

Single‐/Multi‐
domain
NFVO‐RO

MVNO’s OSS/ BSS

Os‐Ma‐nfvo

SO

Administrative domain 2
across multiple technology domains (TDs)

OSS/BSS
VS

Vertical’s OSS/ BSS
Oss‐Vs

Vs‐So

So‐Mtp

SO

MVNO’s OSS/ BSS

Os‐Ma‐nfvo

Federation

MTP Resources
Abstraction

MTP

VIM/WIM

TD 1‐1 TD 1‐2 TD 1‐3

NFVO
VNFM

VIM/WIM VIM/WIM

PNF
VNFM

MTP Resources
Abstraction

MTP

VIM/WIM

TD 2‐1 TD 2‐2 TD 2‐3

NFVO
VNFM

VIM/WIM VIM/WIM

PNF
VNFM

Single‐/Multi‐
domain

NFVO‐NSO

Single‐/Multi‐
domain
NFVO‐RO

Figure 1: 5G-Transformer basic system architecture

UE
UEUE

Application
Server (AS)
Application
Server (AS)

LTE‐Uu MTC‐AAA

RAN+EPC

network service

vertical service

Figure 3: Vertical service blueprint to collect sensor data

of VNF instances and sizes declared in the VNF descriptors.
However, this kind of decisions is triggered by service-related
events only. On the other hand, resource-related decisions, like
scaling out due to high usage of the vCPU in a VNF, should
be fully delegated to the SO. This delegation is usually
described in the NSD as a list of “Auto Scaling Rules”. The
rules are based on values of virtual resource performance
metrics and VNF indicators that the SO needs to monitor,
interacting with the virtual infrastructure managers (VIM) or
the VNFs (through their VNF manager (VNFM)), resp.. The
format of these rules is still under specification in ETSI NFV.

The same Os-Ma-Nfvo reference point is also used to
exchange monitoring information between SO and VS. The
list of monitoring parameters to be collected at the SO is
specified in the NSD and VNFD, for NFV-NS and VNF
instances respectively. Part of this monitoring data can be used
internally within the SO, e.g. as input for the auto-scaling
decisions based on resource related considerations. However,
the VS may also request to receive monitoring data,
aggregated at the NFV-NS level, using on-demand queries or
subscriptions for threshold-based events. The Os-Ma-Nfvo
provides two dedicated interfaces for monitoring issues. The
NS performance management interface is used for reports and
notifications about performance information, while the NS
fault management interface is used for notifications or queries
of NSs or VNFs related alarms.

IV. VERTICAL SERVICE DESCRIPTION
The 5G-Transformer considers vertical services from the

automotive, eHealth, and entertainment domains. The vertical
services have different requirements e.g. regarding bandwidth,
latency, and availability. In addition to the requirements on the
services themselves, there are requirements on the interaction
among the verticals and the 5G-Transformer system, e.g. the

possibility to define a priority for a vertical service or to define
a common resource budget for several services of one vertical.

Network services are defined as sets of virtual network
functions and endpoints, connected by virtual links.
Conceptually, VNFs perform network functionality, either in
the control or data plane, see [7]. A vertical service is similar
to a network service, just relaxing the conceptual restriction of
VNFs to networking functions. In a vertical service the virtual
functions may perform arbitrary functionality in the
application domain. A vertical service may also include the
end user devices or applications within them. E.g., in a vertical
service in the automotive domain, applications within a
vehicle may be part of the service. The end user devices or
applications can be considered as physical or virtual functions.

Vertical services can be described as networking services
by service descriptors. To ease the definition of vertical
services for the verticals we propose a catalogue of service
blueprints, from which a vertical can select a suitable blueprint
for its service, provide missing details, and let the VS turn this
into a service descriptor, which would then be used by the SO
for actual deployment of the service, see Figure 2.

A vertical may also request a network slice, i.e. a set of
resources, which it manages and orchestrates on its own. Also,
a MNO or MVNO may define directly a network service. Both
use cases are within the scope of the 5G-Transformer project,
but are not covered in this paper, in which we focus on the
definition of a vertical service by a vertical.

As an example of a vertical service, consider a service to
collect monitoring data of sensors in a production plant. The
monitoring data is collected via LTE. The vertical service
consists of the sensors, an application server (AS) to collect
the monitoring data, and an AAA server to control whether a
sensor is granted access to this service. See the diagram in
Figure 3. These functions are connected with a network
service with 3 endpoints. This network service represents an
LTE radio access network (RAN) and EPC.

We plan to describe vertical services in a similar way as
network services, using ETSI NFV NSDs [8], or an extension
thereof. NSDs might also be expressed in TOSCA [9]. Both
notations have been investigated in literature already. [10]
proposes a model to describe network services for VNF
orchestration leveraging SDN interfaces, which uses ETSI
specifications for NFV orchestration and business features
between consumers and providers. [11] uses TOSCA notation
in OpenStack to orchestrate the deployment of multi-cloud
applications by introducing an architecture for the

Vertical Vertical Slicer (VS)

Catalogue request
List of blueprints

Service
Orchestrator (SO)

} Repeat for each
(in) parameter

Onboard NSD Request

Create NSI request()

Activate NSI request(id)

Create NSI reply(id)

Instantiate Service
Request

Activate NSI reply(id)

Monitoring Request

Figure 2: VS workflow

development of multi-component applications across federated
cloud providers. [12] uses the ETSI notation to create NSD
templates which considers the requirements of tenants and
presents an environment to generate NSDs automatically.

The diagram in Figure 3 can be considered a service
blueprint, as it still lacks information to be provided by the
vertical. Most importantly, it lacks the information which
virtual machine image is to be used as application server.

A vertical service blueprint is a parameterized vertical
service descriptor, with a wide range of possible parameters.
These parameters are used to express requirements of the
vertical service, but also management related parameters such
as file locations of virtual machine images or the priority of a
service. A subset of parameters to express requirements, based
on a use case analysis of 5G-Transformer are:

x Bitrate of VFs and the connecting links.

x Number of UEs and their traffic volume.

x One-way latency or round-trip time (RTT) among two
VFs or a VF and an endpoint.

x Geographical area to be covered by the vertical service,
i.e. the location of UEs.

Note, these parameters are different to the parameters
which can be given to VNF instances at instantiation time
[13]. Such a parameter could be the IP address of an element
management system of the vertical, to which the MTC-AAA
and the application server connect, whereas here we are
interested in parameters defining the service itself

The actual values for the parameters in the blueprint are
mapped by the VS to a complete service descriptor. This
service descriptor is passed to the SO with the usual
operations at the Os-Ma-Nfvo reference point [14]. In the
sensor data collection example these parameters could be
mapped as follows:

x The bitrate of the AS is mapped to a bandwidth
requirement of a corresponding virtual link.

x The number of sensors and the message rate is mapped
to the necessary amount of processing cores for the AS.

x One-way latency or RTT are not relevant in this
specific example. For other vertical services, e.g.
remote control applications, this information can be
used by the SO in placement decisions for VFs.

x The geographical area is used by the SO to decide
which eNbs are needed for this service and need to be
connected to the AS and MTC-AAA server.

x The virtual machine image, or a link to it, of the AS
and the MTC-AAA server are needed for later
instantiation by the SO.

x The priority information is used by the arbitration
function of the VS itself, see Section V, to prioritize
among vertical services in case of resource shortage.

 We present further examples of parameters and how the
system could use them with a second use case, which is

related to media distribution and provides a content delivery
network (CDN) as a service. In this example, a vertical wants
to deploy an eMBB CDN service for HD video distribution to
mobile users in several geographically distributed regions.

A CDN service includes virtual components which fall
into two main categories: (i) Network-level services, and (ii)
application services. Network-level services are related with
network connectivity and virtual computation and storage
resources, and include RAN-level VNFs, e.g. vEPC.
Application services implement the CDN service logic and
involve virtual (network and other) functions, such as content
provider and end user interface modules, origin servers, DNS
resolvers, request redirection services, caches and content
management systems, media transcoders, service-level
monitoring components, and others.

The vertical can create a CDN service definition by putting
together virtual functions and network services made available
by an operator. The resulting vertical service definition
includes specific requirements. The service description is used
eventually for service dimensioning and placement decisions,
such as which user-plane functions to place at the edge, how
much storage space and vCPU resources to allocate per
cache/video server, and how much capacity to allocate to
virtual links as a function of the targeted end user demand per
region. Some input parameters and how they are used are
described in the following:

x Targeted regions: Passed by VS to SO to decide to
which MEC hosts or points of presence (PoP) cache
instances are deployed to.

x Minimum, maximum, and average number of UEs and
video streams per region: used by VS in bandwidth
definition of links, definition of cores needed.
Information on streams per region is also passed to the
SO for allocation of cache and video server instances.

x Video resolution and required quality of experience:
same as number of UEs and video streams before.

x Minimum service availability: used by the VS to map
to different numbers of VNFs as replicas.

x Content origin server information: launch-time
configuration of caches to appropriately retrieve
content from the vertical’s external content servers.

The above input to the VS is also relevant for CDN-service
runtime management and arbitration, see Section V. Such
decisions cannot typically be taken autonomously by the SO,
given that the SO is agnostic to service-specific functionality.
At service instantiation time, the VS defines monitoring
parameters to be collected by the SO at the resource level and
by specialized VFs operated by the VS at the service level.
Such VFs are responsible for translating the monitoring data
collected to CDN-specific service management actions. For
example, the radio network interface service (RNIS) service
[16] exposed by the MEC platform can convey per-UE radio
channel quality measurements. These can be translated to
specific achievable data rates, and can be used as input to
estimate the QoE enjoyed by each user for video content with
specific characteristics, without needing direct access to the

UE platform and application. Combined with the minimum
QoE threshold defined by the vertical, and with awareness of
the current infrastructure conditions (at the MTP level) as
reported by the SO, user-perceived service quality can be
estimated, and the root causes of potential QoE degradation
can be identified (e.g., poor radio conditions vs. increased
workload on specific cache instances). The function
responsible for this decision can then either signal the VS
arbiter to reconfigure the NSD, with the latter, in turn,
requesting the SO to scale out specific VNF instances, or it
can instruct the Traffic Rules Control MEC service to redirect
traffic for specific users to a transcoder instance running on
the edge (pass-through traffic offloading mode) to reduce the
video bitrate to match the current channel conditions.

As illustrated by these examples, the parameters provided
by the vertical are used in different ways; some can be mapped
directly into parameters of the service descriptor, some are
mapped to different choices of network services or network
service flavors, and some are passed to the SO, e.g. for
placement decisions. Blueprints may refer to other VNFs or
NSs, e.g. the vEPC in the sensor data example. The VS
expands refered VNFs or NSs in a blueprint definition to a
completely described network service. In Figure 4 the EPC
part has been expanded as defined in [15]. For the sake of
brevity we omitted the expansion of the RAN part, i.e. the
eNBs, as well as the expansion of an element management
system for the VNFs in the EPC.

Complementing the expansion of referenced VNFs or NSs,
the SO can provide a number of basic VNFs or NSs to which
the VS could refer.

The expanded service descriptor, including the mapping or
translation of the parameters of the blueprint, is passed to the

SO for the actual orchestration of the service. The initial
interaction of the vertical with the vertical slicer is depicted in
Figure 2. Once the network service has been instantiated, the
VS may request monitoring of the service instance and may
use this information in arbitration, see Section V.

So far, we have considered parameters of blueprints, for
which the values are provided by the vertical. But we envision
also the need for out parameters, i.e information provided by
the VS to the vertical. As an example, when instantiating a
sensor monitoring service, the SO should return, via the VS,
the 5G network slice selection assistance information (NSSAI)
or the 4G dedicated core network identifier, i.e. a slice
identifier at the air interface, to the vertical. The vertical may
then use this value to configure the sensors.

V. NSD SELECTION AND ARBITRATION AMONG SERVICES
The NSD selector takes care of mapping the vertical

service blueprint into the appropriate NSD. As mentioned in
Section IV, the selected NSD will define the VNFFG,
deployment flavors and possibly other VNF and VL attributes
that meet the vertical’s requirements. Such a decision may
also account for the performance metrics monitored by the SO
and reported to the VS. The arbiter instead arbitrates among
services (namely, NSDs) that compete for resources. There are
two scenarios where a vertical may not get as many resources
as needed. Firstly, no more resource of a specific type is
available. Secondly, a vertical may have a resource budget
across several of its resources and this budget is exhausted. In
both cases, the VS arbitrates resources among services
requested by the same or by different verticals in order to meet
the desired SLAs while not exceeding the resources available
or the budget assigned to the vertical.

GGSN/
P‐GW

SMS‐SC
GMSC/
IWMSC

T4

S6m

Rf/Ga

Um/
Uu/

LTE‐Uu

MTC UE
Application

MME

Gi/SGi

SGSN

S‐GW

UE

MSCRAN

T6a

T6b

HSS

Tsms

Application
Server
(AS)

IP‐SM‐GW

CDF/
CGF

SME

MTC‐IWF

MTC
AAA

S6n

E

SGd

Gd

SCEF

S6t

SGs

Figure 4: vertical service expanded to network service descriptor

As an example, consider an automotive vertical requesting
both a vehicle Overtaking Assist Service (OAS) and an
Improved Mobility Service (IMS). OAS provides a driver with
the occupancy state of the road ahead, while IMS provides a
driver with a synthetic vision of a, possibly far-away
geographical area so that the driver can become aware of the
traffic conditions therein. Both can exploit either videos or
Cooperative Awareness Messages (CAMs) sent by
neighboring vehicles, i.e., they can work in either video- or
CAM-mode. While working in the same mode, the two
services may share the same VNFFG, or portions of it;
however, OAS has typically higher priority than IMS. Hence,
the VS will select two different NSDs for the two services,
one allocating computational capacity with higher-priority to
the composing VNFs than the other, to ensure that OAS has
lower latency and higher reliability. The logic of priorisation
is encoded by the VS into the NSDs as far as possible, such
that the SO can autonomously and coherently scale the
resources allocated to the two services if needed. Similarly, we
expect the SO to migrate VNFs to other less-utilized VNFI-
PoPs when appropriate and without having to contact the VS.

However, when an emergency occurs in a geographical
area, it becomes important to deliver the IMS to all vehicles
approaching the area, while overtaking assistance becomes
less critical. This causes a swap of the priority levels
associated to the two services: accordingly, the VS arbiter will
have to update the NSD of OAS and IMS, and request an NSD
update to the SO. In particular, the maximum/minimum
number of VNF instances and sizes declared in the VNF
Descriptors, as well as the “Auto scaling rules” defined in the
NSD can be changed in favor of the IMS [14].

 Consider now the aforementioned OAS and IMS and
assume that the network radio segment is congested due to
high vehicle density. In this case, it would be advisable to
switch the lower priority service, say IMS, from video-mode
to CAM-mode, i.e., to exploiting the vehicles’ CAMs instead
of the output of vehicle cameras so that no video has to be
transferred over radio links. In other words, the VS should
update the IMS VNFFGs by terminating some VNFs and
adding others. Again, by using the Os-Ma-Nfvo interface [14],
the VS arbiter can request the SO to put in place these
operations. Conversely, if a specific resource is no longer
scarce, the VS can relax or remove previously imposed
restrictions and inform the SO about the new settings.

 The above actions can be realized by the VS only if the
SO alerts the VS about resource shortage and, in case of a
resource shortage, which parts of a vertical service is using
these resources. Monitoring and reporting by the SO are
therefore fundamental operations that need to be implemented.
The ETSI framework in [8] foresees that the NSD itself
supports the capability to provide the SO with monitoring
parameters to be tracked during the lifetime of an NS instance.
Specifically, the VS can define the performance metric of
interest and the VNFs, or other virtual resources, for which
they should be reported.

The 5G-Transformer project will identify the monitoring
parameters to be reported by the SO to the VS for different
vertical services, and will extend the Os-Ma-Nfvo interface

when needed. Importantly, for each vertical service, it will
define the monitoring mode to implement, to be selected,
among, e.g., periodically, threshold-based, and query-based.
Additionally, the project will devise and evaluate techniques
to establish when arbitration at the VS should be triggered. On
this regard, it should be noted that resolving resource shortage
is in the order of seconds. Therefore the SO has to trigger the
VS before all resources are used up: e,.g. triggering the VS
when 90% of a specific resource is in use, would still allow
high-priority services to be scaled out quickly enough.

VI. CONCLUSION
In the paper we presented the VS and its main

functionalities, mapping service descriptors and requirements
on services to network service descriptors and arbitrating
among services. Tthe VS can use the services provided by the
SO through the interfaces at the Os-Ma-Nfvo reference point,
although we expect that some extensions are needed, e.g. in
case of resource shortage to indicate which resource has been
used by which part of a service. We plan to extend the VS to
cases, where the vertical request more control over the
network services or even requests a network slice. In this case
the vertical is expected to orchestrate the service and the VFs
on its own.

REFERENCES

[1] 3GPP TS 23.501, v1.2.0, System Architecture for the 5G-System.
[2] 5G-transformer.eu
[3] Xi Li et.al., Service Orchestration and Federation for Verticals,

submitted to ComVert18
[4] P. Iovanna et.al., 5G Mobile Transport and Computing Platform for

verticals, submitted to ComVert18
[5] ETSI MEC, [Online], http://www.etsi.org/technologies-

clusters/technologies/multi-access-edge-computing
[6] ETSI GS NFV-MAN 001, V1.1.1, Management and Orchestration, 2014
[7] ETSI GS NFV 002, V1.2.1, Architectural Framework, 2014
[8] ETSI GS NFV-IFA 014, V2.3.1, Management and Orchestration,

Network Service Templates Specification, 2017
[9] Topology and Orchestration Specification for Cloud Applications

Version 1.0. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

[10] F. Paganelli, F. Paradiso, M. Gherardelli, G. Galletti, “Network service
description model for VNF orchestration leveraging Intent-based SDN
Interfaces”, Conf. on Network Softwarization (NetSoft), Bologna, 2017,
IEEE

[11] G. Tricomi, et.al., “Orchestrated multi-cloud application deployment in
OpenStack with TOSCA”, Conf. on Smart Computing (SMARTCOMP),
Hong Kong, China, 2017 IEEE

[12] S. Mustafiz, N. Nazarzadeoghaz, G. Dupont, F. Khendek, M. Toeroe “A
Model-Driven Process Enactment Approach for Network Service
Design”. In: Csöndes T., Kovács G., Réthy G. (eds) SDL 2017: Model-
Driven Engineering for Future Internet. LNCS 10567. Springer

[13] ETSI GS NFV-IFA 011, V2.3.1, Management and Orchestration, VNF
Packaging Specification, 2017

[14] ETSI GS NFV-IFA 013, V2.3.1, Network Functions Virtualisation
(NFV) Release 2; Management and Orchestration; Os-Ma-Nfvo
reference point - Interface and Information Model Specification, 2017.

[15] 3G-PPP GS 23.682, V15.1.0, Architecture enhancements to facilitate
communications with packet data networks and applications

[16] ETSI GS MEC 012 V1.1.1, Mobile Edge Computing (MEC); Radio
Network Information API, July 2017.

