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Abstract—This paper presents a metamodel based on the
sparse polynomial chaos approach, well adapted to high-
dimensional uncertainty quantification problems, applied for the
analysis of crosstalk in printed circuit board microstrip traces. It
enables to estimate, with a low computational cost compared to
Monte Carlo (MC) simulation, statistical quantities and provides
a sensitivity analysis of the crosstalk effects considering numerous
uncertain variables. The approach is validated against MC
simulation and shows a good efficiency and accuracy.

Index Terms—Circuit design, crosstalk, high dimensional prob-

lems, polynomial chaos, printed circuit board, sensitivity analysis,

transmission lines, uncertainty quantification.

I. INTRODUCTION

Due to the increasing impact of variability in electronic

devices, the assessment of uncertainties effect is becoming a

major challenge. Indeed, the design phase of circuits should

allow to take into account uncertain parameters, such as the

temperature variations, intrinsic characteristics of materials,

geometrical tolerances, since they may generate a large vari-

ability of output signals.

Since a few years, research studies have investigated the

computation of several statistical quantities, providing an

estimation of the central tendency [1]–[3] and/or a risk analysis

[4]–[9] of a response depending on uncertain parameters.

For example, various techniques based on polynomial chaos

(PC) allow to efficiently estimate statistical moments and

distribution functions for the analysis of signal and power

integrity in high-speed interconnects [10]–[12]. These ap-

proaches aim at replacing a numerical model (which can be

computationally expensive), from a limited set of its evalua-

tions, by a metamodel (i.e. an analytic function) in order to

predict the observed response. However, when the size of the

problem increases, i.e. with a large number of uncertain input

parameters, these techniques show some limitations since the

number of computations of the numerical model blows up.

This paper introduces then an approach based on the sparse

PC [13], aiming at substituting a numerical model in the

context of high dimensional problems. First, the technique

is presented in Section II. Next, an application case of a

transmission line network with coupled lines is given in

Section III. Finally, the results obtained by the sparse PC

metamodel are given and discussed in Section IV.

II. SPARSE POLYNOMIAL CHAOS REPRESENTATION

A. Introduction

Let X be a random vector of joint PDF fX(x), including

M random variables (X1, . . . , XM ) assumed to be indepen-

dent and representing the uncertain input parameters of the

problem. Let Y = M(X) be the random response (supposed

scalar) of a numerical model M describing the physical

system. Assuming that the random response Y has a finite

variance, it may be written as [14]:

Y =
∑

λ∈NM

aλΦλ(X), (1)

where the aλ’s are unknown deterministic coefficients and

the Φλ’s represent a basis of multivariate polynomials, which

are orthonormal with respect to the joint PDF fX(x), i.e.

E [Φλ(X)Φβ(X)] = δλβ, with δλβ = 1 if λ = β and 0

otherwise. In practice, families of orthonormal polynomials

are associated in terms of probability distributions of input

random variables.

B. Classical Truncation Scheme

Let X = {x(1), . . . ,x(n)} be a set of realiza-

tions of X , called experimental design (ED), and Y =
{M(x(1)), . . . ,M(x(n))} be the associated set of model

response quantities.

Using a set of the model evaluations Y , the coefficients of

the PC representation may be estimated by using non-intrusive

techniques. Among these techniques, the ordinary least square

regression [15] may be employed. It relies on the choice of

a truncation set, i.e. A = {λ0, . . . ,λl−1} ⊂ N
M , containing

the multi-indices of the basis of the remained polynomials

{Φλ0
, . . . ,Φλl−1

}.

The common truncation strategy used in the PC expansion,

retains the polynomials of the basis having a total degree less

than or equal to l, i.e. the truncation set AM,l = {λ ∈ N
M :

‖λ‖1 =
∑M

i=1 λi ≤ l}. With this strategy, the number of

coefficients maintained, i.e. L = (M+l)!
M !l! , blows up for large

values of M and l. To reduce the number of terms aλ to

estimate (and so the computational cost of the model M), an

improved truncation scheme is then introduced [13].
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C. Improved Truncation Scheme

The scheme of the classical PC approximation consists in

retaining the L terms contained in the finite set AM,l. An

improved truncation scheme [13] based on k, 0 < k < 1, is

given by:

AM,l,k = {λ ∈ N
M : ‖λ‖k =

(

M
∑

i=1

λk
i

)1/k

≤ l}. (2)

This truncation strategy favors the main effects and low-

order interactions, which mainly impact the response quantity

according to the sparsity-of-effects principle [16]. It is worth

noting that the lower is k, the more high-rank interactions will

be neglected. Moreover, when k = 1, this scheme is equivalent

to the classical PC approximation defined by the truncation set

AM,l. When k < 1, the remaining terms of the polynomial

basis can be significantly reduced compared to L [13].

D. Adaptive Technique based on Least Angle Regression

The improved truncation strategy allows to represent the

response quantity by a sparse PC approximation. However,

the obtained number of terms of the polynomial basis may be

even more reduced by using a variable selection algorithm,

such as Least Angle Regression (LARS) [17].

This method is often used in statistics to deal with high

dimensional problems, i.e. when the number of input random

variables is large. It is a regression technique allowing to select

the variables having the most impact on the model response

Y . A sparse PC representation is then built, containing a small

number R of terms compared to the full approximation, lead-

ing to the sparsity index S = R
L . However, the identification of

an efficient number of polynomials basis in the truncation set

AM,l may be difficult. Thus, an adaptive technique allowing to

adjust the truncation set is employed. It consists in evaluating

a range of degrees l, and then retaining the best one from the

leave-one-out error ǫLOO. This error criterion, often used in

machine learning, is based on a cross validation technique. It

is computed a posteriori without additional model evaluations.

It allows to represent quite properly the response Y by a

regression model while avoiding the over-fitting phenomenon

[13]. It can be written as

ǫLOO =

∑N
i=1

(

M(x(i))−MPC
−i (x

(i))
)2

∑N
i=1

(

M(x(i))− 1
N

∑N
i=1 M(x(i))

)2 , (3)

where MPC
−i (x

(i)) are N metamodels built up on the ED X \
x(i) = {x(q), q = 1, . . . , N, q 6= i}. From a range of degrees

l, the adaptive technique selects the one minimizing the error

ǫLOO. In the following, the quality of the metamodel will be

computed via the Q2 coefficient defined by Q2 = 1 − ǫLOO,

0 ≤ Q2 ≤ 1. Note that larger is Q2, the better is the prediction

of the metamodel built up.

E. Post-processing

Once the coefficients of PC expansion are obtained, it is

possible to carry out a post-processing at a negligible cost to

evaluate a quantity of interest. For example, the orthonormality

+
−
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Fig. 1. Transmission line network with coupled microstrip traces and
associated line cross section.

of the basis allows to obtain directly the expectation and the

variance of the response Y from the coefficients:

E [Y ] = a0 (4)

V [Y ] =
∑

λ∈A\{0}

a2λ (5)

In addition, it is also possible, at a lower cost, to estimate the

so-called Sobol’ sensitivity indices [18] aiming at quantifying

the impact of input uncertainties on the output variability. For

instance, the total sensitivity indices allowing at estimating the

global effect of the random variable Xi on the model response

Y , can be estimated by [19]:

ST,i =

∑

λ∈AT,i
a2λ

V [Y ]
(6)

where AT,i = {λ ∈ A : λi 6= 0}.

III. TRANSMISSION LINE NETWORK WITH COUPLED

LINES

In this section, a lossless transmission line network illus-

trated in Fig. 1, is considered to evaluate the impact of input

uncertainties on signal propagation. The structure is extracted

from [11], but the size has been raised. The transmission line

network is fed by a sine wave voltage source with a magnitude

of 1 V and sweeping the frequency band [100 MHz - 10 GHz].

The segments of coupled microstrip transmission line have

a mean length of 3 cm. The randomness of the structure is

provided by all RLC components, and all parameters of the

cross section, i.e. copper trace widths w, trace thicknesses t,

trace-to-trace separation d, substrate dielectric relative permit-

tivity εr and substrate thicknesses h. This leads to 33 uncertain

parameters, which are considered as uniform random variables

with 20% of uncertainty around their nominal values given in

Fig. 1.

In this study, we are interested in estimating the far-end

crosstalk voltage V12b in the transmission line network. We

aim at building a sparse PC metamodel of the voltage V12b

in order to reduce the computational cost of the numerical

model. Moreover, we provide a hierarchization of uncertain

input parameters with respect to their influence on the voltage

V12b.

IV. NUMERICAL RESULTS AND DISCUSSION

The statistical results given in this section have been ob-

tained via the UQLAB toolbox (Uncertainty Quantification

toolbox in MATLAB) [20].
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Fig. 2. Evolution of the Q2 coefficient of the sparse PC metamodel over
the frequency band [100 MHz - 10 GHz].

A. Metamodeling by Sparse PC

In order to study the impact of uncertain input parameters,

we consider the crosstalk voltage V12b over the frequency

band [100 MHz - 10 GHz]. We build a sparse PC with

200 realizations from Latin Hypercube Sampling [21] with

an adaptive degree l between 1 and 10. The choice of a

large range of degrees is carried out in order to properly

approximate the voltage V12b at high frequencies, since it can

be particularly irregular in resonance regime. The k parameter

introduced in (2) is set to 0.6. This allows to obtain a reduced

number of polynomial basis coefficients while providing a

good approximation of the model response.

The coefficient of quality Q2 (see Section II) of the sparse

PC in the frequency band [100 MHz - 10 GHz], is illustrated

in Fig. 2. We observe that the coefficient Q2 is very close to

1 from 100 MHz to 1 GHz, and then from 1 GHz to 10 GHz,

it oscillates between 0.8 and 1. This shows that the quality

of the sparse PC metamodel in the frequency band [100 MHz

- 1 GHz] is very high, while it decreases somewhat over the

frequency band [1 GHz - 10 GHz]. This may be explained

by the strong variability of the voltage V12b in the resonance

domain. In order to illustrate it, we compare in Fig. 3 the

predictions of the sparse PC metamodel MPC(x(i)) (circles)

and the evaluations of the numerical model M(x(i)) (solid

line) with 3 realizations from MC simulation. As expected,

we observe a very good agreement between the two curves,

despite small differences between 1 GHz and 10 GHz, related

to the resonances of the voltage V12b. Indeed, we see that

the behaviour of the voltage V12b is rather smooth over [100

MHz - 1 GHz], and becomes irregular over [1 GHz - 10 GHz]

with resonance peaks. This explains the variation of the Q2

coefficient in Fig. 2 in this last frequency band.

We now choose to illustrate the accuracy of the sparse PC

metamodel in low and high frequency domain, e.g. at the

frequencies of 100 MHz and 9.1 GHz, for which Q2
100 MHz =

99.97% and Q2
9.1 GHz = 95.42%. Thus, we represented, by

means of 10000 MC realizations, the PDF’s of the crosstalk

voltage V12b obtained by sparse PC (red dashed-line) and by
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Fig. 3. Evolution of the crosstalk voltage V12b in the frequency band [100
MHz - 10 GHz]. From a set of 3 realizations obtained by MC simulation,
the crosstalk voltage V12b is computed by the sparse PC metamodel MPC

(circles) and by the numerical model M (solid line).

MC simulation (black solid line) at the frequencies of 100

MHz and 9.1 GHz in Fig. 4(a) and Fig. 4(b), respectively.

On the one hand, we observe in Fig. 4(a), a perfect agree-

ment between the two curves confirming a high quality level

of the sparse PC metamodel at 100 MHz. The estimation of

the mean and the standard deviation of V12b given by sparse

PC and MC simulation are very close, i.e. µPC = −48.46 dB,

σPC = 2.20 dB and µMC = −48.47 dB, σMC = 2.21 dB,

respectively. The sparse PC requires an optimal degree equal

to 4, with 78 polynomial basis out of 661 terms of the full

basis, i.e. a sparsity index S = 78
611 = 11.80 %.

On the other hand, we see a slight difference between the

two curves in Fig. 4(b), underlining a less good accuracy of the

sparse PC metamodel at 9.1 GHz. In this case, the difference

between the mean and the standard deviation of V12b computed

by sparse PC and MC simulation is larger, i.e. µPC = −47.85
dB, σPC = 2.48 dB and µMC = −47.82 dB, σMC = 2.72
dB, respectively. The best degree needed by the sparse PC is

6, using 60 terms of the polynomial basis out of 1783 of the

complete basis, leading to a sparsity index S = 60
1783 = 3.37

%.

As expected, we notice at 9.1 GHz, that the sparse PC is

less accurate, and requires a higher optimal degree and thus

a larger number of terms of the full polynomial basis. It is

relevant to point out that the spread of the crosstalk voltage

V12b is more important (σMC = 2.72 dB), underlining a larger

variability of the response model. However, the sparsity index

is lower, although the complexity of the problem increases,

which highlights that the main contribution of the response

variation is explained by a reduced number of terms of the

polynomial basis. Regarding the computational cost associated

to the evaluation of the crosstalk voltage V12b in the frequency

band [100 MHz - 10 GHz], 10000 MC realizations took 65

min, whereas the sparse PC required 4.08 s. The achieved

speed up of the metamodel is about 956 times with respect to

the MC technique.
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Fig. 4. PDF of the crosstalk voltage V12b obtained by sparse PC (red dashed-
line) and by MC simulation (black solid line) at the frequencies of (a) 100
MHz and of (b) 9.1 GHz.

B. Sensitivity Analysis

As mentioned in Section II-E, the sparse PC metamodel al-

lows, at a negligible computational cost, to obtain a sensitivity

analysis of the response model. Thus, we represented in Fig.

5 the total Sobol indices of the crosstalk voltage V12b in the

frequency band [100 MHz - 10 GHz].

We observe in Fig. 5, that the variability of V12b in the

frequency band [100 MHz - 1 GHz] is mainly due to the

substrate thickness h, the trace-to-trace separation d, and with

less effect, to the trace width w and the components RS1,

RS1b, RS6b and RL6b. We notice also, between 700 MHz

and 1 GHz, a slight effect of various components RS3, RS5,

RS3b, RS5b, and RL5b, which appears at frequencies close to

the first resonance peak of 1.5 GHz. In the frequency band [1

GHz - 10 GHz], the variability of the crosstalk voltage V12b is

explained by a larger number of input variables. Among them,

the variable having the main contribution on the variations of

the voltage V12b, is the relative permittivity εr, whose greatest

impact is around 5 GHz and 8 GHz. Several RLC components

Fig. 5. Total Sobol indices of the crosstalk voltage V12b in the frequency
band [100 MHz - 10 GHz].

such as RS1, CL3, RS1b, RS6b, RL6b, L7b and C7b, as

well as the trace width w and the trace-to-trace separation d,

play a significant role on the variability of V12b. The rest of

input variables have a little or no influence in this frequency

band. It is also interesting to point out that the number of RLC

components impacting the variability of the crosstalk voltage

V12b, is much more important in high frequency regime than in

the frequency band [100 MHz - 1 GHz]. This is related to the

resonance regime of the transmission line network illustrated

in Fig 3, which is more sensitive to different RLC components.

C. Construction of Simplified Models from the Sensitivity

Analysis Provided by Sparse PC

1) Analysis in the frequency band [100 MHz - 10 GHz]:

In this section, we exploit the sensitivity analysis of the

crosstalk voltage V12b, carried out in Section IV-B, in order

to reduce the number of input random variables. From Fig. 5,

we notice that 11 uncertain variables, i.e. the trace thickness

t, and the components RS2, RL2, RS4, RL4, RS6, RL6,

RS2b, RL2b, RS4b and RL4b, have non significant impact

on the variability of the crosstalk voltage V12b. These lumped

elements are end impedances of pieces of transmission lines

that are coupled with the source through crosstalk effects. The

fact that these impedance variations have a non significant

influence on the response V12b seems to indicate that the

line coupling is weak, according to the well known Paul’s

hypothesis [22]. Therefore, we propose to neglect them by

considering a simplified transmission line network, given in

Fig. 6, and represented by a reduced model Mr depending

on 33 − 10 = 23 uncertain variables. In order to check the

validity of this reduced model Mr, Fig. 7 represents, from 3

MC realizations x(i) and ẋ(i) of 33 and 23 uncertain variables,

respectively, the crosstalk voltage V12b obtained by the initial

model M (solid line) and the reduced model Mr (dotted-

line). We see that the two models are quite close between

100 MHz and almost 3 GHz, and then, from 3 GHz to 10

GHz, the magnitude and the occurrence of the resonance

peaks of V12b diverge. This highlights that the approximation,
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Fig. 7. Computation of the crosstalk voltage V12b in the frequency band [100
MHz - 10 GHz]. The crosstalk voltage V12b is evaluated by the numerical
model M (solid line) and the reduced model Mr (dotted-line) from a set of
3 MC realizations x

(i) and ẋ
(i) of the initial (33) and a reduced (23) number

of uncertain variables, respectively.

consisting in neglecting the feedback of the coupled lines, may

be acceptable at low frequencies only.

We propose then an alternative manner to obtain a reduced

model of the initial model M. As mentioned previously, 11

uncertain variables have a negligible effect on the variations

of the crosstalk voltage V12b. Going back to the initial trans-

mission line network, we set them to their mean values given

in Fig. 1. Then, we are interested in evaluating the numerical

model M on a reduced number of input random variables,

i.e. 33 − 11 = 22, whose realizations are denoted x̃(i). We

illustrate in Fig. 8, the crosstalk voltage V12b evaluated by the

numerical model M from 3 MC realizations x(i) and x̃
(i)

of 33 and 22 uncertain variables, respectively. Fig. 8 shows,

a very good agreement between the crosstalk voltage V12b

computed by M(x(i)) and by M(x̃(i)), represented by a solid

line and squares, respectively. This allows to verify that the 11
input random variables, acting as parameters, have a negligible

effect on the variability of the crosstalk voltage V12b. Thus,

it allows about a 30 % reduction in the number of uncertain

input variables without altering the variability of the crosstalk

voltage V12b in the frequency band [100 MHz - 10 GHz].

2) Study at 9.1 GHz: Performing the same reasoning,

we can also reduce the number of uncertain variables of

the problem at the frequency of 9.1 GHz. Indeed, from the

sensitivity analysis of Fig. 5, we see at 9.1 GHz, that only 9
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Fig. 8. Representation of the crosstalk voltage V12b in the frequency
band [100 MHz - 10 GHz]. The crosstalk voltage V12b is computed by the

numerical model M from a set of 3 MC realizations x
(i) (solid line) and x̃

(i)

(squares) of the total (33) and reduced (22) uncertain variables, respectively.

input random variables, i.e. the relative permittivity εr of the

substrate, the trace width w and the components RS1, CL1,

RS3, CL3, RS1b, CL1b and RL6b, impact the variations of

the crosstalk voltage V12b. As done before, we set 33−9 = 24
variables to their mean values given in Fig. 1. Fig. 9 represents

then at 9.1 GHz, the PDF’s of the crosstalk voltage V12b

computed by sparse PC (red dashed-line) in Section IV-A, and

estimated by MC simulation from a set of 10000 realizations

x(i) (black) and x̂(i) (pink dashed-line) of 33 and 9 uncertain

variables, respectively. Keeping only a reduced number of

uncertain variables, we notice that the PDF of the crosstalk

voltage V12b (pink dashed-line) is closer to the reference one

(black) than that of the sparse PC (red dashed-line). This

shows that, exploiting the sensitivity analysis given by the

sparse PC, it is possible to simplify the initial model M in

reducing significantly the number of uncertain variables, while

preserving the variations of the response V12b.

V. CONCLUSION

In this paper, we have proposed a sparse PC metamodel,

allowing to estimate the response model depending on many

uncertain parameters. This metamodel, at a low computational

cost compared to MC simulation, provides a very good es-

timation of the smooth part of the output model. However,

when the behaviour of the output becomes more complex with

strong irregularities, the sparse PC metamodel is less accurate

to predict the model response.

Beside the fact that the sparse PC is well adapted to high di-

mensional problems, one of its advantages is, that it allows, at

a negligible computational cost, to derive statistical moments

and a sensitivity analysis of the output. These information are

very useful for the circuit designer, since they enable him to

quantify and to hierarchize the effects of uncertain parameters

on the response variability of the system. We showed, in

particular, that the sensitivity analysis may be used to derive

simplified and still accurate new models of the initial problem.
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total number (33, black line) and a reduced number (9, pink dashed-line)
of uncertain variables.

Dealing with a crosstalk problem consisting of about thirty

uncertain input parameters, allowed us to obtain a quite effi-

cient sparse PC metamodel. The robustness of this metamodel

for even larger dimension problems will be the object of future

investigations.
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