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Network structure classification and features of water
distribution systems

Orazio Giustolisi' (/, Antonietta Simone’ (), and Luca Ridolfi2

"Politecnico di Bari, Bari, Italy, 2politecnico di Torino, Torino, Italy

Abstract The network connectivity structure of water distribution systems (WDSs) represents the domain
where hydraulic processes occur, driving the emerging behavior of such systems, for example with respect
to robustness and vulnerability. In complex network theory (CNT), a common way of classifying the network
structure and connectivity is the association of the nodal degree distribution to specific probability distribu-
tion models, and during the last decades, researchers classified many real networks using the Poisson or
Pareto distributions. In spite of the fact that degree-based network classification could play a crucial role to
assess WDS vulnerability, this task is not easy because the network structure of WDSs is strongly constrained
by spatial characteristics of the environment where they are constructed. The consequence of these spatial
constraints is that the nodal degree spans very small ranges in WDSs hindering a reliable classification by
the standard approach based on the nodal degree distribution. This work investigates the classification of
the network structure of 22 real WDSs, built in different environments, demonstrating that the Poisson dis-
tribution generally models the degree distributions very well. In order to overcome the problem of the reli-
able classification based on the standard nodal degree, we define the “neighborhood” degree, equal to the
sum of the nodal degrees of the nearest topological neighbors (i.e., the adjacent nodes). This definition of
“neighborhood” degree is consistent with the fact that the degree of a single node is not significant for
analysis of WDSs.

Plain Language Summary Water distribution systems are networked infrastructure, which can be
studied using the complex network theory. A classic study is the network classification allowing to charac-
terize the real system feature with respect e.g. to vulnerability. The work classifies a relevant number of
water distribution networks concluding that they are random-like.

1. Introduction

The increasing size of water distribution systems (WDSs) associated with current growing urbanization
keeps the analysis and management of these systems a complex task. Moreover, the installation of nonline-
ar devices for technical tasks (e.g., the introduction of pressure control valves for the purpose of leakage
management) makes the analysis of the WDN hydraulic behavior more difficult with respect to the past.
Finally, planning and management actions increasingly involve the concepts of vulnerability, reliability, and
safety and interact with socioeconomic and environmental aspects. It follows that the study of the network
structure and connectivity of a WDS, which primarily determines the hydraulic behavior of the system, is
becoming an emerging issue. From this perspective, recent complex network theory (CNT) can be very use-
ful for a modern WDS analysis, planning, and management.

CNT is becoming one of the most powerful and versatile tool to investigate, describe, and understand the
world [Barabasi, 2012]. Networks allow the study and the interpretation of a huge number of physical, biologi-
cal, and social processes. Examples range from social relationships [Scott, 1988] to neural connections [Papo
et al., 2014], from multispecies ecological interactions [Poisot and Gravel, 2014] to financial and economic
exchanges [Schweitzer et al., 2009]. Although each network exhibits its own topological and structural peculiar-
ities, very different networks can share amazing similar features [Albert and Barabasi, 2002; Buchanan, 2003].

In the last decade, CNT had unrestrained development, and researchers proposed novel approaches, met-
rics, and theories to explore and disentangle network features [e.g., Boccaletti et al., 2006; Newman, 2010]. In
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Figure 1. Degree distribution for regular, small world, and random networks (top) and degree distribution for scale-free networks (bottom).

this set of mathematical tools, the number of edges/pipes connected to each node, i.e,, the nodal degree, is
a relevant information for classifying networks. In fact, the nodal degree distribution describes the probabili-
ty distribution of the number of edges connected with each node of the network. Several network features
are associated with the shape of such distributions. Erdos and Rényi [1959, 1960] were the first to study the
nodal degree distribution of real networks introducing the random networks versus regular networks. In the
former case, the nodal degree distribution is randomly distributed around an average value and the net-
work is characterized by a high homogeneity; whereas regular networks have a constant degree of internal
nodes and are characterized by an absolute homogeneity. The Poisson model is often used to describe nod-
al degree distribution of random networks. The random networks were introduced because they are able to
capture some features of real networks better than regular networks (e.g., being highly ordered, the short-
est paths between two nodes are too large), while random networks show lower and more realistic values
[e.g., Milgram, 19671].

Later on, Watts and Strogatz [1998] introduced small world networks and demonstrated the existence of
small world effect, i.e., a behavior between the regular and random networks. Using the Poisson distribution
of degree and a probability, p, of connections between two nodes, the model by Watts and Strogatz [1998]
covers regular networks to random networks. For small world networks, the probability p is greater than the
null value of regular networks but has lower values than random networks (see Figure 1, top).

Barabasi and Albert [1999] proposed the scale-free networks in order to describe real networks characterized
by nonhomogeneous nodal degree distributions, where many nodes have a low degree and few nodes
(called hubs) have a high degree. These distributions typically exhibits a Pareto (or power law) behavior and
cannot be classified as random, small world, or regular networks (see Figure 1, bottom).
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The interest in classifying networks according to connectivity structure is related to the aim to capture
emerging behaviors of real systems [Albert and Barabasi, 2002; Newman, 2003, 2010]. For instance, the nodal
degree distribution affects the networks vulnerability to random failures and intentional threats. In fact, reg-
ular, small world, and random networks present a significant structural resistance to both random failures
and intentional threats, while scale-free networks show a very high structural resistance to random failures
but a weak resistance to intentional threats [Albert et al., 2000]. In this sense, the classification of networks
by associating their degree distribution to the Poisson or Pareto models is useful to assess the vulnerability
and robustness of real infrastructural systems.

In spite of the fact that network classification can play a crucial role in assessing WDS behavior, this task
is not easy because the network structure of WDSs is strongly constrained by the spatial characteristics
of the environment where they are constructed, meaning that WDSs have spatial networks similar to
other urban distribution infrastructures (e.g., gas and electricity) and transportation (e.g., railways and
roads) systems. The spatial networks are constrained by (i) two-dimensional space and (ii) spatial impedi-
ments [Barthélemy, 2011]. This implies that the maximum nodal degree is generally very low (it is typical-
ly lower than seven); consequently, the nodal degree distribution spans a very limited range and the
resulting statistical inference is unreliable. It follows a quite paradoxical situation. On the one hand,
many theoretical and applicative works are built on the premise that key information is embedded in
the degree distribution, while on the other hand, WDSs have characteristics that make standard nodal
degree distribution evaluation very elusive and difficult to interpret, and do not allow for a reliable
classification.

In fact, WDSs are generally planar urban infrastructure networks, strongly constrained by external geometri-
cal/environmental factors—Ilike the landscape topography, the structure of the cities (e.g., street network,
building size, etc.)—decreasing the connectivity probability along with the distance between two nodes. It
follows that WDS classification by the standard nodal degree distribution is very difficult and uncertain [Yaz-
dani and Jeffrey, 2011] because of the very low values of the maximum standard nodal degree characteriz-
ing those networks.

In order to overcome this challenge, we introduce the neighborhood nodal degree which spans a range of
values greater than the standard nodal degree, resulting in a statistically more reliable classification of infra-
structure networks (hereinafter, we will specify standard as the usual nodal degree when a possible misun-
derstanding with neighborhood nodal degree can occur).

For each node in the network, the neighborhood node degree is defined as the sum of the degrees of its
nearest neighbors (i.e., only nodes immediately adjacent). We demonstrate that when using this neighbor-
hood degree approach, the Poisson distribution more reliably represents the connectivity of an infrastruc-
ture network.

Somewhat surprisingly, CNT literature reports very few investigations on WDSs despite their ubiquity, topo-
logical variety, and importance in everyday life. On the other hand, the availability of real WDSs is quite rare
due to the sensible data associated with water supply service. Thus, the unusual availability of detailed
topological data of 22 real WDSs built in different urban environments, allows a robust database for show-
ing proof-of-concept of using neighborhood nodal degree to classify real infrastructure networks.

In the following, we analyze the detailed topological data of 22 real WDSs built in different urban environ-
ments. We demonstrate that the network connectivity structure of WDSs generally follows the Poisson dis-
tribution. The result is consistent with the fact that the network connectivity structure of WDSs is generally
designed using a redundancy criterion that exceeds hydraulic capacity requirements. This provides low vul-
nerability of the connectivity structure with respect to any kind of failure event.

2. Degree Distribution

2.1. Degree Distribution and System Features

Robustness, vulnerability, resilience, and efficiency of real systems are increasingly investigated topics
[Albert et al., 2000; Cohen et al., 2001; Callaway et al., 2000; Holme et al., 2002; Albert et al., 2004; Solé et al.,
2007; Berche et al., 2009; lyer et al., 2013; Peng and Wu, 2016], especially with respect to the CNT and its
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metrics. Among the various CNT metrics, the nodal degree distribution, i.e,, the classification of a network
using the Pareto or Poisson distributions, is a primary characteristic.

Vulnerability assessment of infrastructure networks is becoming a relevant issue because of socioeconomic
relevance. The degree distribution, and in particular the degree of heterogeneity, greatly influences the vul-
nerability of real networks. Despite their low vulnerability to random attacks, networks with high heteroge-
neity, which usually follow a Pareto distribution, are extremely vulnerable to intentional attacks because of
the presence of hubs. Instead, networks with a very low degree of heterogeneity (i.e., nodal degree distribu-
tion is random around an average value and the network is characterized by a high homogeneity), usually
follow a Poisson distribution and have a low level of vulnerability to random and intentional attacks. The
classification relates to the average length of the shortest paths among nodes in the network and is not
dependent on size, i.e., number of nodes.

The vulnerability assessment of a network [Latora and Marchioni, 2005; Berardi et al., 2014] can be simu-
lated by removing nodes, i.e., the connected links, at random or by targeting those corresponding to an
intentional attack; node removal changes the preferential paths between nodes, increasing the shortest
paths. The behavior of Pareto or Poisson networks to nodal removal is different. In fact, for networks
with a high homogeneity (Poisson), i.e.,, where all nodes have approximately the same connectivity—a
targeted or random removal of nodes causes approximately the same minimal increasing in the shortest
paths, i.e., a low damage due to the redundant feature. For network with a low homogeneity (Pareto)—
i.e., where few nodes have high connectivity (named hubs) with respect to the others having similar con-
nectivity—a random removal of nodes causes approximately the same minimal increasing in the short-
est paths, because the probability of removing hubs is low. On the contrary, a targeted removal of hubs
causes a dramatic increase of the shortest paths, with a significant probability of network division in
components.

2.2. Degree Distribution Models
The Empirical nodal degree distribution P(k) is defined as the fraction of nodes in the network having
degree k. Hence

P)="", )

where ny is the number of nodes having degree k and n is the total number of nodes in the network. The
formulation of the Poisson distribution, approximating the binomial distribution, for nodal degrees [Watts
and Strogatz, 1998] is

n—1 L —{k) (kK
P(k):( >pk(1_p)n -0 o © k'< " )
p .

where p is the probability of connection between two nodes and <k> is the average nodal degree of the
network. The Poisson distribution models random networks and it exhibits a peak value at <k> and has a
high probability of nodal degree around <k>, i.e., a high homogeneity of the degree distribution. The nodal
degree distribution of small world networks has essentially the same features as the random networks
[Barthélemy, 2011]. Therefore, the Poisson distribution can apply to small world networks arguing a narrow
distribution of degrees, i.e., a very high homogeneity of the nodal degree distribution, which degenerates
to a single degree (considering only internal nodes) for the case of regular networks, characterized by an
absolute homogeneity. In fact, Watts and Strogatz [1998] introduced the small world networks using a ring
lattice regular network, increasing the probability of connection, p.

In the present study, we show that the neighborhood nodal degree distribution of WDSs models a Poisson dis-
tribution very well and argue that it also models the standard nodal degree. It should be noted that Watts and
Strogatz [1998] assumed the probability p, determining the average degree of the network to be equal to

(k)=p(n—1). 3)

In the case of the infrastructure networks, the average nodal degree strongly depends on spatial constraints
and, generally, is very low (e.g., in the case of WDSs, <k> ranges from 2 to 3).
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Hence, we can write
Table 1. Distributions P(k) and the Corresponding Networks

Regular Small World Random <k> 2.5 -1
p=—r-~—""— = pxn .
Poisson-binomial Probability n—=1 n—1
distribution (equation (2)) > (4)
Pareto-power law Scale free
distribution (equation (5)) Namely, the probability of connec-

tion is inversely proportional to the

size of the network because the spa-

tial constraints strongly limit the
range of variability for <k>. Equation (4) shows that p is generally very low for the connectivity structure
typical of infrastructure networks and it decreases with the network size. As a result, the Watts and Strogatz
[1998] scheme must be used with caution.

Finally, the formulation of the Pareto (or power law) model for the nodal degree distribution is
P(k) ~ k™7, (5)

where 7 is a constant generally ranging from 1.5 to 3 [Newman, 2010; Barthélemy, 2011]. The model of equa-
tion (5) applies to the scale-free networks, which are nonhomogeneous with respect to the nodal degree
distribution (i.e., few nodes with a large degree (hubs). Table 1 shows degree distribution models.

3. Neighborhood Nodal Degree Distribution

Classification of spatial networks by the structure of the standard degree distribution is generally hampered
by the very low maximum nodal degree. This fact is a consequence of the spatial limits constraining the net-
work topology at the local (nodal) scale [Barthélemy, 2011; Lammer et al., 2006], making very difficult to
model the degree distribution in a statistically meaningful way. For example, the topographic structure of a
city typically involves the crossing of three-four roads and rarely does the nodal degree of a node-square to
exceed six-eight.

In order to classify spatial networks using the degree distribution concept, we introduce a more suitable
idea: the neighborhood nodal degree. That is, we define a degree distribution involving the nearest neigh-
bors or adjacent nodes. The neighborhood degree distribution of each node is the sum of the standard
degrees of the topologically nearest (i.e., adjacent) nodes. The approach implies a significant increase in the
maximum nodal degree and the greater number of points supports the robust identification of a specific
statistical distribution.

The formulation of the neighborhood degree is

kn()="> " Ask(j), (©)
)

JEN(i

where k(i) is the “neighborhood” degree (involving adjacent nodes) of the i-th node, A; are the elements of
the adjacency matrix, k() is the standard degree of the j-th node, and N(j) is the topological neighborhood
of the i-th node, i.e, the set of adjacent nodes. Therefore, k,(j) is the product between the standard nodal
degree and the i-th row of the adjacency matrix providing a nonnull value for the nearest/adjacent nodes
only.

Figures 2a and 2b show illustrative examples of the neighborhood degree evaluation. Consider Figure 2a
and focus on the node 1, 2. Its neighborhood is constituted by nodes labeled {2,3,4}, whose nodal degrees
are equal to k(2) = 4, k(3) = 3, and k(4) = 3, respectively. In this case, the neighborhood degree of node 1 is
the sum of the degree of the three adjacent nodes k,(1) = 4 + 3 + 3 = 10. Similarly, this strategy assigns a
degree k,(2) =3 + 3 + 3 + 4 =13 to node 2 (see Figure 2b).

The neighborhood nodal degree can be interpreted as the node strength [Boccaletti et al., 2006] of a suitable
oriented weighted network, which has the structure of the infrastructure network adjacency matrix. Each
nonnull cell ij has a value corresponding to the link weight between i and j, which is assumed equal to the
degree of the starting node. Figures 2c and 2d report the weights to be assigned to the links connected to
node 1 and 2. In Figure 2c the link from node 1 to node 2 has a weight, w,,, equal to 3 because k(1) = 3,

GIUSTOLISI ET AL.

WATER NETWORKS CLASSIFICATION 3411



@AG U Water Resources Research

10.1002/2016WR020071

4 (b)
;
., / -
\\\ /I /,/
\\. & P
~3 2., _________ e
. p . pAPNE
2 N < N, 4
v v ~3 Wy,=3 2 $w15=4 b
Q50— 05
1. \\ 23 2 537 N
; ;
ik N T N
1@
A ':
R S c
- ~ (c) ! (d)
:

Figure 2. Example of a portion of a network. Figures 2a and 2b show the neighborhood of node 1 and node 2, and Figures 2c and 2d show
the weights assigned to links incident nodes 1 and 2, respectively.

while the link from node 2 to node 1 has a weight w,; = 4 because k(2) = 4. The strategy is similarly applied
to all nodes in the network.

The neighborhood degree of this oriented weighted network may be seen as the node strength [Boccaletti
et al., 2006], namely

k()= 3w, )

JEN()

where w;; are the previously defined topological weights. In this way, the weights can be interpreted as a
sort of flow of topological information, which travels on each link, and the neighborhood degree is the over-
all information that flows into each node from the nearest neighbors.

In the previous sections, we discussed the importance of considering the nodal degree distribution of net-
works as tool for vulnerability analysis. In this section, we introduced the concept of neighborhood degree
for the classification of infrastructure networks. While the standard degree measures the nodal connectivity
with adjacent nodes in terms of number of links, the neighborhood degree measures the nodal connectivity
at the neighborhood scale/level.

This extension represents a benefit in the analysis of WDS vulnerability, where the single node may not be
relevant from a technical standpoint because it represents, for example, a connection to a private property.
However, it may exist for reaching numerous customers. Furthermore, the existence of isolation valves
allows one to argue that the failure of a single node actually involves the change of paths not only related
to that node, but also related to its neighbors. In this sense, it is possible to extend the neighborhood
degree concept to further levels of neighbors, which should depend on the purpose of the isolation valve
system.

GIUSTOLISI ET AL.
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Therefore, the advantage of using the neighborhood degree for infrastructure networks is twofold. On the
one hand, it guarantees a more robust identification of a specific statistical distribution; on the other hand,
it allows accounting for the relevance of a single node in terms of its connectivity in spatial networks.

4, Classifying the Network Structure: Neighborhood Versus Standard Nodal
Degree Distribution

In order to test the effectiveness of neighborhood nodal degree to classify infrastructure networks, we start
by showing some results using a small but realistic infrastructure network. Figure 3 shows the network lay-
out of the battle of background leakage assessment water network (BBLAWN) described in greater detail in
Giustolisi et al. [2016]. The network is composed of 390 nodes and 439 links, and it is frequently used as a
benchmark network in studies about WDSs [Ostfeld et al., 2008]. Figure 4 reports the Empirical density distri-
butions, P(k) and P(k,), and the corresponding cumulative distributions, P.,,(k) and P.,,(k,), of the BBLAWN
related both to the standard nodal degree, k (Figures 4a and 4c), and the neighborhood nodal degree, k,
(Figures 4b and 4d). Actually, P.,,(k,) is not the cumulative of P.,,(k), but one minus its cumulative in order
to be consistent with the common use in CNT literature.

The same figure reports the corresponding theoretical Poisson and Pareto distributions, for comparison to
the Empirical distribution. To allow for easier comparison of the Pareto distribution, we also report the
cumulative distributions also in logarithmic scale (Figures 4e and 4f).

Figures 4a, 4b and 4c illustrate that identifying a specific probabilistic model is very difficult when using the
standard nodal degree. The maximum degree is five and, consequently, only five points are available to fit
the distribution. It follows that discerning between the Poisson and Pareto distributions is difficult and sta-
tistically unreliable. The only reasonable conclusion from Figures 4a, 4¢, and 4e is that the Empirical nodal
degree distribution seems to be qualitatively more similar to the Poisson model than the Pareto model.

On the contrary, Figures 4b, 4d, and 4f relate to the neighborhood nodal degree allow one to discern
between the Poisson and Pareto distributions because the maximum degree is equal to 12, and therefore
distributions have a wider interval of degrees. In fact, the 11 points (degrees) make the statistical analysis
reported in Table 2 more reliable. The Empirical distributions of Figure 4 follow the Poisson distribution very
well especially considering the cumulative distribution. The differences between the Empirical data and the
Pareto distribution are more evident in the logarithmic scale of the cumulative distribution.

We systematically compared standard and neighborhood nodal degree distributions for 22 networks corre-
sponding to existing WDSs. Table 2 reports their relevant characteristics. In particular, it is worth noting that
network size spans 2 orders of magnitude; in fact, the number of nodes ranges from 390 to 26,761, while
the number of links varies from 439 to 32,096. In spite of the size variability, the average nodal degree
remains consistently very low—ranging from 2.08 to 2.59—as well as the maximum nodal degree, ranging
from 5 to 11. These values confirm the situation reported in the previous paragraphs about the BBLAWN.
The small number of points of the Empirical distribution frustrates any attempt to infer a statistical model.

In contrast, the neighborhood

nodal degree depicts a very dif-

\‘ ferent picture: the average and
Aty i
o L maximum values range from
A‘*‘ ~ ~> & 4.68 to 7.98 and from 12 to 33,
= respectively. The  minimum
‘ = 7 ;‘ A neighborhood nodal degree is
ST+7 L7 | i d
Pt e _ equal to 2 as it corresponds to
. " rd the extreme nodes of network
‘ / = branches comprised of serial
o pipes/links. Furthermore, on a
‘_':_‘__- S logarithmic  scale, Empirical
=) curves do not report a final val-
ue because the log of zero is
Figure 3. BBLAWN layout.

not defined.
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Figure 5 refers to the case of a large urban network. Figure 5a shows the network structure, which retraces
clearly the urban infrastructure, while the other panels compare the Empirical density and cumulative distri-
butions of neighborhood nodal degree to the theoretical Poisson and Pareto distributions. These latter are
fit using the average value of the neighborhood nodal degree and a calibrated value of y of equation (5),
respectively. As in Figure 4, we report the cumulative distributions using both arithmetical and logarithmic
scales. The comparisons clearly show that the Empirical distribution of neighborhood nodal degree is very
similar to the Poisson distribution, while it substantially differs from the Pareto distribution.

In Appendix, we report the layouts and the cumulative distributions in logarithmic scale for all the WDSs listed
in Table 2, excluding BBLAWN, Big Town, and Exnet [Laucelli and Giustolisi, 2014], with the exception of the
Exnet network, all of the comparisons demonstrate that the Poisson distribution models very well the Empirical
distribution using the neighborhood nodal degree. The visual inspection is confirmed by the two-sample Kol-
mogorov-Smirnov (KS) goodness-of-fit hypothesis test [Massey, 1951], which discerns whether if the distribu-
tions of the values in the Empirical and Poisson samples are drawn from the same underlying population. The
test results are reported in the third last column of Table 2 and clearly show a high level of significance. It is
worth noting that the Exnet network is the only one having a low significance level (about 26%).

Figure 6 shows the Exnet results. The Empirical cumulative distribution (in log scale) partially follows the
Poisson model up to value of k,, equal to about 13 and then it becomes linear, similarly to the Pareto model.
This is the only case, among the analyzed network connectivity structures that show features of both
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Table 2. Relevant Data of the 22 Networks (for Few Benchmark Real WDSs the Inhabitants Are Not Available)

Mean Min Max KS
WDN Node Pipe Mean Min Max Nearest Nearest Nearest Test Length Inhabitants
Name # # Standard Standard Standard Neighbor Neighbor Neighbor [%] [km] [X1000]
BBLAWN 390 439 2.25 1 5 5.69 2 13 78.6 57
Apulia 15 1,263 1,406 223 1 5 5.56 2 15 99.5 30 16
Apulia 14 1,263 1,428 226 1 5 578 2 15 99.7 46 17
Apulia 13 1,762 2,098 2.38 1 5 6.38 2 17 100.0 70 25
Exnet 1,776 2,300 2.59 1 1 7.98 2 33 25.8 594
Apulia 12 1,918 2,153 2.25 1 6 5.74 2 16 100.0 108 56
Apulia 11 2,403 2,820 235 1 5 6.11 2 15 99.7 145 94
Norway 2 2,520 2,651 2.10 1 7 4.87 2 18 99.8 129 24
Piedmont 1 2,784 2,894 2.08 1 5 4.89 2 12 98.5 171 49
Apulia 10 2,810 3,307 235 1 5 6.26 2 16 99.8 175 398
Apulia 9 2,895 3,333 230 1 5 5.86 2 16 99.8 85 30
Apulia 8 2,968 3,400 2.29 1 5 5.89 2 16 100.0 130 60
Apulia 7 3,000 3,189 213 1 5 5.12 2 13 99.1 91 49
Apulia 6 3,547 3,881 2.19 1 5 537 2 17 100.0 113 33
Apulia 5 4,188 4,727 226 1 5 5.82 2 14 99.5 261 94
Apulia 4 4,242 4,940 233 1 6 6.06 2 17 100.0 161 70
Norway 1 5,035 5,292 2.10 1 6 4.68 2 13 786 239
Apulia 3 5,036 5,848 2.32 1 6 5.98 2 16 99.8 199 107
Apulia 2 5,288 6,116 231 1 6 6.01 2 17 99.9 277 151
BWSN 12,518 14,314 2.29 1 6 5.80 2 17 99.9 1,844
Apulia 1 18,718 19,990 2.14 1 7 5.01 2 16 99.8 678 326
Big Town 26,761 32,096 240 1 8 6.18 2 17 91.2 2,054 1,347

Pk,

Poisson and Pareto models consistent with Boccaletti et al. [2006]. It is worth noting that (Table 2) the Exnet
network has the greatest maximum standard and neighborhood nodal degree, respectively, equal to 11 and
33, revealing (Figure 6) the presence of a few hubs.
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Figure 5. Layout of the Big Town network and Empirical versus Poisson and Pareto distributions.
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Figure 6. Layout of the Exnet network and Empirical versus Poisson and Pareto cumulative distributions.

5. Network Connectivity for Classification of WDNs

From a hydraulic standpoint, network nodes can represent any WDN component from which the water is
delivered to the network from the mass and/or energy perspective (e.g., reservoirs, tanks, pumps, etc.), each
one with different functionality (e.g., supply, demand, and storage), while the network connectivity analysis
does not account for these differences.

Very few nodes are sources in the network and their characterization is trivial for vulnerability assessment
[Berardi et al., 2014; Laucelli and Giustolisi, 2014]. In fact, in a network, the water source nodes represent spe-
cial hubs, because the information departs from them, to be then transferred to the areas that they sub-
tend. This means that they do not characterize the major part of the network connectivity structure, which
is the focus of the present work.

Demand nodes are connection to properties—domestic, agriculture, industrial area, etc.—and represent
hydraulic outflows of WDNs. Connection nodes, instead, are connections among pipes, e.g., in crossroads.
Actually, the water delivered along pipes is often concentrated as outflows to the ending nodes of those
pipes for hydraulic modeling needs [Giustolisi, 2010].

The finding that the network connectivity structure of WDNs can be generally modeled referring to random
networks essentially refers to the classification of demand and connection nodes, which are fairly the majority
of the nodes in the network. Therefore, our work does not focus on the vulnerability assessment, which has to
account for the specific hydraulic behavior of a WDN coupled with topologic metrics [Yazdani and Jeffrey,
2012]. Instead, our purpose is a basic classification of the network connectivity structure of WDNs aimed at
characterizing the “emerging” behavior of the topological domain, which drives the hydraulic performance
and changes over time due to the connectivity evolution, as reported in the next section.

6. Network Classification and Temporal Evolution

Infrastructure networks are one of most prevalent cases of spatial networks. The term spatial characterizes
networks in which nodes are located in a space equipped with a metric [Barthélemy, 2011]. For most of the
infrastructure networks, the space is two-dimensional and the metric is the usual Euclidean distance. The
spatial layout/architecture of the network is typically constrained by the topology of the environment in
which it is constructed. In fact, infrastructure networks are generally man-made and they progressively
grow, filling the space and balancing connection costs and nodal distance, but they are also constrained by
the impracticality of some connections [Buhl et al., 2004]. The existence of such constrains explains why spa-
tial networks generally are not scale-free networks [Barthélemy, 2003, 2011], and in this line, our findings
indicate that the Poisson distribution is generally the best model to describe the network connectivity (as
seen by the neighborhood nodal degree) of WDSs.

The work by Barthélemy and Flammini [2008] on the temporal evolution of urban road networks (Figure 7) is
helpful to understand our finding about WDSs, because these latter networks are strongly influenced by the
topology of urban patterns. An initial network (see Figure 7, top left) has a low size and appears quite regu-
lar (a ring with branches is the typical initial configuration). Afterward, the network evolves and new
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Figure 7. Example of snapshots of an urban network at different times of its evolution.

connections to customer proprieties are built. During this growth phase, the network is affected by the
spatial constrains but a certain level of randomness emerges because of decisions to design system
redundancy for WDS management. This is due to the different local shapes of such constrains (e.g., differ-
ent buildings, housing blocks, districts, etc.). During its evolution and increasing size, the network can be
increasingly classified into the category of random networks (and possibly small world networks). It fol-
lows that the Poisson distribution is the best suited to model the network structure of WDSs because the
evolution of such systems, although constrained, introduces random characteristics increasing the net-
work size.

7. Concluding Remarks

The aim of the present work was twofold. First, we proposed the neighborhood nodal degree. It is a novel
quantity geared to describe the topology in the neighborhood of each node of a network. The second
aim has been to show that neighborhood nodal degree distribution is suitable to classify infrastructure
networks. Differently from the standard nodal degree distribution, which generally is uninformative due
to the very limited range of nodal degree values, the neighborhood nodal degree exploits the topological
information of the nearest neighbors and allows one to infer reliable probabilistic models. In particular,
we have investigated 22 real water distribution networks having different sizes and characteristics. In
almost all cases, a Poisson distribution fits the Empirical neighborhood nodal degree distribution very
well. This result appears in agreement with the characteristics of networks whose evolution is constrained
by urban patterns.

The above reported results about the classification of the network connectivity structures for WDNs are use-
ful for analyzing their emerging behavior, for example related to the vulnerability due to random failures
and intentional threats. The fact that most of the studied WDNs can be modeled using the Poisson distribu-
tion of the neighborhood nodal degree means that they present a significant structural resistance to ran-
dom failures and intentional threats as connectivity structure.

Different ways can be used to analyze the WDN behavior with respect, for example, to the vulnerability, but
the classic classification of the connectivity structure nodal degree-based has wide implications for classify-
ing them as small world or purely random considering temporal evolution or for assessing vulnerability con-
sidering for example hydraulic flows as weights while analyzing the connectivity structure.
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Appendix A

Layout and Empirical cumulative distribution of data versus the theoretical Poisson and Pareto distributions
for the nineteen WDSs, which are not reported in the main text.
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