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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

It is well-known that internal defects play a key role in the Very-High-Cycle Fatigue (VHCF) response of metallic materials. VHCF 
failures generally nucleate from internal defects, whose size strongly affects the material strength and life. Therefore, S-N curves 
in the VHCF regime are defect size dependent and the scatter of fatigue data is significantly influenced by the statistical distribution 
of the defect size within the material. 
The present paper proposes an innovative approach for the statistical modeling of Probabilistic-S-N (P-S-N) curves in the VHCF 
regime. The proposed model considers conditional P-S-N curves that depend on a specific value of the initial defect size. From the 
statistical distribution of the initial defect size, marginal P-S-N curves are estimated and the effect of the risk-volume on the VHCF 
response is also modeled. Finally, the paper reports a numerical example that quantitatively illustrates the concepts of conditional 
and marginal P-S-N curves and that shows the effect of the risk-volume on the VHCF response. 
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1. Introduction 

In many industrial fields (aerospace, railway, energy, automotive, marine), machinery components experience 
Very-High-Cycle Fatigue (VHCF) in-service conditions. A reliable design against VHCF failure is of utmost 
importance in these cases. In the last decades, a great effort has been made in order to collect VHCF data and to 
provide designers with reliable information on the VHCF response of different metallic materials. A number of models 
have been proposed in the literature (see, e.g., the review by Li, 2012), in order to quantify either the VHCF strength 
or the material fatigue limit. However, randomness of VHCF data has been rarely taken into account and the available 
statistical models have been prevalently devoted to the description of the random transition between High-Cycle 
Fatigue (HCF) and VHCF (Sakai et al, 2010; Harlow, 2011). A general probabilistic model, which can model both 
the transition HCF-VHCF and the possible presence of a fatigue limit, has been first proposed in Paolino et al. (2013) 
and Paolino et al. (2016). The model has been recently exploited in Paolino et al. (2016) for the statistical description 
of the VHCF response, on the basis of the hydrogen embrittlement theory proposed by Murakami (Murakami, 2002). 

The present paper extends the approach in Paolino et al. (2016) to the different weakening mechanisms that have 
been proposed in the literature for explaining the formation of the so-called Fine Granular Area (FGA) around the 
initial defect. The FGA (also called Optically Dark Area or ODA by Murakami, Granular Bright Facet or GBF by 
Shiozawa and Rough Surface Area or RSA by Ochi) plays a major role in the VHCF response, since its formation 
consumes more than the 95% of the VHCF life. Researchers dispute about the actual mechanism behind the FGA 
formation (see, e.g., Li, 2016), but they unanimously accept that, within the FGA, crack can grow even if the Stress 
Intensity Factor (SIF) is below the SIF threshold for crack growth. 

In the present paper, the reduction of the SIF threshold within the FGA is mechanistically modeled according to 
Paolino et al. (2017) and in agreement with the different weakening mechanisms proposed in the literature. 
Furthermore, since fatigue is scattered by nature, randomness of VHCF data is also taken into account and statistically 
modeled through originally defined Probabilistic-S-N (P-S-N) curves. The proposed model considers conditional P-
S-N curves that depend on a specific value of the initial defect size. From the statistical distribution of the initial defect 
size, marginal P-S-N curves are estimated and the effect of the risk-volume on the VHCF response is also modeled. 
Finally, the paper reports a numerical example that quantitatively illustrates the concepts of conditional and marginal 
P-S-N curves and that shows the effect of the risk-volume on the VHCF response. 

 
Nomenclature 

FGA     Fine Granular Area 
SIF     Stress Intensity Factor 
LEV     Largest Extreme Value distribution 
HV     Vickers Hardness 
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎0, 𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   projected areas of defects 
𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟, 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟   parameters involved in SIF thresholds 
𝑐𝑐𝑐𝑐𝑌𝑌𝑌𝑌, 𝑚𝑚𝑚𝑚𝑌𝑌𝑌𝑌, 𝑛𝑛𝑛𝑛𝑌𝑌𝑌𝑌, 𝜇𝜇𝜇𝜇√𝐹𝐹𝐹𝐹, 𝜎𝜎𝜎𝜎√𝐹𝐹𝐹𝐹, 𝜎𝜎𝜎𝜎𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌  parameters of statistical distributions 
𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼, 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼, 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠, 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠  Paris’ constants in the three stages of crack growth 
𝐹𝐹𝐹𝐹�𝐹𝐹𝐹𝐹0,𝑉𝑉𝑉𝑉, 𝑓𝑓𝑓𝑓�𝐹𝐹𝐹𝐹0,𝑉𝑉𝑉𝑉, 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙|�𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑,0

   statistical distributions 

𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑, 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑙𝑙𝑙𝑙, 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟   relevant SIF values 
𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓, 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓     number of cycles to failure 
𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼, 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼    number of cycles in the three stages of crack growth 
𝑠𝑠𝑠𝑠     applied stress amplitude 
𝑉𝑉𝑉𝑉, 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     risk-volumes 
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2. Methods 

In Section 2.1, a general expression for modeling the crack growth rate from the initial defect up to the VHCF 
failure is presented. In Section 2.2, the statistical distribution of the defect size and the related size-effects are analyzed 
and discussed. Finally, in Section 2.3, the statistical distribution of the fatigue limit is analytically defined and a model 
for the fatigue limit as a function of the risk-volume is proposed. 

In the following, according to Paolino et al. (2017), 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔  denotes the global SIF threshold, 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟  denotes the 
reduction SIF, 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑  denotes the SIF for an internal defect, 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑙𝑙𝑙𝑙  denotes the local SIF threshold (i.e., 
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑙𝑙𝑙𝑙 =  𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔 −  𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟), 𝑎𝑎𝑎𝑎0 is the projected area of the initial defect and 𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the projected area of the FGA. 

2.1. Crack growth rate within the FGA 

In the VHCF literature (Tanaka and Akiniwa, 2002; Marines-Garcia et al., 2008; Su et al., 2017), the crack growth 
rate within the FGA is commonly modeled with the Paris’ law. Three stages can be present in the crack growth rate 
diagram related to a VHCF failure from internal defect (Fig. 1): 

• Stage I: the below-threshold region within the FGA, from 𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎0 (SIF associated to the initial defect) up to 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔; 
• Stage II: the steady stage, from the border of the FGA (SIF equal to 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔) up to the border of the fish-eye (with 

SIF equal to 𝑘𝑘𝑘𝑘𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖); 
• Stage III: the unsteady stage, beyond the fish-eye border (with SIF larger than 𝑘𝑘𝑘𝑘𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, up to the failure). 

 

Fig. 1. The three stages of crack propagation in a crack growth rate diagram for VHCF failures from internal defects. 

For a stress ratio equal to -1, the modified Paris’ law proposed by Donahue et al. (1972) is considered to model the 
crack growth within the FGA: 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼�𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑙𝑙𝑙𝑙�
𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 ,   (1) 

where 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼 and 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 are the Paris’ constants related to Stage I, from the initial defect size �𝑎𝑎𝑎𝑎0 up to �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. 
According to (Tanaka and Akiniwa, 2002; Marines-Garcia et al., 2008; Su et al., 2017), in Stage II, from the border 

of the FGA up to the border of the fish-eye (with size �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), the crack growth rate follows the conventional Paris’ 
law: 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,   (2) 

where 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 are the two Paris’ constants related to Stage II, from �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 up to �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁

 

𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑  

Stage I Stage II Stage III 

𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ ,𝑔𝑔𝑔𝑔  𝑘𝑘𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ ,𝑙𝑙𝑙𝑙  𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 ,0 
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Generally, crack propagates beyond the fish-eye border until it reaches the border of the final fracture, with size 
�𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐. In these cases, a third stage of crack propagation is visible on the fracture surfaces and it can be modeled again 
with the conventional Paris’ law (Su et al., 2017): 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,   (3) 

where 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 are the two Paris’ constants related to Stage III, from �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 up to �𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐. It is worth to note that, if 
the final fracture occurs when the crack size reaches the border of the fish-eye, Stage III can be neglected. 

The number of cycles to failure, 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓, can be expressed as the sum of the number of cycles consumed within the 
three stages of propagation: 

𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 = 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 + 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.   (4) 

Following the VHCF literature (see, e.g., Su et al., 2017), 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 can be estimated by subtracting, from the experimental 
𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓, the numbers of cycles consumed in Stages II and III, which are obtained through integration of Eqs. (2) and (3), 
respectively. 

According to Paolino et al. (2017), the experimental 𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 values (𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) can be used for the estimation of the Paris’ 
constants 𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼, 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 and of the parameters 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟 and 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟 involved in the expression of the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑙𝑙𝑙𝑙. Parameter estimates are 
obtained through the nonlinear Least Squares Method by minimizing the sum of squared percent errors between the 
experimental log10�𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� values and the estimated log10�𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼,𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡� values computed through integration of Eq. (1). 
Finally, an estimate of the fatigue limit can be defined, according to the procedure described in Paolino et al. (2017). 

2.2. Statistical distribution of the initial defect size and related size-effect 

Size-effects significantly affect the VHCF response of materials (Furuya, 2011; Tridello et al., 2015): the larger 
the risk-volume (volume of material subjected to a stress larger than the 90% of the maximum stress), the larger the 
probability of large defects, with a subsequent reduction of the VHCF strength. The dependency between the fatigue 
limit and the risk-volume is generally modeled by taking into account the statistical distribution of the internal defect 
size. According to the VHCF literature (Murakami, 2002), the defect originating failure can be considered as the 
largest defect present within the specimen risk-volume and, therefore, in a statistical framework the internal defect 
size random variable (rv) follows a Largest Extreme Value (LEV) distribution. 

The cumulative distribution function (cdf) of the LEV distribution is reported in Eq. (5): it provides the probability 
of an internal defect with size smaller than �𝑎𝑎𝑎𝑎0 in a volume 𝑉𝑉𝑉𝑉 larger than the risk-volume of the tested specimens 
(𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). 

𝐹𝐹𝐹𝐹�𝐹𝐹𝐹𝐹0� 𝑉𝑉𝑉𝑉��𝑎𝑎𝑎𝑎0;𝑉𝑉𝑉𝑉� = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �−
�𝑎𝑎𝑎𝑎0−𝜇𝜇𝜇𝜇√𝐴𝐴𝐴𝐴

𝜎𝜎𝜎𝜎√𝐴𝐴𝐴𝐴
���

𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, (5) 

where 𝜇𝜇𝜇𝜇√𝐹𝐹𝐹𝐹 and 𝜎𝜎𝜎𝜎√𝐹𝐹𝐹𝐹 are the two constant parameters of the distribution. The probability density function (pdf) of the 
LEV distribution, 𝑓𝑓𝑓𝑓�𝐹𝐹𝐹𝐹0� 𝑉𝑉𝑉𝑉, is expressed by: 

𝑓𝑓𝑓𝑓�𝐹𝐹𝐹𝐹0� 𝑉𝑉𝑉𝑉��𝑎𝑎𝑎𝑎0;𝑉𝑉𝑉𝑉� = 1
𝜎𝜎𝜎𝜎√𝐴𝐴𝐴𝐴

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �−
�𝑎𝑎𝑎𝑎0−�𝜇𝜇𝜇𝜇√𝐴𝐴𝐴𝐴+log�𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄ ��

𝜎𝜎𝜎𝜎√𝐴𝐴𝐴𝐴
− 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝑎𝑎𝑎𝑎0−�𝜇𝜇𝜇𝜇√𝐴𝐴𝐴𝐴+log�𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄ ��

𝜎𝜎𝜎𝜎√𝐴𝐴𝐴𝐴
��. (6) 

According to Murakami (2002), the parameters of the LEV distribution can be estimated from the defect sizes �𝑎𝑎𝑎𝑎0 
measured on the fracture surfaces of the tested specimens (i.e., with 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 in Eqs. (5) and (6)). 
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2.3. Statistical distribution of the fatigue limit and related size-effect 

According to Paolino et al. (2016) the cdf of the fatigue limit for a given defect size (conditional VHCF limit) can 
be expressed as: 

𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙|�𝑎𝑎𝑎𝑎0�𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙;�𝑎𝑎𝑎𝑎0� = Φ� 1
𝜎𝜎𝜎𝜎𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔

�log10(𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙) − log10 �𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙(𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉+120)

�𝑎𝑎𝑎𝑎0
1 2⁄ −𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔

��� = Φ�log10(𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙)−𝜇𝜇𝜇𝜇𝑙𝑙𝑙𝑙��𝑎𝑎𝑎𝑎0�
𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙

�, (7) 

where Φ(∙) denotes the standardized Normal cdf, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔 and 𝜎𝜎𝜎𝜎𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔 are the parameters involved in the statistical 
distribution of the global SIF threshold (Paolino et al., 2016; Paolino et al., 2017), 𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉 is the Vickers hardness of the 

material and 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 = �
�1 2⁄ −𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔�0.5√𝜋𝜋𝜋𝜋

�𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔−𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟�𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟
�

1 2⁄ −𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔
1 2⁄ −𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔−𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟

0.5√𝜋𝜋𝜋𝜋�1 2⁄ −𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑟𝑟𝑟𝑟�
. 

The cdf of the fatigue limit as a function of the risk-volume (marginal VHCF limit) can be obtained from the 
definition of marginal cdf and by taking into account the defect size distribution in Eq. (6): 

𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙|𝑉𝑉𝑉𝑉(𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙;𝑉𝑉𝑉𝑉) = ∫ 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙|�𝑎𝑎𝑎𝑎0�𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙;�𝑎𝑎𝑎𝑎0�𝑓𝑓𝑓𝑓�𝐹𝐹𝐹𝐹0� 𝑉𝑉𝑉𝑉��𝑎𝑎𝑎𝑎0;𝑉𝑉𝑉𝑉�𝑑𝑑𝑑𝑑�𝑎𝑎𝑎𝑎0
∞
0 . (8) 

2.4. P-S-N curves and related size-effect 

The P-S-N curves statistically model the VHCF material response in the fatigue limit region and in the finite fatigue 
life region. 

Eqs. (7) and (8) model the randomness in the fatigue limit region. According to (Paolino et al., 2016), the cdf of 
the finite fatigue life for given initial defect and applied stress 𝑠𝑠𝑠𝑠 (conditional finite VHCF life), 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓,<∞��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�, can 
be expressed as: 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓,<∞��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0��𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0� = Φ�
log10�𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓�−�𝑐𝑐𝑐𝑐𝑌𝑌𝑌𝑌+𝑚𝑚𝑚𝑚𝑌𝑌𝑌𝑌 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔10(𝑠𝑠𝑠𝑠)+𝑛𝑛𝑛𝑛𝑌𝑌𝑌𝑌 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔10��𝑎𝑎𝑎𝑎0��

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌
� = Φ�

log10�𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓�−𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌�𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌
�, (7) 

where 𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌  denotes a constant standard deviation and 𝑐𝑐𝑐𝑐𝑌𝑌𝑌𝑌 , 𝑚𝑚𝑚𝑚𝑌𝑌𝑌𝑌  and 𝑛𝑛𝑛𝑛𝑌𝑌𝑌𝑌  are three constant parameters that can be 
estimated from the experimental failures through the Least Squares Method. 

According to the probabilistic model “One failure mode due to one cause with fatigue limit” described in (Paolino 
et al., 2013), the cdf of the fatigue life (finite as well as infinite) for given initial defect and applied stress 𝑠𝑠𝑠𝑠 (conditional 
VHCF life), 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�, is given by: 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0��𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0� = 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙|�𝑎𝑎𝑎𝑎0�𝑠𝑠𝑠𝑠;�𝑎𝑎𝑎𝑎0�𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓,<∞��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0��𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�. (8) 

The 𝛼𝛼𝛼𝛼 -th quantile of the conditional VHCF life, 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓,�𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�,𝛼𝛼𝛼𝛼, can be obtained by substituting 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0��𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0� 

with 𝛼𝛼𝛼𝛼 and by solving the equation with respect to 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 for different values of 𝑠𝑠𝑠𝑠: 

𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓,�𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�,𝛼𝛼𝛼𝛼 = 10
𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌�𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�+𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌Φ−1�𝛼𝛼𝛼𝛼 Φ�

log10(𝑠𝑠𝑠𝑠)−𝜇𝜇𝜇𝜇𝑙𝑙𝑙𝑙��𝑎𝑎𝑎𝑎0�
𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙

�� �
, (9) 

where 𝑠𝑠𝑠𝑠 must be larger than 10𝜇𝜇𝜇𝜇𝑙𝑙𝑙𝑙��𝑎𝑎𝑎𝑎0�+𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙Φ−1(𝛼𝛼𝛼𝛼) in order to have finite values of 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓,�𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�,𝛼𝛼𝛼𝛼. Eq. (9) thus provides 
the P-S-N curves given the initial defect size (conditional P-S-N curves). 

The cdf of the VHCF life as a function of the risk-volume (marginal VHCF life) can be obtained from the definition 
of marginal cdf and by taking into account the defect size distribution in Eq. (6): 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓�(𝑠𝑠𝑠𝑠,𝑉𝑉𝑉𝑉)�𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,𝑉𝑉𝑉𝑉� = ∫ 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓��𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0��𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,�𝑎𝑎𝑎𝑎0�𝑓𝑓𝑓𝑓�𝐹𝐹𝐹𝐹0� 𝑉𝑉𝑉𝑉��𝑎𝑎𝑎𝑎0;𝑉𝑉𝑉𝑉�𝑑𝑑𝑑𝑑�𝑎𝑎𝑎𝑎0
∞
0 . (10) 
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The 𝛼𝛼𝛼𝛼-th quantile of the fatigue life can be obtained by substituting 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓�(𝑠𝑠𝑠𝑠,𝑉𝑉𝑉𝑉)�𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠,𝑉𝑉𝑉𝑉� with 𝛼𝛼𝛼𝛼 and by solving the 

equation with respect to 𝑠𝑠𝑠𝑠 for different values of 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓. Eq. (10) thus provides the P-S-N curves of the material for a 
given risk-volume (marginal P-S-N curves). 

3. Application to an experimental dataset 

The models proposed in Section 2 are here applied to an experimental dataset. VHCF tests are carried out on 
Gaussian specimens (Tridello et al., 2015) made of an AISI H13 steel with Vickers hardness 560 kgf/mm2 and 
𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  2300 mm3. Details on the testing setup and on the tested material are reported in Tridello et al. (2015) and in 
Tridello et al. (2016) and they will not be recalled here for the sake of brevity. Twelve specimens are loaded at constant 
stress amplitude up to failure. The number of cycles to failure ranges from 4.2·107 to 3.85·109 cycles. The initial defect 
sizes (�𝑎𝑎𝑎𝑎0) and the FGA sizes (�𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) are measured from pictures taken by a Scanning Electron Microscope (SEM) 
and by an optical microscope. In order to take into account the stress variation within the 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , the local stress 
amplitude in the vicinity of the initial defect is considered as the stress amplitude applied during the test. The local 
stress amplitudes are in the range 500 - 635 MPa. 

The parameters 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔, 𝜎𝜎𝜎𝜎𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔 and 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙, which are involved in the fatigue limit expressions (Eqs. (7) and (8)), 
are estimated according to the procedure described in Paolino et al. (2017). Fig. 2a shows the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔 values with respect 
to �𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 together with the estimated model (𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ,𝑔𝑔𝑔𝑔,𝛼𝛼𝛼𝛼 is the 𝛼𝛼𝛼𝛼-quantile of the Global SIF threshold, 𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉 is the material 
Vickers Hardness and Φ−1 is the inverse cumulative distribution function of a standardized Normal distribution). Fig. 
2b shows the conditional VHCF limit curves as a function of the initial defect size (𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,�𝑎𝑎𝑎𝑎0,𝛼𝛼𝛼𝛼 is the 𝛼𝛼𝛼𝛼-quantile of the 

conditional fatigue limit). The 0.1-th and the 0.9-th quantiles are also depicted in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. (a) Global SIF threshold vs. FGA size. (b) Conditional VHCF limit vs. initial defect size. 

According to Fig. 2b, the fatigue limit decreases with the initial defect size (Murakami, 2002; Furuya, 2011). The 
estimated fatigue limit curves are below the experimental failures, as expected from the definition of fatigue limit. 
The proposed model is therefore effective in the estimation of the fatigue limit variation with respect to the initial 
defect size and ensures a reliable safety margin with respect to the experimental failures. 

The distribution of initial defect size is estimated according to Murakami (2002). Fig. 3a shows the Gumbel plot 
of the measured �𝑎𝑎𝑎𝑎0 values together with the estimated LEV cdf. Parameter estimation is carried out by considering 
𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2300 mm3. From the initial defect size distribution and according to Eq. (8), the 0.1-th, 0.5-th and the 
0.9-th quantiles of the fatigue limit are estimated for risk-volumes larger than 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and then depicted in Fig. 3b. 
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(a) 

 
(b) 

Fig. 3. (a) Gumbel plot of the initial defect size. (b) Variation of the marginal VHCF limit with the risk-volume. 

Fig. 4 shows a plot of the conditional P-S-N curves. Fig. 4a plots the 0.1-th, the 0.5-th and the 0.9-th curves 
corresponding to an initial defect with median size; whereas Fig. 4b depicts the median curves for values of the initial 
defect size ranging from 15 µm to 60 µm. 

 
(a) 

 
(b) 

Fig. 4. Conditional P-S-N curves: (a) 80% confidence band for a median defect size; (b) median curves for different defect sizes. 

Finally, by taking into account the defect size distribution, the marginal P-S-N curves (no more conditioned to the 
inclusion size, as in Fig. 4) are estimated. Fig. 5a plots the 0.1-th, the 0.5-th and the 0.9-th curves corresponding to a 
risk-volume equal to 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2300 mm3; whereas Fig. 5b depicts the median curves the risk-volume larger than 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

 
(a) 

 
(b) 

Fig. 5. Marginal P-S-N curves: (a) 80% confidence band for a risk-volume equal to 𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; (b) median curves for larger risk-volumes. 

Marginal P-S-N curves reported in Fig. 5 can be used for component design, since they are not conditioned to a 
specific value of inclusion size (Fig. 4). In particular, the model in Fig. 5b can be used to predict the VHCF life of 
components characterized by risk-volumes (up to 100000 mm3) significantly larger than risk-volumes of specimens 
commonly tested. 
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4. Conclusions 

In the present paper, a general model for the P-S-N curves in the VHCF regime was proposed. The statistical 
distribution of the P-S-N curves for a given initial defect size (conditional P-S-N curves) and the P-S-N curves as a 
function of the risk-volume (marginal P-S-N curves) were defined. The proposed model permitted to take into account 
defect size-effects on the VHCF response and to predict the P-S-N curves of components characterized by large risk-
volumes. 

The model was successfully applied to an experimental dataset. The P-S-N curves as a function of the defect size 
and as a function of the risk-volume were estimated and were in agreement with the experimental data: for the tested 
risk-volume, about 80% of data were within the estimated 80% confidence band. 

The proposed model could be effectively adopted for the estimation of the P-S-N curves when designing large 
components subjected to VHCF. 
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