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Abstract---Shading is a crucial issue for the placement of PV
installations, as it heavily impacts power production and the
corresponding return of investment. Nonetheless, residential
rooftop installations still rely on rule-of-thumb criteria and on
gross estimates of the shading patterns, while more optimized
approaches focus solely on the identification of suitable surfaces
(e.g., roofs) in a larger geographic area (e.g., city or district).
This work addresses the challenge of identifying an optimal
(with respect to the overall energy production) placement of
PV panels on a roof. The novel aspect of the proposed solution
lies in the possibility of having a sparse, irregular placement of
individual modules so as to better exploit the variance of solar
data. The latter are represented in terms of the distribution of
irradiance and temperature values over the roof, as elaborated
from historical traces and Geographical Information System
(GIS) data. Experimental results will prove the effectiveness of
the algorithm through three real world case studies, and that the
generated optimal solutions allow to increase power production
by up to 28% with respect to rule-of-thumb solutions.

I. INTRODUCTION

Environmental sensitivity is strongly pushing towards the
replacement of energy generation based on fossil fuels with
renewable energy sources. Among all kinds of renewables,
photovoltaic (PV) solar energy is by far the most popular,
due to decreasing costs of the devices, limited invasiveness in
existing infrastructures, and economic incentives.
The placement of PV installations is clearly a critical issue; in
order to maximize the return on investment, it is essential to
find places with the best average solar irradiance and minimal
or zero shading. Two are the categories of stakeholders that
need such information, though at different granularities. On
one hand, public institutions or solar energy companies require
coarse-grain Geographical Information Systems (GIS) based
solar data at the level of city areas or districts. On the other
hand, home owners and PV suppliers/installers tend to focus on
a specific surface (i.e., the rooftop) and thus need finer-grain
information. While the former can afford to buy or commission
such data, users usually cannot. As a result, residential rooftop
installations are normally driven by rule-of-thumb criteria and
by gross estimates of the shading patterns.
Some works leverage finer-grain GIS solar data to drive PV
installations at a smaller scale, but in most cases they are used
to identify suitable surfaces (roofs) for the installation. Only
few works (e.g. [1]) use fine-grain solar data to identify the best
position of PV panels on rooftops; however, they provide only
qualitative feedback and do not suggest an actual placement.

In this work we specifically address the issue of the optimal
placement of a solar panel on a rooftop based on fine-
grain GIS data. In particular, given the time profile of solar
irradiance and temperature, we derive a floorplanning of a solar
panel consisting of N identical PV modules that optimizes
the extracted power. An important novelty of the proposed
approach lies in that we allow individual modules to be placed
individually, therefore possibly yielding an unconventional,
‘‘irregular’’ floorplanning that matches the temporal distribution
of the solar irradiance in each point. Although this is not usually
done, there is no particular technical difficulty in allowing such
irregular placement.
Our method, given (i) historical irradiance and temperature
data, (ii) a target area on a roof, (iii) the geometrical and
electrical characteristics of the PV modules, and (iv) the
desired series-parallel topology of the modules, determines a
placement of N PV modules that maximizes the total extracted
power, taking into account the extra overhead caused by the
sparse placement. This is achieved by a heuristic algorithm
that greedily maps modules to target positions on a fixed-size
grid, ranked according to their suitability (mostly related to
the distribution of the irradiance), and extracts the resulting
total power of each configuration using the GIS data and the
series-parallel overall interconnection pattern of the panel.
Results show that the determined placement can extract 20-30%
more energy than a traditional placement, on a yearly basis,
while basically keeping the same installation cost.

II. MOTIVATION, BACKGROUND AND RELATED WORK

A. Motivation

Once the angle and the direction are determined, in absence
of detailed irradiation and thermal data, rooftop panels are
typically placed according to one basic rule: avoid as much
as possible evident visible or possible shadings due to local
obstacles (chimneys, dormers, antennas), adjacent buildings
or other elements (trees, light poles, etc.). When the position
is identified, the N modules of the panel are conventionally
laid out by packing them together tightly. Figure 1 shows a
conceptual example in which 8 modules are placed on a surface.
Darker cells denote regions with higher average irradiance.
Figure 1-(a) shows the 8 modules placed using the traditional
approach. Even if we exploit irradiance info, a traditional
compact placement will not be able to extract the maximum
possible power (e.g., modules 4,7, and 8). Conversely, a sparse,
irregular placement can better match the variance of irradiance



1 2 3

(a) (b)

1 2 3 4

5 6 7 8 4 5

6

7

8

Fig. 1: A traditional PV module placement (a), and an irregular
one as proposed in this work (b).

Fig. 2: I-V curve (a) and PV components hierarchy (b).

and temperature profiles and harvest a larger amount of energy.
Even when the variance is small, when accrued over a long
period of time, the benefit can sum up to a significant value.
Figure 1-(b) shows such an example, in which the modules
are placed in areas with the largest irradiance. The picture is
clearly only conceptual; in practical cases the irregularity of
the placement is less extreme. The irregular placement has no
technical impediment with respect to a traditional one but for
some wiring overhead, which we will show to be marginal.

B. Background

The basic element of a photovoltaic generator is the cell.
The cell is a semiconductor diode with square, circular or
rectangular shape, according to the type of cell. The electrical
behaviour of a cell can be described by an ideal current source,
proportional to solar irradiance, and by a diode connected
in anti-parallel. A cell is described by a voltage-current (I-
V) characteristic curve, which, at a given cell temperature,
changes as a function of the irradiance G. When G increases,
the open-circuit voltage Voc increases logarithmically and the
short-circuit current Isc increases proportionally (dotted line in
Figure 2-(a)). With fixed irradiance G, a temperature increase
yields a slight increase of the short-circuit current Isc which
gives a decrease of the open-circuit voltage Voc (solid line).
In order to increase the output power, cells are connected
together according to a series/parallel organization into a PV
module. PV modules can be further interconnected together
to form a PV array, again in series or in parallel, to achieve
the desired voltage and current levels. Figure 2-(b) gives a
pictorial view of this hierarchy.
In PV modules, however, defects or shading can result in
non-uniform irradiance in the cells involved, thus affecting the
total output power. The details about how these mismatches
affect the output power are described in Section III-B1. The
important concept is that, because of the different power levels,

a Maximum Power Point Tracker (MPPT) needs to be used
in order to maximize the efficiency. An MPPT permits the
extraction of the maximum power output from the PV generator
at different irradiances and temperatures.

C. Related work

Geographic Information Systems (GIS) are becoming a useful
technology to model solar potential [2] and to plan the
deployments of solar generators in urban environments [3].
Such GIS-based tools often start their analysis from a Digital
Surface Model (DSM) or 3D city models obtained from LiDAR
data, representing the earth’s surface and all objects and
buildings on it. Mapwell Solar System [4] and i-Guess [5]
are two GIS-based softwares for urban energy planning. Both
provide information on solar radiation and PV potential; they
are limited to yearly estimations only. I-SCOPE [6] is an
integrated platform to give 3-D city services; it offers a solar
map with yearly and monthly PV potential.
Brumen et al. [7] present a web application for PV potential
assessment starting from a DSM. This tool provides data about
yearly and monthly PV potential, together with information
on rooftops. Schuffert et al. [8] present a methodology to
derive available roof surfaces starting from LiDAR data. This
methodology also estimates the yearly solar irradiance and the
PV energy production in clear-sky conditions. PVWatts [9] is a
GIS-based software to estimate yearly, monthly and hourly PV
generation profiles using a typical meteorological year and a
topographic model of 40km2. PVGIS [10], [11] is a web-tool
that exploits solar maps to provide information on yearly and
monthly PV production in Europe and Africa, e.g., sub-hourly
irradiance trends in clear-sky conditions.
The presented solutions suffer from many limitations. Sub-
hourly information is necessary to better estimate the optimal
energy production, and low DSM resolutions (i.e., > 1m) do
not allow to recognize obstacles on rooftops (e.g., chimneys,
dormers). Moreover, to provide more accurate estimations, real
weather data from weather stations [3] must be considered to
compute incident radiation on rooftops in real-sky conditions.
Finally, none of presented solutions provide guidelines for a
smart, GIS-driven floorplanning of PV arrays.
With respect to the past literature, we propose a GIS-based
methodology to determine an optimal placement of PV modules
aiming at the maximization of yearly energy production, based
on real-sky, sub-hourly simulations integrating high-resolution
DSM with real meteorological data.

III. GIS-BASED PV FLOORPLANNING ALGORITHM

A. Problem Definition and Formulation

Our objective is to place N PV modules on a given area (not
necessarily rectangular). The latter is aligned to a virtual grid
whose elements are squares of side s. The sides of the area are
integer multiples of s so that it consists of an integer number
Ng of grid elements.
The value of s is chosen so that the panel sizes are also an
integer multiple of s. Assuming that each panel is identical and
has sizes w×h, we have that w = k1 ·s, h = k2 ·s. The size of



Fig. 3: Power characteristics of Mitsubishi’s PV-MF165EB3.

the specific panel used in our analysis is 160 × 80cm, and we
use s = 20cm. Notice that since grid points represent possible
placement candidates, a smaller s yields more solutions, at the
expense of longer computation times.
We are then given a set of measures over time of irradiance
Gi(t) and temperature Ti(t), i = 1, ..., Ng. The spatial
resolution of the irradiance measures determined by the solar
data acquisition tool is forced to coincide with the grid
granularity, so each grid point has a specific value of G and T .
The process of deriving solar data with the desired granularity
will be described later in Section IV.
The problem we solve in this work can be formulated as
follows:
Given an available surface, a set of NT irradiance and
temperature measures for each point of a grid, and N PV
modules to be placed according to a specific series-parallel
topology, find the optimal placement of the panels on the
surface that maximizes the energy extracted in the interval
[0, NT ].

B. Models

1) PV Panel Power Model: Our analysis needs a power
model of an individual single PV module, because the total
power extracted by the panel Ppanel depends on its actual
series/parallel topology and is in general different from the
sum of the power of the individual modules.
Given a m× n series-parallel interconnection (i.e., n parallel
strings each of m modules in series), the total power is obtained
as Ppanel = Vpanel · Ipanel, where:{

Vpanel = minj=1,...,n(
∑
i=1,...,m Vmodule,ij)

Ipanel =
∑
j=1,...,n(mini=1,...,m Imodule,ij)

and Vmodule,ij and Imodule,ij are the voltage and current
extracted from the i-th module in the j-th string.
In our setup, we consider a PV-MF165EB3 module by Mit-
subishi, for which we derived an empirical model of Vmodule
and Imodule as a function of irradiance G and temperature T
from information available in the datasheet (Figure 3). We
assume that each module extracts the maximum power, i.e.,
Vmodule and Imodule are the maximum power voltage and
current, and Pmodule ≡ Pmax.
The model derivation is done as follows:

1) Using the rightmost plot of Figure 3 we first derive
the equations expressing the dependence of Voc, Isc

and Pmax (i.e., Pmodule in our terminology) with re-
spect to irradiance G. These plots are normalized with
respect to reference values (at 25oC temperature and
G = 1000W/cm2) of Voc,ref = 30.4V, Isc,ref = 7.36A,
and Pmax,ref = 165W , as reported in the datasheet.

2) Using the middle plot, we replace Voc,ref , Isc,ref , and
Pmax,ref with functions the express their dependence on
temperature, yielding equations for Voc, Isc, and Pmax
that include the dependence on G and T .

3) The above analysis does not consider the important fact
that T and G are obviously correlated: when irradiance
is high, temperature will also be high. We therefore
correct ambient temperature T with a term depending on
G, according to the model of [12]. The actual module
temperature Tact is modeled as T +k ·G, where k = α

hc

is the ratio of the absorptivity of the roof divided by a
convective and radiative (15 WK

m2 ) [13].
4) The last step is to derive Vmodule and Imodule from Voc

and Isc. To this purpose, we exploit the fact that (leftmost
plot of Figure 3), the maximum power voltage of the
module is roughly independent of the irradiance and is
≈ 80% (24V) of Voc. This allows to express Vmodule as
a function of G and T . Since the relation betwen Imodule
and Isc is more complex to extract, we simply derive it
as the ratio of Pmax and Vmodule.

These processes result into the following equations:

Tact = T + k ·G
Pmodule(G,T ) = 165 · (1.12 − 0.048Tact) · 10−3G
Vmodule(G,T ) = 24 · (1.08 − 0.34Tact) · (0.875 + 0.000125G)
Imodule(G,T ) = Pmodule(G,T )/Vmodule(G,T )

2) Wiring Overhead Characterization: The use of a loose
placement of the PV modules incurs in an obvious wiring
overhead, causing power loss and cost increase. In this work,
we only consider the power overhead.
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Fig. 4: Wiring overhead characterization.

Figure 4 exemplifies the problem for the series connection of
two modules (1 and 2). Even in a compact placement (Figure 4-
(a)), some wiring is needed (the thick red connection) between
the corresponding terminals. When we distance them vertically
by d1,2v and horizontally by d1,2h (Figure 4-(b)), the extra wiring
is simply given by the sum of the two displacements (the dotted
orange lines), since we have to subtract the length L of the
default connector. Notice that in a real scenario we actually
have shorter connections, since we are not forced to route
wires along the (x,y) directions.



For the generic serial interconnection of Ns modules, the
overhead will simply by given by: Lovh =

∑Ns−1
i=1 (di,i+1

v +
di,i+1
h ). Knowing the current and the unit resistance of the

wire used for the connection, we can compute the power drop
incurred by the extra cable (RI2).
For the parallel connection of the strings, conversely, the
overhead can be neglected. In fact, typical PV installations with
two or more strings do not wire the serial strings ‘‘manually’’,
but do it through a combiner box [14], which would be used
anyway even for the traditional floorplanning.

C. Floorplanning Algorithm

The calculation of the optimal placement requires an exhaustive
enumeration of all possible candidate grid points, which
becomes quickly unfeasible even for small areas. The solution
space has a worst case size of O(NN

g ); assuming to place
N = 20 modules on a 100 m2 surface, a grid of 20 cm
implies Ng = 2500 candidates points, yielding a space of
O(1067) solutions. Notice that it is not possible to introduce
bounds on the enumeration because the total extracted power
can be computed only when all the modules are placed, because
it is not possible to sum the power of the individual modules.
For this reason, we devised a simple and efficient greedy
approximation to the solution based on a ranking of a
‘‘suitability’’ metric for all the grid points. Given this metric,
the algorithm simply allocates modules greedily, by selecting
candidate points in decreasing order of suitability.
The suitability metric should distill the temporal traces into a
compact signature that synthesizes the distribution of G and
T values. The obvious choice of using the average is not a
good choice because the typical distributions of irradiance and
temperature are strongly skewed towards smaller values, and
the average is not a representative value.
As a more aggregate indicator, we rather use the k-th percentile
of the distribution as a compact metric, which represents the
value below which k% of the samples fall. Specifically, we
choose the 75-th percentile. Larger values of the percentile
identify distributions that are more skewed towards the upper
range of the values; therefore, the suitability metric should
combine the percentiles of G (favoring larger values since
larger G values are beneficial) and T (favoring smaller values,
since smaller T values are beneficial).
However, mixing two percentiles should be done carefully
and with the appropriate weight. From Figure 3, we see the
G affects the output power way more than temperature: over
a range of [200 − 1000]W/cm2, the power changes by 5x,
whereas typical T ranges only change power by ±20% at most.
Therefore, the suitability metric uses only the 75-percentile of
G, and temperature is used as a corrective factor f(T ) that
tracks the dPmax/dT of the middle plot of Figure 3. The
suitability sij in each grid point (i, j) is thus obtained as
sij = p

Gij

75 · f(T ), where p
Gij

75 is the 75-th percentile of G in
the position (i, j).
Figure 5 shows a pseudo-code of the algorithm.
As in any greedy algorithm, the steps are relatively straight-
forward. First (Line 1) the suitability matrix S is computed as

Inputs:  

• W�H: width and height of the panel placement area

• Ng: number of valid grid elements (≤ W�H)

• N: # of identical PV modules to be placed 

• m,n: series (m) /parallel (n) topology of the panel (m�n = N)

• G[i,j,t], Ti[i,j,t]: Irradiance and temperature matrices for each grid 

point i,=1,…,W, j=1,…,H,  and for each time instant t ∈ [1,NT]point i,=1,…,W, j=1,…,H,  and for each time instant t ∈ [1,NT]

• Vmodule(G,T), Imodule(G,T): model of PV module voltage and current 

as a function of G and T   (section III.C)

Output: 

• P: array of N grid coordinates representing the placement of the i-th module

Algorithm:

1. Calculate the suitability matrix S[i,j] for each  grid position (i,j) 

from  G and T (75-th percentile of G with T correction factor)

2. L = array of grid positions (x,y) sorted grid in non-increasing 

order of suitability  (wiring overhead is used as a tie-breaker)

3. j=1

4. for each module i=1,…, N4. for each module i=1,…, N

5. if L[j]  <  distance threshold 

6. P[i] ← L[j]

7. remove from L grid points covered by  current assignment

8. endif

9. j ← j+1

10. endfor

11. return P

Fig. 5: Algorithms inputs and pseudo-code.

described above. In Line 2, we calculate an array L of grid
coordinates, sorted in decreasing order of their value of S. In
case of identical values of suitability, the distance from the
already placed modules is used as a tie-breaker (closer grid
points have higher rank). We then iterate (Line 4) over the
N modules, in series-first order, i.e., modules belonging to a
series string are enumerated before moving to another string.
In Line 5 we introduce an important filter on the solutions.
Although the wiring overhead is already counted in the sorting,
it is just a tie-breaker. It might occasionally be the case that
a given L[j] has a high suitability but is quite far apart from
the already placed modules. To this purpose we consider
only coordinates L[j] that do not exceed a given distance
threshold; the latter is empirically determined as twice the
average distance of the already placed modules.
The i-th module is then placed in the j-th position according to
the previously computed ranking (Line 6) . An important point
is that, since a module occupies more k1 · k2 grid points (see
Section III.A), all these ‘‘covered’’ points are clearly unusable
and must therefore be removed from L (Line 7).
We then pick (Line 9) the next coordinate from L after the
removal of covered points. The loop terminates when the N
panels have been placed.

IV. SOLAR DATA EXTRACTION

The proposed PV floorplanning algorithm builds upon the
assumption that fine-grain distributions of irradiance and
temperature are available for a roof with a fine grain granularity
over a significant period of time. This work adopts the software
infrastructure built in [15] as enabling technology, to derive
the necessary inputs by relying on GIS data.



Input GIS data are mainly expressed through a Digital Surface
Model (DSM), a high-resolution raster image representing
terrain elevation of buildings of interest. The DSM allows
to recognize encumbrances over the roof (e.g. chimneys and
dormers), that prevent the deployment of PV panels, and to
estimate the evolution of shadows over the roof over one year,
with 15 minutes intervals. The result is the identification of the
suitable area, i.e., of the area of the roof that can be used for
the placement of PV panels. The area is then aligned to the
virtual grid to obtain the inputs for the placement algorithm,
i.e., the dimension of the area (parameters W and H) and the
valid grid elements (Ng).
The evolution of temperature and irradiance over time is
obtained by combining weather data, retrieved from personal
or third-party weather stations [16], with the shadow model.
Solar radiation is decomposed to estimate the incident global
radiation, by additionally considering the attenuation caused
by air pollution (i.e., Linke turbidity coefficient [11]). Solar
radiation decomposition requires as inputs both the direct
normal incident radiation and the diffuse horizontal incident
radiation [17]. If the weather station only provides global
horizontal radiation, incident radiation is derived through state-
of-the-art decomposition models [18].

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We applied the algorithm on roofs of three industrial buildings,
shown in Figure 6-(a). They are lean-to roofs of approximately
49m×12m, facing S/S-W with inclination of 26◦. The colored
areas of Figure 6-(a) highlight the identified suitable areas. The
figure highlights that some parts of the roofs are discarded, due
to the presence of encumbrances - this is especially evident for
roof 1, where pipes occupy a large space. The suitable area
is then aligned to the 20cm grid. The key feature of the roofs
are reported in Table I.
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Fig. 6: Roofs used for the experimental analysis (a), and
corresponding irradiance distributions (b).

The solar data extraction flow described in Section IV has then
been used to derive the evolution of irradiance and temperature
over time for the roofs. Despite of the geographical proximity,
the roofs have quite different irradiance distributions. Figure 6-
(b) shows the 75th percentile of irradiance distribution (brighter

TABLE I: Characteristics of each roof, and power production
of the proposed PV floorplanning algorithm with respect to
traditional placements.

PV system production

Roof WxL Ng N Traditional Proposed algorithm
MWh MWh %

Roof 1 287x51 9,416 16 3.430 4.094 +19.37
32 6.729 7.499 +11.44

Roof 2 298x51 11,892 16 2.971 3.619 +21.85
32 5.941 7.404 +23.63

Roof 3 298x52 11,672 16 2.957 3.642 +23.16
32 5.746 7.405 +28.86

colors represent a larger irradiation). All roofs tend to have
the least irradiated grid elements on their right-hand side, as
an effect of roof orientation. In general, irradiance is quite
non-uniform, and the variance is quite heterogeneous over the
different roofs; this is especially evident for Roof 1, as the
pipes tend to lower irradiance over a wide area of the roof.
Notice that this map does not include the effect of temperature.

B. Simulation Results

We run the PV floorplanning algorithm twice on the three roofs
to place N = 16 and N = 32 panels. The panels are always
organized with series of 8 panels (m = 8). The execution time
of the placement algorithm is proportional to the number of
valid grid elements and to the number of panels to be placed,
and required less than 120s under all configurations on an
Intel 8-core i7 server with 15.4GB of RAM. Due to the large
number of grid elements (almost 12,000 for roofs 2 and 3), it
is not possible to compare our results against an exhaustive
algorithm.
Figure 7 compares the loose placements generated by our
algorithm against traditional ‘‘compact’’ placements. Colored
rectangles represent panels, with panels of the same color
belonging to the same series string. Due to space constraints,
the figure reports only the experiments run for N = 32.
The compact placements (a-c) are placed in the most irradiated
area of the roof; notice that these placements are determined
using accurate spatio-temporal irradiance information that
are not normally available to installators. Therefore, we are
comparing our solution to a particularly ‘‘good’’ reference.
The placements resulting from our floorplanning algorithm are
shown in Figure 7-(d-f). They clearly tend to be placed nearby
the traditional placements (e.g., compare (a) and (d)), yet the
are sparser, since they try to exploit fine-grain differences in
the distribution of irradiance and temperature. This is clearly
visible for example in the triangular shape of the placement
in (e), that matches the irradiance variation in that region of
Roof 2 (Figure 6-(b)).
Table I clearly shows that our PV floorplanning can signifi-
cantly improve the energy production on a yearly basis, with
improvements that range from 11% to 28%. Obviously, the
magnitude of the benefit is proportional to the available space;
this explains the smaller improvements for Roof 1, which has
fewer valid grid points than the other roofs.
We can also notice how more irradiated roofs improve the
benefit of a customized placement; Roof 1 has a sensibly
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Fig. 7: Traditional PV panel placements (a-c) and placements resulting from the PV floorplanning algorithm (d-f). Colored
rectangles represent panel positions, and panels of the same color are connected in series.

smaller benefit from the placement than the other two, as a
result of a clearly visible lower average irradiance (Figure
6-(b)).
The sensible improvements obtained by our placement, how-
ever, are not just due to a positioning of modules that matches
irradiance and temperature. Our placement is also topology-
aware; by enumerating modules in series-first fashion, it
guarantees that the bottleneck effect in a series string due
to a ‘‘weak’’ module (which determines the current of the
entire string) cannot occur. This effect is visible in Roof 1:
the traditional and modified placements occupy more or less
the same portion of the roof, and therefore they are subject
to similar G and T conditions; however, the energy extracted
in the placements differ by 11.4%, as mostly due by avoiding
the ‘‘weak’’ module issue.

C. Overhead Assessment

For the calculation of the wiring overhead, we assume the use
of an AWG 10 cable with resistive loss of ≈ 7mΩ/m, and
an approximate cost of 1$/m. As a conservative calculation
of the overhead, we assume a 4A current in a series string
(corresponding to an irradiance of 600W/cm2). The power
would be RI2 ≈ 0.11W/m for each meter of extra cable in the
string, i.e., ≈ 0.5kW/m of energy in one year (assuming 50%
of the time at zero current for dark periods). If we multiply
this number for 8 strings, and compare it to the figures of
Table I, the overhead is approximately only 0.05%/m. Our
wiring overhead is in the order of 20 meters for the worst-case
solutions, so both power and cost overheads are not an issue.
The placement algorithm does not directly include power
overhead, if not indirectly by restricting the greedy choices as
described in Section III.

VI. CONCLUSIONS

In this work we showed how, by relaxing the constraint of
compactness, and by exploiting fine-grain spatio-temporal
irradiance and temperature information, it is possible to
determine a placement of a set of PV modules that sensibly
increases the extracted energy of a PV installation, roughly
at iso-cost. Our method relies on (i) an accurate GIS-based
solar data extraction framework, and (ii) simple models and
algorithms to determine the placement.

We demonstrated the application of the method to three real
industrial roofs, showing an energy production increase as
much as 28% larger than a traditional PV installation.
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