
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences / Corno, Fulvio; De
Russis, Luigi; Monge Roffarello, Alberto. - In: JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS.
- ISSN 1876-1364. - STAMPA. - 10:4(2018), pp. 327-343. [10.3233/AIS-180492]

Original

AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

IOP postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.3233/AIS-180492

Terms of use:

Publisher copyright

“This is the accepted manuscript version of an article accepted for publication in JOURNAL OF AMBIENT
INTELLIGENCE AND SMART ENVIRONMENTS. IOP Publishing Ltd is not responsible for any errors or omissions in
this version of the manuscript or any version derived from it. The Version of Record is available online at
http://dx.doi.org/10.3233/AIS-180492

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2693822 since: 2018-09-05T11:38:28Z

IOS Press

Journal of Ambient Intelligence and Smart Environments 0 (0) 1–17 1
IOS Press

AwareNotifications: Multi-Device Semantic
Notification Handling with User-Defined
Preferences
Fulvio Corno a, Luigi De Russis a and Alberto Monge Roffarello a,*

a Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 Torino,
10129 Italy
E-mails: fulvio.corno@polito.it, luigi.derussis@polito.it, alberto.monge@polito.it

Abstract. With the increase of connected devices and online services, the number of notifications received by each person is
growing. Although notifications are useful to inform users about important information such as new messages and events, the
continuous interruptions, the notification duplication, and the rigid delivery can be sources of discomfort. To overcome these
issues, we present AwareNotifications, an intelligent system based on user-defined preferences to manage multi-device notifi-
cations. AwareNotifications is powered by Semantic Web technologies. By directly exploiting user preferences in the semantic
reasoning process, the system is able to identify suitable device(s), modality, and moment(s) to deliver the incoming user no-
tifications. We evaluated AwareNotifications in a user study with 15 participants, in which we compared our system with the
“traditional” notification delivery system. The study confirms the perceived effectiveness of AwareNotifications, and provides
insights to further improve the system.

Keywords: Internet of Things, Notifications, Notification Delivery, Semantic Web, Reasoning

1. Introduction

Nowadays, mobile devices like smartphones and
tablets are becoming increasingly common. Using the
Internet, they allow users to stay connected anytime
and anywhere. Moreover, the number of smart objects
increases every day, ranging from wearable devices
to smart appliances, like thermostats and fridges. All
these devices contribute to create the Internet of Things
(IoT) world and bring us closer to the realization of
Smart Environments. In this context, notifications are
widely adopted. Most mobile applications use notifi-
cations to communicate with users. Applications like
Facebook or Twitter can generate a great number of
notifications, e.g., they can notify the user about an in-
coming message or a friend’s new post. IoT devices
provide their custom mobile applications, which are

*Corresponding author. E-mail: alberto.monge@polito.it.

mainly used to show device-generated information as
notifications. For example, smart thermostats notify
the user when the temperature drops below a given
threshold, while a smart fridge alerts the householders
if the door is left open.

Consequently, the number of notifications received
by a user is growing, and their user experience is put
to a hard test [1]. Although notifications are useful to
inform users about important information such as new
messages and events [2], the continuous interruptions
can be a source of discomfort. In fact, while receiv-
ing more messages and social network updates make
users feel more connected with others, an increasing
number of notifications is associated with an increase
in negative emotions [3]. Furthermore, it is demon-
strated that not all notifications have the same impor-
tance [4, 5]. In particular, users mostly dismiss notifi-
cations that are perceived as not useful [5, 6]. Past stud-
ies [7–11] have shown that the user interruptibility de-
pends on numerous factors, such as current activity, so-

1876-1364/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:fulvio.corno@polito.it
mailto:luigi.derussis@polito.it
mailto:alberto.monge@polito.it
mailto:alberto.monge@polito.it

2 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

cial engagement, notifications modality, user location,
notification sender, etc. However, the “traditional” no-
tification system delivers notifications independently
of user preferences and contexts. In addition, the dis-
ruptive effects of notifications are amplified by the in-
creasing number of devices, as stated in [12]. In this
multi-device scenario, it is common to receive dupli-
cate notifications on several devices, or to receive them
in an inappropriate moment, or on an unsuitable de-
vice. Think of a new Facebook private message: it is
sent to all user devices with an installed Facebook ap-
plication and to all logged-on browser windows, not to
speak about desktop notifications, supported by some
browsers. Moreover, think of a user who is driving her
car; notifications sent to her smartphone could disturb
her driving activity.

From the literature, three issues emerge in the han-
dling of “traditional” notifications: a) unconditional
delivery, b) limited customization, and c) mono-device
management, The contribution of this paper is a new
approach for allowing users to customize notification
delivery by taking into account their preferences and
context, thus being able to tackle the previous three is-
sues. To validate the approach, we propose AwareNo-
tifications, an intelligent system based on user-defined
preferences to manage multi-device notifications de-
livery. The system is designed starting from a care-
ful analysis of existing works about notifications. It
is composed by a series of clients (user devices and
IoT devices) and a server. Clients are in charge of col-
lecting the user preferences and the context informa-
tion. The AwareNotifications server collects the infor-
mation deriving from the clients, and delivers incom-
ing notifications by semantically reasoning about pref-
erences and context. We assessed the perceived effec-
tiveness of AwareNotifications by comparing it with
the “traditional” notification delivery system in a user
study with 15 participants. In particular, we were in-
terested in evaluating whether a multi-device system
that takes into account both user preferences and con-
text improves notification delivery in an effective way.
In the study, users simulated the reception of notifica-
tions with and without AwareNotifications on multi-
ple devices, evaluating any received message with suit-
able questionnaires. Results show that AwareNotifica-
tions improves the user experience with notifications
in terms of notification acceptability, accessibility of
the notification content, and notification delivery. In-
terviews with the participants highlighted the pros and
cons of the evaluated solutions (“traditional” notifica-

tion delivery system vs. AwareNotifications), and con-
firmed the perceived effectiveness of the approach.

The remainder of this paper is organized as fol-
lows: Section 2 reviews the related literature about
the issues with notifications handling. Section 3 de-
scribes the guidelines and the motivations that guided
our work. Section 4 present the semantic model we de-
signed to be exploited by the AwareNotifications sys-
tem, whose architecture is then described in Section 5.
Section 6 reports the implementation of the first ver-
sion of AwareNotifications, while Section 7 presents
the user study we conducted to evaluate the effective-
ness of the proposed approach, with the related results
and discussion. Eventually, Section 8 concludes the pa-
per and presents future works.

2. Related Work

Our work relates to the management of user noti-
fications. We analyzed the literature about the main
problems caused by the increase of notifications (Sec-
tion 2.1), and about proposed smart notification sys-
tems (Section 2.2).

2.1. The Problem of Overwhelming Notifications

The problem of overwhelming notifications has
been analyzed in numerous recent studies. Although
notifications are useful to inform users about impor-
tant information such as new messages and events [2],
delivering notifications runs the risk of interrupting the
user’s ongoing task, affecting users’ performances, an-
noyance, and anxiety [7, 13, 14].

In particular, the work of Adamczyk et al. [7] mea-
sures the effects of interrupting a user at different mo-
ments in terms of current task performance, emotional
state, and social attribution, thus demonstrating that
different interruption moments have different impacts
on user emotional state and positive social attribution.
The authors found that the participants to their study
felt higher workloads if notifications were delivered
while they were in the middle of a work task, such as
correcting or writing text, or conducting a web search.

In a similar way, in a study with 11 information
workers, Czerwinski et al. [15] conclude that people
find difficult to return to a previous task after having
been interrupted by a notification. With a controlled
experiment, Bailey and Iqbal [8] measure users work-
load during several interactive tasks, and demonstrate
that the moment at which a notification is delivered af-

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 3

fects the user interruption cost. Furthermore, Mark et
al. [16] report that interrupted tasks a) require more ef-
fort from the users and b) are more stressful and frus-
trating than normal tasks.

More recently, with a large-scale assessment of mo-
bile notifications, Pielot et al. [3] report the disad-
vantages brought by the increasing number of notifi-
cations. They found that mobile phone users have to
deal with a large volume of notifications every day,
mostly from instant messaging services and e-mails.
They demonstrate that the increasing number of noti-
fications is correlated with negative emotions, such as
stress and feeling overwhelmed.

Finally, it is demonstrated that not all notifications
are of the same importance to the user. The study of
Mashhadi et al. [4] reveals that users desire to have
more fine-grained control over the notification man-
agement, specifying what is important to them. In a
large-scale analysis of mobile notifications, Sahami et
al. [5] derive an holistic picture of notifications, re-
porting a number of guidelines to effectively use them.
Also in this case, the authors reports that not all noti-
fications are important. In particular, they demonstrate
that the importance of a notification depends on the
application source.

In our work, we start to address these issues about
the problem of overwhelming notifications, to design
a system able to optimally manage user’s notifications
through user-defined preferences.

2.2. The Vision of a Smart Notification System

The literature analysis clearly shows the need of
a smart notification system. Many works propose
strategies to improve the user experience with no-
tifications, like reducing interruptions, deferring no-
tifications until the right time, and communicating
(un)availability of users [3]. Rosenthal et al. [17] con-
tribute with a method to learn when to mute a phone
call or a notification to avoid embarrassing interrup-
tions, demonstrating the need for personalized behav-
iors. To avoid abrupt full-screen notifications (e.g., an
incoming phone call notification), Böhmer et al. [18]
propose a smaller partial-screen layout for incoming
messages.

However, the vision of a smart notification system
does not seem completely reached by any previous
work. Most of the studies found in the literature fo-
cus on user interruptibility, only. Given the complex-
ity of creating systems to smartly interrupt users, the
focus of these works is on understanding how to com-

pute accurate costs of interruption. Some systems were
developed to computationally reason about appropri-
ate moments for interrupting users engaged in tasks
(e.g., [19–22]). A statistical model that predicts the re-
sponsiveness of the users to instant messaging notifi-
cations has been created and tested by Avrahami and
Scott [23]. Such a model uses data coming from no-
tifications and desktop events to predict at what time
the user will reply to an incoming notification. Ho et
al. [24] developed a context aware mobile computing
device that automatically detects activity transitions
using wireless accelerometers. With the evaluation of
the system, they support the strategy of using activ-
ity transitions as a trigger for non time-critical inter-
ruptions to potentially reduce feelings of information
overload.

Other more recent studies focus on the usage of
smartphones, analyzing factors such as notification
acceptability and delivery instant. Pejovic and Mu-
solesi [25] propose the design of an intelligent inter-
ruption mechanism to show notifications to the user
at the right moment. The mechanism is based on a
machine learning classifier for smartphones that ex-
ploits context information derived from the same de-
vice. Poppinga et al. [26] analyze the dependency of
user interruptibility and many factors, such as user ac-
tivity, time of the day, user location, etc. The study of
Fisher et al. [9] states that suitable moments to deliver
notifications arise at the endings of episodes of mobile
interaction, like phone calls or text messages. Pielot et
al. [27] consider the data deriving from smartphones
usage to analyze user attention. In particular, they de-
tect when a user is bored with a user-independent ma-
chine learning model.

Okoshi et al. [28] propose a middleware, named At-
telia, to detects good breakpoints to deliver notifica-
tions. Attelia uses only smartphone data, and it has
been evaluated with an in-the-wild study. Differently
from other works, which consider mobile notifications
only, Vastenburg et al. [29] conducted a user study in a
living-room laboratory to analyze the acceptability of
notifications in a home environment. They used a sin-
gle display to show notifications in different moments
and modalities. Another study focuses on the presenta-
tion of notifications to the user: Kern and Schiele [10]
assert that the notification modality should be chosen
according to the user interruptibility. Only a few stud-
ies do consider more than one device in the notifica-
tion delivery process. In particular, Okoshi et al. [1]
extend their previous work (Attelia) to Attelia II, and

4 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

detect breakpoints to deliver notifications when users
use more than one mobile or wearable device.

However, at the best of our knowledge, in the liter-
ature there is no system that effectively manage all the
notifications of a user, taking into account multiple de-
vices, context, and user preferences at the same time.
We built our work combining some guidelines defined
after the analysis of the previous systems with inno-
vative features (i.e., multi-device environment, user-
defined preferences, and semantic knowledge repre-
sentation).

3. Design Guidelines and Motivation

We present a simple scenario to explain our ap-
proach of an intelligent notification system in a multi-
device and smart environment that takes into account
user preferences.

Mary, an architect, is in her office. In this place,
there are four devices connected to the Internet:
three Mary’s personal devices (a smartphone, a
tablet, and a laptop), and a smart TV, which Mary
uses during her breaks or for meetings. Currently,
Mary is working on her laptop. At the same time,
a friend of Mary sends her a chat message. When
Mary is working on the computer, she prefers to
avoid distractions. Furthermore, she considers a
chat message coming from a friend not so impor-
tant. When Mary turns off the laptop, she switches
the smart TV on, having a break.

By considering the preferences of Mary, a smart no-
tification system should not deliver the chat notifica-
tion when Mary is working, but it should maintain the
notification pending until Mary starts her break. Upon
detecting this change in devices status and current ac-
tivity, a smart system should send the pending notifi-
cation to the TV. Since Mary is probably looking at
the screen, the notification should be sent with a visual
representation.

AwareNotifications is a system able to manage situ-
ations such as those reported in the scenario. In the first
part of our work, we defined 9 design guidelines (GLs)
informed by the literature to design AwareNotifica-
tions, an intelligent system based on user-defined pref-
erences for managing multi-device notifications deliv-
ery. These guidelines are reported in Table 1 and ex-
plained in the following sections.

3.1. Involved Technologies

Most of the previous studies about notifications an-
alyzes large data sets of notification data to train ma-
chine learning algorithms. We chose to explore another
way of manage notifications by exploiting the reason-
ing capabilities of the Semantic Web, in combination
with a mechanism of user-defined preferences (GL1).
These choices are motivated by literature findings.
Some previous studies (e.g., [28, 29]), in fact, show
the need of personalized behaviors in the manage-
ment of notifications. In [30], the authors demonstrate
that the interaction between users and intelligent algo-
rithms is feasible, showing the potential of rich human-
computer collaborations. In the same study, an experi-
ment shows that a rule-based explanation paradigm of
a machine learning algorithm is the most understand-
able for the participants. Finally, two previous works
confirm that allowing the user to help an algorithm
could make a crucial difference in terms of accuracy
and understandability [31, 32].

3.2. Delivery Behavior

We take into account an important aspect that is too
often neglected in previous studies, i.e., the actual no-
tifications delivery. Additionally, few studies consider
more than one device in the notification context (e.g.,
Attelia II [1]) and almost none of them includes IoT
devices such as smart TVs [33], smart thermostats, etc.
For this reason, AwareNotifications is designed to op-
erate on a multi-device and smart environment (GL2).
In agreement with the literature, we found that the
modality (GL3) and the instant to show the notification
to the user (GL4) are two factors that most influence
the notification acceptability [9–11, 26, 29]. Conse-
quently, in AwareNotifications, we adopted a rich no-
tion of notification delivery, by considering three fac-
tors related to the notification delivery process:

– the target device;
– the notification modality (i.e., visual and/or au-

dio);
– the delivery moment:

∗ instantly;
∗ between two activities, i.e., in a natural

breakpoint.
In particular, in the target device selection, we pre-
ferred currently used devices (GL5). This choice is
supported by some previous studies, which show that
a good moment to present a notification to the user is
when mobile devices are in use [4, 26, 27]. For what

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 5

Table 1
Design guidelines

Category Guideline Description

Involved technologies GL1 AwareNotifications should allow users to define their preferences to customize the
delivery process at any time.

Delivery behavior

GL2 AwareNotifications is designed for a multi-device environment. It should be able to
dispatch notifications to all the different user devices.

GL3 AwareNotifications should show notifications in different modalities, according to
contextual information and user preferences.

GL4 AwareNotifications should be able to deliver notifications to the user in specific
moments, according to contextual information and user preferences.

GL5 When a notification has to be delivered, AwareNotifications should preferably target
a device that is currently used by the user.

GL6 To choose the right instant to deliver notifications, AwareNotifications should con-
sider natural breakpoints between user activities.

GL7 When user does not specify preferences for certain situation, AwareNotifications
should consider default rules, to resemble the behavior of the “traditional” notifica-
tion system (i.e., deliver notifications instantly).

Notification classification
GL8 AwareNotifications should allow users to define a priority for each type of notifica-

tions.
GL9 AwareNotifications should allow users to define a priority for the senders of their

notifications.

concerns the delivery moment, it is demonstrated that
the acceptability of a notification increases during a
natural breakpoint [34], i.e., the boundary between two
adjacent units of a user’s activity (GL6). Postponing
the notification delivery when the user finishes the ac-
tivity in which she is currently involved, in fact, can
lower the impact on users cognitive load caused by the
interruption [28]. Finally, when there are no explicit
preferences, the notification delivery should resemble
the “traditional” mechanism, i.e., immediate delivery,
visual representation, etc. (GL7).

3.3. Notification Classification

The literature analysis clearly shows that not all no-
tifications have the same importance for the user [4, 5].
We identified two different types of priority for noti-
fications. As reported in [5], the importance of a no-
tification is correlated with the application source that
generates the message. We generalized this concept by
defining a priority depending on notification type, i.e.,
instant message, e-mail, calendar event, etc. (GL8).
Sahami et al. [5] demonstrate that notifications from
instant messaging apps are more important than other
categories of notifications because they involve other
people. Furthermore, Mehrotra et al. [11] demonstrate
that the type of the sender has a significant impact on

the notification acceptability. They show that a notifi-
cation from a colleague is more disruptive than a no-
tification from a family member. Thus, we identified
another type of priority, correlated with the sender of a
notification (GL9). These factors are the most relevant
for notification classification, according to the litera-
ture, and they are much more important than other in-
formation, like notification content or the mood of the
notification recipient.

4. The Semantic System Model

To reach the goal of an intelligent notification
system in a multi-device and smart environment,
AwareNotifications must integrate and classify infor-
mation coming from heterogeneous devices and online
services. For this reason, we developed the AwareNo-
tifications ontology, and we enhanced it with a seman-
tic reasoning mechanism. The ontology is used as the
system model and it is available at http://elite.polito.it/
ontologies/awarenotifications.owl.

The model offers all the advantages of the Semantic
Web framework, e.g., data integration, on-the-fly com-
position and interoperation of Web services, etc. [35]
and, with a semantic representation, it can easily an-
swer queries such as “which devices are currently

http://elite.polito.it/ontologies/awarenotifications.owl
http://elite.polito.it/ontologies/awarenotifications.owl

6 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

available to display notifications?” or “what is the
user current activity?”, thus assisting the system in the
smart notification delivery. Furthermore, semantic rea-
soning is able to infer logical consequences from a set
of asserted facts or axioms, and it allows the discov-
ery of hidden information. Such characteristics are ex-
tremely useful in those cases where all the informa-
tion is not available. We used the semantic reasoning,
for example, to classify devices on the basis of their
current status, e.g., their volume level, their screen set-
tings, etc.

The ontological model is composed of two types of
concepts: a) context and b) user preferences.

Table 2 and Table 3 describes the main context and
user preference concepts, respectively, while Figure 1
shows how such concepts are linked together.

For context, the AwareNotifications ontology uses
information about notification types, notification senders,
notification recipients, locations, user activities, and
devices. Such contextual information pertains to three
categories and they are provided by the clients, which
extrapolate them from different sources:

1. Notification types, senders, and recipients are dy-
namic information that are taken from each re-
ceived notification.

2. User locations and activities, instead, may be
gathered from sensors or by using reasoning ca-
pabilities available in the IoT environment.

3. Devices and their features are static information
that change slowly or not at all.

AwareNotifications does not use information about no-
tification content, for privacy reasons and since the
importance of a notification is mainly correlated with
other factors, as reported in the literature [4, 5, 11].

Within the user preferences concept, instead, a user
can define: a) the obtrusiveness level, i.e., if she is cur-
rently available to receive notifications, b) an accessi-
bility level, i.e., how she is able to interact with her de-
vices during an activity of a certain type, c) notification
priority, i.e., the priority for all types of notifications,
and d) social priority, the priority of notification sender
categories.

If the user does not specify any preference, the sys-
tem uses the default settings, to mimic a traditional no-
tification system. These default settings are:

– for the notification modality, use visual represen-
tation if possible;

– deliver notifications instantly:
∗ default notification priority is medium;

∗ consider all notification senders as equally
important.

As reported in Figure 1, user preferences and con-
text concepts are joined. Each activity, for example,
is associated with one or more accessibility level, and
each notification has its priorities.

To understand the advantages of using an ontol-
ogy and a semantic reasoning mechanism as the
system model, we report in Figure 2 a portion of
the tree that characterize the an:NotificationsSystem
class, used for describing potential target devices
for notifications. In real time, the reasoner classi-
fies a device in different categories, such as Input-
System, OutputSystem, HearingUsableNotification-
System, SightUsableNotificationSystem, HandsUsable-
NotificationSystem, etc, on the basis of the device fea-
tures.

A HearingUsableNotificationSystem is a device that
can be used as a target for audio notifications. In the
ontology, it is defined as a device that is turned on, it
owns a speaker, and its operating mode is not silent.

A SightUsableNotificationSystem is a device that
can be used as a target for visual notifications. In the
ontology, it is defined as a device that is turned on, it
owns a display, and the display is switched on.

A HandsUsableNotificationSystem, instead, is a de-
vice that needs a user interaction to show the content
of a notification. An example could be a smartphone in
silent mode in the user’s pocket.

5. System Architecture

The architecture of AwareNotifications is shown in
Figure 3. The system is composed of a series of clients
(user and IoT devices) and the AwareNotifications
server. Clients are in charge of collecting contextual in-
formation (defined in Section 4) and user preferences,
while the server implements the smart notification de-
livery.

In the remainder of this section, we first intro-
duce the client applications and the AwareNotifica-
tions server. Then, we present the dispatching algo-
rithm we designed to implement the smart notification
delivery, along with a working example.

5.1. The AwareNotifications Clients

In AwareNotifications, client applications are a fun-
damental part of the system. They are responsible for
collecting and updating contextual information, and

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 7

Table 2
The context model. In the Ontology Class column, we report the classes used in the ontology to model the concepts (an is the adopted ontology
prefix).

Context sub-concept Description Ontology Class

Notification type A hierarchy of notification types. Notifications are classified in user notifica-
tions (e.g., instant messaging, email, calendar events, etc.) or IoT notifications
(smart appliance messages, alarms, etc.).

an:Notification

Notification sender It is classified into one of these categories: friends, family members, work
colleagues, and acquaintances.

an:Person

Notification recipient With this information, the system can determine the user context (their loca-
tion, their devices, etc.).

an:Person

User location It is a hierarchy of locations, ranging from houses to single rooms, to external
locations. It is useful to determine where the user is, and what devices are
nearby her.

an:Location

User activity A hierarchy of activity types. The top level elements of the hierarchy are
physical activity, free time activity, traveling activity, work activity, and com-
munication activity. For example, a free time activity can be specialized in
reading, cooking, using the PC, etc.

an:Activity

Device It is classified through a hierarchy of device types, differentiating them be-
tween user devices (e.g., smartphones, tablet, smartwatch, etc.) and IoT de-
vices (e.g., smart appliances, connected lamps, etc.).

an:NotificationSystem

Device feature A hierarchy of features that allow to determine what a device can do. For
example, a device with a speaker could be used to reproduce audio.

an:Feature

Fig. 1. The class diagram of the AwareNotifications ontology, where an is the ontology prefix. The classes reported in the yellow rectangles model
the context concepts, while green rectangles represent user preference concepts. Classes are linked together by object properties (represented by
dashed lines).

8 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

Table 3
The user definable preferences. In the Ontology Class column, we report the classes used in the ontology to model the concepts (an is the adopted
ontology prefix).

Preference Value Description Ontology Class

Accessibility level

Sight During an activity with this accessibility level, the
user is available to read notifications on nearby dis-
plays, if available.

an:AccessibilityLevel
Hearing During an activity with this accessibility level, the

user is available to receive audio notifications, if
there are devices able to reproduce audio.

Hands During an activity with this accessibility level, the
user is available to directly interact with his devices
to receive notifications (e.g., take the smartphone
from the pocket).

Obtrusiveness level

Available The user is currently available to receive notifica-
tion. This is the default.

an:ObtrusivenessLevelNot available The user is currently not available to receive notifi-
cation.

Notification priority

High priority An urgent notification, to be delivered instantly on
all turned-on devices and in the most intrusive way,
without considering any other preferences.

an:TypePriority
Medium priority It is delivered instantly, but only if there are suitable

devices, according to the context and the other pref-
erences. Otherwise, the notification remains pend-
ing, waiting for a context change.

Low priority It is delivered in a natural breakpoint, only.

Social priority

Important sender A notification from an important sender category is
delivered instantly, but only if there are suitable de-
vices, according to the context and the other prefer-
ences. Otherwise, the notification remains pending,
waiting for a context change. an:SocialPriority

Not important sender A notification of a not important sender category is
delivered during a natural breakpoint, only.

Fig. 2. A portion of the devices model in the AwareNotification on-
tology

to handle the final notification representation. For this
purpose, each client can register three listeners, one for

collecting incoming notifications, and two dedicated to
retrieve contextual information:

Notification listener With the Notification listener,
each “raw” notification, i.e., coming from exter-
nal sources, is intercepted before appearing to
the user and it is sent to the AwareNotifications
server to be smartly redistributed. Furthermore,
the Notification listener waits for the smartly re-
distributed notifications, i.e., coming from the
AwareNotifications server, and display (or repro-
duce) them to the user according to the decided
notification modalities.

Sensor listener A sensor listener is used to collect ex-
ternal contextual information (e.g., lighting level,
noise level, user movements, etc.) and sends them

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 9

Fig. 3. System Architecture

to the AwareNotifications server. Such an infor-
mation is used by the server to fill the context con-
cepts of the semantic system model.

Status listener A status listener is used to communi-
cate the status of each device in real-time to the
AwareNotifications server, e.g., if the device is
turned on, which volume settings is set, etc. Also
this information is used by the server to fill the
context concepts of the semantic system model.
With this data, in particular, the server is able to
understand whether a device is currently available
for receiving notifications or not.

In addition to implementing such listeners, mobile
clients (i.e., smartphones and tablets) are designed to
allow users to define their own preferences (Table 3).
Different mechanisms and graphical representations
can be used for the definition of user preferences. One
of the most promising approach, widely used for end-
user personalization [36–38], is the trigger-action pro-
gramming paradigm, i.e., “if something happens, then
perform an action”. We adapted this paradigm to de-
fine preferences associated with a context concept, i.e.,
accessibility level, notification priority, and social pri-
ority (Table 3). In this way, users can define rules such
as “if I am currently working on the PC, then my ac-
cessibility level is Hearing.”

Figure 4 shows how users can insert such rule-
based preferences in our prototype implementation,
described in Section 6. From an initial menu (Fig-
ure 4b), users can select the if clause, e.g., the activity
type. Then, from another menu (Figure 4c), users de-
fine the associated then clause, e.g., the desired acces-
sibility level. Users can edit such preferences or add
new ones at any time, without affecting the run time
operation of the AwareNotifications server.

5.2. The AwareNotifications Server

The server collects information from the clients
through three collector modules. Through the prefer-
ence collector, the server collects user preferences,
while the context collector is used to collect contex-
tual information coming from clients, e.g., device sta-
tus changes. Furthermore, with the notification collec-
tor, the server intercepts all the notifications coming
from the clients that need to be smartly delivered.

When a notification arrives to the notification col-
lector, it is passed to the dispatching module, which is
in charge of implementing the smart notification deliv-
ery. First, the dispatcher module exploits the semantic
model, i.e., the AwareNotifications ontology, to reason
about the contextual information and the inserted user
preferences, thus taking into account the design guide-
lines (see Table 1). Then, for each notification, it de-
termines:

– the target device(s);
– the modalities to show it to the user;
– the delivery moment, either immediately or at a

suitable natural breakpoint.
According to the chosen device(s), modalities, and de-
livery moment, the module eventually dispatch the no-
tification. The full algorithm used by the dispatching
module is better detailed in the remainder of this sec-
tion.

5.3. The Dispatching Algorithm

The dispatching algorithm implemented by the dis-
patching module can be summarized into three main
steps.

10 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

5.3.1. Priority Check
When a notification arrives, the AwareNotifications

server saves and classifies it by type and sender cate-
gory through semantic reasoning. Then, the algorithm
retrieves the user-defined preferences about notifica-
tion priority and social priority, and performs the pri-
ority check:

– if the received message is a high priority notifi-
cation, the system delivers it immediately, on all
turned-on user devices, and in the most intrusive
way;

– if the received message is a medium priority noti-
fication, or if the sender of the message is an im-
portant contact, the server proceeds with the next
step of the algorithm, i.e., the conditional delivery
(Section 5.3.2);

– if the received message is a low priority noti-
fication and if the sender of the message is a
not important contact, the server keeps the noti-
fication pending until the next natural breakpoint
detection, the third step of the algorithm (Sec-
tion 5.3.3).

5.3.2. Conditional Delivery
In the conditional delivery phase, the algorithm will

choose one or more target devices, and the notification
modality. By analyzing the inserted accessibility and
obtrusiveness level preferences, the system tries to se-
lect one or more target devices considering these sets
of devices (in order of priority), retrieved from the on-
tology:

1. currently used device(s);
2. turned-on and nearby device(s);
3. turned-on device(s).

Target device(s) and, consequently, the notification
modality, are chosen by taking into account the in-
serted accessibility level preferences (or applying the
default settings), and the features of the involved de-
vices. If there are no available devices, the notification
is kept pending until the next natural breakpoint detec-
tion.

5.3.3. Natural Breakpoint Detection
When the system detects a natural breakpoint (i.e.,

when the user finishes her current activity), the system
retrieves all pending notifications, and it invokes the
conditional delivery for each of them. Natural break-
points are detected thanks to the contextual informa-
tion coming from the client. Through the sensor and
status listeners, in fact, clients inform the server about
device status and external changes, that are analyzed
and stored in the AwareNotifications ontology. In this

way, the server can detect simple transition between
user activities, e.g., when the user unlocks his smart-
phone and opens the browser, or when the user turns
the PC off after having checked the e-mails. Further-
more, client sensor data can be also used to recog-
nize more complex activities, e.g., Cooking or Taking
a shower, as already demonstrated in the literature,
e.g., [39].

5.4. Working Example

To conclude and summarize this section, we report
a working example of the system.

John is an athletic person, and he likes to go run-
ning. During his sport activities, he always brings with
him his smartphone to listen to music. John also loves
TV series. He owns a smart TV that he uses daily. John
starts to use AwareNotifications, and he inserts the fol-
lowing preferences:

– if my activity is of type “Running”, then my ac-
cessibility level is “Hearing”;

– if my activity is of type “Watching the TV”, then
my accessibility level is “Sight” and “Hearing”;

– if notification is of type “Instant Messaging”,
then the notification priority is “Low”;

– if notification sender is a “Friend”, then the
sender is “Not important”;

– if notification sender is a “Family Member”, then
the sender is “Important”.

Now, suppose that John is running. If a relative of John
contacts him through a chat message, AwareNotifica-
tions immediately delivers the message, by reproduc-
ing an audio notification on John’s smartphone. On the
contrary, if the chat message comes from a friend of
John, the system does not propagate the message, and
the notification is kept pending. When John returns
home and turns the TV on, the system shows the pend-
ing notification on the smart TV, with a visual repre-
sentation.

6. Implementation

To validate our approach of a smart notification sys-
tem, we implemented a prototype of AwareNotifica-
tions. For the purpose of this first validation, we sim-
plified the real time management of the context on the
clients application. In particular, in this first version
of AwareNotifications, complex user activities, e.g.,
Cooking and Taking a shower, are manually provided
to the web server, which uses them in the reasoning

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 11

process together with the other contextual information.
All other information is collected in real time. This
simplification has no impact on the evaluation reported
in the next sections.

The web service has been implemented as a JavaEE
web application, using the Spring framework and fol-
lowing the RESTful software architectural style. The
ontological model exploited by the dispatching mod-
ule for the smart delivery process has been defined
with Protégé [40], an open-source OWL ontology ed-
itor and framework. Furthermore, the module uses the
HermiT [41] library as a reasoner. HermiT is the first
publicly-available OWL reasoner based on a novel
“hypertableau” calculus which provides much more
efficient reasoning than any previously-known algo-
rithm. Given an OWL file, HermiT can determine
whether or not the ontology is consistent, identify hid-
den relationships between classes, etc. To interact with
the model, the web server uses OWL API [42], a
high level Application Programming Interface (API)
for working with OWL ontologies.

In the implementation, clients collects contextual
information and user preferences, and send them to
the collector modules of the AwareNotifications server
(Figure 3) through HTTP post requests. Preferences
are firstly translated into SWRL rules [43] by the
preference collector module, and then saved in the
AwareNotifications ontology. In this way, the dispatch-
ing module directly uses the preferences in the reason-
ing process. We decided to use SWRL because it al-
lows us to easily add logic into the semantic model,
to extend the expressivity of OWL with simple rules.
To understand how the semantic reasoning process
works, suppose that the ontology contains the follow-
ing SWRL rule, here rephrased for the sake of read-
ability:

“if I am watching the TV, then my accessibility
level is Hearing”,

When the user turns the TV on, the reasoning pro-
cess analyzes the devices stored in the AwareNotifica-
tions ontology, looking for devices that are turned on,
that own a speaker, that are not in silent mode, and near
the user. The output of the reasoner process is there-
fore a set of HearingUsableNotificationSystem devices
currently available for reproducing notifications to the
user.

We implemented an application for four client types:
smartphone, tablet, PC, and smart TV. All the clients
are in charge of showing or playing messages and lis-
ten for new notifications with a background service.

For the PC, we implemented a Google Chrome exten-
sion, while for the Smart TV we used the Kodi1 media
center. For smartphones and tablets, we implemented
an Android application. Figure 4 shows three screen-
shots of the preference-composition part of the mobile
application.

(a) The main prefer-
ence menu

(b) Activity type se-
lection

(c) Accessibility
level values

Fig. 4. The definition of an accessibility preference in the Android
app

In AwareNotifications, notifications are managed
and delivered through Firebase Cloud Messaging
(FCM)2, a Google cross-platform messaging solution
for delivering messages at no cost.

7. Evaluation

We conducted a user study to compare AwareNoti-
fications with the “traditional” management of notifi-
cations that users experience daily (i.e., unconditional
immediate notification delivery). We were interested in
investigating the perceived effectiveness of the novel
notification delivery approach and whether AwareNo-
tifications improves the notification delivery, in terms
of notification acceptability and ease of access to the
notification content.

7.1. Study Design

We performed a controlled in-lab study following a
within-subject design. The test was a trial composed
of five different scenarios. A scenario described a user,
her current activities, and her devices. Also, the sce-

1https://kodi.tv/download/ (last visited on June 11, 2017)
2https://firebase.google.com/docs/cloud-messaging/ (last visited

on June 11, 2017)

https://kodi.tv/download/
https://firebase.google.com/docs/cloud-messaging/

12 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

nario included a specific notification that someone or
any application sent to the user in a specific instant. All
the participants simulated all the five scenarios twice
(with and without using AwareNotifications), by eval-
uating the reception of the described notification with
specific questionnaires. The context of each scenario
(current activities, locations, etc.) as well as the user
preferences were predefined in the system. To easily
change the evaluated notification system, we created
a specific setting in the AwareNotifications clients to
disable the interception of the “traditional” notifica-
tions. The scenarios, the questionnaires, and the con-
versations between participants and the moderator in-
terventions, were in Italian. We translated the research
material in English for the purpose of this paper. The
five scenarios were:

1) Anna is cooking, and her hands are currently
busy. Behind her, on the table, there are two per-
sonal devices, her smartphone and a tablet. Anna
has forgotten her smartphone in silent mode since
her morning meeting, while the volume of the
tablet is active. Anna owns a smart anti-theft sys-
tem that sends notifications in case of suspicious
situations. Anna has installed the anti-theft app on
her smartphone. When Anna is cooking, the anti-
theft system detects an anomaly on the upper floor,
and it generates an alarm notification.

2) Mark is driving his car. Mark has set the des-
tination on the on-board computer, always con-
nected to the Internet. Mark owns a personal smar-
phone, that is currently in his pocket. The smart-
phone is in stand-by, in silent mode, with the vi-
bration modality active. During the journey, Mark
receives a WhatsApp message from his mother.

3) Mary, an architect, is in her office. In this place,
there are four devices connected to the Internet:
three Mary’s personal devices (a smartphone, a
tablet, and a laptop), and a smart TV, which Mary
uses during her breaks or for meetings. Currently,
Mary is working on her laptop. At the same time,
a friend of Mary sends her a chat message. When
Mary turns off the laptop, she switches the smart
TV on, having a break.

4) Paul is a computer engineer and he is currently
working on his PC. Paul left his smartphone and
his tablet on the table near his desk. Both the de-
vices are turned on, with the volume on. During his
working activity, his co-worker tries to contact him

through a Telegram message. After a while, Paul
takes a break by playing with his tablet.

5) Jack just finished a meeting. He is coming home
on foot. His smarphone is in his pocket, with the
volume turned on. Suddenly, Jack’s secretary sends
him an e-mail with the minutes of the latest meet-
ing. At home, Jack turn his PC on to watch a
movie.

7.1.1. Participants
We recruited 15 participants (five female) with a

mean age of 25.4 years (SD = 3.29, range: 19-33) from
a mailing list of students and personnel of our uni-
versity. Participants had a mix of technical and non-
technical backgrounds. With an initial questionnaire,
we asked the participants to indicate their profession,
the owned devices, and the estimated number of noti-
fications received during a normal day. 11 participants
were undergraduate students, 2 were researchers, and
2 were programmers. Most of the participants owned
a smartphone, a tablet, and a laptop. Some participants
owned a PC and a smart TV, while only few partici-
pants owned a smartwatch.

Table 4 shows the estimate number of notifications
received daily by the participants. The number is quite
high for most of the users: only one of them claimed
to receive less than 10 notification per day.

Table 4
Number of notifications per-day received by participants of the
study.

Notifications per day Participants

< 10 1
10 - 50 8
50 - 100 5

> 100 1

7.1.2. Setup
To simulate the scenarios, we prepared an office

with four devices connected to the Internet: a PC, a
smart TV, an Android tablet (Asus Transformer Pad
TF300T), and an Android smartphone (One Plus 3).
All of them were equipped with the AwareNotifica-
tions client application. We hosted the AwareNotifica-
tions web server on another PC.

7.1.3. Procedure
We gave the participants a privacy module, since all

sessions were video recorded, and an initial question-
naire for collecting demographic information. Then,

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 13

we explained the nature and objectives of the test. Par-
ticipants started to simulate the scenarios with both
notification systems, i.e., AwareNotifications and the
traditional one. To avoid bias, we generically called
them System A and System B. Participants were asked
to impersonate the user described in each scenario by
replicating the described activities (e.g., to work on
a laptop, to watch TV) by using the devices in the
room. The order of the scenarios and the order of the
experimented notification systems were counterbal-
anced. In AwareNotifications, user preferences were
pre-inserted according to the specific scenario. Dur-
ing the simulation, we sent the notification described
in the scenario to the user. The notification delivery
(target device(s), notifications modalities, and deliver-
ing moment) depended on the active notification sys-
tem. After each simulation, the participants were asked
to fill out a simulation-questionnaire of 3 questions to
evaluate the notification delivering process, described
in the next paragraph (Measures). Each user filled out
10 simulation-questionnaires in total. At the end of the
test, we performed an interview with the participants,
asking them the perceived advantages and disadvan-
tages of the two systems they experimented. We gave
the participants a final questionnaire with a question
about the usefulness of AwareNotifications. The exper-
iment took about 45 minutes and participants received
a gadget for their participation.

7.1.4. Measures
The independent variable of the study was the

notifications system used to simulate the scenarios
(AwareNotifications and the traditional management
of notifications).

We evaluated three dependent variables, corre-
sponding to the three questions on the questionnarie,
related to the notification delivery:

– notification acceptability: considering the target
device(s), the notification modality, and the deliv-
ery instant, how acceptable is the notification?

– accessibility of the notification content: consid-
ering the target device(s), the notification modal-
ity, and the delivering instant, how much effort is
required to access the notification content?

– notification delivery: is the notification delivery
satisfactory?

We collected quantitative measures of these vari-
ables with the three questions on the simulation-
questionnaires. Questions were based on a Likert-scale
from 1 (Very bad) to 5 (Excellent). Before commu-
nicating to the participants the nature of the evalu-

ated systems, we asked them to find out pros and cons
of both System A and System B. Finally, after this
qualitative debriefing, we collected a quantitative mea-
sure of the perceived usefulness of AwareNotifications
through a final questionnaire composed of a single
question based on a Likert-scale from 1 (Not useful at
all) to 5 (Extremely useful).

7.2. Quantitative Results

To evaluate the three dependent variables, we con-
ducted a one-way repeated measures ANOVA with
Mauchly’s sphericity test satisfied by considering the
notification system as the independent variable, and we
performed a post-hoc analysis with Bonferroni correc-
tion.

– Notification acceptability. There was a signifi-
cant effect of the used system (F(1, 14) = 81.06,
p < .05) on the acceptability of a notifica-
tion. Therefore, the acceptability of a notifica-
tion was significantly different for scenarios sim-
ulated with different notification systems. Table 5
and Figure 5a show the means for the main ef-
fect of the used system on the notification accept-
ability. The notification acceptability was higher
with AwareNotifications than with the “tradi-
tional” management of notifications (4.35± 0.14
vs 2.20 ± 0.15, respectively). Post-hoc tests us-
ing the Bonferroni correction revealed that this
difference was statistically significant (p < .05).

– Accessibility of the notification content. There
was a significant effect of the used system
(F(1, 14) = 98.36, p < .05) on the accessibility
of the notification content. Therefore, the accessi-
bility of a notification was significantly different
for scenarios simulated with different notification
systems. Table 6 and Figure 5b show the means
for the main effect of the used system on the no-
tification accessibility. The content of a notifica-
tion was more accessible with AwareNotifications
than with the “traditional” management of notifi-
cations (4.45±0.13 vs 2.43±0.22, respectively).
Post-hoc tests using the Bonferroni correction re-
vealed that this difference was statistically signif-
icant (p < .05).

– Notification delivery. There was a significant ef-
fect of the used system (F(1, 14) = 143.01,
p < .05) on the perceived satisfaction of the
notification delivery. Therefore, ratings of users
on the delivery of a notification significantly dif-

14 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

fered for scenarios simulated with different no-
tification systems. Table 7 and Figure 5c show
the means for the main effect of the used sys-
tem on the notification delivery satisfaction. The
notification delivery was perceived more satisfy-
ing with AwareNotifications than with the “tradi-
tional” management of notifications (4.27± 0.12
vs 2.08± 0.15, respectively). Post-hoc tests using
the Bonferroni correction revealed that this differ-
ence was statistically significant (p < .05).

Table 5
The estimated marginal means, standard errors, lower bounds (LB),
and upper bounds (UB), for the system effect on the notification ac-
ceptability (95% confidence interval).

System Mean Std. Err. LB UB

Traditional 2.200 0.153 1.872 2.528
AwareNotifications 4.350 0.138 4.055 4.645

Table 6
The estimated marginal means, standard errors, lower bounds (LB),
and upper bounds (UB), for the system effect on the notification ac-
cessibility (95% confidence interval)

System Mean Std. Err. LB UB

Traditional 2.433 0.216 1.970 2.897
AwareNotifications 4.450 0.134 4.162 4.738

Table 7
The estimated marginal means, standard errors, lower bounds (LB),
and upper bounds (UB), for the system effect on the notification de-
livery satisfaction (95% confidence interval)

System Mean Std. Err. LB UB

Traditional 2.083 0.154 1.754 2.413
AwareNotifications 4.267 0.121 4.008 4.525

Finally, by analyzing the answers to the final ques-
tionnaires, we found that AwareNotifications was per-
ceived more than useful, with a mean of 4.27 out of 5
(SD = 0.59).

7.3. Qualitative Results

We analyzed and summarized pros and cons of the
two evaluated systems, as found by the participants.

For what concerns the traditional notification sys-
tem, the only advantage that emerges from the partici-
pant answers is that the unconditional immediate noti-

fication delivery could be useful in some cases. How-
ever, most of the participants immediately recognized
that the evaluated system was similar to what they ex-
perience daily, finding many disadvantages. In partic-
ular, they said that the system annoys the user during
her activities, because notifications can be sent at in-
opportune moments. Furthermore, the participants no-
ticed some missing features with respect to the other
evaluated system. They said that not all notifications
have the same importance, but without the priority they
could not manage this possibility. Another disadvan-
tage found for the “traditional” management of notifi-
cations is that a user has to remember to properly set
up her devices, otherwise notifications may be lost.

On the contrary, participants found many advan-
tages of AwareNotifications. In many cases, these
advantages naturally solved the disadvantages found
for the “traditional” notification system. For example,
some participants said that with AwareNotifications a
user can not miss notifications, because the system in-
telligently notifies the user when necessary, without
annoying her. Thus, the system is not disruptive, and
it reduces the waste of time, because less effort is re-
quired to receive notifications. Furthermore, by giving
priorities and using more than one message represen-
tation, AwareNotifications allows a user to have full
control on her notifications. The possibility to manage
more than one device was also appreciated.

7.4. Discussion

Thanks to the user study, we demonstrated the per-
ceived effectiveness of AwareNotifications, comparing
our system with the “traditional” management of no-
tifications. We found that AwareNotications improves
the notification delivery in general (target device(s),
notification modalities, and delivery instants) and the
notification acceptability, the ease of access to the no-
tification content, in particular.

Most of the participants found many disadvantages
in the current management of notifications. Many of
these disadvantages support what is present in the lit-
erature about the problem of the overwhelming notifi-
cations, clearly motivating the need of a smart notifi-
cation system. For example, the participants said that
the traditional notification system was annoying (as
in [3]) and they highlighted the lack of notification pri-
orities [4].

On the contrary, the reported advantages of AwareNo-
tifications reveal the perceived effectiveness of the sys-
tem. These benefits (e.g., multi-device environment,

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 15

(a) Notification acceptability (b) Notification accessibility (c) Notification delivery satisfaction

Fig. 5. Estimated marginal means for Study I.

notification priority, smart delivery) have the potential
to solve many of the problems that users experience
nowadays.

8. Conclusion and Future Works

This paper presents a new approach for intelli-
gent management of multi-device notification deliv-
ery that takes into account user-defined preferences
and context. To validate the approach, we designed
the AwareNotifications system, grounded in well de-
fined guidelines informed from the literature. Differ-
ently from previous works, which mainly use machine
learning algorithms, we chose to explore a Semantic
Web approach, by allowing users to explicitly define
their own preferences. We implemented and evaluated
AwareNotifications, validating it in a user study with
15 participants. Results show that AwareNotifications
is perceived as useful by users, and it improves the user
experience with notification delivery in terms of notifi-
cation acceptability and ease of access to notifications.

Future works will include the extension of the con-
text awareness part of AwareNotifications, e.g., by in-
tegrating previous work in this field (e.g., [44–47]). In
this way, we will be able to further study our approach
in-the-wild. Furthermore, we are aware that the prefer-
ence definition may be not an easy task for some end-
users. Do users understand the defined preferences?
Are there any other better mechanisms to be exploited
in client applications for the preference composition?
We are exploring such questions as future works.

References

[1] Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin Nakazawa,
Anind K. Dey, and Hideyuki Tokuda. Reducing users’ per-
ceived mental effort due to interruptive notifications in multi-
device mobile environments. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’15, pages 475–486, New York, NY,
USA, 2015. ACM.

[2] Shamsi T. Iqbal and Eric Horvitz. Notifications and awareness:
A field study of alert usage and preferences. In Proceedings
of the 2010 ACM Conference on Computer Supported Coop-
erative Work, CSCW ’10, pages 27–30, New York, NY, USA,
2010. ACM.

[3] Martin Pielot, Karen Church, and Rodrigo de Oliveira. An in-
situ study of mobile phone notifications. In Proceedings of the
16th International Conference on Human-computer Interac-
tion with Mobile Devices and Services, MobileHCI ’14, pages
233–242, New York, NY, USA, 2014. ACM.

[4] Afra Mashhadi, Akhil Mathur, and Fahim Kawsar. The myth of
subtle notifications. In Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Comput-
ing: Adjunct Publication, UbiComp ’14 Adjunct, pages 111–
114, New York, NY, USA, 2014. ACM.

[5] Alireza Sahami Shirazi, Niels Henze, Tilman Dingler, Mar-
tin Pielot, Dominik Weber, and Albrecht Schmidt. Large-
scale assessment of mobile notifications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, pages 3055–3064, New York, NY, USA, 2014. ACM.

[6] Joel E. Fischer, Nick Yee, Victoria Bellotti, Nathan Good,
Steve Benford, and Chris Greenhalgh. Effects of content and
time of delivery on receptivity to mobile interruptions. In Pro-
ceedings of the 12th International Conference on Human Com-
puter Interaction with Mobile Devices and Services, Mobile-
HCI ’10, pages 103–112, New York, NY, USA, 2010. ACM.

[7] Piotr D. Adamczyk and Brian P. Bailey. If not now, when?:
The effects of interruption at different moments within task ex-
ecution. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, pages 271–278, New
York, NY, USA, 2004. ACM.

[8] Brian P. Bailey and Shamsi T. Iqbal. Understanding changes in
mental workload during execution of goal-directed tasks and
its application for interruption management. ACM Transac-
tions on Computer-Human Interaction, 14(4):21:1–21:28, Jan-
uary 2008.

[9] Joel E. Fischer, Chris Greenhalgh, and Steve Benford. Inves-
tigating episodes of mobile phone activity as indicators of op-
portune moments to deliver notifications. In Proceedings of the
13th International Conference on Human Computer Interac-
tion with Mobile Devices and Services, MobileHCI ’11, pages
181–190, New York, NY, USA, 2011. ACM.

[10] Nicky Kern and Bernt Schiele. Context-aware notification for
wearable computing. In Proceedings of the 7th IEEE Interna-

16 F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences

tional Symposium on Wearable Computers, ISWC ’03, pages
223–230, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[11] Abhinav Mehrotra, Veljko Pejovic, Jo Vermeulen, Robert
Hendley, and Mirco Musolesi. My phone and me: Understand-
ing people’s receptivity to mobile notifications. In Proceedings
of the 2016 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’16, pages 1021–1032, New York, NY, USA,
2016. ACM.

[12] Dominik Weber, Alexandra Voit, Philipp Kratzer, and Niels
Henze. In-situ investigation of notifications in multi-device en-
vironments. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’16, pages 1259–1264, New York, NY, USA, 2016.
ACM.

[13] Mary Czerwinski, Ed Cutrell, and Eric Horvitz. Instant mes-
saging and interruption: Influence of task type on perfor-
mance. In OZCHI 2000 Conference Proceedings, pages 356–
361. ACM, December 2000.

[14] Brian P. Bailey and Joseph A. Konstan. On the need for
attention-aware systems: Measuring effects of interruption on
task performance, error rate, and affective state. Computers in
Human Behavior, 22(4):685 – 708, 2006.

[15] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. A diary
study of task switching and interruptions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’04, pages 175–182, New York, NY, USA, 2004. ACM.

[16] Gloria Mark, Daniela Gudith, and Ulrich Klocke. The cost of
interrupted work: More speed and stress. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’08, pages 107–110, New York, NY, USA, 2008. ACM.

[17] Stephanie Rosenthal, Anind K. Dey, and Manuela Veloso.
Using Decision-theoretic Experience Sampling to Build Per-
sonalized Mobile Phone Interruption Models, pages 170–187.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[18] Matthias Böhmer, Christian Lander, Sven Gehring, Duncan P.
Brumby, and Antonio Krüger. Interrupted by a phone call: Ex-
ploring designs for lowering the impact of call notifications for
smartphone users. In Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems, CHI
’14, pages 3045–3054, New York, NY, USA, 2014. ACM.

[19] Brian P. Bailey, Piotr D. Adamczyk, Tony Y. Chang, and
Neil A. Chilson. A framework for specifying and monitoring
user tasks. Computers in Human Behavior, 22(4):709 – 732,
2006.

[20] James Fogarty, Andrew J. Ko, Htet Htet Aung, Elspeth Golden,
Karen P. Tang, and Scott E. Hudson. Examining task engage-
ment in sensor-based statistical models of human interrupt-
ibility. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’05, pages 331–340, New
York, NY, USA, 2005. ACM.

[21] James Fogarty, Scott E. Hudson, Christopher G. Atkeson,
Daniel Avrahami, Jodi Forlizzi, Sara Kiesler, Johnny C. Lee,
and Jie Yang. Predicting human interruptibility with sen-
sors. ACM Transactions on Computer-Human Interaction,
12(1):119–146, March 2005.

[22] Eric Horvitz and Johnson Apacible. Learning and reasoning
about interruption. In Proceedings of the 5th International
Conference on Multimodal Interfaces, ICMI ’03, pages 20–27,
New York, NY, USA, 2003. ACM.

[23] Daniel Avrahami and Scott E. Hudson. Responsiveness in in-
stant messaging: Predictive models supporting inter-personal
communication. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’06, pages 731–
740, New York, NY, USA, 2006. ACM.

[24] Joyce Ho and Stephen S. Intille. Using context-aware comput-
ing to reduce the perceived burden of interruptions from mo-
bile devices. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’05, pages 909–918,
New York, NY, USA, 2005. ACM.

[25] Veljko Pejovic and Mirco Musolesi. Interruptme: Designing
intelligent prompting mechanisms for pervasive applications.
In Proceedings of the 2014 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, UbiComp ’14,
pages 897–908, New York, NY, USA, 2014. ACM.

[26] Benjamin Poppinga, Wilko Heuten, and Susanne Boll. Sensor-
based identification of opportune moments for triggering no-
tifications. IEEE Pervasive Computing, 13(1):22–29, January
2014.

[27] Martin Pielot, Tilman Dingler, Jose San Pedro, and Nuria
Oliver. When attention is not scarce - detecting boredom from
mobile phone usage. In Proceedings of the 2015 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Com-
puting, UbiComp ’15, pages 825–836, New York, NY, USA,
2015. ACM.

[28] Tadashi Okoshi, Hiroki Nozaki, Jin Nakazawa, Hideyuki
Tokuda, Julian Ramos, and Anind K. Dey. Towards attention-
aware adaptive notification on smart phones. Pervasive and
Mobile Computing, 26:17 – 34, 2016.

[29] Martijn H. Vastenburg, David V. Keyson, and Huib de Rid-
der. Considerate home notification systems: A user study of
acceptability of notifications in a living-room laboratory. Inter-
national Journal of Human-Computer Studies, 67(9):814–826,
September 2009.

[30] Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong,
Margaret Burnett, Thomas Dietterich, Erin Sullivan, and
Jonathan Herlocker. Interacting meaningfully with machine
learning systems: Three experiments. International Journal of
Human-Computer Studies, 67(8):639–662, August 2009.

[31] Eric Horvitz. Principles of mixed-initiative user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, pages 159–166, New York, NY,
USA, 1999. ACM.

[32] Abhinav Mehrotra, Robert Hendley, and Mirco Musolesi.
Prefminer: Mining user’s preferences for intelligent mobile no-
tification management. In Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Com-
puting, ACM UbiComp’16, 2016.

[33] Dominik Weber, Sven Mayer, Alexandra Voit, Rodrigo Ven-
tura Fierro, and Niels Henze. Design guidelines for notifi-
cations on smart tvs. In Proceedings of the ACM Interna-
tional Conference on Interactive Experiences for TV and On-
line Video, TVX ’16, pages 13–24, New York, NY, USA, 2016.
ACM.

[34] Darren Newtson and Gretchen Engquist. The perceptual orga-
nization of ongoing behavior. Journal of Experimental Social
Psychology, 12(5):436 – 450, 1976.

[35] Tim Berners-Lee, J Hendler, and O. Lassila. The semantic web.
Scientific American, 284(5):28–37, 2001.

F. Corno et al. / AwareNotifications: Multi-Device Semantic Notification Handling with User-Defined Preferences 17

[36] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical trigger-action programming in
the smart home. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’14, pages 803–
812, New York, NY, USA, 2014. ACM.

[37] Barbara Rita Barricelli and Stefano Valtolina. End-User Devel-
opment: 5th International Symposium, IS-EUD 2015, Madrid,
Spain, May 26-29, 2015. Proceedings, chapter Designing for
End-User Development in the Internet of Things, pages 9–24.
Springer International Publishing, Cham, Germany, 2015.

[38] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee,
Sarah Mennicken, Noah Picard, Diane Schulze, and Michael L.
Littman. Trigger-action programming in the wild: An analysis
of 200,000 ifttt recipes. In Proceedings of the 34rd Annual
ACM Conference on Human Factors in Computing Systems,
CHI ’16, pages 3227–3231, New York, NY, USA, 2016. ACM.

[39] Gierad Laput, Yang Zhang, and Chris Harrison. Synthetic sen-
sors: Towards general-purpose sensing. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Sys-
tems, CHI ’17, pages 3986–3999, New York, NY, USA, 2017.
ACM.

[40] University of Stanford. A free, open-source ontology editor
and framework for building intelligent systems, 2016. http:
//protege.stanford.edu/.

[41] Univesity of Oxford. Hermit owl reasoner, 2016. http://www.
hermit-reasoner.com/.

[42] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for OWL Ontologies. Semantic Web, 2(1):11–21, January
2011.

[43] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. Swrl: A semantic
web rule language combining owl and ruleml. W3c member
submission, World Wide Web Consortium, 2004.

[44] Guanling Chen and David Kotz. A survey of context-aware
mobile computing research. Technical report, Dartmouth Col-
lege, Hanover, NH, USA, 2000.

[45] Jong-yi Hong, Eui-ho Suh, and Sung-Jin Kim. Context-aware
systems. Expert Systems with Applications, 36(4):8509–8522,
May 2009.

[46] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dim-
itrios Georgakopoulos. Context Aware Computing for The In-
ternet of Things: A survey. IEEE Communications Surveys Tu-
torials, 16(1):414–454, 2014.

[47] Veljko Pejovic and Mirco Musolesi. Anticipatory mobile com-
puting: A survey of the state of the art and research challenges.
ACM Computing Surveys, 47(3):47:1–47:29, April 2015.

http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.hermit-reasoner.com/
http://www.hermit-reasoner.com/

	Introduction
	Related Work
	The Problem of Overwhelming Notifications
	The Vision of a Smart Notification System

	Design Guidelines and Motivation
	Involved Technologies
	Delivery Behavior
	Notification Classification

	The Semantic System Model
	System Architecture
	The AwareNotifications Clients
	The AwareNotifications Server
	The Dispatching Algorithm
	Priority Check
	Conditional Delivery
	Natural Breakpoint Detection

	Working Example

	Implementation
	Evaluation
	Study Design
	Participants
	Setup
	Procedure
	Measures

	Quantitative Results
	Qualitative Results
	Discussion

	Conclusion and Future Works
	References

