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Behavioral, Parameterized and Broadband Modeling
of Wired Interconnects with Internal Discontinuities

Stefano Grivet-Talocia, Senior Member, IEEE, Riccardo Trinchero, Member, IEEE

Abstract—We present a complete workflow for the extraction
of behavioral reduced-order models of wired interconnect links,
including an explicit dependence on geometrical or material
parameters describing internal discontinuities that may affect the
quality of signal transmission. Thanks to the adopted structure,
the models are easily identified from sampled frequency responses
at discrete points in the parameter space. Such responses are
obtained from off-the-shelf full-wave solvers. A novel algorithm is
used for checking and enforcing model stability and passivity, two
fundamental requirements for reliably running stable transient
simulations. Finally, an ad hoc procedure is devised to synthesize
the models as parameterized circuit equivalents, compatible with
any SPICE solver. Several examples illustrate and validate the
workflow, confirming the suitability of proposed approach for
what-if, parameter sweep, design centering and optimization
through time-domain simulations, possibly including nonlinear
devices and terminations.

Index Terms—Macromodeling, parameterized modeling, be-
havioral modeling, transmission lines, high-speed interconnects,
rational approximation, scattering, passivity, circuit equivalent,
SPICE.

I. INTRODUCTION AND MOTIVATION

Data transmission on wired interconnect links may be
affected by several signal degradation effects. On one hand,
metal and dielectric loss mechanisms give rise to unavoidable
signal attenuation and dispersion. These effects are usually
modeled through frequency-dependent dielectric permittivity,
loss tangent, and conductor internal impedance [1], [2]. In
time domain, such losses reduce signal amplitude and smooth
switching fronts, thus practically limiting the bandwidth of
the link. On the other hand, the particular geometry of the
wired link, including both signal and return current routing, is
very crucial for ensuring overall signal integrity. Whenever
the differential nature of proagating current and its return
is broken by some internal discontinuity, the latter may act
as a frequency-selective filter that may cut-off important
signal content and hinder safe data transmission [3]. Examples
of internal discontinuities can be vertical via interconnects
for routing through different PCB layers, or slots in the
power/ground planes that provide return current path.

The above signal degradation effects require careful char-
acterization and modeling since early design stages. Since
the ultimate Signal Integrity verification is usually carried
out in the time domain by checking pulse distortion or eye
diagram opening, a highly desirable characterization of the
link is a SPICE-compatible equivalent circuit, which can
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be run by Signal Integrity engineers using legacy circuit
solvers [4], by embedding in the simulation deck linear or
nonlinear termination networks. Unfortunately, a universal
procedure that extracts a circuit equivalent of manageable
size/complexity from arbitrary realistic irregular geometry and
material specification is not available.

In this work, we propose a workflow for the extraction
of compact, reduced-order behavioral circuit models of wired
interconnect links, including an explicit dependence on suit-
ably chosen parameters controlling shape/geometry of internal
discontinuities. Section II provides a precise statement of the
problem at hand. The workflow involves a set of preliminary
full-wave analyses using any desired electromagnetic field
solver for obtaining sampled frequency responses for few pre-
scribed parameter configurations. This data is processed by a
parameterized macromodeling engine [5], [6], which provides
a closed-form approximation of the data in terms of rational
functions of frequency and Chebychev polynomials of the
parameter variables (Section III). Stability and passivity of the
model is enforced using suitable constraints (Section V), and
finally a parameterized SPICE netlist is exported (Section VI).
To the best of Authors’ knowledge, both the enforcement
of uniform stability and passivity throughout the parameters
space, and the proposed approach for parameterized SPICE
equivalent extraction, are new contributions. The extraction of
an initial parameterized macromodel from sampled responses
is instead not new, more details can be found in [5], [7]–[9].

Various examples are used in Section VII to demonstrate
the proposed workflow on template structures of wired links
with internal discontinuities. Despite only few examples can
be shown here due to limited space, the proposed approach
is very general and applicable to any type of linear system
whose frequency response depends smoothly on one or more
parameters.

II. PROBLEM STATEMENT

Let us consider the canonical structure depicted in Fig. 1,
where a lumped RLC discontinuity is inserted in the middle
of a uniform transmission line. This example will be used as
a basic template to illustrate the proposed modeling workflow
throughout this paper. In this template, we consider the capac-
itance C as a free parameter C = ϑ ∈ [0.1, 1] pF. The exact
scattering matrix of the structure may thus be represented as
H̆(s;ϑ) ∈ CP×P , where s is the Laplace variable and the
number of ports is P = 2. A closed-form expression is here
used to calculate H̆(s;ϑ), but the examples of Sec. VII will
base model extraction from a set of samples of the scattering
response, available from full-wave electromagnetic solvers.
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Fig. 1: Transmission line (Z∞ = 40 Ω), with an internal
lumped discontinuity. Nominal parameters: L1 = L2 =
0.1 nH, R1 = R2 = 1 Ω, TD1 = 100 ps, TD2 = 230 ps. The
capacitance C is a free parameter.

The main objective of this paper is to construct a black-box
parameterized SPICE equivalent circuit whose input-output
scattering response approximates H̆(s;ϑ) ∈ CP×P over a
prescribed frequency band [fmin, fmax] and parameter domain
ϑ ∈ Θ. The proposed workflow includes the following steps:

1) choose an appropriate model structure (Sec. III);
2) determine model coefficients (Sec. IV);
3) enforce model stability and passivity (Sec. V);
4) synthesize SPICE netlist (Sec. VI).

III. MODEL STRUCTURE

Many different structures may be considered to approximate
the true system response in a form that enables a parameterized
SPICE netlist synthesis. Following [5], [6], [8], [10], [11], we
adopt the so-called Generalized Sanathanan-Koerner (GSK)
form

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
, (1)

where Rn,` ∈ RP×P and rn,` ∈ R are the model coeffi-
cients, and where ϕn(s), ξ`(ϑ) are suitable basis functions
representing the dependence of model numerator and denom-
inator on frequency and parameters, respectively. Note that
` = (`1, . . . , `ρ) is a multi-index when the parameter domain
Θ ⊂ Rρ.

We use the partial fraction basis functions for frequency,
e.g., ϕ0(s) = 1 and ϕn(s) = (s− qn)−1 for n > 0, where qn
are predefined stable “basis poles”, either real or in complex
conjugate pairs1. This choice has become a standard since the
introduction of the well-known Vector Fitting scheme [13].
Further, we adopt the system of first-kind Chebychev orthogo-
nal polynomials as parameter-dependent basis functions ξ`(ϑ),
due to their intrinsic normalization and excellent numerical
stability properties. If ρ > 1, individual Chebychev polynomial
bases are used for each dimension in the parameter space.

We remark that the proposed GSK model structure
1) provides a frequency-domain rational approximation of

the true scattering matrix;
2) provides a full parameterization of both model poles

and model residues: note that we avoid an explicit
parameterization of the poles, since their dependence on
ϑ may be non-smooth, as outlined in [11];

1If qn+1 = q∗n form a conjugate pair, the corresponding basis functions are
redefined as ϕ̃n(s) = ϕn(s)+ϕn+1(s) and ϕ̃n+1(s) = jϕn(s)−jϕn+1(s)
to ensure a real-valued impulse response, see [12], [13].
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Fig. 2: Comparison between model and raw data for the
transmission-line example of Fig. 1.

3) can be realized in a state-space form with parameterized
matrices {A(ϑ),B(ϑ),C(ϑ),D(ϑ)}. Although this is a
standard approach enabling a subsequent SPICE synthe-
sis, we will avoid constructing such realization, since the
parameter dependence of the state-space matrices may
be non-smooth. The proposed SPICE synthesis will be
detailed in Sec. VI.

IV. MODEL IDENTIFICATION

The denomination of model structure as GSK is justified by
the identification algorithm that is ideally suitable for the de-
termination of the model coefficients, namely the Generalized
Sanathanan-Koerner iteration [5], [12], [14]. We start from a
set of scattering response samples

H̆k,m = H̆(j2πfk;ϑm), k = 1, . . . , k̄, m = 1, . . . , m̄. (2)

at discrete frequencies fk and parameter values ϑm, computed
by a full-wave solver running a parameter sweep. Then, we
set up the following GSK iterative scheme for µ = 1, 2, . . .

min

∥∥∥∥∥Nµ(j2πfk, ϑm)− Dµ(j2πfk, ϑm) H̆k,m

Dµ−1(j2πfk, ϑm)

∥∥∥∥∥
2

F

(3)

where minimization is performed over the model coefficient
estimates Rµ

n,` and rµn,` at the µ-th iteration. The cost function
adopted in (3) is the Frobenius norm of its P × P matrix
argument. The minimization (3) thus corresponds to a simple
weighted linear least squares problem, whose solution is
achieved through basic pseudoinverse techniques. The iteration
is initialized with D0 = 1 and is stopped when the estimates of
the coefficients and the value of the cost function (3) stabilize.
See [15], [16] for a discussion on convergence.

Running the GSK iteration on the transmission-line example
of Fig. 1 leads to the results depicted in Fig. 2, where
the model responses are compared to the nominal (exact)
responses over the modeling bandwidth [0, 10] GHz. Here,
m̄ = 10 parameter samples and k̄ = 1000 frequency samples
were used, with a rational model order n̄ = 18 and first-
order (¯̀= 2) Chebychev polynomial bases. These orders were
adapted to achieve a worst-case RMS fitting error less than
10−3 among all scattering responses.
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V. STABILITY AND PASSIVITY ENFORCEMENT

Our main objective is a parameterized SPICE equivalent
that can be used in transient analyses without incurring in
unstable behaviors. It is well-known that such instabilities
can be avoided by ensuring the passivity of the model [17],
[18]. For the adopted scattering representation, the model
transfer function H(s;ϑ) must be Bounded Real (BR) [19],
[20] throughout the parameter space ϑ ∈ Θ, i.e.

1) H(s;ϑ) regular for Re {s} > 0,
2) H∗(s;ϑ) = H(s∗;ϑ),
3) IP −HH(s;ϑ)H(s;ϑ) ≥ 0 for Re {s} > 0,

where H is the Hermitian transpose, and IP is the identity
matrix of size P . Whereas condition 2 is automatically verified
by the adopted model structure (1), we address condition 1
(related to stability) and condition 3 (passivity) separately.

A. Uniform stability

The BR condition 1 is guaranteed when all model poles have
a strictly negative real part throughout the parameter space

Re {pn(ϑ)} < 0 ∀ϑ ∈ Θ, n = 1, . . . , n̄, (4)

where pn(ϑ) are the parameter-dependent zeros of the model
denominator, such that D(pn(ϑ), ϑ) = 0. As already noted,
each pn(ϑ) may have a non-smooth dependence on ϑ, there-
fore a direct enforcement of (4) is problematic.

Let us focus on the scalar model denominator D(s, ϑ),
which may be considered as a separate parameter-dependent
one-port dynamical system, whose definition in (1) provides its
explicit pole-residue expansion. The poles are the basis poles
qn, with corresponding residues

rn(ϑ) =

¯̀∑
`=1

rn,` ξ`(ϑ). (5)

We see that
• D(s, ϑ) is regular for Re {s} > 0, since the basis poles
qn are stable by assumption;

• D∗(s, ϑ) = D(s∗, ϑ) by construction;
If we are able to enforce the additional constraint

Re {D(s, ϑ)} ≥ 0 for Re {s} > 0, ∀ϑ ∈ Θ (6)

then D(s, ϑ) will be Positive Real (PR) [19], [20] (a passive
immittance function) throughout the parameter space. Consid-
ering now that [12], [19]
• if D(s, ϑ) is PR, then also D−1(s, ϑ) is PR (if it exists),
• any PR system is stable since regular for Re {s} > 0,

we conclude that enforcing (6) is a sufficient condition to
guarantee that the poles of D−1(s, ϑ), equivalently, the zeros
pn(ϑ) of D(s, ϑ) are stable, as required in (4).

A set of algebraic PR constraints for the denominator
are obtained by sampling (6) at suitable frequency f̂k and
parameter ϑ̂m values, as

Re


n̄∑
n=0

¯̀∑
`=1

rn,` ξ`(ϑ̂m)ϕn(j2πf̂k)

 ≥ 0. (7)
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Fig. 3: Top panel: real part of the denominator submodel
D(s, ϑ) for the transmission-line example of Fig. 1; bottom
panel: model poles (zoom) computed over a fine parameter
sweep (different colors correspond to different parameter val-
ues).

Embedding these constraints into (3) provides a linear least
squares problem with linear inequality constraints for each
GSK iteration. This is a convex optimization problem, which
is readily solved through, e.g., interior point schemes [21].
The strategy for the determination of the frequency f̂k and
parameter samples ϑ̂m should be adaptive in order to minimize
the number of constraints. The Reader is referred to the
guidelines discussed in [22], see also [12], [23], [24].

The top panel of Fig. 3 depicts the real part of the denom-
inator submodel D(s, ϑ), comfirming that this denominator is
uniformly PR throughout the parameter range. Consequently,
all model poles are expected to have a negative real part. This
is confirmed by the bottom panel of Fig. 3, which displays
the model poles (denominator zeros) over a fine sweep of the
parameter (only part of the poles are displayed for clarity,
but the maximum real part among all parameterized poles is
maxn,ϑ{Re {pn(ϑ)/2π}} = −0.83 GHz< 0). This figure also
confirms the capability of proposed model structure to effec-
tively represent (implicitly) model poles that are parameter-
dependent.

As a final remark, we note that when (6) is verified,
then D(s, ϑ) and D−1(s, ϑ) can be considered as the two
immittances (admittance and impedance or viceversa) of a
passive one-port. This fact will be useful for the SPICE
synthesis discussed in Sec. VI.

B. Uniform passivity

We focus now on the passivity of the parameterized GSK
model, expressed by condition 3 in Sec. V. It is well
known [12] that this condition is equivalent to requiring that
the maximum singular value σmax of the scattering matrix is
unitary bounded at all frequencies

σmax{H(jω;ϑ)} ≤ 1, ∀ω ∈ R, (8)

a condition that we must enforce throughout the parameter
space ϑ ∈ Θ. Let us assume that (8) is violated at some point
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Fig. 4: Top panels: localized passivity violations of the
transmission-line model before passivity enforcement; bottom
panel: normalized spectral distance ψ(ϑ) of parameterized
Hamiltonian eigenvalues from imaginary axis after passivity
enforcement (see text for details).

(ωi, θi), so that the maximum singular value

σmax{H(jωi;ϑi)} = σ̄i > 1 (9)

with associated left and right singular vectors ui, vi. Define
now a model perturbation

Ĥ(s;ϑ) = H(s;ϑ) + ∆H(s;ϑ) (10)

with

∆H(s;ϑ) =

∑n̄
n=0

∑¯̀

`=1 ∆Rn,` ξ`(ϑ)ϕn(s)

D(s, ϑ)
(11)

where the denominator D(s, ϑ) is left unchanged and the
numerator coefficients Rn,` are linearly perturbed by ∆Rn,`.
A first-order singular value perturbation can be applied to σ̄i
to enforce its value to be less than one, obtaining the algebraic
constraint

Re
{
uH
i ∆H(jω̄i; θi)vi

}
≤ 1− σ̄i. (12)

We see that (12) is also a linear inequality constraint in the
coefficient perturbations ∆Rn,`. We can then setup an iterative
scheme that minimizes model perturbation

min ‖∆H(s;ϑ)‖ (13)

subject to constraints (12). As for the above-discussed uniform
stability enforcement, also these constraints should be deter-
mined through and adaptive sampling process, such as the one
presented in [22].

The top panel of Fig. 4 depicts two regions in the (ω, ϑ)
plane where the transmission-line model results locally non-
passive and (8) is violated. The non-passive bands (red lines)
are identified by the purely imaginary eigenvalues (yellow
dots) of the associated Skew-Hamiltonian/Hamiltonian (SHH)
matrix pencil, as discussed in [22], [24]. See the Appendix for
a summary of the main SHH properties that are relevant for
this work. Black dots are the local singular value maxima σi

vk
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Fig. 5: SPICE realization of (a) denominator submodel (k-th
out of P instances); (b) numerator submodel; and (c) external
interface of the GSK model (k-th out of P ports, scattering
representation, realized in Norton form).

of (9), which are iteratively perturbed until model is passive.
Note that maxi σi = 1.00013, denoting very small passivity
violations; such violations are due to the inevitable approxima-
tion error involved in the reduced-order model representation.
After 5 iterations the model is passive, as confirmed by the
bottom panel of Fig. 4, where the parameter-dependent real
part of the closest SHH eigenvalues to the imaginary axis ψ(ϑ)
of (24) is depicted as a function of parameter ϑ. Since this
distance is uniformly positive, model is uniformly passive [22].

In conclusion, uniform stability and passivity are here
achieved through linear inequality constraints applied to sep-
arate optimizations of denominator (stability) and numerator
(passivity) coefficients.

VI. SPICE SYNTHESIS

We now consider the problem of synthesizing a parame-
terized GSK model in form (1) into a SPICE netlist. The
synthesis strategy that we pursue in the following is dictated
by the need of preserving the smooth parameterization of all
model coefficients (numerator and denominator), in order to
avoid numerical difficulties in SPICE transient runs. To this
end, we decompose the model into separate interconnected
blocks, as defined below.

1) The denominator submodel is here considered as a one-
port with admittance YN (s;ϑ) = D(s, ϑ). Therefore,
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defining auxiliary (dummy) port voltage and current
variables vD and iD, respectively, we set

iD = YN (s;ϑ) vD and vD = Y −1
N (s;ϑ) iD. (14)

Following the discussion above, this one-port is passive
since YN (s;ϑ) is PR, so that the impedance ZN (s;ϑ) =
Y −1
N (s;ϑ) = D−1(s, ϑ) is guaranteed stable. For later

use, we “vectorize” the denominator ports by realizing
P separate and identical instances [See Fig. 5(a)] with
port voltages vD,k and currents iD,k for k = 1, . . . , P ,
collected in vectors vD, iD ∈ CP . The result can be
formally cast as

iD = D(s, ϑ)vD, vD = D−1(s, ϑ) iD, (15)

where D(s, ϑ) = diag{D(s, ϑ)}.
2) The numerator submodel is considered as a P -port with

admittance matrix YN (s, ϑ) = N(s, ϑ) so that, by
defining the auxiliary (dummy) port voltage and current
vectors vN , iN ∈ CP , we have

iN = N(s, ϑ)vN , (16)

realized as in Fig. 5(b).
3) The model H(s;ϑ) is assumed to be in scattering

representation. Therefore,

b = H(s;ϑ)a = N(s, ϑ) · D−1(s, ϑ) · a. (17)

where a,b ∈ CP are the (power-normalized) incident
and reflected scattering wave vectors, with components

ak =
1

2
√
R0

(vk +R0ik), (18)

bk =
1

2
√
R0

(vk −R0ik), (19)

where R0 is the port reference impedance. Interconnection of
the various blocks is realized as in Fig. 5 through dependent
sources, by setting
• iD = a, so that the voltage vector at the output of

the denominator block reads vD = D−1(s, ϑ)a. See
Fig. 5(a), where a pair of controlled sources are used
to synthesize each incident wave ak;

• vN = vD, so that iN = H(s;ϑ)a, see Fig. 5(b);
• b = iN , so that b = H(s;ϑ)a. See Fig. 5(c), where

a pair of current sources are used to realize the output
equation (19) in Norton form.

A. Synthesis of parameterized admittance blocks

The circuit realization of the parameterized admittance
blocks corresponding to numerator and denominator is stan-
dard [12], [25], except for the novel proposed parameterization
scheme. We describe the synthesis of the scalar denominator,
since the extension to the matrix numerator case is straight-
forward. From (1) and (5), we can write

iD = D(s, ϑ) vD =

n̄∑
n=0

jD,n (20)

where jD,0 = r0(ϑ) vD and

jD,n = rn(ϑ) vC,n, with vC,n = (s− qn)−1 vD (21)

1F
−1

qn
1 · vDvC,n

+

−

(a)

r0(ϑ)vD r1(ϑ)vC,1 rn̄(ϑ)vC,n̄
. . .

iD

vD

+

−

(b)

Fig. 6: Synthesis of parameterized admittance block D(s, ϑ):
(a) elementary RC cell synthesizing the basis pole qn; (b)
external circuit interface.

ǫr
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h
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Fig. 7: PCB interconnect over a slotted reference plane (a =
100 mm, b = 100 mm, εr = 4.7, t = 0.035 mm, w = 0.12 mm,
h = 0.3 mm). Parameter ranges are 1 ≤ d ≤ 25 (mm) and
0 ≤ L ≤ 25 (mm).

for n = 1, . . . , n̄. Assuming real basis poles qn < 0,
each auxiliary voltage vC,n is realized as an elementary
RC cell2, see Fig. 6(a). Each auxiliary current jD,n is real-
ized as a Voltage-Controlled Current Source (VCCS) with a
parameter-dependent trans-conductance rn(ϑ). Such parame-
terized VCCS elements are available in most modern SPICE
engines (in this work, we use the freeware LTSpice [26]). The
superposition (20) of all these currents jD,n is realized as in
Fig. 6(b).

To conclude the transmission-line example of Fig. 1, we
remark that the model vs data comparison reported in Fig. 2
depicts the results of a double AC and parameter sweep
computed form the exported passive model netlist by LTSpice.
As expected, this model closely matches the original data.

VII. EXAMPLES

A. PCB interconnect over a slotted reference plane

We consider the structure depicted in Fig. 7, consisting
of a PCB microstrip running on a reference plane, where a
rectangular slot breaks the current return path. The parameters
describing the discontinuity are here defined as ϑ = (L, d),
where L is the slot length and d is the slot offset from the
midpoint of the microstrip.

2Two coupled RC cells can be used to realize a pair of complex conjugate
basis poles qn+1 = q∗n, see [25].
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Top panel: model poles computed over a sweep on d; bottom
panel: Hamiltonian spectral distance ψ(ϑ) from imaginary
axis.

Reference scattering responses (k̄ = 372 frequency samples
and {m̄d = 15, m̄L = 9} samples for each parameter) were
first obtained from a full-wave solver [27], using waveguide
port excitations in order to isolate the contribution of the
discontinuity. This dataset was then processed by proposed
algorithm in order to obtain a passive model with a corre-
sponding parameterized SPICE netlist.

Figure 8 provides a validation of the final passive model
vs raw data, considering a fixed slot length L = 25 mm
while varying the slot offset d (using n̄ = 34 poles and
¯̀
N = 10 and ¯̀

D = 3 for numerator and denominator
submodels, respectively). Evidence of uniform stability and
passivity of the model is provided by the two panels of Fig. 9,
where selected model poles over a d parameter sweep are
plotted in the top panel, and the Hamiltonian spectral distance
ψ(ϑ) from the imaginary axis after passivity enforcement is
depicted in the bottom panel. Figure 10 provides the same
validation for the model (n̄ = 29 and l̄ = 4 for both numerator
and denominator submodels) obtained while keeping a fixed
slot offset d = 25 mm and varying the slot length L. From
Fig. 10, we observe a stopband in the S21 response that moves
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Fig. 10: Validation of the PCB link passive model for d =
25 mm and varying L.
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Fig. 11: Validation of the multiboard PCB link passive model
for varying via radius a.

towards lower frequencies as L is increased, due to the strong
discontinuity that breaks the current return path. This effect
is very accurately reproduced by proposed model, throughout
the parameter range. The worst-case accuracy in terms of
relative RMS error among all frequency/parameter values and
scattering responses was below 1%.

B. A via-parameterized multiboard PCB link

This second example is a high-speed signal link (see [28])
running through two PCBs attached by a connector. The signal
path is provided by a stripline (total PCB length 14 cm,
permittivity εr = 3 with tan δ = 0.002) connected by vertical
vias located on the two sides of the connector and at the two
input/output ports of the link. Each of these vias is surrounded
by four ground vias (radius 127 µm and distance from center
via 762 µm). All signal vias have a fixed antipad radius
b = 400µm, whereas the via radius is considered as a free
parameter a ∈ [100, 300]µm (differently from [22], where the
same structure was parameterized by the antipad radius while
retaining a fixed via radius). Ports are defined between the
first/last vias and the corresponding reference planes across
their respective antipads. We remark that signaling on this link
is single-ended, with the return current path being formed by
the reference PCB planes and by the ground vias. Due to the
various link discontinuities, the signal rise/fall times are thus
intrinsically lower-bounded, leading to a maximum data rate
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Fig. 12: Multiboard PCB link passive model. Top panel: model
poles computed over a sweep on via radius a; bottom panel:
Hamiltonian spectral distance ψ(ϑ) from imaginary axis.

of few Gb/s. Higher data rates would only be possible through
differential signaling. Here we consider this single-ended case
in order to stress the capability of proposed parameterized
modeling algorithm in representing large response variations,
as shown below.

A set of sampled scattering responses (Courtesy of Prof.
Christian Schuster and Dr. Jan Preibisch, Technische Univer-
sität Hamburg-Harburg, Hamburg, Germany) were obtained
through a combination of a full-wave field solver (for the
connector), lossy transmission-line models for the stripline
segments, and a field model for the vias based on [29]. The
data for model identification include k̄ = 500 frequency
samples up to 10 GHz for m̄ = 9 via radius values, linearly
spaced within the design range.

Model identification required n̄ = 46 poles with Chebychev
polynomials of degree `N = 4 and `D = 2 for numerator
and denominator submodels, respectively, in order to achieve
a fitting accuracy (worst-case relative RMS error) less than
1%. As for previous examples, we report in Fig. 11 a model
vs data comparison, showing the very large sensitivity of the
insertion loss S21 response on the selected parameter. The top
panel of Fig. 12 reports the parameterized model poles over
a sweep on via radius within its range, confirming uniform
model stability. The bottom panel of Fig. 12 shows instead the
Hamiltonian spectral distance ψ(ϑ) from the imaginary axis
after passivity enforcement, which confirms that the model is
passive.

C. Parameric transient analysis

In order to illustrate the possible application scenarios for
proposed modeling approach, we consider again the model
discussed in Sec. VII-B, for which we extracted a parametric
SPICE netlist, as detailed in Sec. VI. The first simulation set-
ting we consider is a transient pulse distortion analysis under
parametric variations (of the via radius). A linear Thévenin
source with Rs = 50 Ω internal resistance excites a single
pulse (100 ps rise/fall time and duration 500 ps). The pulse is
received at the far end by a RC load (RL = 5 kΩ, C = 1 pF),
protected by a diode-based clipping circuit limiting the load
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g
e

 (
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Fig. 13: Transient SPICE simulation of the via-parameterized
PCB macromodel with nonlinear terminations (see text).

voltage to −0.1 < vL < 1 V. A parametric sweep is run in
SPICE [26] by instantiating the model for different values of
the via radius a ∈ [100, 300]µm, obtaining the results depicted
in Fig. 13. We see that the rise time of the received pulse
is significantly affected. Also, the reflections induced by the
nonlinear load exploit different dynamics as the via radius is
changed. The full parametric sweep required a runtime of 3.4 s
on a standard laptop.

A second simulation setting is now considered by replacing
the driver with a pseudo-random bit generator (bit time 600 ps,
rise- and fall-time of 200 ps, internal resistance Rs = 50 Ω),
and the far end termination with a RC load (RL = 10 kΩ,
C = 3 pF) protected by a clipping circuit which limits the
load voltage 0 < vL < 1 V. A parametric eye diagram
simulation was setup in SPICE. The results are shown in
Fig. 14 for three different parameter configurations (min,
mean, max). The vertical and horizontal eye openings are
instead depicted as functions of the via radius in Fig. 15. This
analysis confirms the high sensitivity of the transient responses
on the considered parameter, which effectively creates a large
impedance discontinuity along the transmission path. The time
required for computing a full parametric sweep (9 parameter
values, 1000 bits) on the eye diagrams was 81 s.

Overall, these results confirm that the proposed modeling
approach leads to fast, scalable and accurate models, which
can be executed as black-box behavioral circuits as part of
those more complex transient analyses required in Signal and
Power Integrity assessment.

VIII. CONCLUSIONS

This paper proposed a complete workflow for the extraction
of behavioral, reduced-order macromodels of wired intercon-
nect links. The model extraction is based on a set of scattering
responses of the structure, computed by a field solver for
different configurations, as defined by the variation of some
geometrical parameter related to internal discontinuities, such
as slots in reference planes or via radii. The proposed modeling
flow produces a guaranteed stable and passive SPICE netlist,
which embeds the dependence of the selected parameters in
closed form. As a result, the models can be safely used in
time-domain circuit simulations within what-if, optimization
and design centering loops.
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Fig. 14: Eye diagram simulations of the multiboard PCB for three different configurations of the via radius a.
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Fig. 15: Vertical (left panel) and horizontal (right panel) eye
openings as functions of the parameter a.
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APPENDIX

We briefly recall some known results about Skew-
Hamiltonian/Hamiltonian (SHH) pencils and their relation
to the passivity of the underlying (parameterized) descriptor
systems. Any system in form (1) can be cast as a descrip-
tor system with parameter-dependent generalized state-space
matrices {E(ϑ),A(ϑ),B(ϑ),C(ϑ)} and associated transfer
function

H(s;ϑ) = C(ϑ)(sE−A(ϑ))−1B. (22)

Details are reported in [5], [22]. This (scattering) transfer
function is BR (passive) for a given value of ϑ when it
is asymptotically stable, and when the set of finite purely
imaginary eigenvalues of the SHH pencil (M(ϑ),K) with

M(ϑ) =

[
A(ϑ) BBT

−CT(ϑ)C(ϑ) −AT(ϑ)

]
, K =

[
E 0
0 ET

]
(23)

is empty, see [12], [24], under the condition that the maximum
singular value of H(jω;ϑ) is less than one at least at one
frequency point. In order to check uniform passivity for ϑ ∈
Θ, we define the normalized spectral distance of Hamiltonian
eigenvalues from the imaginary axis

ψ(ϑ) = min
λ(ϑ)∈Λ(ϑ)

|Re {λ(ϑ)} |
ρ(ϑ)

(24)

where ρ(ϑ) is the spectral radius of the SHH pencil (23),
computed considering only the finite eigenvalues. The model
is uniformly passive when ψ(ϑ) ≥ 0 for all ϑ.
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