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A PARALLEL SOLVER FOR LARGE SCALE DFN FLOW
SIMULATIONS∗

STEFANO BERRONE† , SANDRA PIERACCINI† , STEFANO SCIALÒ† , AND

FABIO VICINI†

Abstract. Flows in fractured media have been modeled using many different approaches in
order to get reliable and efficient simulations for many critical applications. The common issues to
be tackled are the wide range of scales involved in the phenomenon, the complexity of the domain,
and the huge computational cost. In the present paper we propose a parallel implementation of
the PDE-constrained optimization method presented in [S. Berrone, S. Pieraccini, and S. Scialò,
SIAM J. Sci. Comput., 35 (2013), pp. B487–B510; S. Berrone, S. Pieraccini, and S. Scialò, SIAM
J. Sci. Comput., 35 (2013), pp. A908–A935; S. Berrone, S. Pieraccini, and S. Scialò, J. Com-
put. Phys., 256 (2014), pp. 838–853] for dealing with arbitrary discrete fracture networks (DFNs)
on nonconforming grids. We show the scalability performances and the efficiency of the parallel
algorithm, and we also test the robustness of the method on complex and strongly connected DFN
configurations which would be very difficult to mesh using conventional approaches relying on some
kind of mesh conformity at the interfaces.
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1. Introduction. The simulation of flows in fractured media is a challenging
issue relevant in several critical applications: Oil and gas enhanced production, nuclear
waste geological storage, carbon dioxide geological storage, geothermal applications,
and energy and gas storage. The flow mainly takes place in the fractures, and the
contribution of the surrounding rock matrix can have, in many cases, a marginal
impact on the flow pattern. Intensity and directionality of flow largely depend on the
distribution of fractures and on their hydraulic properties.

Several models have been proposed for the simulation of flows in fractured media.
Here we consider the discrete fracture network (DFN) model [8, 15, 7], with polygonal
planar fractures representing the real fractures of the medium. Since the actual distri-
bution of the fractures in a large scale geological basin cannot be precisely determined
in a deterministic way, DFNs are built as representations of natural media starting
from stochastic distributions derived from “in situ” measurements [6, 8, 12, 15, 21, 41].
DFN flow simulations are also a starting point for investigating the hydraulic behavior
and hydraulic and mechanical interactions [10, 11, 39, 9, 33].

Concerning numerical simulations on DFNs, several discretization approaches,
such as the standard finite element method (FEM), mixed hybrid discretizations,
and extended finite elements [34, 35, 40, 19], are usually applied. One of the major
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complexities related to standard discretizations is the construction of good quality
meshes on the DFN. Several approaches have been proposed in order to numerically
deal with such an issue. A first family of methods is mainly driven by ensuring
conformity of meshes at the fracture intersections, called traces, by the introduction
of modifications in the fractures or in the traces [30, 22]. Another proposed approach
is based on the use of the mortar method [34, 35], which allows the relaxation of
the conformity constraints. A different approach consists in modeling the DFN as a
distribution of one-dimensional (1D) pipes mutually connecting the centers of fracture
intersections [20, 13, 25]. The resulting mesh of pipes should model the DFN topology
and hydraulic properties via a suitable definition of hydrogeological parameters. In
[31] the solution in the fractures is written in terms of the solution at the fracture
intersections. Other interesting approaches can be found in [26, 17, 32].

In recent papers [3, 4, 5] a new optimization approach for flow simulations on
arbitrary DFNs was proposed. The approach totally circumvents the problem of mesh
generation without any need for geometrical modification tailored on the DFN (e.g.,
fracture or trace removal or displacement). Furthermore, the method is naturally
conceived in a fracture-oriented way, and decoupled computations on the fractures
are envisaged. The method has proven to be quite robust on several medium-sized
DFNs [1].

Efficient solvers for DFN flow simulations are of crucial importance in several
respects. They are clearly needed for very large scale simulations at the basin scale,
where the number of fractures involved may realistically be as high as 106 fractures.
In addition to efficiency, robustness is a crucial issue, especially when a large num-
ber of simulations are required and expected to run in a completely automatic way,
without the need of ad hoc human intervention. This is the case, for example, of
uncertainty quantification analysis on DFNs [2]. Indeed, when a stochastic geometry
is considered, the DFNs on which simulations have to be performed are built on the
basis of a given probability distribution, and each simulation contributes to the anal-
ysis. Robustness is of crucial importance in this case, since either neglecting DFNs
on which simulations fail or modifying them would in turn correspond to a change in
the probability distribution adopted.

The aim of the present paper is twofold. A parallel implementation of the method
is described, and its scalability is analyzed on quite general stochastically generated
DFNs. Furthermore, we aim at showing robustness and efficiency of the approach
also on rather general DFNs presenting a large heterogeneity in fracture dimensions,
distance, and angles formed by intersecting traces. In particular, very close traces on
the same fracture and nearly parallel intersecting traces will be treated without any
need of tailored mesh generation.

The paper is organized as follows. In section 2 the model and its finite dimensional
discretization are briefly sketched. In section 3 the parallel algorithm is described,
and numerical tests are presented in section 4.

2. Model description. We consider here a network surrounded by an impervi-
ous rock matrix, so that flow occurs only along fractures and across fracture intersec-
tions. The flow in the fractures is ruled by the Darcy law, and matching conditions
at fracture intersections are imposed in order to ensure conservation and head conti-
nuity. The flow entering/exiting through fracture intersections acts as a source/sink
on the fracture. In what follows, we briefly describe the model and its discretization,
referring the reader to [3, 5] for full details.

Let Ω denote a DFN in three-dimensional (3D) space, composed of connected open
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planar fractures Fi for i = 1, . . . , I. Intersections between fractures, called traces, are
denoted by Sm, with m = 1, . . . ,M . Each trace is given by the intersection of exactly
two fractures, such that Sm = F̄i ∩ F̄j with i �= j collected in the set ISm . The set of
traces belonging to fracture Fi is denoted by Si.

The boundary of Ω, ∂Ω, is divided into a Dirichlet part ΓD and a Neumann part
ΓN , such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω. The boundary of each fracture Fi is
denoted by ∂Fi and is also split into a Dirichlet part ΓiD = ∂Fi∩ΓD and a Neumann
part ΓiN = ∂Fi ∩ ΓN . Functions bD and bN prescribe the Dirichlet and Neumann
boundary conditions, and their restrictions to the boundary ∂Fi are indicated by bDi
and bNi , respectively. We remark that while ΓD should be nonempty, ΓiD can be
empty for some i (see [5]).

The hydraulic head in Ω is denoted by H , and Hi is the restriction of H to Fi.
The following functional spaces are introduced on each fracture Fi: the space Vi =
H1

0(Fi) =
{
v ∈ H1(Fi) : v|ΓiD

= 0
}
and V D

i = H1
D(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= bDi
}
,

such that, on each fracture, the solutionHi belongs to V
D
i . Let Ki denote the fracture

transmissivity tensor on Fi. On each trace Sm, for each fracture Fi, [[
∂Hi

∂ν̂i
Sm

]]Sm denotes

the jump of the conormal derivative along the unit vector normal to Sm on Fi.

The hydraulic head can be expressed by the following system of equations:∫
Fi

Ki∇Hi∇vdΩ =

∫
Fi

qivdΩ +

∫
ΓiN

bNi v|ΓiN
dγ

+

M∑
m=1

∫
Sm

[[
∂Hi

∂ν̂iSm

]]
Sm

v|Sm
dγ ∀v ∈ Vi, ∀i = 1, . . . , I,(2.1)

Hi|Sm −Hj |Sm = 0 for i, j ∈ ISm , ∀m = 1, . . . ,M,(2.2) [[
∂Hi

∂ν̂iSm

]]
Sm

+

[[
∂Hj

∂ν̂jSm

]]
Sm

= 0 for i, j ∈ ISm , ∀m = 1, . . . ,M,(2.3)

where qi ∈ L2(Fi) is a source term for fracture Fi. Equation (2.1) is the weak formu-
lation of the Darcy law on the fracture. Equations (2.2)–(2.3) enforce continuity of
the hydraulic head and flux balance across the traces, respectively. Note that the last
term on the right-hand side of (2.1) accounts for the flux incoming in Fi through its
traces.

In order to decouple the resolution of (2.1)–(2.3), the problem has been reformu-
lated in [3] as a minimization problem, in which the exact fulfillment of (2.2)–(2.3)
is replaced by the minimization of a cost functional. For the sake of simplicity of
notation we assume in this subsection that the traces are disjoint; this simplifying
assumption can be removed following [3, Remark 2.1]. Let us define on each trace Sm

and for each fracture Fi the quantity Um
i ∈ H− 1

2 (Sm) as

Um
i =

[[
∂Hi

∂ν̂iSm

]]
Sm

+ αHi|Sm
,

where α is a positive constant. We define the cost functional J as
(2.4)

J(H,U)=

M∑
m=1

(∥∥Hi|Sm
−Hj|Sm

∥∥2
H

1
2 (Sm)

+
∥∥∥USm

i +USm

j −α (Hi|Sm
+Hj|Sm

)∥∥∥2
H− 1

2 (Sm)

)
,
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where i, j are such that i, j ∈ ISm . The unique minimizer of the quadratic functional
J constrained by equations
(2.5)∫
Fi

Ki∇Hi∇vdΩ+α
M∑

m=1

∫
Sm

Hi|Sm
v|Sm

dγ =

∫
Fi

qivdΩ+

∫
ΓiN

bNi v|ΓiN
dγ+

M∑
m=1

∫
Sm

Um
i v|Sm

dγ

for all v ∈ Vi, for all i = 1, . . . , I, coincides with the solution of the system (2.1)–
(2.3) [3, 5]. Thus, the quantities Um

i on the traces act as the control variables of the
minimization process, while the hydraulic head is the observed variable.

2.1. Discrete problem. The finite dimensional counterpart of the problem de-
picted in the previous section is obtained by means of finite element discretizations.
A key point of the approach used is that each fracture is meshed independently of
the others. The triangulations introduced are also independent of trace disposition.
A finite dimensional discretization is also introduced for the control variables on each
trace. The discretization grid can be independent of the meshes on the fractures.

In what follows, a lower-case letter will be used to denote the discrete variables;
thus, the discrete hydraulic head on fracture Fi will be denoted hi, and the discrete
control variable on the trace Sm of fracture Fi will be denoted u

m
i . Let us introduce on

Fi the set {ϕi,k}k=1,...,Ni of standard linear finite element basis functions on triangular
elements, and on Sm the set {ψm

i,k}k=1,...,Nm
i

of linear finite element basis functions
in one dimension. Hence, the quantities Ni and Nm

i denote the number of degrees

of freedom (DOFs) for hi and u
m
i , respectively. Hence we write hi =

∑Ni

k=1 hi,kϕi,k,

umi =
∑Nm

i

k=1 u
m
i,kψ

m
i,k. Overloading the notation, the symbol hi will also be used to

denote the Ni-dimensional vector of the DOFs for the hydraulic head, and umi will
be used to denote the Nm

i -dimensional vector of DOFs for the corresponding control
variable. The difference will always be clear from the context. Furthermore, we in-

troduce the following vectors. We set h = (hT1 , . . . , h
T
I )

T ∈ R
NF

, NF =
∑

i=1,...,I Ni;

for each fracture Fi we define ui ∈ R
NSi , NSi

=
∑

Sm∈Si
Nm

i , as the vector obtained
collecting columnwise the DOFs of the control variables umi on all traces Sm ∈ Si,

and we define u ∈ R
NT

, NT =
∑

i=1,...,I NSi
, as the vector collecting all the DOFs

for the control variables.
The discrete equations for the constraints are obtained in a classical way and can

be written on each fracture as

(2.6) Aihi = q̃i + Bi ui,

where q̃i ∈ R
Ni accounts for both the source term and boundary conditions, Ai ∈

R
Ni×Ni is the stiffness matrix, and matrix Bi ∈ R

Ni×NSi collects the integrals of the
basis functions ϕi,k, k = 1, . . . , Ni, against the basis functions {ψm

i,k}, k = 1, . . . , Nm
i ,

Sm ∈ Si. It is worth noting that, assuming ui is known, (2.6) can be solved indepen-
dently on each fracture and only involves data related to fracture Fi.

Replacing the definitions of the discrete variables in (2.4), considering L2(Sm)
norms, the following expression for the discrete functional is derived:

J =
1

2

I∑
i=1

∑
Sm∈Si

⎛
⎝∫

S

( Ni∑
k=1

hi,kϕi,k|Sm
−

Nj∑
k=1

hj,kϕj,k|Sm

)2

dγ(2.7)

+

∫
Sm

(Nm
i∑

k=1

um
i,kψ

m
i,k+

Nm
j∑

k=1

um
j,kψ

m
j,k−α

Ni∑
k=1

hi,kϕi,k|Sm
−α

Nj∑
k=1

hj,kϕj,k|Sm

)2

dγ

⎞
⎠ .
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For each fracture Fi let us introduce the vector h+i obtained appending to hi all
vectors hj referring to fractures Fj intersecting with Fi; namely, we append to hi
vectors hj with j ∈ ISm , j �= i, for all Sm ∈ Si; thus,

h+i ∈ R
N+

i , N+
i = Ni +

∑
j∈ISm ,j �=i,Sm∈Si

Nj .

Similarly, we define the vector u+i ∈ R
N+

Si by collecting all vectors umi and umj with

i, j ∈ ISm for all Sm ∈ Si (thus, N
+
Si

=
∑

k∈ISm ,Sm∈Si
Nm

k ). Rearranging the various

integrals in (2.7) into matrices, the discrete functional is written in algebraic form as

(2.8) J =
1

2

I∑
i=1

(
hTi G

h
i h

+
i + uTi G

u
i u

+
i − α(uTi B

u
i h

+
i + hTi B

h
i u

+
i )
)
,

where matrices Gh
i ∈ R

Ni×N+
i collect the integrals involving only basis functions for

the hydraulic head; matrices Gu
i ∈ R

NSi
×N+

Si collect the integrals involving only basis

functions for the control variables; and matrices Bu
i ∈ R

NSi
×N+

i and Bh
i ∈ R

Ni×N+
Si

collect the integrals involving basis functions both for the hydraulic head and for the
control variables.

Grouping (2.6) on the fractures, and further assembling the terms in the functional
(2.8), it is possible to derive a compact form of the DFN problem as an equality-
constrained quadratic programming problem:

min J(h, u) :=
1

2

(
hTGhh− αhTBhu− αuTBuh+ uTGuu

)
(2.9)

s.t. Ah− B u = q,(2.10)

whereGh ∈ R
NF×NF

, Gu ∈ R
NT×NT

, A ∈ R
NF×NF

, Bh ∈ R
NF×NT

, Bu ∈ R
NT×NF

,

B ∈ R
NF×NT

are built blockwise starting from the corresponding local matrices.
Remark 1. Equations (2.9)–(2.10), defined on the whole DFN, are here formally

written in order to highlight the structure of the problem. The problem will be
actually treated in a fracture-oriented way. We also highlight that the global matrices
Bh and Bu satisfy Bh = (Bu)T , whereas this property is in general not satisfied by
the local matrices Bh

i and Bu
i .

Thanks to linearity of the constraints, we can (formally) write h = A−1(B u+ q)
and eliminate the unknown h from J , thus obtaining the equivalent unconstrained
minimization problem

min Ĵ(u) :=
1

2
uT (BTA−TGhA−1 B+Gu−αBTA−TB−αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.(2.11)

We may compactly write the functional Ĵ(u) as Ĵ(u) = 1
2u

T Ĝu + q̂Tu. The matrix

Ĝ is symmetric positive definite. Indeed, it is clearly symmetric positive semidefinite
by construction. Positive definiteness follows from uniqueness of the solution to the
unconstrained optimization problem (2.11), which can be stated using arguments
similar to those used in [3].

Problem (2.11) can be solved via an iterative gradient based method, such as
the conjugate gradient (CG) method, which calls for the repeated evaluation of the
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gradient of Ĵ . This is given by

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u
+(BT A−TGh − αBT )A−1q = Ĝu+ q̂.

Our method can be written as a parallel version of the CG method applied to the
functional Ĵ or, equivalently, to the linear system Ĝu + q̂ = 0, without explicitly
assembling either the matrix Ĝ or the vector q̂. The core of each iteration of the CG
method is the computation of the gradient of Ĵ ; within the approach adopted here,
this can be easily performed in parallel on each fracture of the DFN.

In order to describe the approach, let us note that the gradient can be written
in terms of some auxiliary variables as follows. Recalling that A−1(B u + q) = h, we
have

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu − αBTh,

and setting p := A−T (Ghh− αBu), we get

(2.12) ∇Ĵ(u) = BT p+Guu− αBTh.

As a consequence, for a given u, the gradient of Ĵ can be computed by (2.12)
once the linear systems

(2.13) Ah = B u+ q, AT p = Ghh− αBu

are solved. These linear systems, which are formally written in (2.13) on the whole
DFN, can be split into I smaller “local” systems, defined on the fractures, resorting to
the matrix blocks previously introduced and defined locally on the fractures. Namely,
recalling the definition of quantities h+i and u+i provided in view of (2.8), equations
(2.12) and (2.13) correspond to the following: for i = 1, . . . , I,

Aihi = q̃i + Bi ui,(2.14)

AT
i pi = Gh

i h
+
i − αBh

i u
+
i ,(2.15)

(∇Ĵ)i = BT
i pi +Gu

i u
+
i − αBu

i h
+
i .(2.16)

As shown in (2.14)–(2.16), the gradient ∇Ĵ(u) can therefore be computed as a
contribution from the various fractures in the DFN. The evaluation of the contribution
(∇Ĵ)i only requires, as information additional to that available on fracture Fi itself,
information from the fractures intersecting Fi in order to assemble vectors u+i and
h+i . Furthermore, given the structure of the functional in (2.7), and consequently the
sparsity pattern of the matrices involved in the computations, only a small subset
of the total DOFs of the hydraulic head need to be shared, i.e., only the DOFs
corresponding to values of the hydraulic head on the traces.

Remark 2. The idea of splitting the computations for each CG iteration into sub-
problems defined on subdomains is in agreement with classical domain decomposition
(DD) approaches [37, 38] already applied to DFN flow simulations in [36]. Although
there is a similarity between the approach depicted here and DD methods, we highlight
that the structure of each CG iteration is not the same, due to the different structure
of the reduced Hessian Ĝ. In classical DD methods for elliptic problems, the problem
can be formulated as the minimization of an energy defined on the whole domain Ω,
given by the sum of a number of contributions relative to subdomains Ωi. When the
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problem is split into subproblems on the subdomains, continuity constraints are im-
posed on the interfaces through the introduction of auxiliary variables. Here, on the
contrary, the functional to be minimized is defined on the interfaces (i.e., the traces)
and is subject to constraints defined on the fractures, i.e., both on the subdomains
and on the traces. In both methods, one may proceed with a reduction to a problem
defined on the interfaces, but while in the DD case the problem is reformulated in
terms of the auxiliary variables introduced, in our case it is reformulated in terms
of one of the unknowns of the original problem, as the internal variables h and the
constraint Lagrange multipliers p are eliminated, leading to a system involving only
the control variable u.

3. The parallel algorithm. In this section we describe in detail the parallel
algorithm for applying the procedure depicted in the previous section.

Let k be the iteration index, and let gk denote the gradient ∇Ĵ(u) at iteration k,
obtained by grouping columnwise vectors gki := (∇Ĵ)i for all i = 1, . . . , I.

Let us introduce the symbol δ to denote the increment of a given quantity within
iterations, e.g., δuki := uk+1

i −uki . From (2.14)–(2.16) we straightforwardly have δhki =
A−1

i Bi δu
k
i , δp

k
i = A−T

i (Gh
i δ(h

+
i )

k − αBh
i δ(u

+
i )

k), and δgki = BT
i δp

k
i + Gu

i δ(u
+
i )

k −
αBu

i δ(h
+
i )

k.

The serial algorithm is detailed in the following. The direction of movement for
u is denoted dk. Vectors dki and (d+i )

k are derived from dk following the same rules
used for deriving uki and (u+i )

k from uk.

Serial CG algorithm

1. Choose an initial guess u0 and set k = 0
2. Compute hki and pki solving (2.14) and (2.15) and gki by (2.16) ∀i = 1, . . . , I
3. Compute βk

i,N = (gki )
T gki ∀i = 1, . . . , I

4. Set dki = −gki ∀i = 1, . . . , I
5. While gk �= 0

5.1. Compute δgki :
i. Solve Aiδh

k
i = Bi d

k
i

ii. Solve AT
i δp

k
i = Gh

i δ(h
+
i )

k − αBh
i (d

+
i )

k

iii. Compute δgki = BT
i δp

k
i +Gu

i (d
+
i )

k − αBu
i δ(h

+
i )

k

5.2. Compute λk with an exact line search along dk

5.3. Update uk+1
i = uki + λkdki

5.4. Update gk+1
i = gki + λkδgki ∀i = 1, . . . , I

5.5. Set βk+1
i,D = βk

i,N and compute βk+1
i,N = (gk+1

i )
T
gk+1
i ∀i = 1, . . . , I

5.6. Compute βk+1 =
∑I

i=1 βk+1
i,N

∑I
i=1 βk+1

i,D

5.7. Update dk+1
i = −gk+1

i + βk+1dki
5.8. k = k + 1

The exact line search at step 5.2 is performed as follows:

1. Compute λki,N = (dki )
T gki and λki,D = (dki )

T δgki ∀i = 1, . . . , I

2. Compute λk =
∑I

i=1 λk
i,N∑I

i=1 λk
i,D

Thus the same quantity δgki computed at step 5.1 is required. It can be noticed
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that all the required computations only involve the resolution of local linear systems
defined on the fractures. As such, the algorithm is easily parallelizable by splitting
the computations among parallel processes.

Remark 3. Step 5.1 requires the solution of two linear systems on each fracture.
We point out that matrices Ai are constant within iterations; hence their factorization
is computed just once. Moreover, since the method is specifically designed for easily
tackling complex geometries without the need of mesh conformity, overrefinement due
to mesh generation problems is avoided, and very coarse meshes can be used on the
fractures; thus, the local matrices Ai are typically of moderate size.

For parallel computations, we consider a distributed memory architecture, with
communications among processors based on the message passing interface (MPI) pro-
tocol. Let Np be the number of concurrent processes Pn, n = 0, . . . , Np − 1. Each
process Pn is assumed to manage a set of In fractures. Let Fn denote the set of
fractures assigned to process Pn. In the MPI-parallel version four communication
phases need to be added to the previous serial algorithm: the communication of the
scalar quantities λki,N , λ

k
i,D and βk+1

i,N , βk+1
i,D and the communication of the two vector

quantities δhki and dki .

The parallel version of the method is described in the following algorithm.

Parallel CG algorithm

1. Open the parallel environment with Np processes

Process P0 only:
2. Partition the DFN into Np subsets of fractures

All processes:
3. Choose an initial guess u0i , and set k = 0
4. Compute hki and pki solving (2.14)–(2.15) and gki by (2.16) ∀i s.t. Fi ∈ Fn

5. Compute βk
i,N = (gki )

T gki ∀i s.t. Fi ∈ Fn

6. Set dki = −gki ∀i s.t. Fi ∈ Fn. Communication phase: dki
7. While gk �= 0

7.1. Compute δgki
i. Solve Aiδh

k
i = Bi d

k
i ∀i s.t. Fi ∈ Fn. Communication phase: δhki

ii. Solve AT
i δp

k
i = Gh

i δ(h
+
i )

k − αBh
i (d

+
i )

k ∀i s.t. Fi ∈ Fn

iii. Compute δgki = BT
i δp

k
i +Gu

i (d
+
i )

k − αBu
i δ(h

+
i )

k ∀i s.t. Fi ∈ Fn

7.2. Compute λki,N and λki,D ∀i s.t. Fi ∈ Fn.

7.3. Communication of λki,N and λki,D and computation of λk through MPI
Reduce operation

7.4. Update uk+1
i = uki + λkdki ∀i s.t. Fi ∈ Fn

7.5. Update gk+1
i = gki + λkδgki ∀i s.t. Fi ∈ Fn

7.6. Set βk+1
i,D = βk

i,N , and compute βk+1
i,N = (gk+1

i )
T
gk+1
i ∀i s.t. Fi ∈ Fn

7.7. Communication of βk
i,N and βk

i,D and computation of βk+1 through MPI
Reduce operation

7.8. Update dk+1
i = −gk+1

i +βk+1dki ∀i s.t. Fi ∈ Fn. Communication phase:
dki

7.9. k = k + 1

The process of DFN partitioning is performed using the code METIS [24, 23]. A
graph is associated to the network of fractures: the nodes correspond to the fractures,
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and the arcs correspond to the traces. The weight of each node of the graph is given
by the number of DOFs of the discretization introduced on the fracture. METIS
provides a weight-balanced partitioning of the graph minimizing the number of arc-
cuts, i.e., the number of communications, recalling that only trace-related data need
be communicated.

After the partitioning, some of the fractures in Fn will have intersections only
with other fractures in Fn itself, thus having no part in the communication phase.
Let Fnc

n be the subset of the noncommunicating fractures in Fn, with cardinality Incn ,
and let Fc

n be the subset of the communicating fractures, i.e., the subset of fractures
in Fn forming traces with fractures managed by a process different from Pn. Further,
let Sc

n be the set of these traces and Pn the set of the processes other than Pn that
manage at least one fracture intersecting a fracture in Fc

n. Let I
c
n be the cardinality of

Fc
n and IPn

the cardinality of Pn. At each iteration k of the algorithm, each process
Pn is required to send only the DOFs of dki for each trace S ∈ Sc

n and the subset of
DOFs of δhki that affect the value of δhki itself on the traces in Sc

n. Similarly, Pn needs
to receive information related to the traces in Sc

n from the processes in Pn.

Two different communication strategies, or topologies, can be envisaged for the
parallel algorithm: a MasterSlave topology or a Point-to-Point topology. In the
MasterSlave communication architecture a hierarchy of processes is established, and
the presence of a Master process (process P0) managing a group of Slave processes
(P1, . . . , PNp−1) is considered. The Slave processes actually perform the required
computations, while the Master process is devoted to the partitioning of the DFN
and to the communication phases. Thus, at step 2 of the parallel CG algorithm the
DFN is actually partitioned into Np − 1 subsets of fractures. The Slave processes
communicate with each other through the Master process, according to the following
communication scheme. Each Slave process Pn, n = 1, . . . , Np− 1, packs the required
data into a unique array and sends it to theMaster process. TheMaster process, while
receiving information, rearranges the data into Np−1 new arrays. As soon as the array
for the Slave Pn is complete with all the data coming from the processes in Pn, the
Master sends it to the process. As a consequence, with the MasterSlave architecture,
at each iteration of the algorithm the number of communications is proportional to
the number of processes Np, while the amount of data to be shared strongly depends
on the structure of the DFN and on the partitioning process. Further, due to the
different loading of the Slaves, communications take place at slightly different times,
thus avoiding congestion of theMaster. For very large DFNs it is possible to have more
than one Master process managing groups of Slave processes, and a MasterofMasters
process in charge of the communications between different Master processes.

In the Point-to-Point communication scheme, on the contrary, all the available
processes contribute to perform the computations. The Point-to-Point communication
strategy requires that all processes Pn, n = 0, . . . , Np − 1, send to and receive from
all the processes in Pn the required data. In this case, the number of communications

is therefore proportional to
∑Np−1

n=0 IPn
, thus strongly depending on the structure of

the DFN and on the partitioning. The MasterSlave architecture is preferred for the
present work, as it allows us to keep the number of required communications as low
as possible, independently of the complexity of the DFN. Further, the amount of data
to be shared is not considered a bottleneck even for DFNs with a large number of
traces, as it is limited to few DOFs related to the traces in the set Sc

n.

Step 7.1 of the parallel CG method is here further detailed as an example of the
communication process with the MasterSlave topology as described above.



C294 BERRONE, PIERACCINI, SCIALÒ, AND VICINI

MasterSlave - Communication algorithm

7.1. Compute δgki :
if process P0:

i. For n = 1, . . . , Np − 1
a. Receive information from process Pn

b. For m = 1, . . . , Np − 1
If Pn ∈ IPm

, extract from Pn information for Pm and store it in
the array vm.

ii. For n = 1, . . . , Np − 1
Perform an MPI nonblocking send of vn to process Pn

if process Pn, n �= 0:
i. Solve Aiδh

k
i = Bi d

k
i ∀i s.t. Fi ∈ Fc

n

ii. Extract DOFs of δhki related to the traces in Sc
n and collect them in an

array hc
iii. Perform an MPI nonblocking send of δhc to process P0

iv. Solve Aiδh
k
i = Bi d

k
i ∀i s.t. Fi ∈ Fnc

n

v. Receive information from process P0 and update vector δ(h+i )
k

vi. Solve AT
i δp

k
i = Gh

i δ(h
+
i )

k − αBh
i (d

+
i )

k ∀i s.t. Fi ∈ Fn

vii. Compute δgki = BT
i δp

k
i +Gu

i (d
+
i )

k − αBu
i δ(h

+
i )

k ∀i s.t. Fi ∈ Fn

4. Numerical results. In this section we report numerical results in order to
assess the performance of the method. Several DFN configurations with different
features have been considered.

4.1. Test problem description. Four different DFN configurations are used
for the simulations, obtained as follows. Two networks have been stochastically gen-
erated, labeled DFN709 and DFN1425, consisting of 709 and 1425 fractures, respec-
tively. In Table 1 we report the number of fractures and some relevant data about the
number of traces of all the DFNs considered: the total number of tracesM , the mini-
mum and maximum number of traces on the fractures, and extremal traces densities,
i.e., the ratio between the number of traces over the fracture area. The geometri-
cal characteristics of the considered DFNs are described by Figures 1–3. Namely, in
Figure 1 a 3D plot of the 709 and 1425 fracture DFNs is reported. The coloring of
fractures in these images is proportional to fracture areas: the fracture areas span
several orders of magnitude, ranging from 376m2 to 104m2 in the smaller DFN, and
from 3.2m2 to 104 m2 in the larger DFN. Figures 2–3 report histograms of trace re-
lated data. Figure 2 shows the distribution of angles formed by intersecting traces in a
single fracture: on the left the full distribution of the angles is reported, with a detail
of the lower values on the right. The DFNs have traces intersecting orthogonally as
well as traces intersecting with very small angles, down to 0.26 degrees.

Table 1

DFN related data.

Traces Trace density
I M Min Max Min Max

DFN709 709 3939 1 42 0.00080 0.042
DFN878 878 3835 1 43 0.00073 0.152
DFN915 915 4318 1 49 0.00073 0.613
DFN1425 1425 13086 1 92 0.00073 0.920
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Fig. 1. 3D view of DFN709 (left) and DFN1425 (right).
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Fig. 2. DFN709 and DFN1425. Left: Distribution of angles between pairs of intersecting traces
in the same fracture. Right: Zoom of lower values.

In Figure 3 we report the distribution of trace lengths (left) and of distance
between couples of nonintersecting traces in the same fracture (right). The figures
highlight the multiscale nature of the DFNs considered, with trace lengths ranging
from approximately 1.6 cm to 260m, and with disjoint trace distances down to 0.12
mm.

Two additional networks have also been generated, starting from DFN1425: they
have been obtained by removing some selected fractures in such a way that the new
networks do not present geometrical features known in literature to be critical, i.e.,
narrow angles between intersecting traces and small distance of nonintersecting traces
in the same fracture. More precisely (refer to Table 1 for the names), DFN878 does
not contain nonintersecting traces with distance smaller than 0.3 m, and DFN915
does not contain intersecting traces forming angles smaller than 18 degrees. These
threshold values have been chosen in such a way that the DFNs generated have a
similar number of fractures, traces, and DOFs.

Summarizing, the provided data highlight that two of the chosen DFN configu-
rations, namely, DFN709 and DFN1425, display the complexities (frequently present
in problems of interest for practical applications) that make DFN simulations partic-
ularly challenging: these are a strong multiscale nature and the presence of intricate
networks of traces intersecting with narrow angles, which are very difficult to mesh,
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Fig. 3. DFN709 and DFN1425: Distribution of trace lengths (left) and of distances between
couples of nonintersecting traces in the same fracture (right).

Fig. 4. DFN709: Detail of a computational mesh.

yielding a huge number of unknowns for the generation of a good quality mesh, if
some kind of conformity is required. On the other hand, DFN878 and DFN915 have
a less severe geometrical structure, with no extremely narrow angles or very close
traces. As an example of the ability of the proposed method to deal with complex
networks, a detail of a nonconforming mesh is reported in Figure 4 for DFN709.

Each DFN has been discretized using three different grids for the hydraulic head,
with discretization parameter δ ∈ {0.5, 2, 7}. The parameter δ represents the upper
bound for the area of triangular elements produced by the triangulator on each frac-



A PARALLEL SOLVER FOR LARGE SCALE DFNS C297

Table 2

Number of degrees of freedom for the hydraulic head h and the control variable u.

NF NT

DFN δ = 0.5 δ = 2 δ = 7 δ = 0.5 δ = 2 δ = 7

709 1378796 356527 107467 363007 187645 105817
878 1753469 452856 136549 329584 170733 96759
915 1808368 467474 140799 351899 182739 103701
1425 2838981 733588 220980 1157310 598596 338489

250

500

750

head

0

1e+03

Fig. 5. Solution for DFN1425 with contour lines, δ = 2. The source and sink fractures are the
horizontal fractures in the top and bottom left corners, respectively.

ture. The discretization of the control variables is chosen as induced by the discretiza-
tion of the hydraulic head; i.e., the grid on the traces is given by the intersection points
between the traces and the edges of the triangular elements on the fractures. We re-
mark that other node distributions can be alternatively adopted for the discretization
of the control variables, as this choice only affects the quadrature rule used to com-
pute the required integrals. The resulting number of DOFs is reported in Table 2.
All the simulations are performed using a constant unitary fracture transmissivity
and choosing as the initial guess (see step 1 of the conjugate gradient algorithm) the
null vector. Furthermore, the parameter α was set equal to 1. Boundary conditions
are fixed as follows: a constant Dirichlet boundary condition h = 1000 is prescribed
on one edge of a selected fracture (named the source fracture), and a homogeneous
Dirichlet boundary condition, h = 0, is prescribed on one edge of a different fracture
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Table 3

Relative residuals and flux conservation error Δcons through iterations.

relative residual Δcons

# iter δ = 0.5 δ = 2 δ = 7 δ = 0.5 δ = 2 δ = 7
DFN709

1000 3.749e-4 4.826e-4 5.767e-4 5.864e-6 8.381e-4 1.056e-3
10000 1.014e-5 1.244e-5 1.845e-5 1.018e-5 1.031e-6 4.497e-5
20000 3.615e-6 4.715e-6 8.539e-6 4.814e-6 2.275e-6 2.177e-5

DFN878
1000 3.716e-4 3.826e-4 3.944e-4 5.723e-5 1.925e-5 2.685e-5
10000 6.668e-6 9.271e-6 1.462e-5 2.083e-6 1.780e-6 5.027e-7
20000 4.821e-6 3.902e-6 4.705e-6 4.125e-6 2.091e-7 1.096e-6

DFN915
1000 3.548e-4 3.840e-4 3.989e-4 4.932e-6 4.231e-5 1.962e-4
10000 8.486e-6 9.471e-6 1.636e-5 3.740e-6 8.943e-6 3.462e-6
20000 7.362e-6 5.896e-6 7.442e-6 2.729e-6 5.329e-6 5.204e-6

DFN1425
1000 4.022e-4 4.209e-4 4.424e-4 7.235e-4 7.678e-4 1.096e-3
10000 7.286e-6 8.687e-6 1.618e-5 6.258e-6 3.426e-5 5.754e-5
20000 2.527e-6 2.891e-6 6.787e-6 6.240e-6 3.683e-5 5.739e-5

Table 4

Hydraulic head mismatch Δhead and flux unbalance Δflux through iterations.

Δhead Δflux

# iter δ = 0.5 δ = 2 δ = 7 δ = 0.5 δ = 2 δ = 7
DFN709

1000 2.116e-6 2.356e-6 2.802e-6 5.683e-10 9.552e-10 1.002e-9
10000 5.138e-7 8.427e-7 1.092e-6 3.278e-10 3.461e-10 4.903e-10
20000 5.002e-7 8.278e-7 1.062e-6 3.202e-10 3.409e-10 4.818e-10

DFN878
1000 2.892e-6 3.322e-6 3.994e-6 4.863e-10 5.930e-10 7.395e-10
10000 7.318e-7 1.149e-6 1.668e-6 2.382e-10 3.299e-10 4.853e-10
20000 7.030e-7 1.127e-6 1.641e-6 2.400e-10 3.319e-10 4.743e-10

DFN915
1000 2.774e-6 3.187e-6 3.854e-6 4.397e-10 5.369e-10 6.780e-10
10000 7.595e-7 1.117e-6 1.683e-6 2.196e-10 3.045e-10 4.309e-10
20000 7.109e-7 1.095e-6 1.641e-6 2.211e-10 3.004e-10 4.234e-10

DFN1425
1000 9.025e-7 1.009e-6 1.231e-6 1.311e-10 1.670e-10 2.102e-10
10000 2.168e-7 3.460e-7 5.397e-7 6.186e-11 9.671e-11 1.168e-10
20000 2.121e-7 3.424e-7 5.284e-7 6.187e-11 9.553e-11 1.146e-10

(the sink fracture); all other edges in the DFN are insulated.

4.2. Robustness. In this subsection, we compare the behavior of the method
on the four networks considered here. In order to provide an overview of the solution
obtained, we report in Figure 5 the computed solution obtained for DFN1425 with
the intermediate grid. In the figure the coloring is proportional to the value of the
hydraulic head, and contour lines are also displayed to highlight gradients of the
solution.

First, we highlight that, as expected, the method was capable of performing the
required computations on all the DFNs with all mesh sizes, without any kind of
geometrical or mesh adjustment.

Then, we focus on the behavior of the method as far as the fulfillment of head
continuity and flux balance is concerned. To this aim, we introduce the following error
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measures. Let Iin and Iout denote the index sets corresponding to source and sink
fractures, respectively. We define the computed average flux through the network as

Φ̄ =
1

2

(∑
i∈Iin

∑
Sm∈Si

∫
Sm

(umi − αhi|Sm
)−

∑
i∈Iout

∑
Sm∈Si

∫
Sm

(umi − αhi|Sm
)

)
.

Then we define the relative flux conservation error per trace unit length as

Δcons =

∣∣∣∑i∈Iin ∪Iout

∑
Sm∈Si

∫
Sm

(umi − αhi|Sm
)
∣∣∣

Φ̄
;

furthermore, we define the relative mismatch in hydraulic head continuity and the
relative flux imbalance per trace unit length, respectively, as

Δhead =

√√√√ M∑
m=1

∥∥hi|Sm
− hj|Sm

∥∥2
hmaxL

, Δflux =

√√√√ M∑
m=1

∥∥umi + umj − α
(
hi|Sm

+ hj|Sm

)∥∥2
Φ̄L

,

L being the cumulative trace length.
In Table 3 we report for all the DFNs and the mesh sizes considered here the

values of the relative residual computed through iterations, and of the corresponding
flux conservation errors. In Table 4 we report the hydraulic head mismatches and flux
imbalances. It is clearly seen that the relative residual and the error measures attained
for a fixed number of iterations and mesh are not significantly different, thus resulting
in no evidence of influence of geometrical features in the behavior of the method.
Namely, the behavior of the method appears to not be affected by the presence of
intersecting traces with very narrow angles, or very close nonintersecting traces. We
remark that, even if increasing the number of iterations improves the accuracy of the
solution of the linear system, the hydraulic head continuity mismatch and the flux
imbalance due to the mesh nonconformities reach a plateau. Hence, a higher number
of iterations would not result in a significant improvement of the mismatches, which
could be reduced only by refining the meshes.

Remark 4. The number of iterations required to get acceptable results is quite
high, if compared, e.g., with classical preconditioned DD methods. The introduction
of a suitable preconditioner in order to reduce the iteration numbers is clearly rec-
ommended. On the other hand, since the approach adopted here and classical DD
methods yield CG reduced problems with different structures (see Remark 2), classi-
cal DD preconditioners [27, 28, 14, 29, 18] cannot be straightforwardly applied to the
present context.

4.3. Scalability performance. Simulations for scalability performance assess-
ment have been performed on the Eurora cluster, located at the Italian HPC Center
Cineca. The cluster has 64 16-core compute nodes. Half of the nodes contain 2 Intel�

Xeon� SandyBridge eight-core E5-2658 processors, with a clock rate of about 2.10
GHz, whereas the other half of the cards contain 2 Intel� Xeon� SandyBridge 8-core
E5-2687W processors, with a clock of about 3.10 GHz. 58 compute nodes have 16GB
of memory. The remaining 6 nodes (with processors at 3 GHz clock rate) have 32
GB RAM. Up to 32 nodes were available for the computations, and a portable batch
system (PBS) job-scheduling was used for job submission.

Remark 5. Being the cluster intensively used by many users at the same time,
simulation time is strongly influenced by the load status. For this reason, time mea-
surements are performed through repeated simulations for the same configuration,
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selecting the minimum time. This procedure, however, can only partially compensate
for fluctuations of simulation time due to cluster load.
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Fig. 6. DFN1425: Number of fractures (left) and communicating traces (right) per process for
a 15 Slave simulation.

Table 5

Number of communicated h-DOFs and u-DOFs for various numbers of parallel processes.

DFN Slaves δ = 0.5 [%] δ = 2 [%] δ = 7 [%]

u DOFs comm

709

3 6978 [1.9] 3648 [1.0] 2119 [0.6]

1425

7 17755 [4.9] 9392 [2.6] 5451 [1.5]
15 36994 [10.2] 19433 [5.4] 11253 [3.1]
31 114061 [31.4] 59340 [16.3] 33779 [9.3]

3 55096 [4.8] 28694 [2.5] 16488 [1.4]
7 108229 [9.4] 56773 [4.9] 32788 [2.8]
15 185821 [16.1] 97148 [8.4] 56057 [4.8]
31 286723 [24.8] 149710 [12.9] 86405 [7.5]

h DOFs comm

709

3 7216 [0.5] 3885 [1.1] 2355 [2.2]

1425

7 18379 [1.3] 10016 [2.8] 6075 [5.7]
15 38240 [2.8] 20682 [5.8] 12497 [11.6]
31 117008 [8.5] 62290 [17.5] 36729 [34.2]

3 56671 [2.0] 30269 [4.1] 18066 [8.2]
7 111724 [3.9] 60270 [8.2] 36284 [16.4]
15 191661 [6.8] 103000 [14.0] 61908 [28.0]
31 295443 [10.4] 158446 [21.6] 95148 [43.1]

The code is implemented using the C++ language, with the application of the
MPI paradigm. Linear algebra computations are performed with the C++ template
library Eigen [16], chosen for its reliability on sparse linear algebra. In particular, the
SparseCholesky module is used for the computation of the Cholesky factorization for
the solution of (2.14), (2.15). The factorization of the matrices Ai is performed only
once in the preprocessing step.

Two kind of simulations are performed, labeled MPI and MPI*. In MPI sim-
ulations each process runs on a different node, such that all communications occur
through the Infiniband� network, differing from MPI* simulations, in which eight
processes per node are assigned in order to reach a larger number of parallel pro-
cesses.
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Fig. 7. DFN1425: Number of total h-DOFs per process for a 15 Slave simulation.
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Fig. 8. DFN1425: Number of communicated u-DOFs per process for a 15 Slave simulation.
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Fig. 9. DFN1425: Number of communicated h-DOFs per process for a 15 Slave simulation.

In the following, we focus on the smallest and the largest DFNs here considered,
namely, DFN709 and DFN1425. Figures 6–9 give insight into the partitioning process
performed by the library METIS, in the case of a 15-Slave run for the larger DFN.
Figure 6 reports the number of fractures assigned to each Slave process and the
number of communicating traces. The number of actual DOFs that each process
has to manage is shown in Figures 7–9. Figure 7 reports the number of h-DOFs on
the fractures handled by each process. Since the number of h-DOFs is related to
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Fig. 10. Scalability plot. Top: DFN709. Bottom: DFN1425. MPI (left) and MPI* (right).

the size of the linear systems to be solved, the figure highlights that the workload
in terms of computations is well balanced among the processes. Figures 8 and 9
show the number of h-DOFs and u-DOFs on the communicating traces, which are
a subset of all the traces assigned to a process. This provides an indication of the
weight of communications. It is worth remarking that, even if both the chosen DFN
configurations have a high density of traces (see Table 1), the number of communicated
DOFs is small compared to the total number of DOFs, with percentages of about
1% with a few Slaves, up to about 40% with 31 Slaves for the coarser grids. The
percentage of DOFs involved in communications reduces when the grid is refined,
whereas it increases when a larger number of Slaves is used in the simulations. The
general overview is reported in Table 5.

The scalability performances of the algorithm on the selected DFNs are described
in terms of the speedup ratio Sp and the efficiency Ep, which are defined as follows.
Let t1 denote the time required by the algorithm with a single Slave and tp the
time required with p Slave processes. The speedup Sp and efficiency Ep are defined,
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Table 6

Time per iteration of the parallel CG algorithm and efficiency for DFN709 and DFN1425.

Time [sec] Efficency %
Version Slaves δ = 0.5 δ = 2 δ = 7 δ = 0.5 δ = 2 δ = 7

DFN709

Serial 1 0.83754 0.23432 0.08039

MPI

3 0.29631 0.08324 0.02909 94.22 93.83 92.11

MPI*

7 0.16898 0.04758 0.01651 70.81 70.35 69.55
15 0.10830 0.03038 0.01057 51.56 51.41 50.69
31 0.06239 0.01632 0.00568 43.31 46.33 45.68

15 0.11496 0.04281 0.01624 48.57 36.49 33.00
31 0.07350 0.02281 0.00666 36.76 33.13 38.96
63 0.03431 0.01194 0.00350 38.74 31.16 36.47
126 0.02243 0.00629 0.00233 29.64 29.56 27.35

DFN1425

Serial 1 2.67725 0.70857 0.24254

MPI

3 0.91974 0.24591 0.08328 97.03 96.05 97.08

MPI*

7 0.48278 0.12251 0.04159 79.22 82.63 83.30
15 0.28466 0.07176 0.02434 62.70 65.82 66.44
31 0.14775 0.03888 0.02072 58.45 58.79 37.76

15 0.28194 0.07920 0.02947 63.31 59.64 54.87
31 0.14638 0.04149 0.01434 59.00 55.09 54.57
63 0.14838 0.04244 0.01540 28.64 26.50 25.00
127 0.06611 0.01881 0.00676 31.89 29.66 28.26

respectively, as

Sp =
t1
tp
, Ep =

Sp

p
.

In Figure 10 we report the scalability plot for MPI (left) and MPI* (right) runs, dis-
playing the speedup ratio Sp. For the smaller DFN, and for the larger DFN with a
few Slave processes, the scalability performances are quite similar for all the grids
considered, whereas, for the larger DFN with the higher number of parallel processes,
the performances slightly increase as the grid parameter reduces. This is an expected
behavior, since on the finer grids the number of total DOFs increases, thus increasing
the cost of computations, whereas the percentage of DOFs involved in communica-
tions reduces. The efficiency Ep and the time required to perform an iteration of the
algorithm are reported in Table 6. The values reported show that, as a whole, accept-
able efficiencies are achieved by the algorithm, and, for the higher number of Slave
processes tested (127 Slaves), it is still possible to obtain an efficiency of about 30%.
Efficiency values are larger for the larger DFN, as expected, since for more complex
problems the weight of communications is counterbalanced by the cost of the required
computations. Further, the communication algorithm designed is aimed at shadow-
ing both the communication time and the time required by the Master process to
arrange and send data to the Slave processes. Recalling the structure of the Master-
Slave communication algorithm, each Slave process first solves the linear systems on
the communicating fractures, performs nonblocking send operations, and then solves
the linear systems on the remaining noncommunicating fractures. Only after these
operations are completed are the data from the Master received. As shown by the
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reported data, this communication algorithm allows us to improve the efficiency of
the parallel algorithm with larger DFN configurations. In this case processes have to
manage a larger chunk of fractures, and only some of them are communicating. In
such a way the range of the higher efficiency values can be extended to an increasing
number of parallel processes for larger DFN configurations. Simulations with 15 and
31 Slave processes are repeated for both MPI and MPI* configurations. It is possi-
ble to see that differences are in general almost negligible and are probably due to
simulation time discrepancies for different loading statuses of the cluster.

5. Conclusions and future extensions. The parallel performances of an im-
plementation of the optimization based method presented in [3, 4, 5] have been shown,
applied to quite complex DFNs. The considered DFNs are quite challenging as they
are affected by a very large heterogeneity in fracture dimensions, trace lengths, trace
distances, and trace angles. In spite of these geometrical complexities, the method
can perform simulations without requiring any modification of the geometry or intro-
ducing a huge number of elements for meshing purposes.

Parallel efficiencies of over 50% are achieved with up to 16 parallel processes, and
those of about 30% are obtained with up to 128 parallel processes. The efficiency
of the parallel algorithm improves as the size of the DFN increases; hence parallel
computing is worthwhile when dealing with huge DFNs.

A possible extension to a 2-level Master configuration with several Master pro-
cesses of level 1 managing groups of Slave processes and a Master process of level 0
managing the communications between the level 1 Masters can efficiently extend the
approach to large scale DFNs with a number of fractures on the order of 104−105, pre-
serving the scalability performances of the current parallel implementation on parallel
supercomputers with hundreds of nodes. An MPI-OpenMP hybrid implementation
is currently under development, in order to split in-node computations over several
parallel threads and further reduce the number of MPI communications.

Finally, preconditioning is crucial in order to further improve the overall perfor-
mances of the algorithm. A preconditioner defined independently on each fracture of
the DFN is currently under development with promising results, and two or multiple
level preconditioners are under investigation.
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