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Viscous coupling based lattice Boltzmann model for binary mixtures
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A new lattice Boltzmann model for binary mixtures, which can naturally include both the two-fluid
approach and the single-fluid approach, is developed. The model is derived from the continuous
kinetic model proposed by Hamel, which independently takes into account self-collisions and cross
collisions. The original kinetic model is discussed in order to appreciate that cross collisions realize
an internal coupling force, proportional to the diffusion velocity, and an additional coupling effect
in the effective stress tensor, proportional to the deformation of the barycentric velocity field. For
this reason, Hamel's model is the natural forerunner of all linearized models based on the two-fluid
approach and allows us to describe binary mixtures at different limiting regimes consistently. A
discrete lattice Boltzmann model, which recovers the original Hamel's model with second-order
accuracy in both time and space, is proposed. This discrete model can analyze ordinary diffusion,
pressure diffusion, and forced diffusion. 2005 American Institute of Physics

[DOI: 10.1063/1.1927587

I. INTRODUCTION putational advantages over continuum based models, particu-
larly for large parallel computing. A more complete and re-
There are numerous flow systems in both natural an@ent coverage of various previous contributions on LBM is
industrial processes that involve mass and momentum trangeyond the purposes of the present work, but can be found in
port within different miscible species. In order to describeRef. 11.
these phenomena, many theoretical models have been devel- A promising application for lattice Boltzmann models is
oped by means of the continuum approach. However somthe analysis of reactive mixtures in porous catalﬂl%ﬂg.For
applications exist where a more fundamental point of viewthis reason, a lot of work has been performed in recent years
can be fruitfully applied. In particular, the reactive mixtures, to produce accurate lattice Boltzmann models for multicom-
commonly considered in chemical applications, involve cataponent fluids and, in particular, for mixtures composed of
lytic porous media where the critical size can be reduced seniscible specie$!™’ The problem is to find a proper way,
much to become comparable with the mean free path of theithin the framework of a simplified kinetic model, for de-
fluid particles. It seems natural to adopt in these cases scribing the interactions among particles of different types.
kinetic approach in order to try to overcome the difficulties Once this is defined, the extension of the model to reactive
due to the macroscopic approach. flows is straightforward?® and it will essentially involve
Unfortunately, only in a few simple cases it is possible toadditional source terms in the species equations according to
formulate an accurate kinetic model, for example, the modethe reaction rate. Unfortunately, most existing lattice Boltz-
based on the Boltzmann equation for an ideal gas, and evanann models for mixtures are based on pseudopotential
in fewer cases it is possible to numerically solvé Ehis interactions> ™’ heuristic free energi€$;*?*or linearized
consideration explains the interest in using simplified kineticcross-collisional operatofé-2’ Actually, the lattice model in
modelé™ for reducing the computational efforts. These Ref. 27 involves a nonlinear cross-collisional operator, which
models involve some microscopic parameters which are usthas been heuristically conjectured without any theoretical
ally adjusted in order to recover the macroscopic transporfoundation. However, the Chapman-Enskog asymptotic
coefficients. In this way, the intrinsic nature of the micro- analysis, reported in the original paper, was performed only
scopic approach is violated and finally a mesoscopic tool igor a linearized approximation and for this reason the non-
obtained, which somehow produces a simplified microscopidinear features of this model are not completely clear.
picture of the phenomenon on the basis of the macroscopic The older model$~2? were based on thsingle-fluid
information. On the other hand, as long as the macroscopiapproach Essentially, the averaged effect due to both self
equations are recovered, the mesoscopic models allow us twllisions and cross collisions is described by means of a
widen the set of possible applications beyond the constraint®tal BGK-like (Bhatnagar-Gross-Krogkcollisional opera-
due to the derivation process of the accurate kinetic modelsor. Considering some of the special mixture properties in the
The lattice Boltzmann methotLBM) in the past few Maxwellian distribution function of the BGK-like collisional
years has become a very popular discretization techniqueperator, each species will be forced to evolve towards the
used to solve simplified kinetic models?’ When complex mixture equilibrium conditions. For almost a decade now,
geometries are involved and the interparticle interactiongliffusions driven by concentration, pressure, temperature,
must be taken into account, the discretized models derivednd external forces have been studied by these models for an
by means of the lattice Boltzmann method offer some comarbitrary number of components with nonideal interactions.
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However, this approach is characterized by the followingChapman—Enskog asymptotic analysis of a linearized ver-
drawbacks?3! sion of the proposed model based on a simple force coupling
in the momentum equations, which produces results similar
to those of previous models.

The best way to understand the limits of force coupling
ent types, by using a unique simplified collisional op- and_the poss_ible_ ways to overcome them is to consider, once
erator Tr’]e obtained mesoscopic framework is Veryagam, the kinetic theory. It is well kn_own that the Ia_tncg
far f ' tual microsconic dvnamics and from the Boltzmann.models can be dlrec'FIy de.rlve.d from the kinetic
ar from actual microscopic dynamics and fron models using some standard discretization procedures and
macroscopic point of view the kinematic viscosity of proper approximations®3* A more complete theoretical

each species, the mutual diffusivity, and the mlXtureframework concerning how to systematically construct LBM

Kinematic viscosity are coupled 1o each other. For thISmodels from the continuous kinetic theory is reported in

reason, the single momenium equation for each SP€Ref. 35. There is a significant amount of literature concern-
__ cies cannot be properly solved. ing gas mixtures within the kinetic theory framewdf}* In
(i) ~ The m|xture_ momentum _cons_erv_atlop IS Ioca_llly €N his doctoral thesis, Kolodnéf, following Grad’s moment
sured by using a Maxwellian distribution function for o, investigated what variables, in addition to the clas-
these models that involve a mixture equilibrium Ve- ;.o fndamental variables, must be considered in order to
locity, which is essentially a properly conjectured lin- o o he iy describe the phenomena occurring in binary mix-
ear combination of species velocities involving thetures. The classical work of Chapman and Covﬁ?ng/as
relaxation time constants. Although the mixture equi-¢,ncemed with the determination of the transport coeffi-
librium velocity allows us to ensure the desired Mo- qjonts for binary mixtures by means of the full Boltzmann
mentum conservation, the fact that it is not completelyeqyations. Among the simplified kinetic models, the first
defined only in terms of the macroscopic parametersgingie-fluid model for binary mixtures is due to Gross and
because of the intrinsic dependence on the relaxat'ORrook,37'38which is based on a BGK-like collisional opera-
time constants, is not very convenient. tor. SirovicH*“® proposed the linearization of the previous
(i) Modeling the interactions among particles of different ,ogel's equation. Actually the Sirovich’s model is based on
types and macroscopically recovering the desired difyyonjinear equations because the linearization was done
fusion equations requires these models to adopt aground a local Maxwelliaft* This model historically started
interaction pseudopotential or a long-range couplingthe two-fluid approach. Trying to generalize Sirovich's re-
force, allowing for the introduction of an additional gyjts, HameP** proposed a simplified kinetic model which
momentum exchange among particles. In this way, avas able to include both the single-fluid and two-fluid ap-
proper fitting of the consequent macroscopic equaproaches, by considering multiple equilibrium distribution
tions allows one to mimic all the diffusion driving functions involving the respective species velocities and the
mechanisms of the continuous kinetic theory. Al- mixture velocity. Unfortunately in the original pafémo
though this approach has been sufficiently justified byChapman-Enskog asymptotic analysis of the model was re-
careful theoretical analysi$,a model, which includes ported and the transport properties were discussed by using
these diffusion driving mechanisms, without any kind the coefficients appearing in Sirovich’s equation. Reducing
of ad hoc cumbersome fitting would be obviously the computational efforts, the linearized kinetic models be-
much more preferable. came very popular and they were mathematically
o _ . formalized® More recently it has been pointed out that none
The conclusion is that, although the single-fluid approachyt the previous models reduce to a BGK-like equation when
proved to be an accurate numerical tool for solving SOMgnechanically identical components are considered, despite
macroscopic equations for a large number of applications, ifye fact that all of them are based on a BGK-like equation for
provides a limited mesoscopic picture of the phenomena. each specie® This means that none of the previous models
On the other hand, some modéi$” based on thewo-  satisfies the indifferentiability principle, i.e., the fact that
fluid approachhave been proposed. According to this ap-when all the species are identical one recovers the equation
proach, each species relaxes towards its equilibrium configifor a single component gas, which is correctly satisfied by a
ration according to its specific relaxation time and somesingle-fluid model, recently proposédi.
coupling must be considered in order to describe the colli-  Following the style of Hamel’s work, a two-fluid simpli-
sions among different species. Some modef§ adopt a  fied kinetic model is proposed here and only small changes
force couplingin the momentum equations, which is derived are introduced in order to satisfy the indifferentiability prin-
from a linearized kinetic term. This technique allows us tociple when cross collisions prevail. The model is formulated
describe the effects of collisions among particles of differenin such a way as to recover the conventional BGK equations
species by means of an approximated forcing term. Recentlyor the limiting case of noninteracting particles and the con-
another model has been proposed, which tries to overcomsistent single-fluid approach for ideally coupled particles.
this approximatiorf’ In this case any approximation is The hydrodynamic equations are fully derived by means of
avoided in the formal formulation of the model, but therethe Chapman—Enskog asymptotic analysis, allowing us to
is no discussion about the effects of this improvement in theoint out that the model is characterized by an additional
hydrodynamic equations. The original paﬁereports a coupling among the species, calledcous couplingo dis-

(i) It is not completely correct to jointly model self-
collisions, which involve particles of the same type,
and cross collisions, which involve particles of differ-

Downloaded 02 Jun 2005 to 128.82.252.58. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



067102-3 Viscous coupling based lattice Boltzmann model Phys. Fluids 17, 067102 (2005)

tinguish it from the force coupling previously considered. A =a,b will be considered. The simplified kinetic equation has
strategy for tuning the mesoscopic parameters of the modéhe general form
to recover the desired transport coefficients is proposed. Fi-

nally, a lattice (discretized version of the previous model ar, +v- Vi, +g, V,f,= _i[fa_ fe]

and a strategy for tuning the lattice mesoscopic parameters  Jt T

are also discussed. In the present paper, only isothermal con- 1

ditions and nearly incompressible flows are considered, be- - —[fo = foml, 3
cause they are enough to analyze the effects of viscous cou- Tma

pling. The properties of the Maxwell molecule are assumedyhere 7 is the relaxation time constant for self-collisions,
in deriving the model and only the problem of binary mix- - s the relaxation time constant for the cross collisidfs,

tures is considered. The full generalization of the method 1qg 5 Maxwellian distribution function of the specific velocity,
gas mixtures is quite straightforward, as only few changegyle f  is a Maxwellian distribution function of a mixture

are reqwred. . . . . characteristic velocity. The explicit expressions of the previ-
This paper is organized as follows. Section Il provides s Maxwellians are

brief review for some of the existing mixture kinetic models.

In particular, Sec. Il A discusses Hamel's model, which . Po (v—-u,)?
forms the theoretical basis of the present paper and Sec. IIC  'o~ W exp - Z—e(, ' (4)
discusses some linearized models, which include the well-

known Sirovich’s model. The proposed lattice Boltzmann 2

model is designed and the hydrodynamic equations are de- f‘;(m) = LD/Z exp{— u} (5)
rived in Sec. Ill. Lastly in Sec. IV some numerical results are m,(2me,) 2e,

repqrted for the proposed di_screte lattice model and the Co%herepg is the densitym, is the particle mass, and, is the
clusions .Of the paper are dlscyssed. The C,hapman—Ensk croscopic velocity, while, andu, are tunable parameters
asymptotic analysis of the continuous Hamel's model and o

. ) . f the model. The parametets,, and u, are not indepen-
the Iatt|ge Bolltzmann mpdel for bllnary mlxtgres are reporteddemly tunable parameters. In order to satisfy the local mo-
respectively, in Appendix A and in Appendix B.

mentum conservation for the whole mixture, the following
condition must hold:

II. KINETIC THEORY OF BINARY MIXTURES

— € = _— =
A. Adopted kinetic model ; fm"v[f" Fotm )/ TmodV gp”(u” U/ 7iny = 0.

Let us consider a mixture simply composed of two types (6)
of particles, labele@ andb. Following the derivation of the
Boltzmann equation for a pure system of single species, th&he tunable parameters of the previous model may be easily
kinetic equations for a mixture can be derived in a very simi-obtained by demanding that the moments of the model equa-

lar way=°3! tions yield, in addition to the conservation equations, the
pr correct ratio for the times characterizing the relaxation of the
—2 4V Via+0,-Vyfa= Quat Qup, (1)  Velocity and temperature differenc¥sn this way the results

of Hamef*? are recovered without any approximation and the
mixture characteristic velocity can be identified with the

of o
Do.y.v fo+ Gy - Voo = Qpp + Opa ) mass averaged velocity,=u., where

whereQ,, and Q, are the collisional terms which describe Z, Mol
the collisions among particles of the same tyfself- Um= 2— ()

.. . .. m
collisions, while Q,, andQ,, are the collisional terms due to P
the interactions among different speci@soss collisions
Each collisional term has a well-known structure similar toThe local momentum conservation given by E@). implies
the collisional operator involved in the Boltzmann equationthat the quantityp,/(m,m,,) must be a constant and so the
for the single fluid. The time evolution of the distribution cross-collision relaxation time constants differ from one an-
function for each species is affected both by collisions withother. It is easy to check that Hamel's model does not satisfy
particles of the same type and with particles of different typethe indifferentiability principle. In the following, a strategy
These two phenomena are the kinetic driving forces of thdor setting the tunable parameters will be proposed, which
equilibration process for the whole mixture. A simplified ki- essentially allows a smooth transition from the two-fluid ap-
netic model which allows us to separately describe both drivproach to the single-fluid approach. The characteristic veloc-
ing forces, as it happens for the original Boltzmann equaity will be set in such a way as to guarantee the indifferen-
tions, would be desirable. Essentially, the key idea is tdiability principle at least for the fully coupled configuration,
substitute the previous collisional terms with simplified oneswhen the mixture evolves as a single fluid. The characteristic
Q(f,f)—J(f), which are selected with a BGK-like structure. velocity of the mixture can be identified with the barycentric
In the following only the equation for a generic species velocity
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_1ry

U,=u= E XUy (8) _
o 17

€ (12

wherex,=p,/=,p, is the mass concentration of the generic For simplicity, a unique value of the paramefefor all the
species. In this case, the local momentum conservation givespecies will be considered. In this way, the whole set of
by Eq. (6) implies 7ma=7mp=7m- It is €asy to check that if relaxation frequencies is uniquely identified by a point
cross collisions prevail, the summation of the BKG-like ki- P(€, x) on the pland0, 1] X [0, 1] C R2, which will be called
netic equations for each species allows us to recover a BGKHamel's plane. For example, the poiRt0,1) on Hamel's
like kinetic equation for the mixture. plane identifies mixtures of noninteracting species and im-
The Chapman-Enskog asymptotic analysis of the previplies the following macroscopic momentum equation:
ous kinetic model yield¢see Appendix A

d(p,u
% +V [poUy ® Uyl ==V (ps€,) + psQs
%4 ¥ (pyu,) =0 9) 0
ot Potlo ’ +V. [po'eng—(Vu(T
+Vul)l. (13
d(pyUy) By assumingo,e,=p, ande,r=w,, wherep,, is the partial

+V [(1-a,)psU,®U,+ a,p,Uu®U 0 . LT . .
ot L Pl & Us+ oy pressure and, is the kinematic viscosity for the generic

species, the Navier—Stokes equation is recovered. This al-

+ a,p,U W, + a,p,W, ® U e :
AaPola() ® Wo + AaPWo ® Ua] lows us to identify the value of the internal energy

1 =p,/p, and the minimum value of the relaxation tim%
==V (paeo') + 0,95~ T_pU'WO' = Vg/eo__
" . The pointP(1,0) on Hamel's plane identifies the mix-
+ V Aappe€,d VUaig + V Ugnlh (100 tures which can be described by the single-fluid approach. In

this case, the momentum equation reads
where a,=7,/(7,+7,) is a bounded function of the relax-

ation time constants such thatQv,<1, w,=u,-u is the 9pgYo) +V [p,U® U+ p,U®W,+p,W, ® U]
diffusion velocity with regard to the barycentric velocity, and dt

Uy =(1—a,)u,+a,u is a linear combination between the 1

specific velocity and the barycentric velocity. Unlike what == V(ps€s) + po8s = 5 PeWo

happens at macroscopic level when the usual BGK equation 7m

is considered, in Eq.10) the relaxation time constants effect +V -[pgegr%(Vu +Vuhl. (14)

the advection term, the viscous term, and an internal forcing

term, which directly allows us to exchange momentumThe identification process is not obvious, because the relax-

among the species. In a mesoscopic framework, a strategﬁlion time cqnstanfom is involved. in two different terms: the

for setting the relaxation time constants of the model isinternal forcing term and the viscous term. Hamel's model

needed. has the advantage of highlighting the effects of cross colli-
The system of macroscopic equations derived by thé&ions on both diffusion process and effective mixture viscos-

usual BGK equation for noninteracting species can be easilify. These phenomena can induce coupling among the spe-

recovered by considering, —0. Two cases are possible: Ci€s, i.e., they force the species velocities to be similar to the

1/7,—% and 1/,— 0, but only the second one is allowed barycentric velocity. For this reason, the force coupling and

because it produces a nonzero viscosify,,— 7,. In asimi-  the viscous coupling can be distinguished at the macroscopic

lar way, the system of macroscopic equations derived by théevel by considering the respective terms in the momentum

single-fluid BGK-like equation for ideally miscible compo- €quations, but they have the same microscopic origin, i.e.,

nents can be easily recovered by considering-1. Two  cross collisions.

cases are possible: 4/—« and 1/r,— 0, but only the sec-

ond one is allowed because it produces a nonzero viscosity

@ Tm— Tm- The previous discussion allows us to prove that; 1yping strategy based on diffusion

all the relaxation frequencies of the model must be bounded

from above. Let us define ¥} and 1/, the maximum value Since the internal forcing term is the leading term of the

for the specific relaxation frequency and for the single-fluiddiffusion process, a popular practice, derived from the

relaxation frequency, respectively. Let us introduce two adsingle-fluid approach’ consists of relating the relaxation

ditional tunable parameters which are defined in the followtime constant, with the diffusion coefficient. For this rea-
ing way: son, it is worthy to analyze the different mechanisms driving

the diffusion processes in Hamel's model. Neglecting the
inertial effects, the difference between the two Navier—
= , (11) Stokes equations for each speciasandb) leads to the fol-
/7, lowing equation:

1/7,
y=—2
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1 p’e 0 ) Once the cross-collision relaxation time constant is set in

B Ua—Up) == —d+ (e~ e)Vu, (15 order to reproduce the desired diffusive process, then the

Tm PaPb . . L . . . .

mixture viscosity is consequently defined. For high diffusive
where the driving force is processes, lz-ﬁ]—mo and the internal forcing term yields high
1 1 coupling among the species, i.el,~u. This means also
d= @{_ V(p.e) - =V (per) - (Ga-0gy) |, (16 7m—0, and so only systems characterized by negligible vis-
p7€ L Pa Po cous effects can be simulat&d.

In order to fix this problem, the two-fluid approach,
apgsed on linearized collisional operator that takes into ac-
count cross collision&®® allows one to tune the internal
forcing term independently of the mixture viscosity. How-
ever in this case, the mixture viscosity becomes a linear com-
bination of the component viscosities. Unfortunately the
mixture viscosity can be a very complex function of the
component viscositié& due to cross collisions and the linear

~(ga- gb)] (17) approximation may be valid only in the simplest cases.

ande=2 x,e,. The viscous effects in Eq15) are usually
negligible because it can be assumed that the derivatives
slowly varying with respect to the diffusion proc§§§.5
Making explicit the role of mass concentrations yields

e 1
d:@{i”wa—%wmea—eo)—w
pel pa Po P

We can attribute the discrepancy in the species velocities to

three different driving mechanisms: the concentration gradi2. Tuning strategy based on mixture viscosity
ents, the pressure gradiefwhich is proportional to the
whole mixture density for ideal gaselsy means of different
particle massese, # ,), and the inequality of the external
forces acting on different components. The diffusions drive
by these driving mechanisms are called tirdinary diffu-

The following tuning strategy for the relaxation time
constantq-om is proposed. By summing the momentum equa-
tions for the specie€l4) and recalling the definition of bary-
"eentric velocity, the momentum equation for the mixture is

; e e recovered:
sion, pressure diffusignand theforced diffusion respec-
tively. Since for binary mixture¥x,=-Vx,, the final ex- a(pu)
pression of the diffusive flux can be recovered, % +V -(puu)=-V(pe)+pg
PapP
pPaWa =~ 7'(r)n(Pbea +0a8) V Xa + T?nTb(ea - %)(quvzu +V. [PeTOm(VU +V UT)]a
. (20
PaPp
-=V )+ 19 (0a— Op)- 18
p P)TTm, (G2~ 00 (18 wherep=3p, is the mixture densitye=3_x,e,=p/p is the

mixture internal energyp==.p,, is the mixture pressure, and
f;:Enggg is the mass averaged effect of the external field.
Recovering the Navier—Stokes momentum equation for the
mixture requires the minimum value of the cross-collision

If the cross-collision relaxation time constant is set such a
70 =D/ (%, +%,8), then the correct expression of the Fick's
first law of diffusion can be recovered, whdddas the mutual

diffusivity. . : ,
: . . relaxation time constants to b =w,/e, where v, is the
Let us consider a fluid flow characterized by a low ReY-mixture kinematic viscosity for fully coupled configurations,

Eg?asuggrirt]?:zrﬁr:gttglesacs?si%etzgeth\/;iggs dsg\?;:i/:srearrslsl\(l) E\:\?te when cross collisions prevail. According to the mesos-
pic framework, this strategy allows us to recover any ex-

\éaryzqg) V,\['r': h r_egard t? the Idlffgsut)n proczz_st._ AC(I:O(;%”Q_ to perimental mixture viscosity instead of conjecturing a sim-
d: hani N :SCOUS ‘?f”“ ea Stto andal ! IIOT; ' du_swe plified value based on the component viscosities.
mechanism. However, if we want to model only he ordinary” 4,6 the cross-collision relaxation time constant is set in

diffusion driven by concentration gradients, then it is POS 6 rder to reproduce the desired mixture viscosity, then the

:ﬂbleNto pons,slijelz a d|ﬁer?nt Ilr}ear cohmbmat!on t()jebtweeg thediffusive process is consequently defined. It is possible to
wo Navier—Stokes equations for each spe¢éeandb) an uantify this effect by means of the Schmidt number which

to consequently obtain a more convenient expression of thl the ratio between kinematic viscosity and mutual diffusiv-

diffusion flux. In particular, the diffusive flux becomes ity. The Schmidt number can be considered analogous to the
e, Prandtl number for mass transfer and obviously depends on
Oa~ ggb)- (19 the adopted definition of mutual diffusivity. Assuming that
D:r%(xbea+xa%) because the viscous effects are negligible
Obviously the expression given by E@.9) is equivalent to  and spatial derivatives are slowly varying with regard to the
that given by Eq(18). If the external forcing terms are tuned diffusion process, the Schmidt number is ;Se/(x,e,
such ase,g,=e.0p, then only ordinary diffusion survives. If +x,g,) or, if D" =7,,(e.ey)/e is assumed in the low Reynolds
the cross-collision relaxation time constant is set such asumber limit, it becomes $eD"/v,=€*/(e.6,). Hamel's
r%:eD*/(ea%), then the correct expression of the Fick’s first model in both cases implies a fixed value of the Schmidt
law of diffusion can also be recovered, but a modified mutuahumber because both diffusion and mixture viscosities de-
diffusivity D" has been considered. pend on the same cross-collision relaxation time constant

(S
pPaWa =~ 7'(r)na_ebpv Xa* T%M<Eb
e p \e
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This feature will be better discussed later on, concerning Fu* .
neither fully decoupled nor ideally coupled intermediate con- V&_yz =eFut-a, (22)
figurations and linearized models.

Unfortunately there is no proof that this strategy of set-whereV is the viscosity matrixF is the matrix which de-
ting the relaxation time constants ensures the ideal couplingcribes the internal force coupling?‘:[ug,ug]T is a vector
among the species, i.eu,~u, as it should be expected. collecting thex components of the specific velocities, and

Moreover, the behavior of the model for mixtures which can- e g oax+ o
not be considered neither fully decoupled nor ideally X = [ a? Pal pagjl ] (23)
coupled, implies for & o, <1. =€ 9 pp/ X+ ppTp

Let us consider a given number of different mixtures in . . .

) I . . The elements of the viscosity matrix are

the same isothermal condition: each mixture is made by
components which share the same characteristics in terms of S + €viX;

: - ohts, kinematic viscos Vi(€) = o =X, (24
mass concentrations, molecular weights, kinematic viscosi j [xy + €y ]2

ties and only differ in terms of diffusivity, that is, coupling _ . . . .
strength. Equivalently, let us analyze a given mixture in iso-wherei andj stand for species labels, i.e.or b. The matrix
thermal conditions but for different temperature values andvhich describes the internal force coupling is

suppose that temperature effects diffusivity more than what _
. . pel+1l -1
happens for other thermophysical properties. In both the F=xx,— 1 41| (25)

cases, it is possible to exclusively vary the coupling strength Ym

among the species. On Hamel's plane, we can smoothlyhe force coupling can be defined internally because
move from the fully decoupled configuratid®(0,1) to the  ge(F)=0. Analyzing the solutions of the previous system,

termediate point®,(xy,€) defines a curve. If we arbitrarily  matrix v:

adopt the parameter as an index of the coupling strength,

this means that some functiop,(e) which smoothly de- det(V) = PaVaPbVh
scribes the intermediate configurations, such thai0)=1 [xu + €¥alxn + €ml?
and yy(1)=0, will exist. The functionyy(e) will be called P

Hamel’s function and determines the behavior of the kinetic XX + 2xHe(XaYa+ Xoyp)] = 0. (26)
model by means of the functiam, involved in Eq.(10). This  |n particular for anyee[0,1), the determinant is positive
function can be reformulated by means of the new variablesand the inverse matri¥ ! exists. For this reason, E(R22)

can be rewritten in the following way:

- Pu*
4= o (22) e eV IFuX - viaX, (27)
wherey, =(x,v,)/ (y,vy) andy, is the volume concentration This system of equations can be diagonalized, resulting in
for the generic species, definedys=p,/2 P, POX
In this paper, the tuning strategy based on mixture vis- > = eDU*-Db*, (28)

cosity will be assumed to better highlight the features of

viscous coupling. Particularly in the following section, \yhereD=E"%(V~1F)E is the diagonal matrix formed by the

Hamel's function will be calculated for controlling the effec- gjgenvalues of the matri®/~2F), E is the matrix formed by

tive viscosity of the mixture at any intermediate coupling the columns of the right eigenvectors of the mathk *F),

strength. and b*=E~v~1a* is the modified forcing term. Indepen-

dently from the mixture properties, the system of equations

is characterized by a null eigenvalue and a positive eigen-
For simplicity, let us consider an infinitely long channel value: let us suppos®;;=0 and D,=>0. The equation

in the x direction(y identifies the transverse directiohVhen  Which corresponds to the null eigenvalue is

a single fluid realizes a laminar flow through it, the typical ax

B. Infinitely long channel

o < _ P X+ ay
conditions of the Poiseuille flow are recovered. A binary _u21 &% <0, (29
mixture will be considered in the following. This test prob- ay pve

lem beqause of its simplicit.y allows us t_o find a gef‘eralwhereﬁi and v, are defined as
expression for Hamel’s function: the effectiveness of this re-

sult will be verified by numerical simulations for two- V(€ + Varl€) Vi€ +Vaole)

dimensional domains. In the low Mach number limit, the Un(e) = pve(e) a pree) U (30
inertial effects described by the left-hand side of Bd) can

be neglected. In the same limit, the velocity field is essen- XaVa XV

tially solenoidal(divergence-freeand the effects due to the ve(e) = te + ten (31
pressure gradient are also negligible, when ideal gases are AHT Ve X €0

considered. Under these hypotheses #Q) becomes The equation which corresponds to the positive eigenvalue is
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205 pe prc ., IXa 2 J |:Papb }
= = 0 — +U—=-—| S (-w) |. 37
ayz EXabemde(V) > at IX IX p2 ( a b) ( )
X X
_ Vay(e) +Voye) 1 ( Po¥bda _ _PaVap ) Substituting the difference of the specific velocities given by
pr(e)  delV)\xu+enw Xute€Ya Eq. (36) in the previous equation, the final expression of the
(32)  diffusion equation is recovered, namely,
R ) 2
wherel; is defined as IXa . UX% _ D;& x;, 39)
at dX X
cxs +_ Vil€) +Voole)
Uy(e) = pve(€) (U= Up)- (33 where D(€) = v,e.6,/ (€€?) is the modified mutual diffusiv-

ity. This equation will be used later on in order to numeri-
Equation(29) admits parabolic solutions with negative cur- cally measure the diffusivity of the discrete lattice Boltz-
vature regardless of the mixture’s properties. On the othefnann model.
hand, Eq.(32) admits parabolic solutions if and only if the Finally, the particular case of=1 must be discussed.
components of the mixture do not interact with each otherThe system of equations is singular and a solution may exist
(e=0). In this case, the physical situation is exactly the samédf and only if the forcing term satisfies a compatibility con-
as in Poiseuille flow: the viscous matrix is diagonal and dition. Consideringe=1 in the systen{22), neglecting the
the solutions in terms of the original variablesandu} will ~ concentration gradients, and applying the difference between
also be parabolic, because they come from linear combindhe equations of the system, the compatibility condition is
tions of the diagonalized variablég(0) and 05(0). In par- obtained:
ticular, the diagonalized velocity}(0) =z,u} +z,u} reduces to

the viscous velocity for the mixture,: e
’ XK (U~ ) = X3~ XY, (39
m

U, =2z, (34
o The previous result is compatible with E&6) if the species
density is spatially homogeneous, i.ép,/x=0. If the forc-
where z,=(X,v,)/Z,(X,v,). In the general case+#0, the ing terms due to the external field are such 9,0}
coupling among species introduces exponential solutions be=x,y.g;, then the solution of the system of equations is
cause the coefficient multiplyings on the right-hand side of unique, i.e.,u{=uy. Let us model a mixture affected by a
Eq. (32) is strictly positive. Hence the internal force coupling given forcing termpg*. This forcing term acts as a source
changes the nature of the solutions. term in the mixture momentum equati¢®0). In the porous
How the proposed model describes the diffusion procesmedia simulations, it is quite usual to describe the effects of
can be analyzed by considering the limiting case1. Sub-  the pressure gradient as a forcing term. For the mixtures,
stituting the definition given by Eq33) into Eq.(32) yields  where only the total value of the pressure gradient is known,
the splitting of the forcing term among the momentum equa-
@ _Vid€) + Vool e) papp | veloe, , ti_ons for the components can be made by means of the pre-
2= € (Uz = Up) vious compatibility condition. If the source term for a ge-
ay pve(e) detV) X e " - e
neric species is calleg,g;, then the compatibility condition
( vaylpa  Vadypo prescribes thap,gs=y,pd", i.e., the splitting of the forcing
- xu+ € - xuteval |l term must be made on the basis of the volume concentra-
tions.
If e— 1, then defV)— 0 and this means that the right-hand An important feature of the proposed kinetic model is
side of the previous equation tends to prevail over thehat the model allows us to tune the determinant of the vis-
second-order spatial derivative. In this case, it is easy to dez0US matrixV by means of the coupling strengéh For this
rive an expression for the difference between the specie¥ason, the mixtures characterized by ideally miscible com-

Vm

(35)

velocitiesuX -}, namely, ponents can be very easily desc_:ribed by setﬁng, ie., a
finite value. In the usual two-fluid models, the ideally mis-
v ee, P2 9 (p a e cible configuration is an asymptotic limiting case, which
ui-ui=—| - a———(—a> + (—gg— —ag§> . only, in principle, can be recovered by increasing the cou-
ee € pPappIX\ p e e

pling force?® For the lattice Boltzmann models, some stabil-
(36) ity constraints exist which do not allow us to consider forc-

ing terms too large and this makes the usual way of
The previous difference of specific velocities can be used teecovering the ideally miscible configuration actually im-
derive the diffusion equation for the concentratigirp,/p.  practicable. Since the proposed model simulates the coupling
Recalling the continuity equation for the generic speciesamong species by means of the viscous matrimore than
given by Eq.(9), the following equation holds in the low by means of the force matrik, it will be called a viscous
Mach number limit: coupling based model.
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The previous discussion suggests a way to calculat€. Linearized kinetic models
Hamel’s function. For intermediate coupling strengths, the
diagonalized velocityj(e) can be expressed in the following
way:

The main difficulty of Hamel's model is due to the fact
that the zero-order approximation of the velocity distribution
function is a linear combination of Maxwellian functions,
Vy(€) +Vyi(€) « x which, in general, is not a Maxwellian itseléee Appendix
pre) @ (U3 = Up).- (400 p). This is a direct consequence of the fact that, in the sim-
plified collisional operator, two different Maxwellian distri-
When the difference among the species velocities is largeyytion functions are involved. If the species veloaitydoes
the components of the mixture are characterized by weakot differ too much from the barycentric velocity, this
interactions and the diagonalized velocity is equalentto thenathematical complication is not needed and it can be
mixture viscous velocityly(e) ~ U5(0)=0i(1)=u;, as previ-  avoided by means of an asymptotic approximation. It is im-
ously discussed for the Poiseuille flow. For strong interacportant to point out that, in principle, a linearized model can
tions among species, the components velocities essentialpe considered valid only for configurations close to the con-
become the same and all the possible velocity averages prgtitutive hypotheses used to derive it: in the case that the
duce the same result. In both the cases, the second tefgoss collisions are so relevant to force the species velocity
involved in the right-hand side of E¢40) is negligible for  to pe close to the barycentric velocity.

different reasons. This suggests considering the approxima- Equation(3) can be recast in the following form:
tion O7(e) = U} acceptable for any coupling strength. In this

U(e)=us+ [

way, Eq.(29) becomes ‘;it” +v.-Vf, +g, V,(f,=- [f,—f°]
T
52ux ax + 3% o'm
o &% g (41) 1
ay pPve - —[fe—foml (44)
Tm

and this means that the mixture viscous velocity is substan-

tially affected by the critical viscosity, given by E¢31). In order to simplify the last term on the right-hand side of the
This equation will be used later on to numerically measuredrevious equation, it is possible to expafijcaroundfs, ., or,

the mixture kinematic viscosity of the discrete lattice Boltz- equivalently, to expand o(m) aroundf?, in the limiting case
mann model. The proper value of the critical viscosity can beahat the specific velocity and the barycentric velocity are suf-
tuned by means of Hamel’s function to reproduce the experificiently similar. The asymptotic formulas are

mental data for the mixture’s viscous velocity. It is reason- e

able to assume Fhat, for an intermediate cpupling strength, o= g(m) f‘T(m)(v u) - (u, —u) +O(u®), (45)

the critical viscosity belongs to the range defined by the mass

averaged viscosity,(0)== x,v, and by the mixture viscos-
ity for the ideally miscible configuration.(1)=v,,. Since
Hamel's function is bounded €y, <1, some constraints
exist for the way to connect the previous values of critical
viscosity. In particular, for the linear strategy,

e

f
fom =16+ (v=u,) - (U=u,) + O(uP). (46)

Neglecting the higher order terms and considering a linear
vi(e) = E Vo _ e _6)2 X, v, + evp, (42) c_ombination of the previous formulas by means of a dimen-
- sionless parameter9B=<1, a set of approximations for the

) ] ) difference between the Maxwellian distribution functions can
is allowed for any configuration such ag,=1/23 _x,v,. be obtained:

The previous constraint can be easily verified by the fact that

the upper bound of the critical viscosity i§'*=v,/e. This e_qe
imposes a maximum rate of change for the critical viscosity, o o(m
when ideally miscible components are considered. Anyway a
connecting path always exists, but fgf<1/23 X, v, it is X(ug—u). (47)
no longer linear. The conditiofd2) allows us to calculate Substituting the previous approximation in Hd4) yields
Hamel’s function, which is the last parameter needed to de-

z{ﬂ Iy Uy + (1 - B)—(v u,)

fine the kinetic model. —Z+v.Vi, +g, V,f,=- [f, - f
According to the previous tuning strategy and consider- d A5Tm
ing the low Reynolds number limit, the Schmidt number is fe(m) P
-ZEEwv-u)-w,
2 XoVy eg Tm
«_ V(e e o
Sc=——=—| el-¢ +é |. (43 1-8
Dc(e) €& Vm —=(v-u,) W,
ezr Tm

It is easy to prove that the previous result is consistent with
the ideally miscible configuration: in fact =1, then St
=S¢,=€?/(e,). In the following section, this model will be The kinetic model originally proposed by Sirovich can be
compared with the linearized models. recovered if3=0.3° The additional terms in Eq48) do not

(48)
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effect the zero-order approximation of the distribution func- VyTm

tion involved in the asymptotic analysis. For this reason, T":er——v' (51)
although some coupling among species exists, the zero-order omne

approximation of the distribution function is still Maxwell- then the component viscosity is decoupled by the diffusion
ian. Essentially, the additional terms are similar to the termgrocess because,e,,=v, and Eq.(50) exactly recovers
which appear in the Chapman—Enskog asymptotic analysiéie Navier—Stokes momentum equation. Negative values of
when the external force field is considered: see @) in  the relaxation time constants. are possible because in the
Appendix A. It is well known that only the moments of the linearized kinetic equatiori44) only the quantitya, 7y, is
forcing term up to the second order are involved in the preinvolved. The cross-collision relaxation time constagtcan
vious analysis. In particular, all the approximatida3) pro-  be tuned according to the mutual diffusion coefficient. The
duce the same results for both zero- and first-order momentgljfference between the two Navier—Stokes equations for each
while they differ for the second-order moments. Let us con-speciesia andb) leads to the following equation:

sider, for example, the following second-order moment: 2

e
= (Ua = Up) == T d + (1Y, - V), (52
Tm PaPr
f m,v @ V[ 5 - f5ldv = p,[2(1 - B)u, ® u, - 2Bu where the inertial effects have been neglected and the driving
forced is given by Eq.(16). If the cross-collision relaxation
@u+(28-1)(u,®u time constant is set in such a way that
+u®u,)l. (49) D

- 53
m Xp€a + Xa€h ( )

The result due to the original Maxwellian distribution func- . e -
. . . o whereD is the mutual diffusion coefficient, then the expres-
tions can be recovered if and only if the approximation char-_.

acterized byB=1/2 isconsidered. In fact, it is well known sion for the velocity difference is recoveréd:

that the central difference approximatig8=1/2) produces Dp? D

better results than one-side approximatigps1 or 8=0, Y= o= o ViXa= Pt paeb[(ea_ &) Vp

where the last is considered by Sirovich’s mgdélis pos- 5 5

sible to conclude that Sirovich’s model considers only one *+p(ga = Go) + p(vaVUa = 1V Up)]. (54)

possible approximation, which is not the most accurate. ¢ i5 easy to verify that the linearized models are character-
~ The Chapman-Enskog asymptotic analysis of the lineari ¢ py gl the driving mechanisms, which have been previ-
ized models can be easily performed by analogy with the,gly discussed for Hamel's model: the concentration gradi-
analysis of Hamel's modebee Appendix A The continuity  gnt “the pressure gradient by means of different particle

equation for each species is the same as Hamel's model a'?'ﬁiasses{ea#eb), the inequality of the external forces acting

it is described by Eq(9). The momentum equation is on different components, and, finally, the inequality of the
viscous effects, if they are not negligible.

(pyUy) In the low Reynolds number limit, it is more convenient

ot TV (ol @ Ug+ 2BaspaW, & W,) to consider a different linear combination of the two Navier—

Stokes equations for each spedi@agndb) in order to obtain

1 the following equation:
=-V (elT o—) + PoY9s~ T_po'WO' ged

) i _ - _ eaebp_2 & &
+V -[a,p,,mm(VU,+ Vul)]. (50) 7_m(ua Up) = o papbvxa"' ega egb . (59

If the external forcing terms are tuned in such a way that

All the linearized models produce a coupling force propor-ebga:eagb and cross-collision relaxation time constant is

tional to the diffusion velocityv,,. In some linearized models
(B+#0), the diffusion velocity can effect the advection term _De
but in none of them the diffusion velocity can effect the Tm= ee,

viscous term, which is usually the leading term in the low ) ] o
Mach number limit. If we consider once more the infinitely then the Fick's first law of diffusion can be recovered, but a

deep channel discussed in the preceding section and, in pe{nodlﬂed_ mutual diffusivityD" has bee_n _con5|dered._Conse—
ticular, Eq.(22), all the linearized models are characterizedduently, in the low Reynolds number limit, the Schmidt num-
by a diagonal viscous matri¥. This means that the deter- Per is
minant of the viscous matrix is always strictly positive and
. T . e, X, v,

viscous coupling is not possible. X o

Again, the problem is finding a method for correlating ~ SC = PP (57)
the microscopic relaxation time constants with the macro- TmEa
scopic transport coefficients. The most usual strategy will bend it can be freely tuned by setting the cross-collision re-
discussed®* First of all, if the specific relaxation time con- laxation time constant. This is probably the best advantage of
stantr, is set in such a way that linearized model$*®

(56)
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However, the usual strategy for setting the relaxationto exactly ensure the ideally miscible configuration. This re-
time constants has a drawback. When very high couplingult proves that the viscous coupling is more effective than
strengths are considered, it is possible to assugreu. In the force coupling in reproducing the ideally miscible con-
this case, summing the species momentum equatifsit  figuration because a lowelfinite) value of the coupling
is possible to obtain the momentum equation for the barystrength is enough to reproduce the single-fluid approach. In
centric velocity and it is easy to verify that the value of thethe following section, the lattice Boltzmann version of
mixture viscosity for ideally miscible components coincidesHamel’'s model is constructed.
with the mass averaged viscosi,x,v,. From the experi-
mental_ p0|r_1t of view, this formula |s_vaI|d_ as a first-order Il LATTICE BOLTZMANN MODEL FOR BINARY
approximation: actually the mixture viscosity can be a VerY\ IIXTURES
complicated function of the mixture propertl‘gsmso in this
case, the problem can be solved by modifying the strategy In the following section, a lattice Boltzmann model for
for setting the relaxation time constants, as previously don&inary mixtures based on Hamel's model, defined by the Egs.
for Hamel’'s model. In this way, the mixture viscosity be- (3)—«5) and(8), is constructed. The discrete ordinate method
comes a tunable parameter, but this is not sufficient to deis commonly utilized for solving the integro-differential
scribe the ideally miscible configuration because the viscousquations involved for modeling the rarefied gas fibansd
matrix, involved in Eq.(22), is always nonsingular. it will be adopted in this case to construct the lattice Boltz-

Since the viscous coupling for the linearized models ismann modef* According to this method, a set of discrete
not possible, the ideally miscible configuration, i.e., wiign  microscopic velocities must be defined and the velocity
does not differ too much from the barycentric veloaitycan  distribution function will be exclusively evaluated for the
be recovered if and only if the the coupling force is infinitely selected velocities. This set of microscopic velocities is
large, namely, 14,— . From the practical point of view, calledlattice and itis usually defined without fixing the mag-
the numerical stability constraints do not allow us to simulatenitude of the microscopic velocities, which is a tunable pa-
an infinitely large coupling force and for this reason the ide-rameter. In the proposed model, a square lati@@Q9) for a
ally miscible configuration cannot be practically recovered.two-dimensional computational domain, which makes use of
On the other hand, in the complete Hamel's model it is sufnine discrete velocities, is consider2d@he lattice discrete
ficient to assume the maximum coupling strength, ke.]l,  velocities are defined in the following way:

¢ [0,0], A=0
V=43 ¢ [cog\m/2 - ml2),sin\7/2 - =/2)], A=1,2,3,4 (58)
V2¢ [cos A2 — 9mld),sin\m/2 - 9ml4)], \=5,6,7,8,

wherec is a tunable parameter which is called lattice veloc- \ N ? N
ity. Since only the discrete velocities are allowed, the prob- ~ Vife=-V,f;=(1 ‘%)e_(V = U,)
lem reduces to computing the generic discretized distribution 7
function 3, which is essentially the value of the velocity f?f(m)
S T . X L. + _(V)\ - U) (60)
distribution function when thath discrete velocity is con- o g '

(o8

sidered,f(ﬁ(t,x):f(,(t,x,v*). In this way, the original kinetic
equation, which is an integro-differential equation, reducesSubstituting the previous approximation in the equation for

to a system of differential equations, the discretized distribution function yields
oty Xt afy X €
—Z 4V Vil 49,V == 20[f - £ —Z M VA = - A fA - [ - £ ]
at 9 ot 0 9 m
€ron _ e &
- T_O[ftr - fo'(m)] (59) + (1 - ao-)ei(v)\ - uo—) . go
m (e

for any 0=\ =<8. The kinetic term which takes into account o

a(m) N
the effects of the external force field can be simplified. This + %e_(V —u) - g, (62)
practice is based on the fact that the nonequilibrium distri- 7
bution function does not differ too much from the equilib- Since only the discrete distribution functions for the lattice
rium distribution with regard to the microscopic velocity in microscopic velocities are considered, an interpolation test
the fluid regime limit? In this way, the following approxi- function must be adopted to calculate the macroscopic mo-
mation can be adopted: ments. The key idea is to reduce the statistical moments of
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the continuous distribution function to weighted summationsmoments can be obtained. In this case they are
of the discretized distribution functions by means of proper
quadrature formulas. The interpolation test function should =3 et
. . Lo oo =2 s"e,, (66)
be chosen in such a way as to include the equilibrium distri-
bution function as a particular case, in order to allow us to

recover the equilibrium conditions. The problem is that the 8
equilibrium distribution function is an exponential function, PolUy= 2 SNV, (67)
while the moments are polynomial forms of the macroscopic A=0

guantities. This mismatch can easily be overcome by con-
tinuous integration but not by a quadrature formula, WhICh
cannot change the nature of the interpolation test function. 4/9, \=0

For this reason the equilibrium distribution function must $=11/9, A=1,23.4 (68)
also be approximated with a polynomial form. If the low 1/36. \=56.78

Mach number limit is considered, then the equilibrium dis- ' I
tribution function can be linearized around the state at restrhe terms up to the second-order in the macroscopic quan-
For the Maxwellian distribution function centered on thetjties have been considered in the approximatis® and

wheres* are the weighting factors

specific velocity, this approximation yields (63), so the forcing terms in Eq64) can be simplified by
N2 neglecting higher order terms. It is well known that consid-
en __ Pos (V ) . dﬁ d . . | d . |
e =~ m o ~oe ering di grent-gr er approxmatpns can lead to numerica
m,(2me,) 4 inaccuracies. Since the acceleration due to the external force

vV ou, (Veuy)? o Ul field can be considered of the first order, the terms multiply-
X1 e 262 2e |’ (62) ing the acceleration must be of the first order with regard to
7 7 7 the macroscopic velociti€s. For this reason, the equations
and similarly for the Maxwellian distribution function cen- for the discretized distribution functions become

tered on the barycentric velocity it yields N
f?é% A= ex A_ e\
\ Po (VM2 o TV Ver=- —o[% 2 Sleh— o8]
fotm = b2 €XP ~ Tm
v m,(2me,) 2e, 1
A N2 2 +—=k% g (69)
vi-u o (Vvieu u [ alo) oo
X1+ +( 2) -— (63 V€
e, 2¢ 2e,
where
where in both the cases only the terms up to the second order \ N
in the macroscopic velocities have been considered. Equa- KA. =p v _ia(tr) + v 'Ua(zr>vx (70)
tion (61) can be formulated by introducing some auxiliary R NS \,'Efr
variables: ) )
N For recovering Eq(69), the property that the vectcba‘;(g) is
¢y XH € i i [ iti
oy (Pz: _ _0[902_ (ng] _ _0[902_ (Pix(m)] linear with regard to the macroscopic velocities has been
at o Tm used.
The left-hand side of Eq69) is essentially a substantial
+(1 —aa)(p—"(vx -u,) g, derivative and it involves a known microscopic velocity of
€o the lattice, defined by Ed58). The ordinary derivatives can
(pex(m) be numerically estimated by considering the rate of change
+a,——(V*-u) - g,, (64)  for a finite time stepst smaller than the characteristic time
€s scales of the phenomena. The spurious terms, which are de-
where b= /QY, ¢ =f/Q}, %(m)_fexm) /Q), and rived from the previous approximation at the hydrodynamic
level, are called discrete lattice effects. In order to cancel the
L 1 0 - (V)2 (65) discrete lattice effects, some corrections are needed. Let us
Q= m, (27e,)P2 © 2e, introduce the following corrected velocitié%™
The deviation of the distribution function from the one at rest
E SNVl = po(W, )/ Ty = ) SU/2. (72)

is also small in the fluid regime limit. It can be assumed that
the functionw’; belongs to the same class of functions which
includes the equilibrium functions;‘ce and (,D(,(m), , the  The corrected barycentric velocity” =X x,u, " is conse-
class of theD-dimensional second-order polynom|al forms. quently deflned Slmllarly the corrected equmbrlum distribu-
The unknown parameters involved into the interpolation testion function ¢ centered on the specific velo<:|ty and
function can be determined by using the calculated values ¢he corrected equilibrium distribution functiasf),, centered

the distribution function for the lattice microscopic veloci- on the barycentric velocity” can be obtained. Thanks to
ties. Once the interpolation test function is well defiféthe  these quantities, the final lattice Boltzmann method can be
quadrature formulas for the calculation of the macroscopidormulated,
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\ \ \ L St e St ered input data of the problem. The internal energies for the
Py (t+ X+ V) — @, = —XH;[%‘ ®y 1~ 67__0[(Pg— componentse, can be freely tuned, since the energy equa-
7 m tions are not solved. In particular, assuming=e,/c?, the
parameters, can be set in such a way as to reproduce the
exact pressure gradients in the momentum equations. On the
other hand, the local stability analysis of the lattice Boltz-

en*

& *
- qDo'(m)] + \‘/Tk)(;(a') ’ [daga
' o

+ (1= dy)W,/ 7inl, (72) mann model suggests thgt=1/3 is theoptimal value for
whered,, is defined as improying the stability In the low Mach number limit and _
when ideal gases are considered, both the effects of density
d. = 1_1 ot _ 1_@(& i) (73) gradients and of the pressure gradients are negligible. For
7 20,7 2 Tg r?n ’ this reason, stability will be preferred and the parameters will

d it takes int t the di te latii foct hil be accordingly selected.
and 1t takes into account the discrete atice elects, W€ ot ys consider first the ideally noninteracting configu-

k) | is the quantity defined by Eq470) when the corrected ration, i.e., when 1#,—0. Let us definas’= 8%/ 72 the di-

a(o)
velocities are considered. It is easy to check that, in the conyensionless frequency for the generic componentcﬁrtde
tinuous limit t— 0, the corrected equations coincide with |5¢tice velocity for the generic component. Since the dimen-
Egs. (69). The corrected specific velocity involves the cor- gjonjess frequency must be set in such a way as to respect the
rected diffusion velocity and for this reason E@l) realizes stability criterion 0< w? <2, the problem is to defin€® and
an implicit formulation. This feature can be made evident by 0 in order to recovergthe desired lattice grid si&ear({d the

considering the definition of diffusion velocity: kinematic viscosity for the single component The follow-
p,,E [(1+w/2) 8, - kam/2]u; ing formulas hold:
k 2 - 0 @(2
6 o= 270) 5 (78)
i 6(wg)2 V,
=2 SNVl +p,0,02, (74)

A0 OX 6 wg Vo
. (79

where wm':'ét/rm i; the d'imensionlgss frequengy for the Co= Tgwgz (2—w(°,)5<
cross collisions. It is possible to derive an explicit formula-
tion for the corrected velocities from the previous equation:The lattice velocities must all be identical, i.e),=c°, be-

cause all the mixture components are computed on the same
> 2 Om lattice. This introduces a new constraint for the dimension-
p(ruo'_ 2+ 5k(r + Xy . .

K ®m 2+ o, less frequencies. Let us label withthe component of the

8 mixture characterized by the smallest viscosity, such that

0~ 0 #5000 0

% (2 Mgl + pggkétIZ)} . (75 Vo=t The conditionc, =c” implies

A=0 2 vy

. L _ Wl=———=2—— <ol (80)
When the cross collisions are negligiklg,=0, the previous V(2 — w,) + vawy

correction reduces to the usual definition for the correctedS
velocity, which has been modified in order to take into ac-
count the effects of the external fildThe final lattice Bolt-
zmann method exactly recovers the following equati@es
Appendix B:

electingwgl in such a way that &wgsz, all the other
dimensionless frequencies will follow from the previous con-
dition and they will also be &w‘;s 2. In particular, the
previous condition implies that the discretization time steps
for all the components will be identicaht®= w2 = 7202,

Since both binary mixture species evolve on the same
lattice, if they have significantly different molecular weights,
this can increase the computational time because the time

d(p,u.,) . . . . step size is dictated by the lighter species, making the simu-

T + V  [(1-a,)pU, ® U, + azp,u @ U lation very slow. Moreover, significantly different molecular

. . X . weights widen the spectrum of the dimensionless relaxation
+ Pl ® W+ Qup W ® Uy frequencies, i.e.w’<w? or, equivalently,w®— 0. Recalling
1 Eqgs.(78) and(79), it is evident that very small dimensionless
== V(p,e,) +p,9,— _PUW:, frequencies for _the proppsed tunmg_ strategy can induce in-
Tm accurate numerical solutions. For this reason, this strategy is
+V {0y oo, VUL + VUL T (77) sHuccessfuI only for moderately different molecular weights.
owever, this is an open issue for all multispecies lattice
The proposed lattice Boltzmann method involves additionaBoltzmann models which use a single lattice.
lattice parameters and a proper strategy is needed in order to We can proceed in a similar way for the ideally miscible
tune them. First of all, the constraints must be defined. Theonfiguration. Let us define® = 6t°/ 7, as the dimensionless
lattice grid sizedx, the viscosity of the componenis, and  frequency for the ideally miscible configuration. The follow-
the viscosity of the ideally coupled mixturg, are consid- ing formulas hold:

ﬁp(}' *
—+ V -(p,u,) =0, 76
2o ¥ (o) 76
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0
o (2= &
™M= 0w (81)
G(wm) Vm
m_ OX 6 &S v
c — (82

v T%w%_(z—w?n)&'

In this case, the lattice velocities are naturally identicl

=c™ and the same happens for the discretization time steps
m= T%w%. For an intermediate degree of coupling, the gen-
eralized expression of the discretization time step can be as-

sumed as

0 0

A= Xy OO + €™ = xpy Tawa + €700 (83

This allows us to calculate the intermediate values of the

dimensionless frequencies:

W, = &X_g = ngH[XH + 60]1 (84)
T(T
€ 0

= O = wpelxul 0+ €, (85)
Tm

where 6 is defined as

2 - w9

gz Yo (2= 0n) 0y (86)

B vm(Z—wg) wﬂl'

Phys. Fluids 17, 067102 (2005)

On the other hand, as previously done for the continuous
model, Hamel’s functiory, can be set in order to obtain the
desired critical viscosity. In this case the previous correla-
tions must be taken into account for the computation of the
critical viscosity given by Eq(31) in the discrete model:

daCXa
XndJ(c)? + ed(Ch) vl vry

v(€e) =

2
+ dbeXbe

0, 0\2 My M2 '

xrdp(cp)? + edpl(cy) vy v,

where the discrete lattice parameter depends on the coupling
strength, namely,

(89)

d,= 1~ (L=~ L -dD =25 (w00 + uffo),

(90)

andd®=1-2/2 andd™=1-w%/2 are the limiting cases for
ideally noninteracting components and for ideally miscible
components, respectively.

Finally, the compatibility condition for the discrete
model must also be modified. Considerigmgl in the system
of discrete equations, analogous to the previous system of
equations(22), and applying the difference between the
equations of the system, the compatibility condition is ob-
tained:

The discussed strategy for setting the microscopic param-

eters allows us to reproduce the correct viscosities for the
components in the ideally noninteracting limit and for the

mixture in the ideally miscible limit.

e
— (U= Up) = Ga = Gp- (9D

Vm

If the forcing terms due to the external field are suctgas

The coupling strengti can be tuned by considering the =gx then the solution of the system of equations is unique,
mutual diffusion coefficient. Since the tuning strategy based uX=u. Let us model a mixture affected by a given forc-
. . . . . . Y )
on mixture viscosity was considered in this paper, some CoNpg term pg*. For the mixture, where only the total value of
same, i.e.e, =@, in order to reduce the computational efforts .5y he made by means of the previous compatibility condi-

by using a single lattice, Eq§18) and(19) for the diffusion

tion. If the source term for a generic species is caped’,

velocity become the same. Consequently, it is not possible then the compatibility condition for the discrete model pre-
distinguish between diffusion coefficient and modified diffu- gcripes thap,g* =x,pg", i.e., the splitting of the forcing term

sion coefficient, i.e.D=D", or between Schmidt number and myst he made on the basis of the mass concentrations. The

modified Schmidt number, i.e., Sc="Stn this case, the dif-
fusion coefficient simply reads

D(e)= 1, (87)
€
and, consequently, the Schmidt number becomes
2 Xy
Y P R R (88)
Dc(e) Vm

difference with the continuous model is due to the fact that
for the lattice Boltzmann moded,=e=c?/3, while for the
continuous modek,=ey,/x,. This feature of the discrete
lattice model is a consequence of the stability constraint
which has been assumed but it can easily be overcome by
considering different values for the internal energy of each
species, i.et,# 1/3. In the following section, the designed
lattice model will be numerically solved.

IV. DISCUSSION OF NUMERICAL RESULTS AND
CONCLUSIONS

In this case, the mutual diffusion coefficient is bounded from

below,D = v,,. The situation is the opposite of that discussed

Some numerical results are reported for the suggested

for the linearized models. The viscous coupling allows us tadiscrete lattice model in this section. First, some carefully

freely tune the critical mixture viscosity(e) and, in particu-

conducted benchmarking computations were performed to

lar, to recover the ideally miscible configuration. But the verify the transport coefficients of the proposed lattice Bolt-
mutual diffusion coefficient cannot be smaller than the effeczmann model. Because the proposed model is isothermal,

tive viscosity for ideally coupled mixturey,,. Also a con-
straint holds for the Schmidt number.

diffusivity and kinematic viscosity are the only involved
transport phenomena. Theoretical predicted equati8is
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TABLE I. Comparison between theoretical and simulated results for both diffusivity and mixture kinetic viscosity. The subsamggans the theoretical
values given by Eq987) and(89), while the subscript-),, means the measured values given by Eg8) and (95).

e(-+) c(m/9) T =10/ €(S) (Do)7(m?/s) (DIm(m?/s) (vo)7(m?/s) (vom(m?/s)

0.949 136.33 1.6244 10710 1.0064x 1076 1.0376x 10°® 3.7525x 1077 3.7560x 1077
0.905 131.56 1.7888 10710 1.0320x 1078 1.0802x 10°® 3.5928x 1077 3.5944x 1077
0.860 127.22 1.979810°10 1.0679x 1078 1.1211x 10°® 3.4489x 1077 3.4488x 1077
0.815 123.28 2.2020 10710 1.1156x 1076 1.1610x 1076 3.3207x 1077 3.3190x 1077
0.771 119.72 2.4646 10710 1.1774x 10°® 1.2195x 10°® 3.2083x 1077 3.2048x< 1077
0.726 116.50 2.7770 10710 1.2563x 10°® 1.2768x 10°® 3.1117x 107 3.1079x 1077
0.681 113.61 3.152910°10 1.3564x 10°® 1.3667x 10°® 3.0308x 1077 3.0264x 1077

and (89) were compared with simulation results reported indesired mutual diffusivity or the desired mixture kinematic
Table I. In particular, simulated diffusivity values were ob- viscosity, but not both independently.
tained using the transient method presented in Ref. 15. Inthe The numerical results reported in Table | refer to the
case wheral* is a constant an@.(e) is also a constant, a one-dimensional case because analytical solutions useful for
solution of Eq.(38), describing a decaying sine wave flowing benchmarking are available. However some doubts emerge
along in thex direction with velocityu*, is given as regarding the fact that the suitability of suggested tuning
, . strategy for the relaxation time constants could be valid only
XD, t]=q + 0 = x)exil - kDe(e)tsinlk(x ~ vy, for the one-dimensional case. These doubts were dispelled
(92 by considering the two-dimensional randomly generated po-
rous medium reported in Fig. 1. The actual calculations were
done by using periodic boundary conditions. A given pres-
sure gradient induced the flow of some binary mixtures

applleg tot conczn;r‘i\t]o?; the rerlJortetcti] S'ﬂ:ﬁ latior t[%i)f[? through the porous medium. Each mixture was characterized
was adopteqd an is the wave length of the perturbation. by a different coupling strength.

S\l/nce ﬁf riodic botur:_daryl gondlt_lor:s Wtehre Iused_, the drattAO be-" When the coupling strength is very small, the two spe-
een the computational domain length alongxis and the ;o independently evolve according to their kinematic vis-

wave length was an integer. Assumiog=0, the numerical cosities. When the coupling strength increases, i.e., when the

d|ffu_S|V|ty can be measured by considering the sine WaV&ross collisions become important, the slower species try to
maximum decay, hamely,

_1 ) xlw(2K),00 - xg
(Dow =i In X[ 7/(2K),t] =3 | ° 53

where X2 is the constant averaged concentration of the
speciesx;, is the maximum value of the initial perturbation

Similarly we can proceed for the mixture kinematic viscos-
ity. Simulated mixture kinematic viscosity values were ob-
tained considering a plane Poiseuille flow. If the accelera-
tions due to the external force field are the sagfeg;=g*
and prevail over the effects due to the concentration gradi
ents, then it is possible to assume~ p,g*. Assumingg* is

a constant, a solution of E¢41), describing a parabolic flow
between infinitely extended parallel planes, is given as

X

2v (€

where H is the distance between the parallel planes. The

numerical kinematic viscosity can be measured by consider

ing the fluid flow maximum velocity, namely,
Hzgx

8UX[H/2]

wly]= (H-yy, (94)

(vow = (95)

Recalling the results reported in Table |, a good agreement
between theoretical predictions and simulation results wakIG. 1. The figure shows the randomly generated porous medium consid-

found for both diffusivity and mixture kinematic viscosity. e_red in the numerical calculatlong. Periodic boundary condltlpns in both
directions are assumed. Only a single component for a generic mixture is

From this_tf_ible- itis e\_/ider!t that, in the proposed model, thegnsidered. The species flow is due to a given pressure gradient. The lighter
cross-collision relaxation time can be tuned to recover theegions are characterized by higher velocities.
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TABLE II. Superficial velocitiesS(u’;) (averaged values over the whole porous medifonsingle components of binary mixtures characterized by different
coupling strengths. The critical viscosity is constantly equal to the averaged viscosity based on mass concécasedns

(A)v(€)=Z XV,

e(-+) XH( ) ve(m?/s) wy(*+) wp(* ) o) S(u)(mm/g S(up)(mm/s
0.000 1.000 3.758 10° 1.200 1.462 0.000 3.690 8.305
0.001 0.999 3.758 10° 1.199 1.460 0.001 3.753 8.196
0.002 0.998 3.758 10° 1.198 1.459 0.002 3.811 8.115
0.004 0.996 3.758 10°° 1.196 1.457 0.004 3.937 7.943
0.008 0.992 3.758 107 1.192 1.452 0.008 4121 7.702
0.016 0.984 3.758 10°° 1.184 1.442 0.016 4.281 7.323
0.032 0.968 3.758 10°° 1.168 1.422 0.032 4.626 6.617
0.064 0.936 3.758 10° 1.135 1.382 0.064 4.913 6.187
0.126 0.827 3.758 10° 1.069 1.302 0.129 5.148 5.848
0.250 0.746 3.758 10° 0.934 1.138 0.263 5.234 5.567
0.500 0.495 3.758 10° 0.647 0.788 0.549 5.315 5.475
0.749 0.246 3.758 10° 0.336 0.410 0.860 5.383 5.424
0.989 0.010 3.758 10°° 0.015 0.018 1.185 5.418 5.418

slacken the other species and vice versa. At the end, theortunately, the proposed tuning strategy overcomes this
result is that the two species are characterized by velocitiedrawback.
much more similar in comparison with the results for the  In Tables Il and Il and in Fig. 2 some numerical results
noninteracting configurations. In the ideally coupled caseare reported which have been calculated by the proposed
i.e., when the cross collisions prevail the mixture viscousdiscrete lattice model. In the first case the fully coupled
velocity or equivalently the barycentric velocity, it is enough mixture viscosity is set equal to the mass averaged kinematic
to characterize the mixture fluid flow. viscosity v,==,X,v, while, in the second casB, it is set
From the physical point of view, we can imagine thatequal to a lower value), <3 x,v,. Hamel's function has
each mixture is made of components characterized by diffeheen set in such a way that the linear equati¢® holds
ent diffusivity but the same kinematic viscosiif consid-  giso for the discrete critical viscosity given by E§9). As it
ered along From the kinetic point of view, this test case s evident by considering Fig. 2, the viscous velocity effec-
allows us to evaluate f[he effects of increasing cross collisionﬁve|y shows a linear dependence on the coupling strength.
for species characterized by the same self-collisions. Morep|ihough the mathematical suitability of the previous strat-
over, the effectiveness of the tuning strategy for the relaxggy has been previously deduced for the one-dimensional
ation time constants can easily be verified because the Mixsage only, the two-dimensional numerical results confirm that
ture viscous velocity, should be linear with respect to the j; i generally effective and it allows us to recover the desired

Fogplir?gﬂst.re?lgth.fln factr,] if in the low Reypclallds numﬁer behavior of the viscous velocity with respect to the coupling
imit the fluid flow for each species is essentially controlled yronoih for more complex computational domains.

by the critical viscosity_uC and t_he latter was tuned according Taking into account the previous results, some conclu-
to Eq.(42), then the mixture viscous velocity should be con- sions can be summarized.

sequently linear.

As an example, the mixture viscosity was assumed to bé)
linear with the coupling strength, but any other experimental
formula can be included. In particular, strong experimental
evidences exist that cross collisions effect the effective mix-
ture viscosity. In fact, a very popular experimental formula
for the mixture kinematic viscosity 1&

XaVa + XpVh
1+Fay/Ya 1+Fpayalyp'

whereF,, andF, are positive corrective factors. In particu-
lar, the experimental data show that the effective kinematic
viscosity for the mixture is smaller than the averaged viscos-
ity based on the mass concentrations of the componénts
<3 X,V,. This allows us to understand the importance of
the previously discussed drawback of the linearized models,
which forces us to consider a fixed mixture viscosity equal to
the averaged viscosity based on the mass concentrafiéns.

I —

(96)

Ve

In the present paper, a new lattice Boltzmann model
for binary mixtures has been proposed on the basis of
the two-fluid kinetic theory developed by Hanféf

A proper correction of the discrete lattice effects al-
lows us to exactly recover the performance of the con-
tinuous model with second-order accuracy in both
time and spac&®® This substantially corrects and
improves a previously proposed two-fluid lattice Bolt-
zmann model for binary mixtures, based on a linear-
ized cross-collisional operatdt?® In this way, the
theoretical foundation of this model is well estab-
lished in the framework of the kinetic theory. The
lattice model thus naturally inherits all the properties
and all diffusion driving mechanisms of the original
kinetic model. This is in contrast to previous lattice
Boltzmann models for mixture$;**=*which are not
directly based on the fundamental physics of continu-
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coupling strengths. The critical viscosity varies according to the coupling strength with the assumed lingaskRy.

(B)ve()=(1-€2 X, v, €vn=<ZX,V,

e xn( ) v(m?/s) wy(+) op(+) o) S(um)(mm/9 S(ug)(mm/g

0.000 1.000 3.75810° 1.200 1.462 0.000 3.690 8.305

0.001 0.999 3.74910° 1.199 1.461 0.001 3.736 8.253

0.002 0.998 3.74810° 1.199 1.460 0.002 3.776 8.173

0.003 0.997 3.74%10° 1.198 1.459 0.003 3.851 8.081

0.006 0.993 3.745 10° 1.105 1.458 0.005 3.977 7.903

0.012 0.987 3.73810°° 1.190 1.450 0.009 4.178 7.650

0.024 0.973 3.72810° 1.180 1.437 0.019 4523 7.226

0.048 0.946 3.70810° 1.160 1.413 0.038 4.850 6.566

0.096 0.893 3.666 10° 1.119 1.362 0.077 5.217 6.250

0.191 0.791 3.58210° 1.032 1.257 0.160 5.544 6.101

0.382 0.590 3.41410° 0.839 1.021 0.349 6.043 6.261

0573 0.398 3.24610° 0.616 0.750 0570 6.468 6.617

0.764 0.214 3.07810° 0.361 0.440 0.827 7.099 7.174

0.994 0.006 2.87%10° 0.011 0.013 1.189 7.662 7.662
ous kinetic equations. These models rely on pseudo- that in this model the viscous relaxation process and
potential interaction$'’ or  heuristic  free the diffusion process are inseparable. This is not be-
energie§"*®%'to produce the requisite mixing. cause of a mysterious “equilibrium velocity” as it

(i) This kinetic model implies two fundamental ways to happens for the previous single-fluid modtts! but

couple the velocity fields of the mixture components:
a force coupling, based on a source term in the mo-
mentum equations proportional to the diffusive veloc-
ity, and a viscous coupling, based on an additional
term in the effective stress tensor proportional to the
deformation of the barycentric velocity field. Both

coupling mechanisms are derived from cross colli-
sions. Unfortunately, the macroscopic mutual diffu-
sivity and the mixture kinematic viscosity cannot be

independently tuned because only a single crossgjii)

collision relaxation time is available. Tuning strate-
gies based on diffusivity and on mixture kinematic
viscosity have been discussed. It is worth pointing out

4.5/f... —% Species 1: Averaged Mixture Viscosity ||
—&— Species 2: Averaged Mixture Viscosity
-1 @ Species 1: Generic Mixture Viscosity
@ Species 2: Generic Mixture Viscosity

o 02 0.4 06 0.8 1
Coupling strength = [-]

Superficial Species Velocity [mm/s]

FIG. 2. Superficial velocity for the components of the binary mixtures flow-

ing in a randomly generated porous medium. Two cases are considered:
the first case, the fully coupled mixture viscosity is set equal to the mas
averaged viscosity and, in the second case, it is set equal to the generic

experimental viscosity.

)

only because of cross collisions, as it should be. The
viscous relaxation process and the diffusion process
can be decoupled by linearizing the cross-collisional
operato*?°in order to freely vary the Schmidt num-
ber. This is practical but unphysical because experi-
mental evidences suggest that cross collisions effect
the mixture kinematic viscosity, which in fact cannot
be constantly assumed equal to the mass averaged ki-
nematic viscosity®

Hamel’'s model automatically includes both single-
fluid and two-fluid approaches, because both self-
collisions and cross collisions are described by BGK-
like structures. It can be considered the ideal
forerunner of all linearized models, like the Sirovich’s
model, but it does not require any hypothesis on cross
collisions because there is no local approximation of
the collisional operators. For this reason, the whole
range of the coupling strength is naturally included. In
order to reproduce the ideally miscible configurations,
the viscous coupling is more effective than the force
coupling because there is no need to consider infi-
nitely strong forcing terms in the momentum equa-
tions. Recently a two-fluid model with similar charac-
teristics has been suggesﬁ;d,but the lattice
collisional operator has been conjectured without any
theoretical foundation and the Chapman—Enskog
asymptotic analysis has been reported only for a lin-
earized approximation. In particular, there is no dis-
cussion concerning how cross collisions effect the
mixture kinematic viscosity.

This paper shows that it is possible to develop a two-
fluid model within the framework of the standard lat-
tice Boltzmann method and there is no need to con-
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sider the finite-difference lattice approach in order tothe equations beyond the Navier—Stokes system are consid-
achieve this goal. This evidence contradicts someered. Since in this case we limit our interest to the transport
statements of a recent paﬁgAIthough the two-fluid  coefficients involved in the Navier—Stokes system, the
model proposed in Refs. 24 and 25 did not satisfy theChapman—Enskog expansion will be considered.
species continuity equation, it is easy to solve the Let us expand the velocity distribution function in terms
problem by considering the technique recently sug-of a small parametéf, which is proportional to the Knudsen
gested to properly take into account the effects due tmmumber Kn:
the external force field>*° In this case, the velocity
correction must satisfy a slightly more complicated ~ fo =0 + KD + K22 + - (A1)
formula given by Eq(75).

(v)  Although more discrete distribution functions are co
sidered, they should share the same discretization of

n-and proceed in the same way for the partial derivatives:

a d

the space. In fact if the same spatial discretization and — = K—g+ KZ% + e (A2)
the same time step are considered, then all the distri- at at at
bution functions can share the same lattice velocity
¢,=c. This congruence condition is simply a numeri- d d
o g ply LA (A3)

cal trick, but it is very useful in order to reduce the (9_xi ﬁxi(l) o

demand of computational resources by including dif-

ferent relaxation dynamics on the same discretization

of the phase space. However, since this strategy forces 9 = KL + e (A4)
us to consider values of the relaxation parameters dif-  Jv; &Ui(l) '

ferent from the optimal ones required by stability, the ) ) o .
universality of this strategy could be uncertain. The expansion of the gradient which involves the micro-

scopic velocity(A4) is quite unusual, but it is equivalent to

An improvement of the proposed lattice Boltzmannthe common practice of considering the effects of the exter-
model for binary mixing could be the development of anal force field of the first order in the Knudsen number. Both
multiple-relaxation-time model for the cross-collisional of these approaches simplify the asymptotic analysis but
operatorffz’53 In this way, it should be possible to indepen- nonetheless allow us to recover the correct source term in the
dently tune both mutual diffusivity and mixture kinematic momentum equation due to the external force field. Substi-
viscosity, which differs from the elementary mass averageduting the previous expansions in the kinetic model, given by
kinematic viscosity according to the experimental data, buEgs.(3)—(5), a coupled hierarchy system of equations in the
simultaneously preserving the fact that both phenomena aggowers ofK is obtained and the first elements of this system

derived from cross collisions. are
f9=(1-a,)f+a,f° (A5)
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APPENDIX A: CHAPMAN-ENSKOG ASYMPTOTIC
ANALYSIS OF HAMEL'S MODEL

e

i fe
VPP = (1) Fv-u) F et u), (AB)

(o8 (o
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af% 1 fe © =
_”1 +v.VO§O = _ fO 4 (1-a,)-%g,-(Vv-u,) E q, =0, (A15)
ot 7 a,Tm 7 e, v
fe
o(m) ©® 1 2 o
+a,~ g, (V-u), (A9) X el < 5= pyluz-u?) (A16)
€, - 2t o
) (1) for any &h perturbation(é=1) of the velocity distribution
of of 1 1 ., : ® ©® -
(02) + (01) +v .V(l)ffr) =- fET)_ (A10)  function, whereq " and ¢~ are moments of the considered
ot ot Ay perturbation:
Recovering the macroscopic equations for the moments of qlo = mvf©ay, (A17)
the velocity distribution function requires multiplying the 7 @yt oo
previous equations by the collisional invariants and then per-
forming the integration over the microscopic velocity. Since ® 2e(®
the previous equations are coupled, this procedure will be  ¢5 =5 fmaV foav. (A18)
o'‘m

useful only if the integral equations are decoupled. In the
single-fluid BGK model, it is easy to demonstrate that theThis means that the higher-order terms of the expansion for
higher-order terms due to the expansion of the distributiorthe distribution function can effect the moments of the colli-
function, i.e.,f® O&=1, do not effect the moments of the sional invariants for each species in such a way that the
collisional invariants. In this case, since the first order of theprevious relations must hold.

expansionffro) is a linear combination of Maxwellian func- Multiplying Eq. (A9) by the collisional invariants and
tions, which in general does not yield a Maxwellian function, integrating over the microscopic velocity, the following
this property does not hold anymore. The following similar equations are recovered:

conditions can be derived:

Ips
. e+ 9 (p,0,) = 0,9 (p,,), (L9
m,>, K& Edv = f m,[f, - fPldv =0, (A11)
&1 J
W[pg’(ug’_ a(TWCF)] + V(l) . [(1 - ao’)pauo ® uO’
> f m,v>, K Edy + agp,u @ u] ==V (p.e,) + p,g,~q., (A20)
o %% Tm &1
Ap,e) a,
1 o=o) o 9 2_ 2 ™, ty —
S f MoVt — O]y A o leeUG U]+ VY [py(eu, — ae,w,)]
g aO'T
1 ’ =- V(l) ’ [pa'e(r(ua_ aa'Wo')]
=—2 p,(U,~u) =0, (A12)
" + 2V [0y (U5, = U]+ Uy = ) -Gy = 0
% A21
> ! 1m V2> K Odv . S . "2y .
~ aytml) 27 e} o where w,=u,—u is the diffusion velocity for the generic
species an(dzf,:e(,+p(,u(2,/2 is the specific total energy.
S 1 Em VIt - fO]dy Let us consider the effects of the first-order perturbation
TS ae) 27 5T on the continuity equation. Multiplying Eq(A10) by the
particle mass for the generic species, the following equation
1 ; .
- ;E po(U2-u?) = 0. (A13) S recovered:
m o &
?’(’g =~ a, V0 . (A22)

Particularly, the conditiofA13) can be easily proved by

remembering that the sum of the kinetic energies of the comp, the derivation of the previous equation, E¢819) and
ponents must be greater than or equal to the barycentric kiAzo) have been applied. If Eq9A19) and (A22) are

netic energy because of the deformation energy. This consi summed, then the final result for the continuity equation is
eration allows us to assume that each term of the series {$yiained:

positive and can be bounded above by the right-hand side of

the property(A13). Since the previous relations must be sat-
isfied for any small value of the paramet€r finally we

obtain

f m,f9dv =0,

(A14)

J

TV (o) =,V oW ] (A23)
According to the previously discussed definition given by
Eq. (A17), the general property given by E@gA12) pre-
scribes that the resultant of the vectmqg), when all the
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mixture components are considered, must be zero, i.e., @
anfj):o. Since each parameter, can be independently ~ | M.V ® vfzdv
varied by setting the relaxation time constants for the corre-
sponding species, the previous property implies that the vec-

(1)
tor qfrl) cannot depend on,,. For this reason, the divergence

== aU'Tm|:p(TeO'V ' ua(o’) a(o’) qo’ T o

involved in the right-hand side of the previous equation does 2

not explicitly depend ony,,. In particular, if the relaxation a,(1-«a )lg(lj‘f(l ”)]I + a, Ty

time constants are properly set in such a way that1, then ot

the considered model reduces to the single-fluid model with

regard to the barycentric velocity. It has been shown by [poe V Uy + PoCs Vua(g) a(g)®q5,1)

means of both Grad’s moment method and the Chapman—

Enskog expansion that this model satisfies the continuity o

equatior?®*’ For this reason, it is possible to conclude that =05 ® Ua(o) + ap(1-ay) <1>(P<TW DW,) |- (A28)

qffl): w,/ 7, and this result must be considered indepen-

dent of the value of,. For this reason, E§A23) reduces to It is interesting to point out that the previous result does not

Eq. (9). depend on the external force field. If in both scalar and ten-
Let us proceed in the same way for the momentum equasorlal quadratic forms the effects due to the diffusion veloc-

tion. Multiplying the previously discussed E(A10) by the ity are smaller than the effects due to the interpolated veloc-

particle momentum for the generic species and integratiny: I-€-

over the microscopic velocity, the following equation is re- an) > a,(1 - a,)W? (A29)

covered:

Uu(o) ® Ua(o) > O[U(l - aU)WU Q@ W, (A30)

J J
(2 [ptr(ua - aoWo')] + Qs (1) (powo) . . . . .
ot at then the time derivatives in the integréh28) can be ne-

glected. Some hypotheses can also be formulated about the
=-v\&. (j m,V ® vff,l)dv) -q?. (A24)  effects due to the moments of the first-order perturbation.
According to the definitiorfA17), the property(A16) can be

Equations(A19)—(A21) will be used to simplify the analysis reformulated as

of the effects of the first-order perturbation to the momentum @ @ _ e
equation and, in particular, to calculate the integrals in the 2 $o <35 E Ao - (Ug+u)= [E s ua(a)]
right-hand side of the previous equation. Because the mo-

ments are linear integral forms of the distribution function, (A31)

Egs.(A19)—(A21) are essentially linear combinations of the It is well known that both in fully decoupled systerts,
Euler’s equations for the generic species and for the single-
=0) and in systems described by the single-fluid approach
fluid barycentric description. Unfortunately, these equation
’ : . a,=1), the moments of the perturbations do not effect the
are nonlinear with regard to the moments and for this reaso . . . ;
macroscopic equations. For the intermediate ¢age1/2),

itis convenient to reformulate them in the following way: the previous property demonstrates that the effects due to the
lower-order moments of the perturbation prevail. As a first

+VWD.[p,u Uu(y] =0, (A25) approximation, it is then reasonable to assume that the ef-
fects 0f<p5rl) can be neglected in EA28). Substituting the
simplified form of Eq.(A28) into Eq. (A24) and adding the
result to Eq.(A20), the momentum equation for the generic

a,=1/2

9Py
oD

ﬁt(l) [poua(a)] + V(l) ’ [pa-ua(a-) ® Ua(o) + ao(l - aa-)p(rwa- Species is obtained:
— 1
® WO’] - V(l)(poea') + pago_ qgr)l (A26) M + V- [(1 - Ulg-)pa'ug- ® Ug-+ aa-pa'u ®u
ot
d W2 + AypUy) @ Wyt dppoWy @ Uyl =~ V (p,5)
t?t(l) (pUeU 2 (9'[ )[Pa. a(o) + a(r(l @ )P o'] ofoTel 7 e () 7
+ -— +V.
+V 1), [pae U, + O(|ua(a')|3)] - _ V(l [po_e ua(o—)] Ps9s mp(TW(T v {aa'pa'eUTm[Vua(O')
* o Un(o soi,”, (A27) + Vgl (A32)

whereu ., =(1-a,)u,+a,u is the linearly interpolated ve- wheree, is the corrected internal energy and its expression is

Ipc@ty. Because we are interest_ed in the low Mach numt_)er &=, AW, Uy(o) + @74 V - Ug(o)- (A33)
limit, the terms which involve higher powers of the veloci-

ties can be neglected. Applying Eq#25)—(A27), the fol-  In the derivation of Eq.(A33), it has been assumed that
lowing expression can be recovered: |qfrl)|>|qff)| because the perturbations of the distribution
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function can be considered decreasing corrections of the pre- g\ D(xl)w?fl) 1 o
vious terms in the expansion. In the small Mach number @ ds Dt® =" P Po
limit, the corrected internal energy coincides with the inter- oim
nal energy, which is the leading term. For this reason, Eq. & D(Al) K 1
(A32) reduces to Eq(10). 2\e, Dt el Yols
APPENDIX B: CHAPMAN-ENSKOG ASYMPTOTIC where
ANALYSIS OF THE SUGGESTED LATTICE
BOLTZMANN MODEL
1 ot Stixy €
. .. d,=1-— =l-—\=5+%) (B6)
The Chapman-Enskog asymptotic analysis will be used 2a,7m 2\ 7, 1

in order to design a lattice Boltzmann model which recovers

the performance of the continuous Hamel's model withrecovering the macroscopic equations requires multiplying
second-order accuracy in both time and space. Particularie previous equations by the collisional invariants and then
some corrections are needed for removing the unexpectgkrforming the integration over the microscopic velocity. Be-
discrete lattice effects. Let us start from the simple lattices5,ge Eq(B4) is analogous to EqA9) for the continuous
Boltzmann model defined by Eq&9) and(70). The macro-  model, the same results are obtained and the macroscopic
scopic eq_uations for the Iovyer—order mpments will be dis'equations(AlQ) and (A20) still hold for the simple model.
cussed. First, the left-hand side of EQ9) is expanded by a The effects of the first-order perturbation on the continuity

Taylor series indt up to the second order: equation involve the following sum:
DA‘P}}+§&D>\<P§:_)Q[(F>\_¢@\ _j[(px_(pex ] 1 8
Dt 2Dt Dt LT Tod e Fotm S MV, (B7)
1 A5Tma=0
V€ which is equivalent to the vectocqff) for the continuous

) o model. EquatiofA15) can be easily generalized to calculate
Then let us expand the normalized velocity distribution funC-the previous quantity. Particularly since this quantity cannot
tion ¢, in terms of a small parametét, which is propor-  gepend o, it cannot depend on the discrete lattice effects
tional to the Knudsen number Kn. The procedure is the samgnq this means that it must coincide with the veoqéjr)
as previously considered for the continuous model and iEPgWg/Tm- An equivalent way to obtain the same resuﬁ is to

yields suppose that the diffusion velocity, is a first-order term
with regard to the parameté:
éh= )0+ KbV K2+ oo ®2) ’ P
8 ©
We can analogously proceed for the partial derivatives given 1 MOA e L
. e . — VA D K =—p,w,K. B8
by Egs.(A2) and (A3). In this case, it is better to define a oz,,rmzzog gl o Tmp (B8)

substantial derivative for the generic microscopic velocity of

the Ia’Ft'CCT t?y grouping together terms with the same order OEoth approaches allow us to analyze the effects of the first-
magnitude: order perturbation on the continuity equation:

DY 4,
L= —— VO, (B3) ap 8t
Dt gt 5=,V (o) = TV (p,8,). (B9

Substituting the previous expansions in the simple model, a _ _ _ _ _
coupled hierarchy system of equations in the power& &f ~ Summing the previous equation with E&19), the continu-

obtained and the first elements of this system are ity equation for the simple model is obtained:
DU 1 1 p st
o __ A S (B4) P v (pu)=2V - (p,] B10
Dt(]_) ag—Tm(PU \"’eo- a(o) 9 ot (Po 0') 2 (Pg 0')! ( )
a@x(@ D(l)cp)\(l) st D D(l)(P)\(O) 1 wherel ,=w_/ 7,,—0, is the difference between the accelera-
g _y—r o A N o @, tion due to the internal coupling force and the external force
07t(2) Dt(l) 2 Dt(l) Dt(l) A5Tm 7 field
(B5) Proceed in the same way for the momentum equation.

Multiplying Eq. (B6) by the particle momentum for the ge-
Particularly the last term in the left-hand side of E85) can  neric species and integrating over the microscopic velocity,
be simplified by considering EqB4): the following equation is recovered:
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1% J D)\QD)\ ot D)\ D)\(P}\ XHr A * € *
P Uy = aWy) | + a7 (psW,, T+ f=-0 - M- —5leh— ¢
@ LPoUs = aWo) ]+ e, 75 (pgW,) ot T 2Dt Dt 72[% @y rg][% Potm)]
ot 4 1
== =1 (Pslo) + =k, g, + OV, (B15)
2 ot Ve, @@
ot A* . . . _
- EV(l) [Polato) ® Uo+ PoTo @ Un(e] whereky,, s 'the generahz.atlon of Eq70) V\{hen the cor '
rected velocities are considered. The additional corrective
" ( " factor O is defined as
-d,v&. fm(,v®vf av |, B11 . .
7 (BLD N st v T (VMevi-gl)
eo =Pg| ~ + 2 ) (816)
where the effects of the higher-order perturbations have been AsTm €y 2¢€;,

neglected. Applying EqslA25)—(A27) and supposing that \ hereT* is an auxiliary tensor. The previous corrections to

the effects due to both scalar and tensorial quadratic forms %e simple model do not effect the first term of the expan-
the diffusion velocity are smaller than the effects due to thesion, i.e.,goi;(o)*:(l—ag)goi”+ag<p§};1). Using the previous

linearly interpolated velocity, — e .
y P Y result, the definition of the diffusion velocity, EB14), and
assuming that the additional term in the corrected velocities

_ gy = —eC ) . . L
fmgv@)vfg V= po(€, = €)1 + T pols V Ua(o) is of the first order in the Knudsen number because it is

T multiplied by the discretization time step, the property given
0685 V Un(e) = Pola(o) @ Wol T by Eq.(B8) can be generalized as
= PoWo ® Uy(e) Tl (B12) 1 B o 1
H 5 H H H 2 G)\V}\E Kg(PL\'(g) - (_po' o p0t05t>K
Considering the previous result, summing Eg8l1) with Eq. O Tmr=0 =1 Tm «Tm
(A20), the momentum equation for the simple model is ob- (B17)
tained:
(pu,) The previous corrections have been designed in such a way
—ZZ 4+ V - [(1-a,)psly, ® Uy, + ayp,u ® U as to preserve the macroscopic equati@td) and(A20), if
Jt the velocities of the mixture components are redefined ac-
+ AuPUa(o) ® Wyt agp,W, @ Uyl == V (p,e,) cording to Eq.(B14). Proceeding in the usual way, the ef-
fects of the first-order perturbation on the continuity equation
+ Pyl — 1 PoWot V {0y as00€0 Tl V Uno) can be analyzed anq sgmming _this_result to &19) the
Tm final form of the continuity equation is obtained:
ot a ot d R x
+ Vullh+ Ea(palg) SV [PoUa(o) ® I % +V - (p,un) =8V -[p, (I J2+t))]. (B18)
+Pol s @ Ug(e)), (B13 The auxiliary vector can be set in such a way as to reproduce

the performance of the continuous model with second-order
accuracy, i.e.t, =-1 /2.
Similarly the effects of the first-order perturbation on the
momentum equation can be analyzed and summing this re-
ult to Eqg.(A20) the final form of the momentum equation is
obtained:

wheree’ = e, has been assumed. Comparing Hg§4.0) and
(B13) with the macroscopic equations of the continuous
Hamel's model given by Eq€9) and(10), the discrete lat-
tice effects are evident. Although the macroscopic equation
of the simple model recover the equations of the continuou
model whendt— 0, the simple model would be only accu-
rate up to the first order. For improving the accuracy up to  g(p,u,) . . ) .
the second order, some corrections are needed. A recently — .~ * V  [(1-a,)p,u, ® U, + agp,u @ U
suggested method for recovering the correct hydrodynamic

equations will be generalized for the mixtuf€s. + P U ® Wy + QupoW, ® Uy ] == V (p,€,)
Let us introduce the following corrected velocities: 1
8 + 0,95~ T_po'Wa +V. {do'ao’poeon[Vua(O')
Poll, = 2 SNVAh+ p,tLat, (B14) m
A=0

* 1 * * *
. . +Vua(g)]}+§V '[&po.ua(a_)(g)lo_"'ﬁtpo.la_
wheret  is an auxiliary vector. Consequently the corrected
barycentric vglpc!tyu =.E(,_x(,u(_, is deﬁpede.x*&mnarly the ® u;(g)_angpU(T;+T;T)]_ (B19)
corrected equilibrium distribution functiop, centered on
the specific velocity’, and the corrected equilibrium distri- The auxiliary tensor can be set in such a way to reproduce
bution functiompf}(:n) centered on the barycentric velocity ~ the performance of the continuous model with second-order
can be obtained. Let us introduce the following guessed lataccuracy, i.e.T =étu,, ®I,/(a;7y). The previous results

tice Boltzmann model: can be included in the definition of the corrective factor:
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* * WA N
oM = ot |0_-V)\ Uy ® |o..(V @Vh—eyl)
= Po - 2
7 2a,Tm| € e

(B20)

It is easy to verify thaD}' =(1-d,)k%;,, 1"/ \e,. Substitut-
ing this result into the corrected E@B16), the final lattice
Boltzmann model given by Eq72) is recovered. It is inter-

esting to highlight that for noninteracting particles, i.e., when
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