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PHYSICAL REVIEW B, VOLUME 65, 155105
Exact thermodynamics of an extended Hubbard model of single and paired carriers in competition

Fabrizio Dolcini* and Arianna Montorsi†

Dipartimento di Fisica and Unita` INFM, Politecnico di Torino, I-10129 Torino, Italy
~Received 11 October 2001; published 27 March 2002!

By exploiting the technique of Sutherland’s species, introduced in Phys. Rev. B63, 121103, we derive the
exact spectrum and partition function of a one-dimensional extended Hubbard model. The model describes a
competition between dynamics of single carriers and short-radius pairs, as a function of on-site Coulomb
repulsion~U! and filling (r). We provide the temperature dependence of the chemical potential, compressibil-
ity, local magnetic moment, and specific heat. In particular the latter turns out to exhibit two peaks, both related
to ‘‘charge’’ degrees of freedom. Their origin and behavior are analyzed in terms of kinetic and potential
energy, both across the metal-insulator transition point and in the strong-coupling regime.
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I. INTRODUCTION

In condensed matter, electron systems in regimes of h
correlation are known to be suitably modeled by the Hubb
Hamiltonian2 and its generalizations.3–9 For such models, the
finite-temperature properties are the ultimate results wh
theoretical investigations~numerical or analytical! aim to
reach, in view of comparisons to experimental data. Ind
some observables exhibit intriguing features as a function
the temperature, which deserve an accurate interpretatio

In particular, the thermodynamics of the standard Hu
bard model has been widely investigated. InD51 this was
done by different exact approaches: in Refs. 10 and 11 an
Ref. 12 for the usual case of nearest-neighbor hopping, w
in Ref. 13 for the case of long-range hopping. In dimensio
greater than 1 recent results were obtained by exact di
nalization on small clusters14,15 and numerical
investigations,16,17 whereas the caseD5` has been exam
ined in Ref. 18 by iterated perturbation theory.

All the results show interesting behaviors as a function
temperature, with varying the filling and the Coulomb rep
sion. This is the case, for instance, for the specific h
where a double-peak structure as well as the appearanc
quasiuniversal crossing points were found, which featu
were already noticed in some experimental data.19,20 In the
strong-coupling regime the presence of a two-peak struc
is usually related to the so-called ‘‘spin’’ and ‘‘charge’’ de
grees of freedom. Numerical results in one11 and two
dimensions16,17 show that, at least at half-filling, such stru
ture survives also at moderate couplings.

Contrary to the ordinary Hubbard model, which has be
approached through several techniques, for the exten
Hubbard models most finite-temperature results have b
carried out by means of mean-field theories.7 In one dimen-
sion, however, it is known that traditional approaches
many-body systems such as mean-field or Fermi-liquid th
ries are either unreliable or inapplicable. As a conseque
both numerical techniques~like the density matrix renormal
ization group21! and nonconventional analytical approach
~like bosonization22! have to be supported by compariso
with exact solutions, whenever available; this is basically
0163-1829/2002/65~15!/155105~13!/$20.00 65 1551
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reason for the growing interest devoted to finite-temperat
exactresults.

The main technique within exact approaches to o
dimensional~1D! systems is the Bethe ansatz~BA!, either in
the coordinate23 or in the algebraic24 formulation. Such tech-
nique amounts to guessing for a given model eigenstate
the form proposed by Bethe,25 and in particular it has been
extensively applied to models of correlated electrons; for
stance, the BA equations for a wide class of integrable
tended Hubbard models26 have been recently derived in Re
27. However, the actual solution of these equations, i.e.,
evaluation of the quantum numbers characterizing the sys
~quasi momenta!, is in general quite difficult, and some hy
pothesis on their distribution~string hypothesis28! has typi-
cally to be conjectured. In order to derive the complete
lution and calculate thermodynamic quantities, one is th
reduced to solving a system of infinitely many coupled in
gral equations, which requires dramatic numerical effo
More recently, considerable progress has been achie
through the alternative approach of the quantum tran
matrix,29 which yields dealing with only a finite number o
coupled integral equations. This has been done for the o
nary Hubbard model12 and for thet-J model,30 as well as for
an extended Hubbard model with bond-charge interactio31

Nevertheless, determining the actual properties of a mo
at finite temperature for arbitrary parameter values rema
in general a very hard task, even when the model is prove
be integrable and its ground-state features are possibly
rived.

In the present paper we present the exact thermodyna
of a one-dimensional extended Hubbard Hamiltonian~de-
scribed in Sec. II! whose exact analytical ground-state pro
erties were obtained in Ref. 1 by a technique different fro
the BA. We called that technique the Sutherland species~SS!
technique, and here we show how it can be exploited
derive explicitly the whole spectrum and the partition fun
tion of the model~Sec. III!. In Sec. IV we calculate some
thermodynamic quantities: namely, the chemical potent
the compressibility, the local magnetic moment, and the s
cific heat. In particular in Sec. IV D we focus on the speci
heat, which turns out to exhibit a two-peaks structure. T
origin of such structure and the differences with respec
the standard Hubbard model are discussed in Sec. V.
©2002 The American Physical Society05-1
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II. MODEL

The Hamiltonian we are interested in reads

Ĥ52t (
^ i , j &,s

~12n̂i 2s!cis
† cj s~12n̂ j 2s!

1Y(
^ i , j &

ci↑
† ci↓

† cj↓cj↑1U(
i

n̂i↑n̂i↓ . ~1!

Here cis
† ,cis are fermionic creation and annihilation oper

tors on a one-dimensional chain withL sites,sP$↑,↓% is the
spin label, n̂ j s5cj s

† cj s , and ^ i , j & stands for neighboring
sites. The Fock spaceF of the system is the product of theL
four-dimensional vector spacesVj related to each sitej; each
Vj is spanned by the basisu↑& j ,u↓& j ,u0& j ,u↓↑& j , which we
shall also denote in the following asuea& j , a51, . . . ,4,
respectively. We shall adopt for the 1D latticeopenboundary
conditions; as usual, these are not expected to affect the
sults in the thermodynamic limit.

In the Hamiltonian~1! the three terms~which will also be
denoted asHt , HY , and HU) represent, respectively, th
kinetics of single carriers, the kinetics of paired carriers, a
the on-site Coulomb repulsion.

More explicitly, Ht describes the hopping of single ele
trons towards empty sites. This term is thus reminiscen
the so-called ‘‘U5` Hubbard model.’’ An important differ-
ence must be however highlighted: the latter model re
P(^ i , j &,scis

† cj sP, whereP5) i(12n̂i↑n̂i↓) projects the dou-
bly occupied sites out of the Hilbert space~which in that case
is actually 3L dimensional!; in contrast, the termHt in Eq.
~1!, although not involving pairs, does not exclude their pr
ence in the state of the system.32

The second term in Eq.~1! is in contrast a kinetic term o
pairs only; it is worth stressing that the model deals w
pairs having a very short radius; in fact, while in mode
such as BCS one has several pairs within a radius of
coherence length, here the radius of a pair is thought o
small with respect to the lattice constant and is actually ta
as zero. This kind of term is also used in the so-cal
Penson-Kolb-Hubbard model~see Ref. 8!, where one inves-
tigates the effects of the pair dynamics without explici
entering the microscopic mechanism yielding th
formation.33 We also point out that the first and second ter
in Eq. ~1!, though describing the kinetic of different kind o
carriers~single and pair, respectively!, do notcommute at all.

The third term is traditionally the most important term f
Hubbard-like models; indeed, according to Hubbard’s p
ture, it is the parameter that should drive the metal-insula
transition in the d-transition-metal compounds. Loose
speaking, the ratioU/t can be thought as proportional to th
inverse of the pressure applied on the sample: by increa
the pressure one reduces the lattice spacing and thus m
the hopping amplitude more relevant with respect toU.

The first two terms of the Hamiltonian are in general co
peting: indeedHt would favor delocalized waves of singl
carriers, avoiding the formation of pairs;HY lowers instead
the energy when electrons form tightly bound pairs mov
along the chain. This competition is in addition modulated
15510
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both the term inU and the filling, i.e., the densityr of
electrons in the chain. This can be seen by examining
case

Y52t. ~2!

Indeed for this value of the coupling constant the model
been proved to be integrable26 and the exact ground-stat
phase diagram~reported in Fig. 1! has been obtained in Re
1. TuningU andr the model exhibits interesting features; f
instance, even when the value of filling isr,1 and at mod-
erate (U,2t) Coulomb repulsion, it is energetically favo
able for the system to form pairs and let them move inst
of having only singly occupied sites.

In region I the ground state~g.s.! is made of only doubly
occupied and empty sites; in region II we have also sin
occupied sites~either u↑& or u↓&). In region III-a the g.s. is
that of theU5` Hubbard model and is made of singly o
cupied sites~metal!. In region III-b the g.s. of the mode
reduces to that of the atomic limit of the Hubbard mod
~insulator!. At half-filling ( r51) a charge gapDc5U22t
opens for anyU>2t.

We wish to stress that, unlike many exactly solved el
tron systems, the model~1! is not particle-hole invariant:
indeed the first term breaks up the invariance; this lead
the shape of the phase diagram shown in Fig. 1, which
asymmetrical with respect to half-filling.

III. SPECTRUM OF THE SYSTEM

In the following we shall assumeY52t, since such a
relation allows for the integrability, as observed above.
this case, the Hamiltonian~1! can be rewritten in the form

Ĥ5(
^ i , j &

T̂i , j1U(
i

n̂i↑n̂i↓ , ~3!

FIG. 1. Ground-state phase diagram of the model~1! for Y5t,
from Ref. 1. Open, barred, and solid circles, respectively, repre
empty, singly occupied, and doubly occupied sites in the gro
state.
5-2
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EXACT THERMODYNAMICS OF AN EXTENDED HUBBARD . . . PHYSICAL REVIEW B65 155105
whereT̂i , j accounts for the first two interaction terms in E
~1!. The term in U is easily checked to commute wit
(^ i , j &T̂i , j . Due to the condition~2!, T̂i , j , exhibits the struc-
ture of ageneralizedoff-diagonal permutator between phys
cal species~PS!, which are the local vectorsuea& ’s. More
explicitly, while the ordinary off-diagonal permutator, whe
acting onuea& j ^ ueb& j 11, returnsueb& j ^ uea& j 11 for any a
Þb and zero fora5b, a generalized one makes the e
change or gives zero according to the specific values oa

andb. In our case,T̂i , j permutes the PS of two neighborin
sites only if one belongs to groupA and the other to groupB,
where

A5u↑&,u↓&,u↓↑&, B5u0&. ~4!

In all the remaining casesT̂i , j gives zero. The above group
A andB of PS can be identified with the Sutherland spec
of the model~1! ~see Ref. 1!; the notion of SS is strictly
related to the structure of the Hamiltonian and not to tha
the underlying Hilbert space.34 In D51 a generalized per
mutator between PS has the same eigenvalues as an ord
permutator between the corresponding SS. This is actu
what allows us to provide the exact spectrum, as we shall
below.

The Fock spaceF of the system isF5 % N50
2L HN , where

HN is theN-electron Hilbert space (N̂5( i 51
L n̂i↑1n̂i↓). How-

ever, due to the properties of the Hamiltonian, it turns ou
be useful to rearrangeF in terms of HNA

, i.e., the spaces

spanned by all vectors that have a definite numberNA of
sites occupied by states of speciesA ~‘‘ A sites’’ henceforth!.
ClearlyNB5L2NA . According to the properties of the gen
eralized permutator fulfilled byH, the latter commutes with
N̂A5( i 51

L n̂i↑1n̂i↓2n̂i↑n̂i↓ , and thusHNA
is preserved by

the dynamics~this would hold in any dimension!. In addi-
tion, dealing with an open chain, one can have 3NA possible
sequencesS of A sites for a fixed numberNA . Notice also
that, since~i! the first term of Eq.~3! only permutesA with B
and gives zero otherwise and~ii ! the second term merel
counts the number of doubly occupied sites, also the
quenceS is preserved by the dynamics, and it can be id
tified with an invariant subspace withinHNA

. The dimension

of each of these 3NA subspaces is (NA

L ), accounting for all

possible actual positions ofA sites along the chain. One ca
repeat the above foliation for allHNA

’s (NA runs from 0 toL)
and check that the Fock space is completely recovered:

(
NA50

L

3NAS L
NA

D54L, ~5!

so thatF5 % NA50
L HNA

.

Focusing on a givenHNA
, one can characterize each of i

basis vector by specifying two discrete-valued functio
S(m) andJ(m) (m51, . . . ,NA). The former, which is val-
ued 1~for u↑&), 2 ~for u↓&), or 3 ~for u↓↑&), determines the
sequenceS of A sites and, thus, the invariant subspace
which the vector lies; the latter, which is valued 1 toL,
15510
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determines the actual positions of themth A site along the
chain. The basis vectors can therefore be referred to
u$S%,$J%&, where ‘‘$ %’’ is to remind one thatS and J are
functions.

In realizing that the Hamiltonian can be separately dia
nalized within each subspace characterized by a givenA se-
quenceS, it is also crucial to observe that each such invaria
subspace can be put in a one-to-one correspondence wit
states ofNA spinless fermion space~or equivalently with a
spin-1/2 model with magnetizationL2NA) as follows:

u$S%,$J%&↔S )
m51

NA

aJ(m)
† D u0&, ~6!

wherea† are the creation operators for a spinless fermio
and $S% the sequence of the subspace.

Similarly to what has been done in Ref. 6 for anoth
extended Hubbard model, it is also easy to derive the form
an effective Hamiltonian for the spinless fermion states:
deed, since the first term in Eq.~3! reduces to a permutato
between SS, it actually acts on the considered subspac
the same way as a free Hamiltonian2t(^ i , j &ai

†aj acts on the
spinless problem space. The second term simply counts
number of speciesA of kind u↓↑&, namely, N↑↓
5( i 51

L ni↑ni↓[N2NA . Therefore the spectrum in each su
space is given by

E~$nA%;N!5 (
k51

L

~22t cosk2U !nk
A1UN, ~7!

where$nk
A% are quantum numbers valued 0 or 1,k5p l /(L

11) (l 51, . . . ,L), andN is the total number of electron
~which ranges fromNA to 2NA). The eigenvectors are give
by the antitransform through Eq.~6! of spinless fermion
eigenstates@)k( i 51

L sin(ki)ai
†#u0&, where the product is ove

NA of the L allowed values ofk.
When passing from a subspace ofHNA

to another, one
finds an identical replica of this spectrum, which amounts
having a degeneracy of the eigenvalues. The degenerag
corresponds to the different ways in which one can choos
speciesA at a given site provided thatN remains unchanged
~i.e., one has the freedom to change singly occupiedu↑& into
u↓& and vice versa!; it is therefore easily seen that

g„E~$nk
A%;N!…522NA2NS NA

N2NA
D . ~8!

To conclude this section, we wish to emphasize that the sp
trum ~7! has been derived by means of the Sutherland s
cies technique underopenboundary conditions. In fact the
same model was also studied underperiodic boundary
conditions,27 within the algebraic Bethe ansatz approac
However, in the latter case the resulting equations for
quantum numbers do not allow a straightforward evaluat
of the eigenvalues; indeed the thermodynamics of Eq.~1!
had not been derived yet.
5-3
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IV. THERMODYNAMICS

Thanks to the exact spectrum obtained in the previ
section, we can now pass to the study of its thermodynam
through the exact calculation of the grand partition functio
The language of Sutherland’s species turns out to be v
useful to this aim; indeed, due to the rearrangement of
Fock space described above, one can write

Z5Tr~e2b(H2mN̂)!

5 (
$nk

A%
(

N5NA

2NA

22NA2NS NA

N2NA
D

3expS 2bF (
k51

L

~22t cosk2U !nk
AG2b~U2m!ND

5 (
$nk

A%

~21e2b(U2m)!NAexpS (
k51

L

@b~2t cosk1m!#nk
AD

5)
k51

L

„11exp$b@2t cosk1m1n~U,b,m!#%…, ~9!

where we have definedn(U,b,m)5 ln(21e2b(U2m))/b, b
51/(kBT) being the inverse temperature andm the chemical
potential as usual.

The grand potential is easily obtained asv5v(b;U;m)
52 limL→`b21(ln Z/L). After introducingme f f5m1n, v
reads

v~b;U;m!

52
1

pbE0

p

dk ln„11exp$b@2t cosk1me f f~U,b,m!#%….

~10!

Remarkably, the grand potential is formally similar to that
a tight-binding model with aneffectivechemical potential
me f f . We stress thatme f f(U,b,m) depends on the on-sit
Coulomb repulsion, the temperature, and the chemical po
tial in a highly nonlinear way. This yields peculiar features
the model, as we shall show in the following.

In deriving the thermodynamics of the system, it is cu
tomary to eliminatem in favor of the fillingr; the latter can
be computed asr52]v/]m, and the result turns out to b
of the following form:

r~U,b,m!5@11C~U,b,m!#rA„b,me f f~U,b,m!…,
~11!

where

C~U,b,m!5
exp@2b~U2m!#

21exp@2b~U2m!#
~12!

and

rA~b,me f f!5
1

pE0

p dk

11exp@b~22t cosk2me f f!#
.

~13!

Notice that differentiatingv with respect tome f f instead of
to m would yield only the right factorrA of Eq. ~11!; the
15510
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nonlinearity ofn as a function ofm results in the appearanc
of C in the left factor; this causes the relationm
5m(r;T;U) implicitly defined by Eq.~11! to be very differ-
ent from that of a tight-binding model, as we shall explicit
show in next section.

The two factors in Eq.~11! deserve some comment:rA is
nothing but the density ofA sites along the chain, defined a
rA5 limL→1`^N̂A&/L; the functional dependence ofrA on b
and me f f is that of a spinless tight-binding model. The le
factor provides information, through the functionC, about
the kind of occupancy of the sites of the chain; indeed wh
C;0 most of the occupied sites are singly~s! occupied,
whereas ifC;1 most of the occupied sites are doubly~d!
occupied; intermediate values indicate the percentaged
with respect tos sites.

To conclude this section we wish to comment about
energy~per site! of the system; the latter is obtained byE
52 limL→`](ln Z/L)/]b1mr and reads

E~U,b,m!

5
1

pE0

p

dk
22t cosk2U

11exp$b@22t cosk2me f f~U,b,m!#%
1Ur.

~14!

Equation~14! naturally allows one to identify inE a kinetic
energyK and a potential energyP. The former is defined as
the weighted integral of22t cosk and the latter as the
weighted integral of2U, which actually gives2UrA , ac-
cording to Eq.~13!. In fact the actual potential energy woul
also contain the last termUr of Eq. ~14!; however, since this
is merely a constant with respect to temperature, we pr
not to include it in the definition ofP, so that the latter
describes the only temperature-dependent part of the po
tial term Un̂i↑n̂i↓ . Notice that with this choice the potentia
energy is attracting for positiveU. Notice also that, although
K andP are clearly related to the hopping terms and to
on-site Coulomb repulsion, respectively, they are not mu
ally independent: indeedK depends not only ont but alsoU
and vice versa forP. We shall come back to this point in
discussing the specific heat in Sec. V.

A. Chemical potential

The chemical potentialm(r;T;U) of our model is shown
in Fig. 2 atU5t ~a! andU54t ~b! for different values of the
temperature.

Focusing first on the solid curves, representing the c
T50, one can realize that even in the ground state the r
tion betweenm andr is quite different from that of a spin
less tight-binding model, which would readm(r;T50)
522t cos(pr).

In particular, in Fig. 2~a! we notice that a ‘‘plateau’’ ap-
pears, in correspondence with region II of the ground-st
phase diagram~see Fig. 1!. Interestingly, such a shape re
minds us of that of a coexistence region connecting the ph
of single carriers~region III-a! to that of pair carriers~region
I!; this would imply that, as the filling is increased, the 1
lattice starts exhibiting macroscopic regions made of o
single carriers separated by other macroscopic regions w
only pairs are present. In fact, eigenstates with such feat
5-4
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are certainly present; however, they are degenerate
other eigenstates, in which single and pair carriers altern
with no macroscopic order. This is basically due to the
generacy ofA sequences in such a region.

In Fig. 2~b! a vertical jump is instead present at ha
filling, as a hallmark of the opening of the charge gap. T
flat part of the solid curve forr.1 just coincides with the
atomic limit behavior~region III-b of Fig. 1!.

Considering now the curves at finite temperature of F
2, one can observe how the edges present atT50 smoothen
as soon asT.0. A remarkable feature is the presence in F
2~b! of a nearly universal point (r* 54/3, m* 5U), where
all the curves of sufficiently low temperature basically inte
sect. Such kinds of points are in general determined thro
the conditions]m/]T50 and]2m/]T250. It is in fact pos-
sible to calculate that for anyU.2t andr.1 ~region III-b
of Fig. 1! the low-temperature behavior ofm is given by

m.U1kBT lnS 2~r21!

22r D1O~e2(U22t)/kBT!, ~15!

whence the above conditions are both fulfilled up to ex
nentially small terms inkBT/t.

We shall also see in Sec. IV D that nearly universal cro
ing points are exhibited by other observables of the mo
such as the specific heat.

Equation~15! also points out that in our model alinear
low-temperature behavior is possible, differently from t
tight-binding model, where only even powers inT are al-
lowed in the Sommerfeld expansion. In general, in o
model, different behaviors ofm arise according to the value
of U andr. For instance, forU andr belonging to the mixed
region II of Fig. 1, the chemical potential at low temperatu
has again a linear term,

FIG. 2. The relation betweenr andm for different temperatures
at U/t51 ~a! andU/t54 ~b!. For T50, the curve in~a! shows a
plateau, related to ‘‘phase coexistence’’ in mixed region II of Fig.
whereas the curve in~b! exhibits a jump inm, due to the opening of
charge gap at half-filling.
15510
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m.U1kBT lnS 2~r2 r̄ !

2r̄2r
D 1O„~kBT/t !2

…, ~16!

but with a coefficient which depends onU, sincer̄5 r̄(U)
5p21cos21(2U/2t).

In contrast, when the charge gapDc5U22t opens~i.e.,
at r51 andU.2t), m acquires a highly nonlinear form

m.2t1
Dc

2
1

kBT

4t
lnS kBT

4pt D , ~17!

indicating that the behavior is definitely different to that
an intrinsic semiconductor.

In Fig. 3 we explicitly examine the behavior ofm as a
function of temperature for a fixed value of on-site Coulom
repulsion (U/t51) and for different fillings. A main differ-
ence has to be emphasized with respect to the case
tight-binding model: in the latter the curves ofm are specular
for filling values that are symmetric with respect to half fi
ing ~i.e., m→2m for r→22r), whereas this is not the cas
in our model, due to the fact that it is not particle-hole i
variant.

B. Compressibility

The compressibilityk5]r/]m can be easily evaluate
through Eq.~11!. In Fig. 4 we have plottedk as a function of
the temperature for a fixed value ofU ~namely,U/t51.0)
and for different fillings. One can observe the change in

,

FIG. 3. The behavior ofm as a function of temperature for fixe
U/t51 and different values of filling. The asymmetry with respe
to the half-filled caser51 is ascribed to the lack of particle-hol
invariance of the model.
5-5
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low-temperature behavior when tuning the filling: atr50.5
the behavior is regular, while at half-fillingk undergoes a
singularity for T→0; eventually (r51.5) its behavior is
again regular. The reason for the low-temperature singula
atr51 is that in the ground state the point (U/t51;r51) is
situated in region II~see Fig. 1!, i.e., in the region where the
chemical potential exhibits the plateau, as shown in Fig
such a singularity is indeed present for all values ofU andr
that belong to that region of the ground state. The diverge
of k can be proved to be of the type}T21.

In contrast the behavior forT→0 atr50.5 andr51.5 is
regular since such filling values belong to regions III-a an
respectively.

In Fig. 5 we have examined in detail the case of ha
filling, plotting k as a function ofT for different values ofU;
one can explicitly observe howU52t is the critical value
separating the divergent behavior forU,2t from the regular
one for U.2t. Indeed, as soon asU.2t, the divergence
becomes a pronounced peak ink; the temperatureT* at
which the peak occurs increases with increasingU, similarly
to what happens in the ordinary Hubbard model, accord
to the results of Ref. 12 Notice that in contrast no singu
behavior is expected at moderateU ’s in the ordinary Hub-
bard model at half-filling, since in that case the system
insulating for any positiveU.

FIG. 4. The compressibility as a function of temperature at fix
on-site Coulomb repulsionU/t51.0 and for different filling values.
k diverges asT→0 for values ofU/t and r belonging to mixed
region II of Fig. 1.
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C. Local magnetic moment

The local magnetic moment was first introduced in R
14 and is defined as

l05 lim
L→`

K 1

L (
j

~ n̂ j↑2n̂ j↓!2L . ~18!

It characterizes the magnitude of spin at each site, i.e.,
degree of localization of electrons. In terms of the density
A sites, l0 can be easily rewritten asl05r22r↑↓52rA
2r, whererA can be computed from Eq.~13!. In Fig. 6 we
have reported the local magnetic moment at half-filling
different values of the on-site Coulomb repulsion. One c
observe that the behavior ofl0, even within a relatively
small range of values ofU, is quite rich. In order to describe
it, we first consider the case of small values ofU ~namely,
U51.4t in the figure!; we recall that in the ground state suc
a value corresponds to the mixed region II~see Fig. 1 atr
51), meaning that hopping paired electrons are presen
T50; as the temperature is turned on,l0 first increases with
T ~indicating that the pairs are broken in favor of sing
carriers!; however, after reaching a maximum at a tempe
ture T* , l0 starts decreasing for higherT’s, denoting that
pairs are now reformed by higher thermal excitations. A
cording to the above observations, it easy to realize that
temperatureT* decreases with increasingU; in fact the

d
FIG. 5. The compressibility as a function of temperature at fix

filling r51 and for several values of on-site Coulomb repulsion.
the charge gap opens (U.2t), k acquires an exponential low
temperature behavior.
5-6
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EXACT THERMODYNAMICS OF AN EXTENDED HUBBARD . . . PHYSICAL REVIEW B65 155105
maximum disappears forU.1.85, so thatl0 becomes a
definitely decreasing function of the temperature. AtU
52t, l0 reaches atT50 the saturation value 1~all singly
occupied sites!, with an infinite derivative with respect to th
temperature. Passing throughU52t, an abrupt change in th
low-temperature slope occurs: the curve ofl0 suddenly flat-
tens as soon asU.2t. This reflects the metal-insulator tran
sition occurring in the ground state; indeed the opening
the charge gap causes the formation of pairs to be hig
unfavored at lowT’s.

D. Specific heat

In this subsection we present our results on the spe
heat of model~1! which can be computed through

CV5
dE
dT

52kBb2S ]E
]b

2
]E
]m

]r

]bY ]r

]m D , ~19!

where the energyE is given by Eq.~14!. Below we study the
temperature dependence ofCV when varying the physica
parametersU andr. The exact calculation shows that in o
model a two-peak structure is definitely present not only
the strong-coupling regime, but also at moderateU ’s.

We start by considering the case of half-filling (r51).
The two peaks appear first for 1.3&U/t&1.8 ~see Fig. 7!; in

FIG. 6. Local magnetic moment as a function of the tempera
at half-filling for several values ofU/t. Notice how the low-
temperature behavior abruptly changes across the metal-insu
transition point. The figure indirectly provides also the behavior
rA , sincel052rA2r.
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this range ofU ’s, CV also exhibits a nearly universal cros
ing point atkBT;0.85t; we shall comment on such featur
at the end of this subsection. The peaks eventually me
into one forU/t;1.85. However, as soon asU.2t ~see Fig.
8!, a new well-pronounced low-temperature peak appe
The recovered double-peak structure is present up toU;3t,
where finally only one peak survives.

By comparing Figs. 7 and 8, one can notice that
metal-insulator transition pointU52t is also the hallmark of
a crossover in the low-temperature behavior ofCV . In par-
ticular, the calculation shows that forU,2t the latter is
linear,

CV.
kB

2pA12~U/2t !2 S p2

3
1 ln2

4~12 r̄ !r̄

~2r̄21!2 D kBT

t
,

~20!

wherer̄ is defined as in Eq.~16!. In contrast, forU.2t, CV
exhibits an exponential-like behavior given by

CV.
kB

~4p!1/4S Dc

2t D
2S kBT

t D 7/4

expS 2
Dc

2kBTD , ~21!

whereDc5U22t is the charge gap.
To conclude the study at half-filling we have examin

the case of largeU/t ~see Fig. 9!. The result shows that only
one peak is present, at a temperature which increases al

e

tor
f

FIG. 7. Specific heat as a function ofT at half filling for differ-
ent values ofU/t below the metal-insulator transition value: a tw
peak structure is present, as well as a nearly universal cros
point. The low-temperature behavior is linear.
5-7
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FABRIZIO DOLCINI AND ARIANNA MONTORSI PHYSICAL REVIEW B 65 155105
linearly with U (kBT;0.21U). This result can be under
stood considering that at largeU/t the spectrum~7! exhibits
two different energy scales:~i! a low-energy scale (;t),
which describes fluctuations in theA band, whose effective
filling is given by the value ofrA , and ~ii ! a high-energy
scale~of the order ofU) involving the formation of on-site
pairs, favoring the decrease of the number ofA sites. The
former channel is actually active only forr,1, since at half-
filling the A band becomes completely filled: indeed in th
case we haverA.1 for kBT;t, as can be deduced from Fig
6 of the local magnetic moment at largeU/t.

Only the high-energy channel is thus active, and its c
tribution is well described by the atomic-limit model~i.e., t
5Y50), shown by the dotted curve in Fig. 9. The slig
deviations are due to the fact that, as pairs are formed f
singly occupied sites via thermal fluctuations, the numbe
effective speciesA decreases, and the formedA holes can
produce~relatively small! fluctuations withT. However, the
larger is U/t, the better is the agreement with the spec
heat of the atomic limit.

We also wish to emphasize that the behavior is differ
from that of the ordinary Hubbard model, where two pea
appears at low temperatures in the strong-coupling limi
half-filling. In fact, although in the Hubbard model the low
Hubbard band is filled, spin excitations of low energy (;J

FIG. 8. Specific heat as a function ofT at half filling and dif-
ferent values ofU/t just above the metal-insulator transition poin
the two-peaks structure definitely disappears forU*3t. The low-
temperature behavior is exponential forU.2t.
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54t2/U) are active. These kind of excitations are instead
sent in our model; we shall comment in more detail in Sec
about this point.

In Fig. 10 we investigate the specific heat for filling va
ues below half-filling: namely,r50.75.

As Fig. 10~a! shows, a double-peak structure ofCV ap-
pears; however, two important differences have to be emp
sized with respect to the case of half-filling: in the first i
stance, here the double-peak structure arises and bec
more evident forlarge values ofU ’s, whereas at half-filling
it is present atmoderate U’s; second, the temperatures of th
two peaks are quite higher than the corresponding one
the half-filled case. In particular the position of the low
temperature peak is practically independent ofU, whereas
the high-temperature one strongly depends on it, similarly
what happens for the only peak present at half-filling in t
strong-coupling regime~Fig. 9!.

The two peaks of Fig. 10~a! have to be related to the tw
energy scales emerging in the spectrum whenU@t, as dis-
cussed above; in particular, the low-temperature one is at
uted to the fluctuations of theA band, which is now partially
filled, unlike for half-filling. We recall that in this range o
the parametersU andr, the ground state of the model is th
of the U5` model~region III-a of Fig. 1!; since the forma-
tion of pairs is strongly inhibited for highU ’s, the physics of
low-energy excitations is fairly captured by that of theU

FIG. 9. Specific heat as a function ofT for half-filling and 4t
<U<16t. In the strong-coupling regime, the two-peak structu
disappears: the remaining peak is well described from the atom
limit model ~dotted curve!. A similar behavior is obtained also a
any r.1.
5-8
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EXACT THERMODYNAMICS OF AN EXTENDED HUBBARD . . . PHYSICAL REVIEW B65 155105
5` model at finite temperature, as shown by the solid cu
in Fig. 10~a!. In Fig. 10~b! the caseU/t58 is examined in
detail; in this case the sum of the specific heats ofU5`
model and atomic model practically recovers the actualCV
of our model. Such agreement improves with increasingU,
whereas at moderate values ofU the argument of energy
scale separation does not hold: indeed the high-tempera
peak merges into the low-temperature one forU;2t, andCV
is no longer given as the sum ofU5` and atomic limits@see
Fig. 10~c!#.

We have also considered the case of filling values gre
than 1. In the strong-coupling regime the ground state has
A band completely filled, the sites of the chain being
occupied~either singly or doubly, as shown in region III-b o
Fig. 1!; the low-energy scale is thus frozen, just like in t
case of half-filling. This yields the specific heat behavior
actually described by that of the atomic limit, similarly
Fig. 9. The temperature of the peak grows linearly w
U @kBT.c(r)U#, the coefficientc being an increasing
function of the fillingr.

Figures 11 and 12 examine the filling dependence of
specific heat at fixed coupling values. More precisely, Fig.

FIG. 10. The specific heat as a function of temperature for
50.75. In~a!, CV is plotted for different values ofU/t; ~b! at strong
coupling (U/t58) the specific heat of the model~solid line! is well
reproduced by the sum~dot-dashed line! of the specific heat of the
U5` model~dashed line! and of the atomic limit~dotted line!; ~c!
this is not the case at moderate coupling, where the energy sca
the two models become comparable (U/t52).
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reports the results obtained in the strong-coupling case
anticipated above, in this case the low-temperature pea
perfectly recovered from theU5` model; notice that, since
the latter is particle-hole symmetric around quarter-filli
(r50.5), the low-temperature behavior of curves related
filling values that are symmetric with respect tor50.5 is
basically identical. In contrast, the higher-temperature p
does not exhibit such symmetry, being related to the ato
limit of the Hubbard model, which is no more particle-ho
symmetric around quarter-filling.

Figure 12 is concerned with the behavior at moderateU ’s
~namely,U/t51.5) as a function ofr; the remarkable feature
is the appearance of a nearly universal crossing point at
temperature (kBT;0.2t) for a finite range of filling values
(1.0&r&1.3). Similarly, a nearly universal crossing poi
also occurs at fixed filling for varyingU, as Fig. 7 shows.
The latter type of behavior is also exhibited by the ordina
half-filled Hubbard model;12,13,17,18however, to the authors
knowledge, theoretical investigations were mostly limited
the case of fixed filling and varyingU/t. In contrast, here we
have explored the case of varyingr as well; this is interest-
ing in view of a comparison with experimental results, whe
U/t can be roughly interpreted as the inverse pressure
d5u12ru as the doping. In fact, this type of universal b
havior has been observed in many heavy-fermion co

of

FIG. 11. The specific heat as a function of temperature at str
coupling andr,1. The low-temperature behavior is the same
values ofr symmetric with respect tor50.5: indeed in this case
low-energy excitations are well described by theU5` Hubbard
model, which is particle-hole invariant around quarter-filling. D
ferences instead emerge at high temperatures.
5-9
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FABRIZIO DOLCINI AND ARIANNA MONTORSI PHYSICAL REVIEW B 65 155105
pounds, such as the cerium ones, both at fixed doping
varying pressure,19 and at fixed pressure with varyin
doping.20 Let us notice that, for the ordinary Hubbard mod
the presence of the nearly universal point inU has been
explained in Ref. 35, as a consequence of the fact that
entropySat high temperatures does not depend onU, in that
case. For our model,S at high temperatures is also indepe
dent of U; however, it turns out that itdoesdepend onr.
Hence we expect that the argument in Ref. 35 cannot
applied to explain the nearly universal crossing point inr
shown in Fig. 12.

Finally, the specific heatCV is investigated in Fig. 13 also
for negative values of the Coulomb interaction, at ha
filling. The behavior is quite different with respect to th
positive-U case for moderate and intermediateU values,
since no double peak is present.

In contrast, such structure emerges at higher coupling
ues; also in this case two separate energy scales em
However, the low-temperature peak is now reproduced
that of theXX0 model (t50), whose ground state actual
coincides with that of our model, for these values ofU andr
~see region I in Fig. 1!. The high-temperature peak is st
due to the negative-U atomic limit (t5Y50). In Fig. 13~b!
it is clearly shown how, in the strong-coupling case, t
simple sum of the specific heats ofXX0 and atomic limit
perfectly reproduces the result for our model; this is not
case by at lowerU values.

FIG. 12. The specific heat as a function of temperature in
moderate-U regime. A nearly universal crossing point with varyin
r at fixedU is observed for values ofr in the range 0.9&r&1.3.
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V. DISCUSSION

As outlined in the previous section, our results show t
the specific heat exhibits a two-peak structure for differ
values of on-site Coulomb repulsionU and filling r. In the
present section we wish to discuss the origin of the t
peaks, since in the last few years much effort has been m
to clarify a similar behavior occurring in the ordinary Hub
bard model. As mentioned in the Introduction, in the lat
model the two peaks are usually explained in terms
‘‘spin’’ and ‘‘charge’’ excitations.

The above argument cannot be applied here, since
model involves only charge degrees of freedom: in fact, fr
the formal point of view of quantum numbersnk

A , the exci-
tation processes in the spectrum~7! have the typical feature
of charge excitations~in the sense ofA species!. It is, how-
ever, worth emphasizing that, just like for the ordinary Hu
bard model, the nomenclature based on quantum num
does not strictly correspond to itsphysicalmeaning. In our
case, the charge degrees of freedom ofA species actually
carry bothchargeandspin density fluctuations: the breaku
of a localized pair into two single carriers indeed leads t
redistribution of the charge density as well as to the form
tion of a triplet replacing a singlet state.

In our model any peak of the specific heat has thus to

e

FIG. 13. The specific heat as a function of temperature at h
filling for negative values ofU. ~a! The double peak emerges asuUu
is increased.~b! In the strong-coupling regime (U/t5215.0), CV

is fairly reproduced by the sum of theXX0 contribution~dashed
line! and the atomic limit contribution~dotted line!.
5-10
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EXACT THERMODYNAMICS OF AN EXTENDED HUBBARD . . . PHYSICAL REVIEW B65 155105
ascribed just to charge excitations. We have seen in
IV D that, when varying the parametersU andr, the peaks
can merge into one and possibly reappear. In the follow
we shall discuss such a structured behavior through the
netic and potential contributions toCV : namely, the deriva-
tivesK8 andP8 with respect to the temperature ofK andP,
defined when giving the internal energy~14!.

We start by the case of the strong coupling (U@t), where
our results show a two-peak structure for positiveU and r
,1 @see Fig. 10~b!#, as well as for negativeU at any filling
@see Fig. 13~b!#. Since in these regimes the characteris
energy scales of the kinetic term~t! and the potential term
~U! of the Hamiltonian are well separated, it is expected t
each of the two peaks is related to one of these terms. In
14 we have thus plottedK8 and P8 for U/t516 and r
50.75: the two peaks are indeed in perfect corresponde
with the contributions ofK andP. It is also worth stressing
that these two contributions can be quite well described
strong coupling in terms of two different models: explicitl
the low-temperature kinetic behavior is captured by theU
5` model for positiveU ’s @Fig. 10~b!# and by theXX0
model for negativeU ’s @Fig. 13~b!#; the high-temperature
potential behavior is instead described by the atomic lim

FIG. 14. The kinetic~dashed line! and potential~dotted line!
contributions to the specific heat~solid line! at strong coupling
(U/t516) for r50.75. The low-temperature peak is basically d
to K8, while the high-temperature peak stems fromP8. In this re-
gime (U@t), K8 is also well described by the specific heat ofU
5` Hubbard model andP8 by that of the atomic limit~dashed and
dotted curves of Fig. 10!.
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In contrast, in the regime of moderateU ’s the two energy
scales become comparable, and the above argument is
applicable. This gives rise to a completely different scena
for instance, at half-filling we observe that by loweringU the
single strong-coupling peak splits into two, whereas forr
,1 the two strong-coupling peaks merge into a single o
In practice, while foruUu@t the kinetic and potential term
decouple, at moderateU ’s it is the competitionbetween the
two kinds of energy that determines the actual shape of
specific heat.

This can be understood by recalling the structure of
energy spectrum@see Eq.~7!#; both terms can be expresse
in terms of the quantum numbersnk

A , where the total numbe
of A sites is not a fixed quantity, but can vary in the ran
NAP@N/2;N# ~the electron numberN being obviously fixed!.
This property actually yields the competition betweenP and
K: indeed the kinetic term may favor the decrease ofNA , in
order to eliminate possible positive contributions of
22t cosk, whereas the potential term favors the increase
NA ~i.e., the breaking of on-site pairs!. This competition is
already active atT50, causing the appearance of the diffe
ent regions in the ground-state phase diagram.

At finite temperature two more mechanisms enter driv
such competition:~i! the densityrA of A carriers varies with
T, according also to the values ofU andr, and~ii ! the kinetic
term exhibits the usual thermal fluctuations. The former r
resent the crucial difference with respect to an ordinary f
spinless fermion model, where only thermal excitations
present, atfixednumber of carriers. Notice also that the va
ability of rA can happen to contrast the effect of therm
fluctuations: this is the case whenrA decreases withT, since
this would yield a reduction ofK, while thermal fluctuations
would lead to an increase of it. As a consequence, a fur
competition, concerned with the purely kinetic contributio
may occur.

In Fig. 15 we plot the derivativesK8 andP8 of the kinetic
and potential parts for various moderateU ’s at half-filling.
Starting fromU/t51.6 we observe that at low temperatur
both K8 andP8 exhibit a peak at nearly the same tempe
ture T1; this is due to the fact that in this regime they a
driven by the same mechanism~formation of pairs from sin-
gly occupied sites!. The two contributions of opposite sign
do not completely cancel each other; the kinetic one prev
ing, a kinetic low-temperature peak appears inCV . Notice
that the value ofCV at the peak is relatively small with
respect to that ofK8 and P8; this is just the hallmark of a
competition between the two contributions.

At a higher temperatureT.T2, located in between the
two peaks ofCV , K8 has a flat minimum andP8 a flat
maximum. Finally, at still higher values of temperature,K8
exhibits a second maximum atT3, andP8 is smoothly de-
creasing; in correspondence,CV exhibits the second peak, o
kinetic origin.

As U is increased@Fig. 15~b!#, the value ofT1 decreases
and the absolute height of both the above contributions d
tically vanishes, so that the low-temperature peak becom
sort of ‘‘shoulder.’’ At the same time, the minimum of th
kinetic contribution and the maximum of the potential co
5-11
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FABRIZIO DOLCINI AND ARIANNA MONTORSI PHYSICAL REVIEW B 65 155105
tribution located aroundT2 have become more pronounce
andT2 itself has decreased@see Fig. 15~c!#. As U reaches the
value 2t of the metal-insulator transition, bothT1 and T2
vanish and the magnitude of the corresponding extrema
comes infinite @Fig. 15~d!#. For U.2t @Figs. 15~d! and
15~e!#, the T2 extrema are regularly restored and, since
T1 extrema have disappeared, they become the new
temperature extrema. At this temperatureCV exhibits now a
new peak. Thus, forU.2t, the potential contribution pre
vails on the kinetic one, and the nature of the lo
temperature peak changes with respect to the caseU,2t.
Notice thatT2 now increases withU @Figs. 15~e! and 15~f!#.
Finally, at higher temperatures another broad peak origin
from the ~old! second maximum of the kinetic part. Such
high-temperature (T3) peak is very broad, and it definitel
disappears whenU is further increased above 3t.

The above observations show that at half-filling, pass

FIG. 15. The temperature dependence of the kinetic~dashed
line! and potential~dotted line! contributions to the specific hea
~solid line!, in units of kB , at half-filling and different moderate
values ofU. Contrary to the caseU@t of Fig. 14, at moderate
couplingK8 andP8 are competing, since they have relatively lar
contributions of opposite signs at roughly the same temperat
The peaks ofCV are thus ‘‘kinetic’’ ~‘‘potential’’ ! when K8 (P8)
prevails on the other. Notice that the low-temperature peak cha
its origin from kinetic to potential across the metal insulator tran
tion point; the high-temperature one, present up toU/t.2.5, is
instead always of kinetic origin.~For editing reasons the two bo
tom figures have a differenty-axis scale.!
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through the pointU52t of the metal-insulator transition, th
nature of the low-temperature peak changes its origin fro
kinetic to a potential one, whereas at moderateU ’s a further
peak of kinetic origin appears at higher temperatures.
passing let us also notice that at strong coupling a kin
~potential! peak is a peak to which onlyK8(P8) basically
contributes,P8(K8) being almost vanishing~see Fig. 14!; in
contrast, at moderateU ’s a kinetic~potential! peak is a peak
for which the kinetic contribution slightly prevailing on th
potential~kinetic! one.

The results obtained for our model can be compared w
those concerning the ordinary Hubbard model. In the stro
coupling regime of this model the low-temperature peak
attributed to spin excitations~the corresponding temperatur
being of the order of J54t2/U), whereas the high-
temperature peak is related to the charge excitations~since it
is located atkBT;U). With lowering U, it is widely ac-
cepted that the two peaks merge atU.4t; however, some
investigations have been carried out at still lowerU ’s, show-
ing that a double-peak structure reappears forD51 ~Ref. 11!
and D52 ~Refs. 16 and 17!. It is customary to relate the
origin of these new peaks again to spin and charge degree
freedom, respectively.

The Hubbard model is considered the paradigm wit
strongly correlated systems, so that the presence of a
peak structure in the specific heat of such systems tends n
rally to be interpreted as the signature of spin and cha
excitations.

However, in the authors’ opinion, not enough attenti
has been devoted to the effect that further interaction te
in the Hamiltonian have on the specific heat. To this purpo
the exact results obtained for our model show that, whe
possible competition between single and paired carrier
taken into account, the specific heat turns out to exhib
structured two-peak behavior, in spite of the fact that o
charge degrees of freedom are involved. Although our mo
neglects some terms such as the nearest-neighbor charg
teraction (;Vn̂isn̂ j s8), we believe that it can reproduc
some features of realistic materials which are not explic
taken into account in the ordinary Hubbard model: name
~a! the opening of the gap at afinite value ofU/t, i.e., at a
finite value of pressure on the sample;~b! the lack of
particle-hole symmetry, observed in heavy-fermion co
pounds; and~c! the presence of a mechanism favoring t
kinetic of paired carriers, as is the case in cuprate superc
ductors. In view of these observations, we suggest that
interpretation of a two-peak structure inCV may not neces-
sarily be related to spin and charge excitations; a compar
with the behavior of pure spin quantities, such as magn
susceptibility, in correspondence of the peaks tempera
would be more probative.

VI. CONCLUSIONS

In this paper we have calculated the exact thermodyn
ics of an extended Hubbard model by means of the Sut
land species technique, which we had previously introdu
to determine the ground-state properties of the same mo1

The model describes a competition between the dynamic
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EXACT THERMODYNAMICS OF AN EXTENDED HUBBARD . . . PHYSICAL REVIEW B65 155105
single carriers and that of short-radius paired carriers; s
competition is modulated by the values of the electron filli
r and on-site Coulomb repulsionU. We have calculated the
partition function of the model and derived the finit
temperature behavior of different physical quantitie
namely, the chemical potential, the compressibility, the lo
magnetic moment, and the specific heat. We have discu
the changes of such observables across the point of
metal-insulator transitionU52t, providing explicit low-
temperature expressions forCV and m; in particular m is
found to undergo an unusual transition from a linear to
T ln T dependence. We have then focused on the spe
heat, which turns out to exhibit interesting features, such a
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nearly universal crossing point and a double-peak struct
The two peaks, which are shown to be related to cha
degrees of freedom only, are present in ranges ofU/t both
below and above the metal-insulator transition value.
have discussed the two peaks in terms of the kinetic
potential contributions to the spectrum, outlining the diffe
ences between the cases of strong coupling and mod
coupling, and comparing our results with that of the ordina
Hubbard model.

The method presented here to derive the partition func
of our model can be applied, with straightforward genera
zation, to further integrable extended Hubbard models26 in-
volving two Sutherland species. Work is in progress alo
these lines.
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