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In this paper we clarify the relations occurring among the osp(1|32) algebra, the M-algebra and the hid-
den superalgebra underlying the Free Differential Algebra of D=11 supergravity (to which we will refer 
as DF-algebra) that was introduced in the literature by D’Auria and Frè in 1981 and is actually a (Lorentz 
valued) central extension of the M-algebra including a nilpotent spinor generator, Q ′. We focus in par-
ticular on the 4-form cohomology in 11D superspace of the supergravity theory, strictly related to the 
presence in the theory of a 3-form A(3) . Once formulated in terms of its hidden superalgebra of 1-forms, 
we find that A(3) can be decomposed into the sum of two parts having different group-theoretical mean-
ing: One of them allows to reproduce the FDA of the 11D Supergravity due to non-trivial contributions to 
the 4-form cohomology in superspace, while the second one does not contribute to the 4-form cohomol-
ogy, being a closed 3-form in the vacuum, defining however a one parameter family of trilinear forms 
invariant under a symmetry algebra related to osp(1|32) by redefining the spin connection and adding a 
new Maurer–Cartan equation.
We further discuss about the crucial role played by the 1-form spinor η (dual to the nilpotent genera-
tor Q ′) for the 4-form cohomology of the eleven dimensional theory on superspace.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The osp(1|32) algebra is the most general simple superalge-
bra involving a fermionic generator with 32 components, Q α , 
α = 1, · · · , 32. This is also the dimension of the fermionic gen-
erator of eleven dimensional supergravity (11D supergravity in the 
following). It is then natural that, already from the first construc-
tion of 11D supergravity in [1], it was conjectured that osp(1|32)

should play a role in the algebraic structure of supergravity, some-
how underlying, at least in some contracted version, the eleven 
dimensional theory. They are however quite different: The 11D su-
pergravity [1] contains, besides the super Poincaré fields given by 
the Lorentz spin connection ωab and the supervielbein (V a, ψα), 
a = 0, 1, · · · , 10, also a 3-form A(3) , satisfying, in the superspace 
vacuum:

dA(3) − 1

2
ψ̄ ∧ �abψ ∧ V a ∧ V b = 0, (1.1)

whose closure relies on 3-fermion 1-forms Fierz identities in su-
perspace. As such, this theory is not based on a superalgebra, but 
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instead on a Free Differential Algebra (FDA in the following) on 
the superspace spanned by the supervielbein. On the other hand, 
the fields of the osp(1|32) algebra are 1-forms dual to generators 
which include, besides the AdS generators Jab and Pa and the su-
persymmetry charge Q α , also an extra generator Za1···a5 carrying 
five antisymmetrized Lorentz indices a = 0, 1, · · · , 10, its dual be-
ing a five-indexed antisymmetric Lorentz 1-form Ba1 ···a5 .

In the sequel we shall mainly use the dual form of Lie 
(super-) algebras, written in terms of the Maurer–Cartan equa-
tions among 1-forms dual to the commutators of the Lie Algebra 
generators. In the case of osp(1|32), the relevant set of 1-forms 
is σ� ≡ {ψα, ωab, V a, Ba1···a5 }, dual to the osp(1|32) generators 
T� ≡ {Q α, Jab, Pa, Za1·a5 }, respectively.1 The explicit form of the 
Maurer–Cartan equations for osp(1|32) Lie superalgebra, once de-
composed in terms of its subalgebra so(1, 10), is:

dωab − ωac ∧ ωc
b + e2 V a ∧ V b + e2

4! Bab1...b4 ∧ Bb
b1...b4 +

+ e

2
ψ̄ ∧ �abψ = 0,

1 They satisfy: σ�(T	) = δ�
	 , being δ�

	 properly antisymmetrized when � and 	
are sets of antisymmetric Lorentz indices; dσ�(T	, T�) = − 1

2 C�
	� , C�

	� being the 
structure constants of the Lie super algebra.
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D V a − e

2 · (5!)2
εab1...b5c1...c5 Bb1...b5 ∧ Bc1...c5 − i

2
ψ̄ ∧ �aψ = 0,

D Ba1...a5 − e

5!ε
a1...a5b1...b6 Bb1...b5 ∧ Vb6 + (1.2)

+ 5e

6! ε
a1...a5b1...b6 Bc1c2

b1b2b3 ∧ Bc1c2b4b5b6 +

− i

2
ψ̄ ∧ �a1...a5ψ = 0,

Dψ − i

2
e�aψ ∧ V a − i

2 · 5!e�a1...a5ψ ∧ Ba1...a5 = 0,

where D = D(ω) is the Lorentz covariant derivative and e is a (di-
mensionful) constant.2

Let us note that the very presence of the generator Ba1 ···a5 in 
the simple superalgebra (1.2) does not allow to interpret a the-
ory based on such an algebra as a theory on ordinary superspace, 
whose cotangent space is spanned by the supervielbein (V a, ψ), 
with Lorentz spin connection ωab . To allow such an interpretation, 
the Lorentz covariant derivative of the 1-form fields should be ex-
pressed only in terms of 2-forms bilinears of the supervielbein. 
This is not possible for the Lie supergroup manifold O Sp(1|32), 
unless one would enlarge the notion of superspace by including 
the 1-form Ba1···a5 as an extra bosonic cotangent vector, playing 
the role of a “dual vielbein”.

The aim of the present paper is to investigate the role played 
by osp(1|32) on the FDA of 11D supergravity, and to clarify the 
analogies and differences between the two algebraic structures. 
Referring to what we have discussed so far, the comparison be-
tween 11D supergravity and a theory based on the Lie superalge-
bra osp(1|32) could be summarized as follows: On one hand, we 
have a theory well defined on superspace but involving a 3-form, 
and therefore based on an algebraic structure which is not associ-
ated with a Lie superalgebra, but with a FDA; On the other hand, 
we have an algebraic structure corresponding to a Lie superalge-
bra, osp(1|32), which is however hardly associable to a theory on 
ordinary superspace, since it defines the tangent space to a Lie 
supergroup manifold corresponding to an enlarged superspace gen-
erated by {ψα, V a, Ba1···a5 }.

A Lie superalgebra of 1-forms leaving invariant 11D supergrav-
ity and reproducing, through a procedure that will be shortly re-
viewed in the following, the FDA on ordinary 11D superspace, was 
introduced already in 1981 in [2]. A subalgebra of the superal-
gebra given in [2] was discovered some years later. It includes 
a 1-form generator carrying five antisymmetrized Lorentz indices, 
Ba1···a5 , together with another 1-form generator, Bab . They are the 
1-forms dual to the central generators of a central extension of the 
supersymmetry algebra including, besides the Poincaré algebra, the 
anticommutator

{
Q , Q̄

} = −
[

i
(
C�a) Pa + 1

2

(
C�ab

)
Zab+

+ i

5!
(
C�a1···a5

)
Za1···a5

]
, (1.3)

where Zab , and Za1···a5 are Lorentz-valued central charges.3 The su-
per Lie algebra (1.3) was named M-algebra [3–7]. It is commonly 

2 In (1.2) we are considering dimensionful 1-form generators. Precisely, the 
bosonic 1-forms V a, Ba1 ···a5 carry length dimension one, the gravitino 1-form ψ
has length dimension 1/2, while the Lorentz spin connection ωab is adimensional. 
As a consequence, the parameter e has dimension −1 and can be thought as pro-
portional to (the square root of) a cosmological constant.

3 Here and in the following the term “central” for the charges Zab , Za1 ···a5 and 
for the spinorial charge Q ′ that will be introduced later, refers to their commuta-
tors with all the generators apart from the Lorentz generator Jab; The commutation 
relations with it are obviously dictated by their Lorentz index structure.
considered as the super Lie algebra underlying M-theory [8–10]
in its low energy limit, corresponding to 11D supergravity in the 
presence of non-trivial M-brane sources [11–16]. The algebra (1.3)
generalizes to 11D supergravity (and in fact, by dimensional re-
duction, to all supergravities in dimensions higher than four) the 
topological notion of central extension of the supersymmetry alge-
bra introduced in [17], as it encodes the on-shell duality symme-
tries of string and M-theory [18–22].

A field theory based on the M-algebra (1.3), however, is nat-
urally described on an enlarged superspace spanning, besides the 
gravitino 1-form, also the bosonic fields {V a, Bab, Ba1···a5 }. If we 
hold on the idea that the low energy limit of M-theory should be 
based on the same ordinary superspace, spanned by the superviel-
bein (V a, ψ), as in 11D supergravity, then the M-algebra cannot 
be the final answer, since its generators are not sufficient to repro-
duce the FDA on which 11D supergravity is based.

This issue was raised already in [2], and solved by further en-
larging the set of generators with the inclusion of an extra nilpo-
tent spinor generator. Indeed, as shown in [2], the equivalence of 
a super-Lie algebra with the 11D FDA on superspace (and there-
fore to the Cremmer, Julia, Scherk theory [1]) can be proven if 
one is able to express the 3-form A(3) as a trilinear polynomial of 
1-forms σ� , namely A(3) = A(3)(σ�), in such a way that A(3)(σ�)

still satisfies the FDA on superspace, eq. (1.1):

dA(3)(σ�) = 1

2
ψ̄ ∧ �abψ ∧ V a ∧ V b . (1.4)

As shown in [2], this is only possible if the σ� (and their dual T�) 
close a Lie superalgebra, called D’Auria–Fré algebra (DF-algebra in 
the following), containing the M-algebra (1.3) as a subalgebra, but 
including also a nilpotent fermionic generator Q ′ , satisfying Q ′ 2 = 0, 
dual to a spinor 1-form η, whose contribution to the DF-algebra 
Maurer–Cartan equations is:

Dη = iE1�aψ ∧ V a + E2�abψ ∧ Bab + iE3�a1···a5ψ ∧ Ba1···a5 .

(1.5)

Here, E1, E2, E3 are real constant parameters satisfying a suit-
able linear relation necessary for the closure D2η = 0 (see equa-
tion (3.2) in the following). Actually, in [2] only two particular sets 
of {Ei} were considered, but later in [23] it was shown that in fact 
a one-parameter family of {Ei} can be considered, corresponding 
to all possible solutions to (3.2) after choosing the normalization 
of η. We will come back to this point in Section 3.

In other words, the DF-superalgebra underlies the formulation 
of the 11D FDA on superspace (and therefore the 11D theory on 
space–time introduced in [1]) once the 3-form is expressed in 
terms of 1-form generators including also the η 1-form.

As it was shown in reference [24], this in turn implies that 
the group manifold generated by the DF-superalgebra has a fiber-
bundle structure whose base space is ordinary superspace, while 
the fiber is spanned, besides the Lorentz spin connection ωab , also 
by the bosonic 1-form generators Bab, Ba1,...a5 . In particular, the 
extra nilpotent generator Q ′ , dual to the 1-form η, allows to con-
sider the extra 1-forms Bab and Ba1···a5 as gauge fields in ordinary 
superspace instead of additional vielbeins of an enlarged super-
space. This is due to the dynamical cancellation of their unphysi-
cal contributions to the supersymmetry and gauge transformations 
with the supersymmetry and gauge transformation of η, according 
to (1.5). As observed in [24], all the above procedure of enlarging 
the field space to recover a well defined description of the physical 
degrees of freedom is strongly reminiscent of the BRST-procedure, 
and the behavior of η is such that it can be actually thought of 
as a ghost for the 3-form gauge symmetry, when the 3-form is 
parametrized in terms of 1-forms.
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The DF-algebra of [2] raised recently a certain interest in the 
mathematical–physicists community, due to the fact that it can be 
reformulated in terms of Ln ⊂ L∞ algebras, or strong homotopy 
Lie algebras. A comprehensive reference to this approach can be 
found in [25,26].

During the years, many attempts have been made to relate 
the osp(1|32) superalgebra to the full DF- or to its M-subalgebra, 
and to 11D supergravity, see in particular [27]. Furthermore, in 
Refs. [28–30], the authors discussed the precise relation of the 
M-algebra to osp(1|32). In particular, in [28] the general theory 
of expansions of Lie algebras was introduced, and applied to the 
above problem: It was shown that the M-algebra can be found as 
an expansion of osp(1|32)(2, 1, 2) (this was further explained in 
[29]). Then, in [30] the possibility of an “enlarged superspace vari-
ables/fields correspondence principle in M-theory” was discussed. 
Important contributions to the relations among the osp(1|32) su-
peralgebra, the full DF- or to its M-subalgebra, and 11D super-
gravity were also given in [6,7,23,31–36], mainly in the construc-
tion of a Chern–Simons 11D supergravity based on the supergroup 
O Sp(1|32).

In the rest of the paper we are going to show that in fact the 
DF-algebra, which accounts for the non-trivial 4-form cohomol-
ogy of 11D supergravity, cannot be found as a contraction from 
osp(1|32). More precisely, we are going to show that the 3-form 
of 11D supergravity, once parametrized in terms of 1-forms of the 
DF-algebra, may be decomposed in the sum of two terms:

A(3)(σ�) = A(3)
(0) + αA(3)

(e) ,

α being a free parameter. The contribution A(3)
(0) explicitly breaks 

osp(1|32), giving however the non-trivial contribution to the 
4-form cohomology in superspace, while A(3)

(e) is a 3-cocycle of 
the FDA enjoying invariance under a supergroup related, as it will 
be explained in Section 2, to O Sp(1|32) by redefining the spin 
connection and adding a new Maurer–Cartan equation. It is actu-
ally the only contribution in A(3)(σ�) depending on the 1-form 
Ba1···a5 .

2. Torsion deforming osp(1|32)

The aim of this section is to give the precise relation of the 
osp(1|32) algebra with the M-algebra, in such a way to be able 
to compare it, in the following section, with the DF-algebra and 
with its M-(sub)algebra. This should in particular allow to over-
come a possible obstruction, due the presence in the M-algebra 
of the 1-form generator Bab associated to the central charge Zab , 
while no such generator appears in the osp(1|32) Maurer–Cartan 
equations (1.2).

This problem can be easily overcome by exploiting the freedom 
of redefining the Lorentz spin connection in the osp(1|32) algebra 
(1.2) by the addition of an antisymmetric tensor 1-form Bab (car-
rying length dimension 1) as follows:

ωab → ωab + eBab ≡ ω̂ab , (2.1)

where e is a dimensionful parameter with length dimension −1
(it can then be identified with the one already present in the 
osp(1|32) algebra as written in (1.2)). The discussion presented 
here essentially follows results obtained in [27].

Note that such redefinition is always possible, and it implies 
a change of the torsion 2-form. After this redefinition of the spin 
connection, renaming ω̂ ⇒ ω eqs. (1.2) take the following form
dωab − ωac ∧ ωc
b − eD Bab − e2 Bac ∧ Bc

b + e2 V a ∧ V b+

+ e2

4! Bab1...b4 ∧ Bb
b1...b4 + e

2
ψ̄ ∧ �abψ = 0 ,

D V a + eBab ∧ Vb − e

2 · (5!)2
εab1...b5c1...c5 Bb1...b5 ∧ Bc1...c5+

− i

2
ψ̄ ∧ �aψ = 0 ,

D Ba1...a5 − 5eBm[a1 ∧ Ba2...a5]
m − e

5!ε
a1...a5b1...b6 Bb1...b5 ∧ Vb6+

+ 5e

6! ε
a1...a5b1...b6 Bc1c2

b1b2b3 ∧ Bc1c2b4b5b6 − i

2
ψ̄ ∧ �a1...a5ψ = 0 ,

Dψ − i

2
e�aψ ∧ V a − 1

4
e�abψ ∧ Bab+

− i

2 · 5!e�a1...a5ψ ∧ Ba1...a5 = 0 .

(2.2)

If one requires, as an extra condition, that the Lorentz so(1, 10)

spin connection ωab satisfies:

Rab = dωab − ωac ∧ ωc
b = 0, (2.3)

corresponding to a Minkowski background D2 = 0, then the 
first equation in (2.2), which corresponds to the Maurer–Cartan 
equation for the osp(1|32) connection, splits into two equations, 
namely equation (2.3) plus the following condition

D Bab + eBac ∧ Bc
b = eV a ∧ V b + e

4! Bab1...b4 ∧ Bb
b1...b4

+ 1

2
ψ̄ ∧ �abψ , (2.4)

defining the Maurer–Cartan equation for the new tensor field Bab .
The algebra obtained from osp(1|32) through the above de-

scribed procedure is not isomorphic to osp(1|32) because of the 
extra constraint (2.3), implying (2.4), which is imposed on (2.2). 
A slight generalization of it was introduced in the literature in 
[27] in 1982, soon after [2], as a possible semisimple extension 
of the D F -algebra. Actually, the algebra introduced in [27] gener-
alizes the algebra (2.2) with the constraint (2.3), since it contains 
an extra Maurer–Cartan equation for a spinor 1-form of length di-
mension 3/2. We will call it here ηS B (to avoid confusion with 
the η of the DF-algebra). Its explicit form is:

Rab ≡ dωab − ωac ∧ ωc
b = 0,

D V a = −eBab ∧ Vb+
+ e

2 · (5!)2
εab1...b5c1...c5 Bb1...b5 ∧ Bc1...c5 + i

2
ψ̄ ∧ �aψ,

D Bab = eV a ∧ V b − eBac ∧ Bc
b + e

24
Bab1...b4 ∧ Bb

b1...b4+

+ 1

2
ψ̄ ∧ �abψ,

D Ba1...a5 = 5eBm[a1 ∧ Ba2...a5]
m + e

5!ε
a1...a5b1...b6 Bb1...b5 ∧ Vb6+

− 5e

6! ε
a1...a5b1...b6 Bc1c2

b1b2b3 ∧ Bc1c2b4b5b6+ (2.5)

+ i

2
ψ̄ ∧ �a1...a5ψ,

Dψ = i

2
e�aψ ∧ V a + 1

4
e�abψ ∧ Bab+

+ i
e�a1...a5ψ ∧ Ba1...a5 ,
2 · 5!
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DηS B = i

2
�aψ ∧ V a + 1

4
�abψ ∧ Bab+

+ i

2 · 5!�a1...a5ψ ∧ Ba1...a5 = 1

e
Dψ ,

where D , as before, denotes the Lorentz covariant derivative. It is 
in fact a (Lorentz valued) central extension of (2.2) after imposing 
(2.3), (2.4), since the dual of ηS B is a nilpotent generator commut-
ing with all the generators but the Lorentz ones, the rationale of 
its introduction being that of trying to reproduce the DF algebra in 
the Inonü–Wigner contraction e → 0. We shall refer to the alge-
bra of [27], namely equations (2.5), as to the SB-algebra, and to its 
semisimple subalgebra (2.2), (2.3), (2.4) as to the restricted SB alge-
bra (RSB in the following).4

The algebra (2.5) is actually closed under differentiation even 
if one deletes the last equation containing the covariant differen-
tial DηS B (what corresponds to consider its subalgebra that we call 
here RSB algebra); This equation is in fact a double of the gravitino 
Maurer–Cartan equation, rescaled with the parameter e. Further-
more, we see that the Maurer–Cartan equation for the 1-form ηS B

does not depend on any free parameter and, as such, in the limit 
e → 0 it cannot be identified with the 1-form η of the DF-algebra, see 
eq. (1.5).

We conclude that at the price of introducing the (torsion) field 
Bab satisfying (2.4), the osp(1|32) algebra can be mapped into 
the RSB-algebra, whereby the spin connection ωab is identified 
with the Lorentz connection of a 11D Minkowski spacetime with 
vanishing Lorentz curvature (albeit with a modification of the (su-
per)-torsion which is non-vanishing in both cases). We shall refer 
to the RSB algebra also as “torsion-deformed osp(1|32) algebra”.

The RSB-algebra can be easily compared with the M-algebra, 
since its Maurer–Cartan equations have the virtue of reproducing 
exactly the M-algebra (but not the full DF-algebra) by the Inonü–
Wigner contraction e → 0.

For the RSB-algebra (2.2), (2.3), (2.4), analogously to what hap-
pens for the algebra osp(1|32) in the standard formulation (1.2), 
an interpretation in terms of ordinary superspace spanned by the 
supervielbein (V a, ψ) is not possible, because of the presence of 
two kinds of extra “vielbeins” Bab and Ba1···a5 , whose dual gener-
ators are not (Lorentz-valued) central charges in this case. Indeed 
the bosonic 1-forms Bab and Ba1···a5 are elements of a semisim-
ple bosonic subalgebra and as such, independently of their super-
extension, they cannot be related to central charges. The same 
observation also holds for the SB-algebra since it shares the same 
bosonic subalgebra with the RSB algebra.

On the other hand, the DF Lie superalgebra, together with its 
bosonic subalgebra, is non-semisimple and it enjoys a fiber bun-
dle structure over ordinary superspace, where the fiber includes, 
besides the Lorentz connection, also the 1-forms Bab and Ba1···a5 , 
which in this theory are dual to Lorentz-valued central charges 
and can therefore be interpreted as abelian gauge fields on super-
space [24].

At the dynamical level, the space–time components Bab |c , 
Ba1···a5 |c of the 1-form gauge fields Bab , Ba1···a5 (we are using rigid 
Lorentz indices) have extra degrees of freedom with respect to the 
component fields A[abc]5 and B[a1···a6] , appearing in the FDA on 

4 The acronym SB(-algebra) stands for “Stony Brook”(-algebra). The standard 
acronym referring to the names of the authors (CFGPV) would have been quite long. 
Having observed that the authors of Ref. [27] were all affiliated to Stony Brook Uni-
versity, we found more convenient to adopt the shorter acronym SB.

5 The possible interpretation of the field Aμνρ of 11D supergravity in terms of 
the totally antisymmetric part of the contorsion tensor in osp(1|32) was already 
considered in [31].
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ich 11D supergravity is based.6 As we are going to clarify in 
tion 3, the extra degrees of freedom are dynamically decou-
d from the physical spectrum in the DF algebra (contrary to 
at happens for the M-algebra) because of the presence of the 

potent spinor generator η, which thus behaves as a BRST-ghost 
aranteeing the equivalence of the hidden algebra with the super 
A.7

The detailed relation of the full SB-algebra with the DF-one (in-
ding the relation and differences between the nilpotent spinors 

B and η of the two algebras) is more subtle and will be analyzed 
the following section.
We conclude this section by analyzing some properties of the 

B-superalgebra related to its feature of being a semisimple su-
ralgebra.
For semisimple Lie algebras, as it is well known from the 

evalley–Eilenberg cohomology of Lie algebras, and as already 
inted out in [27], it is always possible to define a non-trivial
ocycle H (3) (dH (3) = 0) given by:

3) = C ABCσ A ∧ σ B ∧ σ C = −2hABσ
A ∧ dσ B , (2.6)

ere C ABC = hAL C L
BC are the structure constants of the algebra, 

th an index lowered with the Killing metric hAB . The closure of 
3) is easily proven by using the Maurer–Cartan equations:

A + 1

2
C A

BCσ B ∧ σ C = 0, (2.7)

ere the σ A 1-forms are in the coadjoint representation of the 
per)-Lie algebra. Indeed:

(3) = −3

2
C ABC C C

LMσ A ∧ σ B ∧ σ L ∧ σ M = 0 , (2.8)

vanishing being due to Jacobi identities.
For the case of the semisimple RSB-algebra, the set of 1-forms 
respond to σ A = {ωab, V a, ψα, Bab, Ba1···a5 }. However, the Lo-
tz quotient of the RSB group admits the Lorentz-covariant 
urer–Cartan equations:

� + 1

2
C�

	�σ	 ∧ σ� = 0 (2.9)

 the restricted set of 1-forms σ� = {V a, ψα, Bab, Ba1···a5 }, allow-
 to rewrite, in this case:

3) = −2σ� ∧ Dσ	h�	 , (2.10)

 satisfying dH (3) = 0. From direct calculation we find, up to 
rall normalization, that the cocycle H (3) can be written as:

3) = V a ∧ D Va + 1

2
Bab ∧ D Bab + 1

5! Ba1···a5 ∧ D Ba1···a5 +

− 1

e
ψ̄ ∧ Dψ (2.11)

= e
(

Bab ∧ V a ∧ V b + 1

3
Bab ∧ Bb

c ∧ Bca +

+ 1

4! Bb1b2 ∧ Bb1a1...a4 ∧ Bb2
a1...a4 +

+ 1

(5!)2
εa1...a5b1...b5m Ba1...a5 ∧ Bb1...b5 ∧ V m +

B[a1 ···a6] are the components of the 6-form B(6) , related to A(3) by Hodge-
lity of their field-strengths.
This mechanism does not work for the semisimple RSB-algebra, since in that 

e the extra components in Bab |c , Ba1 ···a5 |c besides the fully antisymmetrized ones 
 not decoupled from the physical spectrum.
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− 1

3

1

[2! · (3!)2 · 5!]εm1...m6n1...n5 Bm1m2m3 p1 p2

∧ Bm4m5m6 p1 p2 ∧ Bn1...n5
)

. (2.12)

We observe that it is actually a bosonic 3-form, see eq. (2.12), the 
same expression holding for the 3-cocycle of its bosonic subalge-
bra.

An analogous result for osp(1|32) can be obtained by setting 
Bab = 0 in (2.11), (2.12).

Let us remark that the e → 0 limit of H (3) is a singular limit: 
H (3) → 0, but 1

e H (3) is finite if one considers the second expres-
sion (2.12), while 1

e dH (3) 
= 0 in the limit, corresponding to the fact 
that the Killing metric of the contracted superalgebra at e → 0 is 
degenerate.

For e 
= 0, instead, H (3) is a 3-cocycle of the superalgebra and, 
following the general Sullivan construction of FDAs [37] (for a re-
view, see for example [38]), it could be trivialized in terms of a 
2-form Q (2) writing:

dQ (2) + H (3) = 0, (2.13)

thus realizing a new FDA in the semisimple case.
It could be interesting to investigate about a hidden superal-

gebra of (2.13), which would allow to parametrize Q (2) in terms 
of an appropriate set of 1-form generators. However, to ascertain 
whether one can associate a hidden super-Lie algebra to the FDA 
(2.13) one has to introduce extra fields besides the set of genera-
tors {σ�} of the SB-algebra. This is left to a future investigation.

3. Relating osp(1|32) to DF-algebra

We would like to clarify here the relation between the DF-
algebra of [2] and the SB-algebra that, as described in Section 2, 
is a Lorentz valued central extension of the osp(1|32) algebra in 
a torsion deformed form in which the Lorentz spin connection is 
decomposed into a flat spin connection and an appropriate tensor 
1-form Bab .

To this aim, let us first write, from [2,24], the Maurer–Cartan 
equations for the 1-forms σ� = {V a, ψα, Bab, Ba1···a5 , ηα} of the 
DF-algebra (in their Lorentz-covariant formulation):

Rab ≡ dωab − 1

2
ωac ∧ ωc

b = 0 ,

D V a = i

2
� ∧ �a� ,

D� = 0 ,

D Ba1a2 = 1

2
� ∧ �a1a2�,

D Ba1...a5 = i

2
� ∧ �a1...a5� ,

Dη = iE1�a� ∧ V a + E2�ab� ∧ Bab+
+ iE3�a1...a5� ∧ Ba1...a5 .

(3.1)

Integrability of Dη-equation implies, using Fierz identities of the 
1-forms ψ in superspace, the following relation among the param-
eters Ei :

E1 + 10E2 − 6!E3 = 0. (3.2)

Since one of the Ei ’s can be reabsorbed in the normalization of η, 
the DF-algebra depends on one free parameter, as it was pointed 
out in [23].

As shown in [2], the DF-algebra 1-forms spanning the Maurer–
Cartan equations allow to express the 3-form A(3) of the FDA of 
11D supergravity in terms of 1-forms σ� , which, in the notations 
of [24] is:

A(3)(σ ) = T0 Bab ∧ V a ∧ V b + T1 Bab ∧ Bb
c ∧ Bca +

+ T2 Bb1a1...a4 ∧ Bb1
b2 ∧ Bb2a1...a4 +

+ T3εa1...a5b1...b5m Ba1...a5 ∧ Bb1...b5 ∧ V m +
+ T4εm1...m6n1...n5 Bm1m2m3 p1 p2 ∧ Bm4m5m6 p1 p2 ∧ Bn1...n5 +
+ iS1� ∧ �aη ∧ V a + S2� ∧ �abη ∧ Bab +
+ iS3� ∧ �a1...a5η ∧ Ba1...a5 , (3.3)

where the real parameters {Ei, Ti, Si} can be written in terms of a 
single parameter, as clarified in [23], and are given in [24]. For our 
purpose, it is convenient to observe that they can be rewritten as 
follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T0 = 1
6 + α,

T1 = − 1
90 + 1

3α,

T2 = − 1
4!α,

T3 = 1
(5!)2 α,

T4 = − 1
3[2!·(3!)2·5!]α,

⎧⎪⎪⎨
⎪⎪⎩

S1 = 1
4!C + 1

2·(5!)E3
α,

S2 = − 1
10·(4!)C + 1

4·(5!)E3
α,

S3 = 1
2·(5!)2 E3

α,

⎧⎪⎪⎨
⎪⎪⎩

E1 = −10C + C2

E3
α,

E2 = C + C2

2E3
α,

E3 = C2

5!E3
α,

(3.4)

where we have defined, using the notations of [24], C ≡ E2 −60E3, 
α ≡ 5! E2

3
C2 .

Given the above expression, it is useful to decompose the 
1-form spinor η as follows:

η = −10C(ξ + αλ), (3.5)

where we introduced the spinor 1-forms ξ and λ satisfying:

Dξ = i�aψ ∧ V a − 1

10
�abψ ∧ Bab , (3.6)

Dλ = − C

5E3

(
i

2
�aψ ∧ V a + 1

4
�abψ ∧ Bab+

+ i

2(5!)�a1···a5ψ ∧ Ba1···a5

)

= − C

5E3
DηS B . (3.7)

From eq. (3.7) we see that λ can be chosen as proportional to the 
spinor 1-form ηS B introduced in (2.5) as a Lorentz-valued central 
extension of the RSB-superalgebra: λ = − C

5E3
ηS B .

Eqs. (3.4) and (3.5) allow to decompose also A(3)(σ ) into two 
pieces, namely

A(3) = A(3)
(0) + αA(3)

(e) , (3.8)

where

A(3)
(0) = 1

6

(
Bab ∧ V a ∧ V b − 1

15
Bab ∧ Bbc ∧ Bc

a+

− 5i

2
ψ̄ ∧ �aξ ∧ V a + 1

4
ψ̄ ∧ �abξ ∧ Bab

)
, (3.9)

while

A(3)
(e) = 1

H (3) + 2η̄S B DηS B , (3.10)

e
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where we recognize, in the first term in (3.10), the RSB-invariant 
3-form 1

e H (3) introduced in (2.11), which in the e → 0 limit is fi-
nite but looses its character of being a 3-cocycle (a closed form), 
becoming just a 3-cochain of the M-algebra. Explicitly we have:

1

e
H (3) =

(
Bab ∧ V a ∧ V b + 1

3
Bab ∧ Bb

c ∧ Bca +

+ 1

4! Bb1b2 ∧ Bb1a1...a4 ∧ Bb2
a1...a4 +

+ 1

(5!)2
εa1...a5b1...b5m Ba1...a5 ∧ Bb1...b5 ∧ V m +

−1

3

1

[2! · (3!)2 · 5!]εm1...m6n1...n5 Bm1m2m3 p1 p2 ∧

∧Bm4m5m6 p1 p2 ∧ Bn1...n5
)

, (3.11)

and, by straightforward differentiation using the Maurer–Cartan 
equations of DF-algebra (3.1), we easily verify that d 

(
1
e H (3)

)
e=0
= 0, while:

dA(3)
(0) = 1

2
ψ̄ ∧ �abψ ∧ V a ∧ V b, (3.12)

dA(3)
(e) = 0 . (3.13)

Some remarks are in order. First of all, let us observe that A(3)
(0)

only depends on the restricted set of 1-forms {V a, ψ, Bab, ξ}, not 
including Ba1···a5 , through an expression, (3.9), which does not con-
tain any free parameters. The term A(3)

(0) is however the only one 
contributing to the (vacuum) 4-form cohomology in superspace, 
eq. (3.12), A(3)

(e) being instead a closed 3-form in the vacuum.8

On the other hand, we see that the 1-parameter family of so-
lutions to the DF-algebra, whose presence was clarified in [23], 
actually only depends on the contribution A(3)

(e) , which appears as 
a trivial deformation of A(3)

(0) in A(3) , since it does not contribute 
to the vacuum 4-form cohomology (1.1). A(3)

(e) is however invariant 
not only under the DF-algebra (3.1), but also under the SB-algebra, 
even at finite e. The other term A(3)

(0) does instead explicitly breaks 
the invariance under the SB-algebra.

Let us spend some words to discuss the role of the spinor 
1-forms ξ and λ introduced in the decomposition (3.5) of η, and 
appearing in A(3) (3.8), following the lines of the discussion given 
in [24]: The spinor ξ appears in A(3)

(0)
, and its role is to allow for 

dA(3)
(0) to be a closed 4-form on ordinary superspace; It behaves as 

a cohomological ghost, since its supersymmetry and gauge trans-
formations exactly cancel the non-physical contributions from Bab . 
The group manifold generated by the set of {σ�} including ξ has a 
fiber-bundle structure with ordinary superspace as base space [24].

As for the second spinor, λ ∝ ηS B , appearing instead in the 
osp(1|32) invariant term A(3)

(e) , at first sight its role could appear 
less clear, since dA(3)

(e) = 0 in the FDA where the vacuum relation 
(1.1) holds. It plays however a role analogous to the one of ξ : In-
deed, in the absence of its contribution, A(3)

(e) would reduce to the 
bosonic 3-form 1

e H (3) that, as we already observed at the end of 
Section 2, is a closed 3-form for e 
= 0, this property being lost in 
the limit e → 0. In the same limit, 1

e dH (3) is instead a 4-form poly-
nomial of all the σ� , that is a cochain of the enlarged superspace 
including Bab and Ba1···a5 . The role of ηS B is then crucial to restore, 

8 Surprisingly, it corresponds to one of the solutions found in the original paper 
of D’Auria–Fré [2].
also for α 
= 0, the correct 4-form cohomology (1.1) on the vacuum 
superspace for dA(3) , by allowing dA(3)

(e) = 0.9

We remark that considering the interacting theory out of the 
vacuum, one should introduce a 4-form super fieldstrength G(4) in 
superspace:

G(4) ≡ dA(3) − 1

2
ψ̄ ∧ �abψ ∧ V a ∧ V b . (3.14)

In this case one would expect that the superspace 4-form coho-
mology could also receive non-trivial contributions from dA(3)

(e) .

4. Conclusions

We have found that, despite of the fact that the M-algebra is a 
Inönü–Wigner contraction of the osp(1|32) algebra,10 still the DF-
algebra cannot be obtained as Inönü–Wigner contraction from the 
SB-algebra that, as we discussed, is a (Lorentz-valued) central ex-
tension of the RSB-algebra. Correspondingly, 11D supergravity is 
not left invariant by the osp(1|32) algebra (not even in its tor-
sion deformed formulation RSB), while being invariant under the 
DF-superalgebra. This is due to the fact that the spinor 1-form η
of the DF-algebra (that, as we have discussed, is a spinor “cen-
tral” extension of the M-algebra) contributes to the DF-algebra 
with structure constants different from the ones of the SB-algebra 
(which is related to the osp(1|32) algebra, as discussed in Sec-
tion 2). In particular, referring to eq. (3.5), we see that η differs 
from ηS B ∝ λ by the extra 1-form generator ξ .

This has a counterpart in the expression of A(3) = A(3)(σ�), 
which trivializes the vacuum 4-form cohomology in superspace 
in terms of DF-algebra 1-form generators σ� . As the decompo-
sition (3.8) shows, A(3)(σ�) is not invariant under the osp(1|32)

algebra (neither under its torsion deformation RSB) because of the 
contribution A(3)

(0) , explicitly breaking this symmetry. Such term is 
however the only one contributing to the vacuum 4-form coho-
mology in superspace, due to the presence in the DF-algebra of 
the two spinors ξ and ηS B into which the cohomological spinor η
can be decomposed.

A still open problem is to perform a similar analysis for the 
6-form B(6) of 11D supergravity. As we discussed in [24], we ex-
pect in this case that a cohomological 1-form spinor different from 
η should play a crucial role. The decomposition (3.5) of η into a 
linear combination of 1-form spinors, ξ and ηS B , suggests that pos-
sibly the relevant spinor in the case of B(6) could correspond to a 
linear combination of ξ and ηS B different from (3.5). Such analysis 
should preliminarily require the knowledge of the parametrization 
of B(6) in terms of 1-forms, which is not available yet.

The above decomposition of A(3)(σ�) = A(3)
(0) + αA(3)

(e) in super-
space, where we disclosed different contributions to the 4-form 
cohomology on superspace from the two terms dA(3)

(0)(σ
�) and 

dA(3)
(e) (σ

�), suggests that the above contributions could be possibly 
related to the general analysis of [39–41], where the 4-form coho-
mology of M-theory on a spin manifold Y is shown to be shifted, 
with respect to the integral cohomology class, by the canonical in-
tegral class of the spin bundle of Y . Referring to (3.14), it appears 
reasonable to conjecture that one could rephrase the above state-
ment into the following one, in terms of the super field-strength 
G(4) in superspace: G(4) has integral periods in superspace, while 

9 On the other hand, in the semisimple case e 
= 0, H(3) is a closed 3-form and 
ηS B looses its cohomological role.
10 More precisely, of its torsion deformation described in Section 2 (what we 

called RSB-algebra).
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the periods of dA(3) are shifted by the contribution (possibly frac-
tional) of the spin bundle. Since our analysis refers to the FDA 
describing the vacuum in superspace we should consider, as spin 
manifold Y , flat superspace, where the integral cohomology class 
is trivial. This corresponds, in our formulation, to the trivial contri-
bution from the RSB-invariant term A(3)

(e) (σ
�), the only non-trivial

contribution to the 4-form cohomology on flat superspace com-
ing from dA(3)

(0)(σ
�), which accounts for the contribution from the 

spin bundle. A deeper analysis of the correspondence between the 
two approaches, for the vacuum theory and for the dynamical the-
ory out of the vacuum, is currently under investigation and left 
to future work. In particular, it is still to be explicitly shown that 
the contribution to the 4-form cohomology in superspace from 
dA(3)

(0)(σ
�) could assume both integer and half-integer values. In 

this direction, the techniques developed in [42], where a formula-
tion of supergravity in superspace with integral forms was intro-
duced, could be particular useful.

It appears that the nilpotent spinor 1-form η could be an im-
portant addition towards the construction of a possible off-shell 
theory underlying 11D supergravity. In [6], a supersymmetric 11D 
lagrangian invariant under the M-algebra and closing off-shell 
without requiring auxiliary fields was constructed, as a Chern-
Simons form. It would be very interesting to investigate the possi-
ble connections between the two approaches.

Finally, let us stress that the description of 11D supergravity in 
terms of its hidden DF-algebra could be particularly useful in the 
analysis of its compactification to lower dimensions: The 1-form 
fields σ� of the DF-algebra should give an alternative description 
of exceptional field theory (see, for example [43–45] and refer-
ences therein) where the section constraints, required in that the-
ory to project the field equations on ordinary superspace, should 
be dynamically implemented through the presence of the cohomo-
logical spinor η. Some work is in progress on this topic.
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