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REDUCTION FOR THE PROJECTIVE ARCLENGTH

FUNCTIONAL

EMILIO MUSSO AND LORENZO NICOLODI

Abstract. We consider the variational problem for curves in real projective

plane defined by the projective arclength functional and discuss the integrabil-

ity of its stationary curves in a geometric setting. We show how methods from
the subject of exterior differential systems and the reduction procedure for

Hamiltonian systems with symmetries lead to the integration by quadratures

of the extrema. A scheme of integration is illustrated.

1. Introduction

Many geometric variational problems with one independent variable arise from
functionals whose domain of definition consists of integral curves of an exterior
differential system. Based on the 1922 seminal work of E. Cartan [5], Griffiths
[9] developed a systematic geometric approach to the calculus of variations in one
variable making use of the theory of exterior differential systems. Further develop-
ments are due to Bryant and Hsu [1, 12]. Griffiths constructs the Euler–Lagrange
system for such functionals and by discussing several examples shows how to ex-
tend to this setting the rich geometric structures that are familiar in the case of
classical mechanics. A comprehensive exposition and explanation of the classical
calculus of variations of theoretical mechanics in the framework of modern differen-
tial geometry was presented by Goldschmidt–Sternberg [6]. In [3] Bryant–Griffiths
extended to the setting of exterior differential systems the reduction procedure for
Hamiltonian systems admitting a Lie group of symmetries to investigate the total
squared curvature functional for immersed curves in a constant curvature surface.

In this article we deal with the functional

(1.1) L(γ) =

∫
γ

dτγ ,

defined on parameterized curves γ : I = (a, b)→ P2 in real projective plane, where
τγ is the projective arclength. The functional L is invariant under the projective
action of G = SL(3,R) on P2. The associated variational problem was considered
by E. Cartan [4]. In his study the stationary curves are determined by a third
order linear ODE with doubly periodic coefficients and the equation is solved by a
method developed by E. Picard [16] in terms of elliptic functions. In his analysis
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2 EMILIO MUSSO AND LORENZO NICOLODI

Cartan did not explicitly use methods from exterior differential systems, but rather
derived the results by more ad hoc methods.

One motivation for the present paper is to gain insight into the geometric aspects of
integrability of the extrema. To this end, we shall use methods from the theory of
exterior differential systems and the reduction procedure for Hamiltonian systems
with a Lie group of symmetries. By discussing in details a specific example, we hope
to give an illustration of the common mechanism underlying integrability of several
other constrained variational problems. Examples include the arclength functionals
in conformal, pseudo-conformal, and affine geometry [15, 9], and the total squared
curvature functional [3]. These examples as well as other in [13], belong to the class
of so-called coisotropic variational problems which are discussed in [7].

We turn now to a more detailed description of the contents. The starting point of
our study is the replacement of the original variational problem by a variational
problem for integral curves of a Pfaffian system on G with an independence con-
dition. This is achieved by showing the existence of a preferred G-invariant frame
along nondegenerate1 curves. We then follow a general construction due to Griffiths
[9] and carry out a calculation to associate to L a Pfaffian exterior differential sys-
tem J—the Euler–Lagrange system—whose integral curves are stationary for the
associated functional. As a matter of fact, in this case all stationary curves arise
as projections2 of integral curves of J . The Euler–Lagrange system is defined on
Y = G × p—the momentum space—for a suitable 3-dimensional affine subspace p
of the Lie algebra g of G. It turns out that the momentum space carries a contact
structure, whose characteristic curves coincide with the integral curves of J . Fur-
ther, we show that the characteristic flow factors over the phase flow in p and find
a Lax formulation of its defining differential equation (infinitesimal Noether’s con-
servation theorem). This implies that the moment map µ : Y → g∗ induced by the
Hamiltonian action of G on Y is constant on solution curves to the Euler–Lagrange
system. We then proceed to the description of the characteristic curves. First,
we show that the characteristic curves through the points of G × ps, being ps the
singular set of the phase flow, are orbits of one-parameter subgroups of G. More-
over, the corresponding stationary curves are nondegenerate curves with constant
projective curvature. As for the other curves, we apply the reduction procedure
for Hamiltonian systems with symmetries. In this case the determination of the
integral curves of J reduces to determining a parameterization of the 1-dimensional
Marsden–Weinstein reduced spaces (phase portraits) plus one more integration to
lift these parameterized curves to the level sets of the moment mapping µ|Yr . The
last integration amounts to the construction of horizontal curves for a canonically
defined connection on the Marsden–Weinstein principal fibration. As the structure
group is abelian such an integration can be achieved by a single quadrature.

The paper is organized as follows. Section 2 gives the details of the construction of
the preferred frame along nondegenerate curves using the method of moving frames
and defines the Pfaffian differential system of nondegenerate projective curves. Sec-
tion 3 studies the arclength functional and introduces the corresponding momentum
space and Euler–Lagrange system. Section 4 focuses on the reduction procedure.

1i.e., without sextatic points (cf. Section 2). In particular, conics are not considered in the

discussion.
2In this case all derived systems of J have constant rank.
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The phase flow and the contact moment map associated to the Hamiltonian action
of G on the momentum space are studied and the general scheme of integration
is presented. Finally, Section 5 briefly indicates how to implement the integration
scheme.

2. Curves in projective plane by moving frames

2.1. Projective frames along a curve. The group G = SL(3,R) acts transitively
and almost effectively on the real projective plane P2 by

A · [x] = [Ax],

where [x] ∈ P2 and A ∈ G. Let A0, A1, A2 denote the column vectors of A ∈ G.
The projection map

A ∈ G 7→ [A0] ∈ P2

defines a principal G0-bundle over P2; G0 is the isotropy subgroup at [(1, 0, 0)]
and its elements are given by formula (2.1) below. The Maurer–Cartan 1-form
ω = (ωij) = X−1dX of G satisfies the structure equations

dωij = −
2∑
k=0

ωik ∧ ωkj , ω0
0 + ω1

1 + ω2
2 = 0.

Remark 2.1. If f ij(t) : I → R, i, j = 0, 1, 2, are smooth functions defined on an

interval I ⊂ R and satisfying f00 + f11 + f22 = 0, then, by the Cartan–Darboux
integrability theorem [10, 14] there exists a smooth map f : I → G such that
f∗(ωij) = f ijdt. The map f is uniquely determined up to left multiplication.

A parameterized curve (I, γ) in P2 consists of an open interval I ⊂ R and a smooth

immersion γ(t) : I → P2. Two curves (I, γ) and (Ĩ , γ̃) are projectively equivalent

if there exists a smooth diffeomorphism h : Ĩ → I and an element A ∈ G such that
A · γ ◦ h = γ̃, for each t ∈ Ĩ. A projective frame field along γ is a smooth map

e : I → G

such that γ(t) = [e0(t)], for each t ∈ I. For any such frame we put

θ = e∗ω = (θij).

If e, ẽ : I → G are two projective frames along γ, then ẽ = eb where b : I → G
denotes the smooth G-valued function

(2.1) b =

(
det(B)−1 tv

0 B

)
,

B = (Bij), i, j = 1, 2, tv = (v1, v2) ∈ R2. If θ̃ = ẽ∗ω, then

(2.2) θ̃ = b−1θb+ b−1db.

In particular, this implies that

(2.3)

(
θ̃10
θ̃20

)
= det(B)−1(B)−1

(
θ10
θ20

)
.

The projective frame field e : I → G is of first order if

(2.4) θ20 = 0.
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From (2.3) it follows that first order frames do exist and any two of them are related
by b as in (2.1), where B2

1 = 0. From (2.2) we have

θ̃10 = (B1
1)−1(B2

2)−1θ10, θ̃21 = (B2
2)−1(B1

1)θ21.

If we set

(2.5) θij = aijθ
1
0,

for suitable smooth functions aij : I → R, then, in particular,

(2.6) ã21 = (B1
1)3a21.

Let P2∗ be the dual projective plane (= planes in R3). Given a projective frame
e = (e0, e1, e2) : I → G along γ, let e∗ = (e0, e1, e2) denote its dual frame. The dual
curve γ∗ : I → P2∗ is defined by γ∗(t) = [e2(t)], for each t ∈ I, and is independent
from the choice of the frame. The curve γ is called regular if γ∗ is an immersion,
that is, θ21 |t 6= 0, for each t ∈ I and every first order frame. By (2.6), each regular

curve admits a first order frame such that a21 = 1. First order frames are said of
second order if they satisfy the condition a21 = 1. If e is a second order frame on I,
then any other is given by ẽ = eb, where b is as in (2.1) with B1

1 = 0 and B2
1 = 0.

It follows that

θ̃10 = (B2
2)−1θ10, θ̃11 = θ11 + (v1 − (B2

2)−1B1
2)θ10,

which yields

ã11 = (B2
2)(a11 + v1 − (B2

2)−1B1
2).

This implies that there exist second order frame fields such that a11 = 0. Second
order frames are said of third order if they satisfy the condition

(2.7) a11 = 0.

If e is a third order frame on I, then any other is given by ẽ = eb, where b is as in
(2.1) with

B1
1 = 0, B2

1 = 0, v1 = (B2
2)−1B1

2 .

From this it follows that

θ̃01 − θ̃12 = B2
2(θ01 − θ12) + ((B2

2)−1(B1
2)2 − 2v2)θ10,

which yields

ã01 − ã12 = (B2
2)2(a01 − a12) + (B1

2)2 − 2(B2
2)−1v2.

Third order frames are said of fourth order if

(2.8) a01 − a12 = 0.

If e is a fourth order frame, then any other is given by ẽ = eb, b as in (2.1) with

B1
1 = 0, B2

1 = 0, v1 = (B2
2)−1B1

2 , v2 = 1/2(B2
2)(B1

2)2.
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2.2. The normal frame along a nondegenerate curve. The projective space
P5 corresponding to the 6-dimensional space of all symmetric bilinear forms on R3

naturally identifies with the space of conics in P2. If αβ denotes the symmetric
tensor product of α, β ∈ R3∗, then the mapping

Γ : t ∈ I 7→ [e1e1 − 2e0e2] ∈ P5

does not depend on the choice of the fourth order frame. Γ is called the osculating
curve of γ. Geometrically, Γ(t) is a nondegenerate conic passing through the point
γ(t).

Definition 2.2. A regular curve γ is said to be nondegenerate if its osculating
curve is an immersion, i.e., γ has no sextatic points.

Let γ be a nondegenerate curve and e be a fourth order frame along γ. Differenti-
ating yields

d(e1e1 − 2e0e2) = 2θ20e
2e2.

Thus, γ is nondegenerate if and only if

θ20 |t 6= 0, for each t ∈ I.

Notice that θ20 vanishes if and only if Γ is constant. Therefore, the condition θ20 = 0
characterizes nondegenerate conics among all plane curves.

Let γ be a nondegenerate curve and e, ẽ be two fourth order frames along γ. We
then have

θ̃10 = (B2
2)−1θ10, θ̃02 = (B2

2)2θ02.

This implies

ã02 = (B2
2)3a02.

Since ã02(t) 6= 0 and a02(t) 6= 0, for each t ∈ I, it follows that there always exist
fourth order frames such that

(2.9) a02 = 0.

Fourth order frames are said of fifth order if they satisfy (2.9). If e and ẽ are fifth
order frames, then

ẽ0 = e0

ẽ1 = B1
2e0 + e1

ẽ2 =
1

2
(B1

2)2e0 +B1
2e1 + e2,

where B1
2 : I → R is a smooth function. This yields

θ̃10 = θ10, θ̃00 = θ00 −B1
2θ

1
0,

that is

ã00 = a00 − (B1
2).

Therefore there exists a unique fifth order frame along γ such that a00 = 0. Such a
frame is called the normal frame field of γ.

We have proved the following:
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Theorem 2.3 (cf. Cartan [4]). If γ(t) : I → P2 is a nondegenerate curve, then
there exists a unique lift e : I → G, the normal frame field, satisfying the Pfaffian
equations

(2.10) θ20 = θ21 − θ10 = θ11 = θ01 − θ12 = θ02 − θ10 = θ00 = 0

with the independence condition

(2.11) θ10 |t 6= 0, for each t ∈ I.

Conversely, any smooth map e : I → G such that e∗ω satisfies (2.10) and (2.11) is
the normal frame of the nondegenerate curve γ : I → P2 defined by γ(t) = [e0].

Definition 2.4. We set θ10 = dτ and θ01 = −κdτ . The differential dτ is the
projective arc element and the function κ is the projective curvature.

Remark 2.5 (Intrinsic equations). Theorem 2.3 asserts that the normal frame field
e(τ) : I → G is the unique lift satisfying the following system of equations (the
generalized Frenet system)

de0
dτ

= e1,

de1
dτ

= −κe0 + e2,

de2
dτ

= e0 − κe1.

(2.12)

If e(τ), ẽ(τ) : I → G are any two solutions of the above system, then there exists a
unique A ∈ G such that ẽ = Ae (cf. Remark 2.1). This shows that the projective
curvature determines the curve up to projective equivalence. The system (2.12)
reduces to the third order ODE:

(2.13)
d3u

dτ3
+ 2κ

du

dτ
+ (

dκ

dτ
− 1)u = 0.

Given a function κ : I → R and three linearly independent solutions uj , j = 0, 1, 2,
of (2.13) we set

e0 = t(u0, u1, u2), e1 =
de0
dτ

, e2 =
d2e0

dτ2
+ κe0.

e = (e0, e1, e2) is a solution of (2.12) and since W = det(e0,
de0
dτ ,

d2e0
dτ2 ) = const 6= 0

we may suppose that W = 1 so that e(τ) ∈ G, for each τ ∈ I. This means that e
is the normal frame of the curve defined by the uj . The curve is parameterized by
the projective arclength and κ(τ) is its projective curvature.

Remark 2.6 (Curves with constant projective curvature). The curves in P2 with
constant projective curvature are obtained from the solutions of the linear equation
with constant coefficients

d3u

dτ3
+ 2κ

du

dτ
− u = 0, κ = const.

These curves are equivalent either to generalized parabolas, exponential curves, or
logarithmic spirals, and are known classically as W -curves. They have the prop-
erty of admitting a 1-dimensional subgroup of the projective group as group of
symmetries.
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2.3. The projective Frenet system of nondegenerate curves. According to
Theorem 2.3, we shall identify nondegenerate curves in P2 with the integral curves
of the Pfaffian differential system on G with one independent variable defined by
the sub-bundles W,L of T ∗(G) given by

W = Span(η1, . . . , η6), L = Span(η1, . . . , η6, ϕ),

where

η1 = ω2
0 , η2 = ω2

1 − ω1
0 , η3 = ω1

1 ,

η4 =
1

2
(ω0

1 − ω1
2), η5 = ω0

2 − ω1
0 , η6 = ω0

0

(2.14)

(2.15) ϕ = ω1
0 .

We call (G,W,L) the projective Frenet system of nondegenerate curves in P2 and
denote it by (F , ϕ). Consider

π =
1

2
(ω0

1 + ω1
2)

so that {η1, . . . , η6, ϕ, π} is a left-invariant trivialization of T ∗(G). By the structure
equations of G we get

dϕ = (η6 − η3) ∧ ϕ+ η1 ∧ π − η1 ∧ η4,

dπ =
1

2
{η2 ∧ ϕ− (η3 + 2η6) ∧ π + 3η3 ∧ η4 + η2 ∧ η5},

dη1 = −η2 ∧ ϕ− η1 ∧ η3 − 2η1 ∧ η6,
dη2 = 3η3 ∧ ϕ− 2η1 ∧ π − 2η2 ∧ η3 − η2 ∧ η6,
dη3 = 2η4 ∧ ϕ+ η2 ∧ π − η2 ∧ η4,

dη4 =
1

2
{(η2 + 2η5) ∧ ϕ+ 3η3 ∧ π − η3 ∧ η4 + η2 ∧ η5 + 2η4 ∧ η6},

dη5 = −3η6 ∧ ϕ− (η1 + 2η4) ∧ π − η1 ∧ η4 − η3 ∧ η5 + 2η5 ∧ η6,
dη6 = (η1 − η4) ∧ ϕ+ ϕ ∧ π + η1 ∧ η2.

(2.16)

Remark 2.7. From (2.16) we easily compute the derived flag (cf. [2]) of (F , ω):

F6 = {0}, Fj = {η, . . . , η6−j}, j = 1, . . . , 5.

Thus all derived systems of F have constant rank.

3. The variational problem

3.1. The projective arclength functional. On the space G of nondegenerate
plane curves we shall consider the projective arclength functional

L : γ ∈ G 7→
∫
Iγ

dτγ ,

where Iγ is the domain of definition of the curve and dτγ is the corresponding
projective arc element. By the preceding discussion, a curve γ ∈ G is a critical
point of L if and only if its normal frame field eγ is a critical point of the variational
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problem on the space V(W,L) of all integral curves of the projective Frenet system
(F , ϕ) defined by the functional

L̂ : e ∈ V(W,L) 7→
∫
Ie

e∗ϕ,

where Ie is the domain of definition of e. In the next section, following the work
of Griffiths [9], based on the work of Cartan [5], we shall write the Euler–Lagrange
equations of this functional as a Pfaffian exterior differential system on an affine
sub-bundle of T ∗(G).

3.2. The Euler–Lagrange system. Consider the affine sub-bundle Z = ϕ+W ⊂
T ∗(G) and denote by πZ : Z → G the bundle projection. Using (η1, . . . , η6, ϕ), Z
may be identified with G× R6 by posing

(e;λ1, . . . , λ6) ∈ G× R6 7→ ϕ|e + λαη
α
|e ∈ Z,

where λ1, . . . , λ6 are the fiber coordinates on Z. The restriction to Z of the Liouville
(tautological) 1-form of T ∗(G) takes the form

ψ = ϕ+ λαη
α.

Let C(Ψ) be the Cartan system of the 2-form Ψ = dψ, i.e., the Pfaffian ideal on
Z generated by {iXΨ : X ∈ Γ(T (Z))} ⊂ Ω1(Z) with the independence condition
given by the pull-back of ϕ via the projection πZ . By (2.16), it follows that

Ψ = dλα ∧ ηα − λ6π ∧ ϕ+ [η1 − 2λ2η
1 + λ3η

2 +
3

2
λ4η

3 +

−λ5(η1 + 2η4)] ∧ π + [η6 − η3 − λ1η2 + 3λ2η
3 + 2λ3η

4 +

+
1

2
λ4(η2 + 2η5)− 3λ5η

6 + λ6(η1 − η4)] ∧ ϕ mod {ηα ∧ ηβ}.

Contracting Ψ with the vector fields(
∂

∂η1
, . . . ,

∂

∂η6
,
∂

∂ϕ
,
∂

∂π
,
∂

∂λ1
. . . ,

∂

∂λ6

)
,

dual to the co-framing (η1, . . . η6, ϕ, π, dλ1, . . . ,dλ6) on Z, we find the 1-forms

β1 = dλ1 − λ6ϕ− (1− 2λ2 − λ5)π,(3.1)

β2 = dλ2 + (λ1 −
1

2
λ4)ϕ− λ3π,(3.2)

β3 = dλ3 + (1− 3λ2)ϕ− 3

2
λ4π,(3.3)

β4 = dλ4 + (λ6 − 2λ3)ϕ+ 2λ5π,(3.4)

β5 = dλ5 − λ4ϕ,(3.5)

β6 = dλ6 + (3λ5 − 1)ϕ,(3.6)

(3.7) ρ1 = λ6ϕ, ρ2 = λ6π,

and η1, . . . , η6, respectively. We have then

Lemma 3.1. The Cartan system C(Ψ) associated to (F , ϕ) is the differential ideal
on Z = ϕ+W generated by

{η1, . . . η6, ϕ, ρ1, ρ2, β1, . . . , β6}
and independence condition given by the Liouville form ψ.
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We now construct the involutive prolongation of the Cartan system (see Griffiths
[9], pp. 78-83, for the details of this construction). Let V1(Ψ) ↪→ P[T (Z)] → Z be
the totality of all 1-dimensional integral elements of C(Ψ). In view of (3.7), we find
that

V1(Ψ)|(e,λ) 6= ∅ ⇐⇒ λ6 = 0.

Thus, the first involutive prolongation of (C(Ψ), ϕ), i.e., the image Z1 ⊂ Z of V1(Ψ)
with respect to the natural projection V1(Ψ)→ Z, is given by

Z1 = {(e, λ) ∈ Z : λ6 = 0} ∼= G× R5.

Next, the restriction of β6 to Z1 takes the form (3λ5 − 1)ϕ. Thus the second
involutive prolongation Z2 is characterized by the equations

λ6 = 0, 3λ5 − 1 = 0.

Considering then the restriction of β5 to Z2 yields the equations

λ4 = 0, λ6 = 0, 3λ5 − 1 = 0,

which define the third involutive prolongation Z3. Intrinsically, Z3 = (ϕ + 1
3η

5) +

Span(η1, η2, η3). The restriction C3(Ψ) to Z3 of C(Ψ) is generated by the 1-forms
η1, . . . , η6 and

β1 = dλ1 − 2(
1

3
− λ2)π,

β2 = dλ2 + λ1ϕ− λ3π,
β3 = dλ3 + (1− 3λ2)ϕ,

β4 = −2λ3ϕ+
2

3
π.

This implies that for each p ∈ Z3 there exists an integral element (p,E) ∈ V1(Ψ),
i.e., V1(Ψ)|(e,λ) 6= ∅, for each (e, λ) ∈ Z3. In other words C3(Ψ) is the involutive
prolongation of C(Ψ).

Definition 3.2. Following Griffiths [9], Y := Z3 ⊂ Z is called the momentum
space associated with the variational problem L. The Pfaffian system (J , Y, ψ) on
Y , generated by the involutive prolongation C(ΨY ) of the Cartan system C(Ψ), is
the corresponding Euler–Lagrange system.

An easy computation also gives

ΨY = dψY = dλ1 ∧ η1 + dλ2 ∧ η2 + dλ3 ∧ η3 + [−λ1η2 + (3λ2 − 1)η3+

+ 2λ3η
4] ∧ ϕ+ +[(

2

3
− 2λ2)η1 + λ3η

2 − 2

3
η4] ∧ π + (λ1η

3 +
4

3
η4+

+ λ1η
6) ∧ η1 + +(2λ2η

3 + λ3η
4 + λ2η

6) ∧ η2 − (
1

3
η3 +

2

3
η6) ∧ η5.

The above discussion yields the following.

Proposition 3.3. The momentum space Y associated to the projective arclength
functional L is the rank-3 affine sub-bundle

Y = (ϕ+
1

3
η5) + Span(η1, η2, η3) ⊂ T ∗(G).

The Euler–Lagrange system (J , Y ) is generated by the 1-forms

{η1, . . . η6, β1, . . . , β4}.
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The restriction of the Liouville form of T ∗(G) to Y takes the form

ψY = ϕ+
1

3
η5 + λ1η

1 + λ2η
2 + λ3η

3

and satisfies

ψY ∧ (dψY )5 6= 0.

Thus ψY is a contact form and the integral curves of the Euler–Lagrange system
are the integral curves of the corresponding characteristic vector field

V =
∂

∂ϕ
+ (2− 6λ2)λ3

∂

∂λ1
− (λ1 − 3λ23)

∂

∂λ2
− (1− 3λ2)

∂

∂λ3
.

Remark 3.4. Note that at each step of the prolongation process we end up with
smooth algebraic subvarieties of T ∗(G). Let πY be the restriction to Y of the
projection πZ . The importance of the Euler–Lagrange system is in the fact that
the projections of its integral curves are critical points of the action functional.
The converse, in general, is not true. However, if all derived systems of the Pfaffian
system have constant rank (as in the case under discussion), then all the extrema
arise as projections of integral curves of the Euler–Lagrange system. We refer to
[1], [9], and [12] for more details.

4. Reduction for the variational problem

4.1. The Lax formulation. We use the Ad(G)-invariant bilinear form tr(XY )
to identify g = sl(3,R) with its dual g∗. Accordingly, the adjoint and coadjoint
representations become equivalent. Under this identification, the left invariant 1-
form ϕ+ 1

3η
5 + λ1η

1 + λ2η
2 + λ3η

3 ∈ g∗ goes over to

p(λ1, λ2, λ3) = E0 + λ1E1 + λ2E2 + λ3E3 =

−λ3 2− 3λ2 3λ1
0 2λ3 3λ2
1 0 −λ3

 ∈ g,

where E0 = E2,0+2E0,1, E1 = 3E0,2, E2 = 3(E1,2−E0,1), E3 = 2E1,1−E0,0−E2,2,
being Ei,j (0 ≤ i, j ≤ 2) the matrix with 1 in the (i, j) place and 0 elsewhere.

Let p be the 3-dimensional affine subspace

p = E0 + Span(E1, E2, E3)

of g. Then, the mapping

(a, ϕ+
1

3
η5 + λ1η

1 + λ2η
2 + λ3η

3) ∈ Y 7→ (a, p(λ1, λ2, λ3)) ∈ G× p

induces a bundle isomorphism Y ∼= G× p.

Definition 4.1. We call p the phase space of the variational problem.

A curve Γ : I → Y , Γ(t) = (a(t), p(t)), is a solution of the Euler–Lagrange system
if and only if

(4.1) (i) Γ∗ηj = 0, j = 1, . . . , 6, (ii) Γ∗β4 = Γ∗(π − 3λ3ϕ) = 0,

(4.2) (iii) Γ∗β1 = 0, (iv) Γ∗β2 = 0, (v) Γ∗β3 = 0

with independence condition

(4.3) Γ∗ϕ 6= 0.
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If we assume (as always in the following) that the parameterization is such that
Γ∗ϕ = dt, then equations (i), (ii), and (4.3) tell us that

(4.4) a−1ȧ =

0 3λ3(t) 1
1 0 3λ3(t)
0 1 0

 =: Q(t) = Qp(t).

Here Q : p→ g is the mapping defined by

p(λ1, λ2, λ3) 7→ Qp = E1,0 + E1,1 + E2,1 + 3λ3(E0,1 + E1,2).

Using this, a direct calculation shows that equations (4.2) can be written in the
form

(4.5) ṗ = [p,Qp] =

1− 3λ2 −9λ23 + 3λ1 6λ3 − 18λ2λ3
0 2− 6λ2 9λ23 − 3λ1
0 0 1− 3λ2

 .

We have established the following:

Proposition 4.2. A smooth curve Γ(t) = (a(t), p(t)) : I → Y is an integral curve
of the Euler–Lagrange system associated to the arclength variational problem if and
only if

dt = Γ∗ϕ,(4.6)

ȧ = aQp,(4.7)

ṗ = −[Qp, p].(4.8)

If Γ = (a, p) is an integral curve of (Y,J ), then, according to Theorem 2.3, a is
a normal frame along the curve γ = [a0] : I → P2 and p(t) can be written in
terms of the projective curvature κ of γ. In fact, equations (ii) and (iv), (v) yield,
respectively,

(4.9) κ = −3λ3, and λ1 =
1

9
κ̈+

1

3
κ2, λ2 = −1

9
κ̇+

1

3
.

This together with (iii) gives3

(4.10)
...
κ + 8κκ̇ = 0.

Conversely, if γ : I → P2 is a nondegenerate curve parameterized by the projective
arclength and eγ : I → G is the corresponding normal frame, then the lift Γ : I → Y
given by Γ = (eγ , λ1, λ2, λ3), where the λ’s are given in terms of the projective
curvature as above, is an integral curve of the Euler–Lagrange system if and only
if (4.10) is satisfied.

We have then:

Proposition 4.3. If a smooth curve Γ = (a, p) : I → Y is an integral curve of the
Euler–Lagrange system (J , ϕ), then a is the normal frame along γ = [a0] and the
projective curvature of γ is a solution to (4.10). Conversely, any integral curve of
the Euler–Lagrange system arises as a lift of an arclength parameterized curve in
P2 whose projective curvature satisfies (4.10).

3Equation (4.10) is the Euler–Lagrange equation for the critical points of (1.1). This was
computed by Cartan [4].
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Remark 4.4. If Γ(t) = (a(t), p(t)) is an integral curve of J , (4.8) tells us that p(t)
is an integral curve of the vector field Φ defined on p by

ΦV : p 7→ −[Qp, p].

From Proposition 4.2 we also learn that the characteristic vector field V can be
written in the form

V|(a,p) = Qp|a + ΦV(p),

for each (a, p) ∈ Y . If ps denote the set of all singular points of ΦV , then the integral
curves of J passing through a point (a, p) ∈ G× ps are orbits of the one-parameter
subgroups of G generated by QP . Moreover, from (4.5) and (4.9), it follows that
they project to curves in P2 with constant projective curvature.

Definition 4.5. We shall denote by pr the complement of ps in p.

4.2. The moment map. The group G induces a Hamiltonian action on Y ⊂
T ∗(G) by

g · (a;λ1, λ2, λ3) := (ga;λ1, λ2, λ3), for each g ∈ G, and (a;λ1, λ2, λ3) ∈ Y.

The moment map of this action is defined by

µ : Y → g∗, (a;λ1, λ2, λ3) 7→ Ad∗(a)λ,

where Ad∗ is the coadjoint action and where

λ = ϕ+
1

3
η5 + λ1η

1 + λ2η
2 + λ3η

3 ∈ g∗.

µ is an equivariant map. Under the identification g∗ ∼= g, the moment map takes
the form

(4.11) µ : Y → g, (a; p(λ1, λ2, λ3)) 7→ ap(λ1, λ2, λ3)a−1.

From (4.11), we obtain

(4.12) dµ|(a;p) = a(dp+ [ω, p])a−1.

As an immediate consequence of the Lax equation (4.8) we then have Noether’s
theorem

Corollary 4.6. The moment map is constant on solution curves to the Euler–
Lagrange system.

In the following we will denote by µr : G × pr → g the restriction of the moment
map to the regular part of the momentum space. Note that G× ps are the singular
points of µ.

For any integral curve Γ of the Euler–Lagrange system and for each r ∈ R we
have that rank(p(t)− rid3) ≥ 2. This implies that the eigenspaces of the constant
element µ ◦ Γ = m ∈ g are at most one dimensional. Therefore, µ ◦ Γ takes values
in either one of the following Ad(G)-invariant subsets of g:

gI.a = {X : X has one eigenvalue of multiplicity 3 and dimKerX = 1},
gII.b = {X : X has two real eigenvalues, X not simple},
gIII = {X : X has three real distinct eigenvalues},
gIV = {X : X has one real and two complex conjugate eigenvalues}.
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We now give a more detailed description of the various invariant subsets. A canon-
ical form for the elements of gI.a is

XI.a =

0 1 0
0 0 1
0 0 0

 .

Thus gI.a coincides with the orbit through XI.a. The corresponding isotropy group
GI.a is the 2-dimensional group

GI.a =


1 x y

0 1 x
0 0 1

 : x, y ∈ R


and gI.a is six dimensional.

In the case II.b, a canonical form for the elements is

XII.b =

−2x 0 0
0 x 1
0 0 x

 , x ∈ R.

The isotropy group is

GII.b =


v−2 0 0

0 v u
0 0 v

 : v 6= 0, u ∈ R


and the orbit through XII.b is six-dimensional. The orbit space gII.b/G ∼= R∗.

In the case III, a canonical form for the elements of gIII is

XIII =

x 0 0
0 y 0
0 0 −(x+ y)

 , x, y ∈ R, x > y.

The isotropy group is

GIII =


u 0 0

0 v 0
0 0 (uv)−1

 : u, v ∈ R∗


and the orbit through XIII is six-dimensional. The orbit space gIII/G is the open
cone {(x, y) ∈ R2 : x > y, x > −2y, x > 0}.
Finally the case IV. For any X ∈ gIV, let − 1

2x ± iy, y > 0, be the two complex
conjugate eigenvalues. Then a canonical form for X is

XIV =

x 0 0
0 −x2 −y
0 y −x2

 , x, y ∈ R, y > 0.

The corresponding isotropy group is

GIV =


(u2 + v2)−1 0 0

0 u −v
0 v u

 : u2 + v2 6= 0

 .

The orbits are again six-dimensional and the orbit space gIV/G is the upper half
plane {(x, y) : y > 0}.
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Remark 4.7. The elements of Rµ := gI.a t gII.b t gIII t gIV are regular elements of
the Lie algebra g as well as regular values of the moment map µr. In particular,
the isotropy subgroup Gm of any m ∈ Rµ is abelian.

Let m ∈ Rµ be a regular value of the moment map and let Gm be the isotropy
subgroup of m. From the above discussion we know that Gm is abelian and
dimGm = rank(G) = 2. The level set Mm = µ−1r (m) is Gm-invariant and the
quotient Ym = Mm/Gm is a (one-dimensional) manifold since Gm acts properly
without fixed points. The projection πm : Mm → Ym is a Gm-principal fibration.
The characteristic vector field V is tangent to Mm and invariant under Gm. Thus
it is horizontal for πm.

Definition 4.8. If (a, p) ∈ Mm, then p ∈ pr belongs to the orbit Om of m, i.e.,
p ∈ Om ∩ pr. Let P (m) be the connected component of Om ∩ pr containing p. We
call P (m) the phase portrait of m

Besides the fibration πm, we can consider the other Gm-principal fibration π̃m :
Mm → P (m) defined by sending (a, p) ∈ Mm to p ∈ P (m). Since π̃m is constant
along the fibers of πm, the reduced space Ym can be identified with the phase
portrait P (m). Observe that the vector field ΦV is tangent to Om∩pr and that the
restrictions of V and ΦV to Mm and P (m), respectively, are π̃m-related. Moreover,
it happens that, whenever Γ(t) = (a(t), p(t)) is an integral curve with moment m,
p(t) is a smooth parameterization of the phase portrait P (m).

Summarizing, the integration of the extrema with moment m ∈ Rµ can be achieved
by the following procedure:

• find a smooth parameterization p(t) : I = (a, b) → P (m) of the phase
portrait P (m);

• construct any map x(t) : I → G such that (x(t), p(t)) : I → Y is a cross sec-
tion of the fibration π̃m : Mm → P (m); this is a purely algebraic problem:
xpx−1 = m;

• given (x(t), p(t)), any other lift (a(t), p(t)) is of the form a(t) = b(t)x(t) for
some b : I → Gm. In order that (a(t), p(t)) be an integral curve, b : I → Gm
must satisfy the equation a−1ȧ = Qp, that is,

(4.13) b−1ḃ = xQpx
−1 − ẋx−1.

Remark 4.9. Equation (4.13) expresses the fact that the curve (a(t), p(t)) is hori-
zontal with respect to a connection defined on the principal Gm-fibration π̃m. On
a section (x, p) the gm-valued connection 1-form takes the form xQpx

−1 − dxx−1.
According to Remark 4.4, it is not difficult to see that the integral curves of the
characteristic vector field V are exactly the horizontal curves of η.

5. Integration of the extrema

In this last section we briefly indicate how to implement the scheme of integration.
Let Γ = (a, p) be an integral curve of J . Then the image of the corresponding
curve in the phase space is contained in the curve defined by the two equations

g2 = 12(λ23 + λ1),

g3 = 4(2λ33 − 9λ22 + 6λ2 − 6λ1λ3 − 1),
(5.1)
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where g2 = G2(µr ◦ Γ) and g3 = G3(µr ◦ Γ) are the two invariants of Γ defined by
the Ad(G)-invariant functions G2, G3 : g→ R :

G2(X) = tr(XX), G3(X) = 4(detX − 1), X ∈ g.

By (4.9), on integral curves of J these equations become

κ̈+ 4κ2 =
3

4
g2,

(κ̇)
2

+
8

3
κ3 − 3

2
g2κ = −9

4
g3.

Setting p == − 2
3κ, we obtain

(5.2) (ṗ)2 = 4p3 − g2p− g3.
This equation can be solved by standard techniques in terms of elliptic functions.
Consider the meromorphic function q(z) with a double pole at the origin and residue
zero satisfying equation (5.2) and let ∆(g2, g3) = −(1/27)g32 + g23 be the discrimi-
nant of (5.2). If ∆(g2, g3) < 0, then q(z) is the Weierstrass elliptic function with
invariants g2 and g3 and primitive half periods ω1 and ω3, respectively, real and
pure imaginary. If ∆(g2, g3) > 0, then q(z) is the Weierstrass elliptic function with
primitive half periods ω1 ∈ R and ω3 = (1/2)(1 + iv)ω1, v > 0. If ∆(g2, g3) = 0,
then equation (5.2) can be integrated explicitly in terms of elementary functions.

Let σ(z), ζ(z) be the sigma and zeta functions of Weierstrass associated to q(z).

They satisfy σ(0) = 0, σ′(0) = 1, ζ(z) = σ′(z)
σ(z) , q(z) = −ζ ′(z). We recall some

well-known formulae:

(i) q(v)− q(u) =
σ(u+ v)σ(u− v)

σ(u)2σ(v)2
,

(ii) ζ(u+ v) + ζ(u− v)− 2ζ(u) =
q′(u)

q(u)− q(v)
,

(iii) ζ(u+ v)− ζ(u)− ζ(v) =
1

2

q′(u)− q′(v)

q(u)− q(v)
,

(iv) q(u+ v)− q(v) =
1

2

q′′(u)

q(u)− q(v)
− 1

2

q′(u)− q′′(v)

(q(u)− q(v))2
q′(v),

(v) q′′(u) = 6q(u)2 − 1

2
g2.

(5.3)

Retaining the notation introduced above, we have

Lemma 5.1. Let Γ = (a, p) : I → Y be an integral curve of J . Then there exist an
open domain I ⊂ D ⊂ C, a holomorphic map A(z) : D → SL(3,C) which extends
a, and a meromorphic map P (z) : D → sl(3,C) which extends p such that

(5.4) P (z) =

− q(z)2
2−q′(z)

2
g2−3q(z)2

4

0 q(z) q′(z)+2
2

1 0 − q(z)2

 .

Proof. By the above discussion, the projective curvature κ : I → R is the restriction
of a meromorphic function K : C → C ∪ {∞}. Let D be a connected and simply
connected domain containing I such that K|D is regular. On D we consider the
system of holomorphic differential equations:

(5.5) dA0 = A1dz, dA1 = −KA1dz +A2dz, dA2 = A0dz −KA1dz.



16 EMILIO MUSSO AND LORENZO NICOLODI

By the complex analogue of the Cartan–Darboux theorem ([10]), there exists a
holomorphic map A(z) : D → SL(3,C) whose columns Aj(z), 0 ≤ j ≤ 2, are
solutions of (5.5). Moreover, A(z) is unique up to left multiplication by a constant
element of SL(3,C). The result follows by taking the solution satisfying the initial
condition A(t0) = a(t0), t0 ∈ I. Further, K(z) and q(z) are related either by

(5.6) K(z) = −3

2
q(z), or K(z) = −3

2
q(z + ω3).

In the latter case we just replace A(z) by A(z − ω3). By (5.6), (4.9), and (iii)
of (5.3), P extends to a meromorphic function P (z) : D → sl(3,C) as given by
(5.4). �

This conclude the first step that consists in finding a parameterization of the
phase portrait. Next, the eigenvalues of P (z) are the roots rj , 0 ≤ j ≤ 2, of

(5.7) −4det(P (z)− sI3) = 4s3 − g2s− g3 − 4 = 0.

By Corollary 4.6, the eigenvalues of P (z) do not depend on z and for each rj ,
0 ≤ j ≤ 2, we can choose zj ∈ C such that

q(zj ; g2, g3) = rj , q′(zj ; g2, g3) = −2.

If, for instance, we consider the case of curves with moment m ∈ gIII, then a
direct calculation using (5.3) shows that equation XPX−1 = m can be solved by
X = Y −1, where

Y =


q(z)+2r1

2
q(z)+2r2

2
q(z)+2r3

2

− q′(z)+2
2(q(z)−r1) − q′(z)+2

2(q(z)−r2) − q′(z)+2
2(q(z)−r3)

1 1 1

 .

The integral curves with moment m ∈ gIII are then of the form (bX, p) where b is
obtained by a single quadrature as a solution of (4.13) and is expressed in terms of
Weierstrass functions. The other cases can be treated in a similar way.
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périodiques, J. Reine Angew. Math. 90(1880), 281–302.

Dipartimento di Matematica Pura ed Applicata, Università degli Studi di L’Aquila,
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