
Doctoral Dissertation
Doctoral Program in Mathematics For Engineering Sciences (28𝑡ℎcycle)

Discrete Morse Theory
Algorithms

By

Soroosh Nazem

Supervisor:
Prof. Francesco Vaccarino

Doctoral Examination Committee:
Dott. Andrea Villa, Referee, CNR, Pisa
Prof. Federica Galluzzi, Referee, Università di Torino
Prof. Alberto Albano, Università di Torino
Prof. Paolo Brandimarte, Politecnico di Torino
Prof. Paolo Cermelli, Università di Torino

Politecnico di Torino
2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Soroosh Nazem
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Abstract

Discrete Morse Theory (DMT) is the discrete version of Morse Theory (see [1]) and
has been introduced by Robin Forman in [2]. Discrete Morse Theory provides a
powerful tool for the analysis of topological spaces. The main focus of DMT, like
its predecessor Morse theory, is based on finding critical points and constructing a
simpler topological space which is homotopy equivalent (see C.0.2) to the original
topological space.

In this thesis, we will introduce discrete Morse function and explain how we
can find it over a simplicial complex. We will explain how finding a discrete Morse
function can be converted to a combinatorial problem which is called a discrete
Morse matching. Then we will explain the algorithms for finding discrete Morse
matchings over simplicial complexes. Here, we propose a parallel algorithm for
discrete Morse matching computation. Then we show how to construct a Morse
complex and compute its homology groups. In section 4.2, we propose an algorithm
to compute homology groups based on parallel matching. Finally, we will see the
results on some data sets. We have used the library of triangulations in [3]. We
will see the effect of parallelization on elapsed time of the algorithm for different
simplicial complexes.

Contents

List of Figures vi

List of Tables ix

1 Introduction 1

2 Discrete Morse Theory 3

2.1 Morse Matching . 9

2.2 Morse Complex . 11

2.3 Some Notes on Perfect Morse Function 13

3 Discrete Morse Matching Computation 16

3.1 Elementary Collapses Method . 16

3.2 Method Based on Elementary Coreduction 22

3.2.1 Parallel Morse Matching for 2D Simplicial Complex 26

3.2.2 Parallel Morse Matching Algorithm 35

3.2.3 An Example Of Parallel Morse Matching 40

4 Application of Discrete Morse Theory in Homology 44

4.1 Morse Boundary . 45

4.2 Merging Morse Matching and Morse Boundary Computation 48

Contents v

5 Results 57

5.1 Parallel Morse Matching . 58

5.2 Results on Parallel Homology Calculation 58

6 Conclusion 72

References 73

Appendix A Complexes 75

Appendix B Some Notes on Set Theory 77

Appendix C Basic Concepts in Algebraic Topology 78

List of Figures

2.1 𝑓(𝜎) = 𝑑𝑖𝑚(𝜎) (left), Morse funtion with just one critical cell(right) 6

2.2 simplicial complex(left) and Hasse Diagram(right) 11

2.3 Mathched simplicial complex(left) andModifiedHasseDiagram(right) 12

2.4 Hasse Diagram of an Empty Tetrahedron 14

2.5 Hasse Diagram of Tetrahedron after matching 14

3.1 Example of a sequence of elementary collapses 17

3.2 Example of a complex that doesn’t have any free face at beginning
and then by deleting one edge as critical cell, we will have free faces 18

3.3 The graph 𝐴7 . 22

3.4 𝐴𝑚+6Similar structure to graph in figure 3.3, but with 𝑚 edges be-
tween the two triangles . 22

3.5 An example of second method of Matching 25

3.6 The Process of Matching in figure 3.5 shown on Hasse Diagram . . 25

3.7 𝜕1 for Case 1.𝐴 . 29

3.8 𝜕1 for Case 1.𝐵 . 30

3.9 𝜕1 for Case 2.𝐴 . 31

3.10 𝜕1 Case 2.𝐵 . 32

3.11 𝜕𝑘 for First Case . 37

3.12 𝜕𝑘 for Second Case . 38

List of Figures vii

3.13 𝜕𝑘 for Third Case . 38

3.14 𝜕𝑘 for Fourth Case . 39

3.15 Hasse Diagram of a Simplicial Complex 40

3.16 Hasse Diagaram of the Simplicial Complex in Fig.3.15. Here the
dashed lines are those that have to be removed with respect to the
algorithm in Table.3.4 . 41

3.17 TheHasseDiagramwith removed arcs, this stucture can be parallelized 41

3.18 Morse Matching for 𝜕4 . 42

3.19 Morse Matching for 𝜕3 . 42

3.20 Morse Matching for 𝜕2 . 42

3.21 Morse Matching for 𝜕1 . 43

3.22 Final result of Matching with just one critical cell [0] 43

4.1 snapshot of when 𝑥𝑘 and 𝑦𝑘−1 are matched and the number of paths
among non-matched simplices has to be updated 48

4.2 Simplicial Complex 𝒦 . 49

4.3 two boundary matrices 𝜕1 and 𝜕2 of simplicial complex of Fig. 4.2 . 50

4.4 Matching and V-path counting Procedure for 𝜕1 51

4.5 Matching and V-path Procedure for 𝜕1 52

4.6 Matching and V-path Procedure for 𝜕2 53

4.7 Matching and V-path Procedure for 𝜕2 (continue) 54

4.8 Matching and V-path Procedure for 𝜕2 (continue) 55

4.9 Combining the results of parallel algorithm on 𝜕1 and 𝜕2 in order to
get the final 𝜕ℳ

1 and 𝜕ℳ
2 . 56

5.1 Results for different permutations of d2n12g6 with 𝑓 = (12, 66, 44)
and optimal 𝐷𝑀𝑉 = (1, 12, 1) . 60

5.2 Results for different permutations of regular 2 21 23 1 with 𝑓 =
(21, 147, 98) and optimal 𝐷𝑀𝑉 = (1, 30, 1) 61

viii List of Figures

5.3 Results for different permutations of rand2 n250 p0with 𝑓 = (25, 300, 751)
and optimal 𝐷𝑀𝑉 = (1, 0, 475) 62

5.4 Results for different permutations of double trefoil data with 𝑓 =
(16, 108, 184, 92) and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1) 63

5.5 Results for different permutations of Barnette spehere data with 𝑓 =
(8, 27, 38, 19) and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1) 64

5.6 Results for different permutations of poincare datawith 𝑓 = (16, 106, 180, 90)
and optimal 𝐷𝑀𝑉 = (1, 2, 2, 1) 65

5.7 Results for different permutations of non 4 2 colorable data with
𝑓 = (167, 1579, 2824, 1412) and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1) 66

5.8 Results for 600 cell with 𝑓 = (120, 720, 1200, 600) and optimal
𝐷𝑀𝑉 = (1, 0, 0, 1) . 67

5.9 Complexity and Betti Numbers for different dimensions and data . . 68

5.10 Complexity andBetti Numbers for different dimensions and of C.elegans
by Applying Parallel Morse Algorithm 69

5.11 Complexity comparison between method based on morse matching
and method based on reducing the matrix 70

5.12 Complexity and Betti Numbers for different dimensions and data
(continue of table 5.9), these tests are done on polito super computer 71

List of Tables

3.1 Morse Matching Based on Elementary Collapses 19

3.2 Morse Matching Based on Elementary Coreduction 26

3.3 Parallel Matching for 2-dimensional Simplicial Complex 27

3.4 Parallel Morse Matching . 35

4.1 Boundary Matrix Adjustment . 47

4.2 Morse Boundary Matrix . 47

Chapter 1

Introduction

Discrete Morse Theory (DMT) is the discrete version of Morse Theory (see [1]) and
has been introduced by Robin Forman in [2]. Discrete Morse Theory provides a
powerful tool for the analysis of topological spaces. The main focus of DMT, like
its predecessor Morse theory, is based on finding critical points and constructing a
simpler topological space which is homotopy equivalent (see C.0.2) to the original
topological space.

In this thesis, in chapter 2, we will give a short introduction to discrete Morse
theory, we will introduce discrete Morse function and explain how we can find it
over a simplicial complex, then we briefly explain how a Morse complex which is
homotopy equivalent to the simplicial complex can be constructed. We will show
finding a discreteMorse function can be converted to a combinatorial problemwhich
is called discrete Morse matching.

In chapter 3, we will explain the algorithms for finding discrete Morse functions.
Here we introduce a parallel algorithm for discrete Morse matching computation.

In chapter 4, we show how we can construct a Morse complex and compute
its homology groups. In section 4.2, we introduce an algorithm that computes the
Morse matching and constructs the Morse complex concurrently.

In chapter 5, we will see the results on some data sets. We have used the library
of triangulations in [3]. We will see the effect of parallelization on elapsed time of
the algorithm for different simplicial complexes.

2 Introduction

Finally, we will suggest the possible progresses that can be done beyond this
thesis.

Chapter 2

Discrete Morse Theory

Discrete Morse Theory(DMT) provides us a powerful tool for calculating homology
groups of a simplicial complex. This theory was developed by Robin Forman ([2])
in the 1990s as a combinatorial version of Morse theory.

In DMT the simplices are labeled as either critical ormatched. Then a new com-
plex which is called Morse Complex is constructed by just critical simplices. The
homology groups of this new complex are isomorphic to the homology groups of
original simplicial complex (see [4]). To construct a Morse complex, after finding
critical and matched simplices, we need to find boundary operator that in this situa-
tion we call Morse boundary operator and we denote it by 𝜕ℳ

∗ . To calculate these
operators, we need to calculate the connectivity among critical simplices and this is
done by calculating V-paths among critical simplices. V-paths will be explained in
this chapter.

Definition 2.0.1 (Discrete Morse Function). Let 𝐾 be a simplicial complex. A func-
tion 𝑓 ∶ 𝐾 → ℝ is called a discrete Morse function, if for every simplex 𝜏 it holds
that:

1. |{𝜎 ▷ 𝜏|𝑓(𝜎) ≤ 𝑓(𝜏)}| ≤ 1

2. |{𝛾 ◁ 𝜏|𝑓(𝛾) ≥ 𝑓(𝜏)}| ≤ 1

where |Δ| denotes the cardinality of the set Δ.

4 Discrete Morse Theory

This definition says that the value given to a simplex has to be greater than all
of its proper faces, It is just allowed to be equal or smaller than one of them. This
value has to be smaller than all of its proper cofaces, except one.

Proposition 2.0.1. |{𝜎 ▷ 𝜏|𝑓(𝜎) ≤ 𝑓(𝜏)}| + |{𝛾 ◁ 𝜏|𝑓(𝛾) ≥ 𝑓(𝜏)}| ≤ 1

In another word, this proposition says at most one of the constraints of conditions
(1) and (2) in Discrete Morse function can be equal to 1.

Proof. Assume both |{𝜎 ▷ 𝜏|𝑓(𝜎) ≤ 𝑓(𝜏)}| and |{𝛾 ◁ 𝜏|𝑓(𝛾) ≥ 𝑓(𝜏)}| are equal
to 1. So there is a simplex 𝜎 ▷ 𝜏 such that 𝑓(𝜎) ≤ 𝑓(𝜏) and there is a simplex 𝛾 ◁ 𝜏
such that 𝑓(𝛾) ≥ 𝑓(𝜏). So 𝑓(𝜎) ≤ 𝑓(𝜏) ≤ 𝑓(𝛾). Consider another proper face
of 𝜎, 𝜏′ that contains 𝛾 . Since already 𝑓(𝜎) ≤ 𝑓(𝜏), so 𝑓(𝜎) > 𝑓(𝜏′). Therefor,
𝑓(𝜏′) < 𝑓(𝛾); this is a contradiction, because the 𝑓(𝛾) can be equal or greater than
at most one of its proper cofaces, while right now it has become two, 𝜏 and 𝜏′.

Definition 2.0.2 (Critical). Let 𝑓 ∶ 𝐾 → ℝ be a discrete Morse function. A k-
simplex 𝜏 is called critical if:

1. |{𝜎 ▷ 𝜏|𝑓(𝜎) ≤ 𝑓(𝜏)}| = 0

2. |{𝜎 ◁ 𝜏|𝑓(𝜎) ≥ 𝑓(𝜏)}| = 0

Otherwise, it is called regular or matched.

As an example consider the function 𝑓(𝜎) = dim 𝜎. In this function all simplices
are critical, because for every simplex, the given value is bigger than the given values
of proper faces and smaller than the given values of proper cofaces. In figure 2.1,
we have two Morse functions: in one of them all simplices are critical and in the
other there is just one 0-simplex as a critical cell. In [5], a discrete Morse function
is defined on a torus. At first let us see a theorem which shows the importance of
discrete Morse theory.

Definition 2.0.3. For a discrete Morse function on an n-dimensional complex, the
Discrete Morse Vector is a vector 𝐶 = (𝑐0, 𝑐1, ⋯ , 𝑐𝑛) where 𝑐𝑖 represents the number
of 𝑖−dimensional critical simplices.

5

In figure 2.1, the Discrete Morse Vector for the values in the left hand side is
𝐶1 = (3, 3, 1), because all simplices are critical, while for the right hand side is
𝐶2 = (1, 0, 0).

Theorem 2.0.1. Let K be a simplicial complex with a discrete Morse function
𝑓 ∶ 𝐾 ⟶ ℝ and Discrete Morse Vector (𝑐0, 𝑐1, ⋯ , 𝑐𝑛). Then 𝐾 is homotopy equiv-
alent to a cell complex whose number of 𝑖−dimensional cells is 𝑐𝑖, for 𝑖 = 0, … , 𝑛.
(See A.0.2)

Proof. See [6]

Afterward, we will explain how the cell complex mentioned in Theorem 2.0.1
will be constructed. We call it theMorse complex. We have the following theorem.

Theorem 2.0.2 (Morse Inequalities). Let K be a simplicial complex of dimension
n with Betti numbers 𝛽𝑘, 𝑘 = 0, 1, ⋯ , 𝑛, 𝑓 is a discrete Morse function on K with
Discrete Morse Vector (𝑐0, 𝑐1, ⋯ , 𝑐𝑛). Then

1. 𝑐𝑘 ≥ 𝛽𝑘 for all 𝑘, (weak Morse inequality)

2. ∑𝑘
𝑖=0(−1)𝑘−𝑖𝑐𝑖 ≥ ∑𝑘

𝑖=0(−1)𝑘−𝑖𝛽𝑖 ,for all 𝑘, (strong Morse inequality)

3. ∑𝑛
𝑖=0(−1)𝑛−𝑖𝑐𝑖 = ∑𝑛

𝑖=0(−1)𝑛−𝑖𝛽𝑖 = 𝒳(𝐾). (Poincaré -Hopf equality)

where 𝒳(𝐾) is the Euler characteristic (see C.0.4) number of 𝐾 .

Proof. See [7](pag. 29).

Definition 2.0.4 (Perfect Morse Function). A discrete Morse function is called per-
fect, if the number of critical cells in each dimension is equal to Betti number.

For a perfect discrete Morse function, the inequalities in theorem 2.0.2 will be
equalities.

Definition 2.0.5 (Optimal Morse Function). A discrete Morse function 𝑓 on an n-
dimensional simplicial complex𝐾 , with discreteMorse vector𝐶𝑓 = (𝑐𝑓,0, 𝑐𝑓,1, ⋯ , 𝑐𝑓,𝑛)
is optimal, if for any discrete Morse function 𝑔 on 𝐾 with discrete Morse vector
𝐶𝑔 = (𝑐𝑔,0, 𝑐𝑔,1, ⋯ , 𝑐𝑔,𝑛):

𝑐𝑓,𝑖 ≤ 𝑐𝑔,𝑖, ∀𝑖 = 0, ⋯ , 𝑛

6 Discrete Morse Theory

0

0 01

11
2

0

22

1 1

3

2

Fig. 2.1 𝑓(𝜎) = 𝑑𝑖𝑚(𝜎) (left), Morse funtion with just one critical cell(right)

𝐶𝑓 is called the optimal DMV of 𝐾 .

Definition 2.0.6 (Matching). Amatching in a simplicial complex K is a pair of (𝜏, 𝜎)
such that 𝜏 ◁ 𝜎

Definition 2.0.7 (Discrete Vector Field). A discrete vector field 𝑉 on 𝐾 is a collec-
tion of matchings (𝜏, 𝜎) such that each simplex is present in at most one matching.

Consider a discrete Morse function 𝑓 ∶ 𝐾 → ℝ. We are going to find a discrete
vector field 𝑉 , induced by 𝑓 . In 𝐾 consider a simplex 𝜏. If 𝜏 is critical with respect
to 𝑓 , then we do not put it in any matching.

If 𝜏 is regular, there is just one either 1-codimensional face or 1-codimensional
coface 𝜎 of 𝜏 such that 𝑓(𝜎) ≥ 𝑓(𝜏) or 𝑓(𝜎) ≥ 𝑓(𝜏), respectively.

If 𝜏 ◁ 𝜎, then we add (𝜏, 𝜎) and if 𝜏 ▷ 𝜎, then we add (𝜎, 𝜏) to 𝑉 . In this case
every simplex is either absent in 𝑉 or it is present in at most one matching. So we
have created a discrete vector field.

Definition 2.0.8 (gradient vector field). Suppose 𝑓 ∶ 𝐾 → ℝ is a discrete Morse
function on a simplicial complex 𝐾 . The discrete vector field which is obtained from
a discrete Morse function 𝑓 as above, is called the gradient vector field of 𝑓 and we
denote it by −▽𝑓

Example 2.0.1. Consider the function 𝑓(𝜎) = 𝑑𝑖𝑚(𝜎). As we said before, in this
function, all simplices are critical. Therefore, the gradient vector field of 𝑓 is an
empty set, −▽𝑓 = ∅.

7

Example 2.0.2. Let 𝐾 be the simplicial complex depicted in figure 2.2 at page 11.
Let 𝑔 ∶ 𝐾 → ℝ be given by:

𝑔([0]) = 0 , 𝑔([1]) = 𝑔([2]) = 𝑔([012]) = 2 , 𝑔([01]) = 𝑔([02]) = 1 , 𝑔([12]) =
𝑔([13]) = 3 , 𝑔([3]) = 4 , 𝑔([23]) = 5

As you see here there are two critical simplices: [0] and [23] and the others
are matched. Here the gradient vector of 𝑔 is −▽𝑔 = {([1], [01]), ([2], [02]),
([12], [012]), ([3], [13])}.

So far, we have understood that a discrete Morse function gives us implicitly a
discrete vector field, which we call it the gradient vector field, but not all discrete
vector fields are the gradient vector field of a discrete Morse function. A simple
counterexample is the following:

Example 2.0.3. Consider a triangle with three vertices [0], [1], [2]. Consider this
discrete vector field 𝑉 = {([0], [01]), ([1], [12]), ([2], [02])}. Consider ([0], [01]), in
the associated discrete Morse function 𝑓 , we should have 𝑓([0]) ≥ 𝑓([01]). More-
over, by the definition of discrete Morse function, 𝑓([01]) > 𝑓([1]). If we repeat the
same reasoning for two other vector in 𝑉 , we will have 𝑓([1]) ≥ 𝑓([12]) > 𝑓[2]
and 𝑓([2]) ≥ 𝑓([02]) > 𝑓[0]. If we combine these relations we have:

𝑓([0]) ≥ 𝑓([01]) > 𝑓([1]) ≥ 𝑓([12]) > 𝑓([2]) ≥ 𝑓([02]) > 𝑓([0])

So 𝑓([0]) > 𝑓([0]) which is a contradiction. Therefore, 𝑉 is not associated to any
Discrete Morse function

We want to characterize which discrete vector fields are gradient vector fields of
a discrete Morse function.

Definition 2.0.9 (V Path on a discrete vector field). Let V be a discrete vector field.
A V-path is a sequence of simplices

𝜎0, 𝜏1, 𝜎1, 𝜏2, 𝜎2 ⋯ , 𝜎𝑟−1, 𝜏𝑟

such that for each 𝑖 = 1, 2, ⋯ , 𝑟 − 1, (𝜏𝑖, 𝜎𝑖) ∈ 𝑉 and 𝜎𝑖 ▷ 𝜏𝑖+1 ≠ 𝜏𝑖. Such a
path is called nontrivial closed path if 𝑟 ≥ 0 and 𝜏𝑟 ◁ 𝜎0.

8 Discrete Morse Theory

Example 2.0.4. Consider the gradient vector field −▽𝑔 in example 2.0.2 the fol-
lowing sequence:

[23], [3], [13], [1], [01], [0]

is a path induced by discrete Morse function g and as you see, this path is not closed.

Right now consider the discrete vector field𝑉 = {([0], [01]), ([1], [12]), ([2], [02])},
the V-path is:

[0], [01], [1], [12], [2], [02]

this V-path is closed, because [0] ◁ [02]

Now, we state the following theorem that makes a connection between discrete
Morse function and the V-path

Theorem 2.0.3. Suppose 𝑉 is the gradient vector field of discrete Morse function f.
Then a sequence of simplices is a V-path if and only if 𝜏𝑘

𝑖 ◁ 𝜎𝑘+1
𝑖 for 𝑖 = 0, 1, ⋯ , 𝑟

and 𝑓(𝜏𝑘
0) ≥ 𝑓(𝜎𝑘+1

0) > 𝑓(𝜏𝑘
1) ≥ 𝑓(𝜎𝑘+1

1) > ⋯ ≥ 𝑓(𝜎𝑘+1
𝑟) > 𝑓(𝜏𝑘

𝑟+1).

Proof. See [8] on page 94.

Example 2.0.5. In example 2.0.4, look at the V-path created by −▽𝑔 and then
substitute the elements of V-path by their values taken from 𝑔, we have:

𝑔([0]) ≥ 𝑔([01]) ≥ 𝑔([1]) ≥ 𝑔([12]) ≥ 𝑔([2]) ≥ 𝑔([02])

We are now in the position to present this important theorem that makes a mutual
relation between discrete vector field and discrete Morse function.

Theorem 2.0.4. A discrete vector field 𝑉 is the gradient vector field of a discrete
Morse function, if and only if there is no nontrivial closed V-path.

Proof. See [2]

So, by this theorem instead of looking for a discrete Morse function we can look
for a discrete vector field with no closed V-path. This issue converts our problem to
a combinatorial problem. Before keep going forward, let us clarify the point by an
example.

2.1 Morse Matching 9

Example 2.0.6. Consider the simplicial complex in figure 2.2. Now, look at the two
following discrete vector fields over this complex:

𝑉1 = {{[0], [01]}, {[1], [12]}, {[3], [13]}}
𝑉2 = {{[0], [02]}, {[1], [01]}, {[2], [12]}}

For 𝑉1, we can not find any closed path. So with respect to theorem 2.0.4, it is a
gradient vector field of a discrete Morse function. An example 𝑓 ∶ 𝑋 → ℝ of this
Morse function induces by 𝑉1 is :

𝑓([0]) = 2, 𝑓([01]) = 2, 𝑓([1]) = 1, 𝑓([12]) = 1, 𝑓([3]) = 2, 𝑓([13]) = 2
𝑓([2]) = 0, 𝑓([02]) = 3, 𝑓([23]) = 3, 𝑓([012]) = 4

On another hand, look at 𝑉2. there is a closed path in these discrete vector field:

[0], [02], [2], [12], [1], [01], [0]

With respect to the theorem 2.0.4, no discrete Morse function can be defined over 𝑉2

2.1 Morse Matching

Herein, we introduce Hasse diagram which is helpful for a different representation
of a simplicial complex.

Definition 2.1.1 (Hasse diagram). The Hasse diagram 𝐺𝐾 of a simplicial complex
𝐾 , is a directed graph such that every node of this graph corresponds to a simplex
of 𝐾 and 𝑢, 𝑣 ∈ 𝑉 (𝐺𝐾) are connected by an edge which is directed from 𝑢 to 𝑣, if
and only if the simplex corresponding to 𝑢 is a 1-codimensional face of the simplex
corresponding to 𝑣.

A simplicial complex and its Hasse diagram are presented in figure 2.2. Each
directed edge goes from coface to one of its faces. The advantage of Hasse diagram
is that it makes the matching procedure for finding a discrete vector field more intu-
itive. Look at figure 2.3. In the left, you see the simplicial complex, and each arrow
shows the two simplices which are matched. This arrow goes from a simplex to its
matched coface. When a face-coface pair get matched and considered in discrete

10 Discrete Morse Theory

vector field, in Hasse diagram, we reverse the direction of arrow that connects these
two simplices. You see this modified Hasse diagram in figure 2.3. A V-path in the
gradient vector field is equivalent to a path in Hasse diagram that alternates among
the nodes.

Look at figure 2.3. We can simply discover the V-paths. For example:

[23], [3], [13], [1], [01], [0]

Meanwhile, since the discrete vector field should not have any closed path, equiv-
alently in Hasse diagram we should not have any loop. Now, we have the following
theorem.

Theorem 2.1.1. A discrete vector field V is the gradient vector field of a discrete
Morse function on K, if and only if modified Hasse diagram has no directed loops

Proof. See [8] page 102.

Therefore, according to theorem 2.0.4, our problemwill be converted to a combi-
natorial problem instead of functional problem and it can be easier in computational
point of view. In the next chapter we will explain some matching algorithms for this
purpose, meanwhile we introduce a new method for parallelizing the matching. But
here at first, we explain how a Morse complex can be built after matching.

Definition 2.1.2 (Partial Matching). Let G be a directed graph. A partial matching
ℳ in G is a subset of edges of G such that each node is adjacent to at most one edge
in ℳ. The partial matching ℳ is acyclic if upon reversing the orientation of the
edges in ℳ, the resulting graph has no loops.

Definition 2.1.3 (Morse Matching). An acyclic partial matching ℳ is calledMorse
Matching.

So, a discrete vector field on a simplicial complex is a partial matching and a
gradient vector field is a Morse matching. In figure 2.3, you see a gradient vector
field on a simplicial complex and on its modified Hasse diagram, you see the Morse
matching.

Definition 2.1.4 (PerfectMorseMatching). AMorseMatchingℳ is called aPerfect
Morse Matching, if it is correspondent to a perfect Morse function.

2.2 Morse Complex 11

0

1 2

3
0 1 2 3

[0,1] [0,2] [1,2] [1,3] [2,3]

[0,1,2]

Fig. 2.2 simplicial complex(left) and Hasse Diagram(right)

As an example, the Morse matching is figure 2.3, is a perfect Morse matching,
because the number of unmatched (in this case, critical) simplices is equal to Betti
numbers.

2.2 Morse Complex

After matching and having a gradient vector field, we build a new complex called
Morse Complex. We emphasize that we are working with ℤ2 coefficients.

Definition 2.2.1 (Morse Complex). Consider the discrete Morse function 𝑓 ∶ 𝐾 →
ℝ and let 𝐶𝑟𝑖𝑡𝑘(𝑓) be the set of k dimensional critical simplices in the simplicial
complex K. The chain group 𝐶𝑘(𝑓) is a ℤ2-module generated by 𝐶𝑟𝑖𝑡𝑘(𝑓):

𝐶𝑘(𝑓) = {∑
𝑘

𝛼𝑘𝜏𝑘 , 𝜏𝑘 ∈ 𝐶𝑟𝑖𝑡𝑘(𝑓), 𝛼𝑘 ∈ ℤ2}, ∀𝑘 = 0, 1, ⋯ , 𝑑𝑖𝑚(𝐾)

12 Discrete Morse Theory

0

1 2

3
0 1 2 3

[0,1] [0,2] [1,2] [1,3] [2,3]

[0,1,2]

Fig. 2.3 Mathched simplicial complex(left) and Modified Hasse Diagram(right)

and the boundary operator 𝜕𝑘 ∶ 𝐶𝑘(𝑓) ⟶ 𝐶𝑘−1(𝑓) is defined by counting the
number of V-paths between 𝜎 ∈ 𝐶𝑟𝑖𝑡𝑘(𝑓) and 𝜏 ∈ 𝐶𝑟𝑖𝑡𝑘−1(𝑓):

𝜕𝑘(𝜎) = ∑
𝜏∈𝐶𝑟𝑖𝑡𝑘−1(𝑓)

|𝒫 (𝜎, 𝜏)|𝑚𝑜𝑑 2𝜏

where 𝒫 (𝜎, 𝜏) is the set of V-paths between 𝜎 and 𝜏.

For a more general definition of Morse complex and to understand why we can
build a complex by this approach, see [9]. In order to clarify the definition of Morse
complex, we give the following example.

Example 2.2.1. Consider the simplicial complex K in figure 2.2. The boundary
operator matrices are

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜕2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

After matching, as shown in figure 2.3, just [0] and [23] are left as criticals and
others are matched. So the Morse complex extracted from this Morse matching has
one 0-simplex, one 1-simplex and no 2-simplex. Now we need to count the number

2.3 Some Notes on Perfect Morse Function 13

of V-paths between [0] and [23]:

𝒫 ([23], [0]) = {([23], [3], [13], [1], [01], [0]), ([23], [2], [02], [0])}

So |𝒫 ([23], [0])| = 2 and the boundary operator matrices will be

𝜕𝑀
1 = [0]

and as you see the homology groups of this complex are isomorphic to the original
complex.

In the next chapter, some algorithms for counting the number of V-paths will be
explained. Right now, in order to mention a point, let us see another example.

Example 2.2.2. Consider an empty tetrahedron. Its Hasse diagram is depicted in
figure 2.4. In figure 2.5, you see how we matched the simplices to build a discrete
vector field 𝑉 :

𝑉 = {([1], [01]), ([2], [02]), ([3], [03]), ([12], [012]), ([13], [013]), ([23], [023])}

As you see, [0] and [123] are critical simplices. Since we have no 1-simplex as
critical, so we can not have any V-path, and so we have no boundary operator like
𝜕𝑀

1 and 𝜕𝑀
2 . So in this case we can simply just say that 𝛽0 = 1, 𝛽1 = 0, 𝛽2 = 1 and

we do not need to calculate any V-path.

2.3 Some Notes on Perfect Morse Function

As explained before, in perfect Morse functions, the number of critical simplices
in each dimension is equal to the Betti number of that dimension. Unfortunately,
we can not find perfect Morse functions for all simplicial complexes and there are
some limitations. For example, torsion is considered as an obstruction for a perfect
Morse matching. Some other parameters like being contractible are also important.

14 Discrete Morse Theory

0 1 2 3

[0,1] [0,2] [1,2] [0,3] [1,3] [2,3]

[0,1,2] [0,1,3] [0,2,3] [1,2,3]

Fig. 2.4 Hasse Diagram of an Empty Tetrahedron

0 1 2 3

[0,1] [0,2] [1,2] [0,3] [1,3] [2,3]

[0,1,2] [0,1,3] [0,2,3] [1,2,3]

Fig. 2.5 Hasse Diagram of Tetrahedron after matching

2.3 Some Notes on Perfect Morse Function 15

One of the well known simplicial complexes that does not accept a perfect Morse
function is dunce hat. In [10], [11] and [12], there are some explanations about
perfect Morse functions and why some simplicial complexes do not accept perfect
Morse functions. Here, we just give a proposition.

Proposition 2.3.1. Every 1-dimensional simplicial complex has a perfect Morse
function.

Proof. See [12] page 3.

All algorithms do not guarantee a perfect Morse function for a 1-dimensional
simplicial complex, but some do. We will introduce one of them. The advantage of
this proposition is that if we use an algorithm that guarantees perfectMorse function,
then we are sure that (𝑐0, 𝑐1) = (𝛽0, 𝛽1) and so for calculating the homology groups
and Betti numbers we do not need to calculate V-paths, unless we need the generators
of homology groups.

Chapter 3

Discrete Morse Matching
Computation

In this chapter, we explain twomajor strategies for computing discreteMorse match-
ing. Referring to theorem 2.0.4, finding discrete Morse function can be translated
to a discrete gradient Vector field and by looking at Hasse diagram, we need to find
an acyclic matching such that each node is present in at most one matching. In [13],
it is proven that finding an optimal Morse matching is an NP-hard problem. In any
case,the first method will be based on elementary collapses and the second method
will be based on elementary coreduction. In [14], another method based on Fourier
transform has been introduced.

3.1 Elementary Collapses Method

Here at first, we need to define some terminologies.

Definition 3.1.1 (Free Face). A k-simplex is called aFreeFace, if it is a 1-codimensional
face of just one (k+1)-simplex.

Free face is actually a generalization of leaves in graph theory. For example, in
the simplicial complex shown in figure 2.2, the 1-simplices [01], [02] and [12] are
free faces of [012].

Definition 3.1.2 (Elementary Collapse). An elementary collapse is the deletion of a
free face together with its coface.

3.1 Elementary Collapses Method 17

b

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3 𝑣2 𝑣3 𝑣3

Fig. 3.1 Example of a sequence of elementary collapses

Definition 3.1.3 (collapsible complex). A simplicial complex is called collapsible,
if it has a sequence of collapses leading to a point.

In figure 3.1, you see a sequence of elementary collapses; we start with a triangle
and end up to a single node. As you know,the Betti numbers of a fulfilled triangle
and a node are equal. So, we can claim that elementary collapses do not influence the
homology groups of a simplicial complex. We formalize this claim in the following
theorem.

Theorem 3.1.1. A sequence of elementary collapses yields to a homotopy equiva-
lence.

Proof. See [15], page 93.

In another word, this theorem says that if we have a sequence of elementary col-
lapses, all the complexes during this procedure are homotopy equivalent and so their
homology groups are isomorphic. In figure 3.1, all the complexes have isomorphic
homology groups.

The algorithm based on elementary collapses works in this way: as long as there
is a free face, we do an elementary collapse. When there is no free face, we remove
one of the facets from the complex and mark it as critical. We continue this approach
till achieving a single node. The final single node is also marked as critical. In figure
3.2, you see that in the triangle since there no free face, we remove one of the edges
as critical and then we continue the collapsing procedure. So, 𝑐0 = 1, 𝑐1 = 1, where
𝑐𝑖 denotes the number of 𝑖-dimensional critical points.

Lemma 3.1.1. The algorithm based on elementary collapses gives a discrete Morse
matching of the modified Hasse diagram of a simplicial complex.

18 Discrete Morse Matching Computation

b

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3 𝑣2 𝑣3 𝑣3

Fig. 3.2 Example of a complex that doesn’t have any free face at beginning and then by
deleting one edge as critical cell, we will have free faces

Proof. Consider theHasse diagram of a simplicial complex. An elementary collapse
is the deletion of a pair of simplices (𝜏, 𝜎) where 𝜏 ◁ 𝜎 and 𝜏 is a free face. If we
perform a sequence of successive elementary collapses we obtain, therefore, a partial
matching by the definition of free face.

Now, in order to show that this is a Morse matching, we have to show that it is
acyclic. We prove this by absurd. Let us assume that we have the following sequence
of matchings

(𝜏1, 𝜎1), (𝜏2, 𝜎2), ⋯ (𝜏𝑛, 𝜎𝑛), with 𝜏𝑖 ◁ 𝜎𝑖−1 for 𝑖 = 2, … , 𝑛

inducing a path in the modified Hasse diagram. Assume that 𝜏1 ◁ 𝜎𝑛 to obtain a
cycle. Observe that, when we matched 𝜏1 and 𝜎1, 𝜏1 was a free face and this means
that its other cofaces had been earlier removed as critical or as matched. But the
matching (𝜏𝑛, 𝜎𝑛) is successive to (𝜏1, 𝜎1), thus the only possibility for 𝜎𝑛 to be a
coface of both 1 and 𝜏𝑛 is that it was critical which is a contradiction.

Definition 3.1.4 (Matching Vectors). Consider 𝑘-simplices in a simplicial complex
𝐾 and a Morse matching on 𝐾 . A matching vector 𝒩𝑘 for k-simplices is a vector
whose dimension is the number of 𝑘-simplices in 𝐾 , and its i’th component is:

𝒩𝑘(𝑖) =
⎧⎪
⎨
⎪⎩

−𝑗 matched with j-th (𝑘 + 1)-simplex
𝑗 matched with j-th (𝑘 − 1)-simplex
0 critical

∀𝑘 = 0, ⋯ , dim (𝐾)

Matching vectors are needed for calculating V-paths and Morse boundary oper-
ators for a Morse matching. In the following, we give some examples.

3.1 Elementary Collapses Method 19

Algorithm 1: Morse Matching Based on Elementary Collapse
Input: boundary matrices 𝜕∗ of simplicial complex 𝐾
Output: matching vectors 𝒩∗

0 ∶ Initialize 𝒩𝑘 = 0⃗ ∀𝑘 = 0, ⋯ , 𝑑𝑖𝑚(𝐾)
1 ∶ for 𝑘 = 0 → 𝑑𝑖𝑚(𝐾) − 1 ∶
2 ∶ while (𝜕𝑘! = 𝑛𝑢𝑙𝑙) do
3 ∶ while (There is no free face) do
4 ∶ 𝜕𝑘 ∶= Remove one cofaces (one column in matrix) in 𝜕𝑘 and

label it as critical
5 ∶ 𝜕𝑘 ∶= Remove a free face with its coface (Remove 𝑖th row and 𝑗th

column)
6 ∶ 𝜕𝑘−1 ∶= update 𝜕𝑘−1 by removing the 𝑖th column
7 ∶ 𝜕𝑘+1 ∶= update 𝜕𝑘+1 by removing the 𝑗th row
8 ∶ 𝒩𝑘(𝑗) = 𝑖
9 ∶ 𝒩𝑘−1(𝑖) = −𝑗

Table 3.1 Morse Matching Based on Elementary Collapses

Example 3.1.1. Consider the Morse matching in figure 2.3, the matching vectors
are:

𝒩0 = (0, −1, −2, −3), 𝒩1 = (2, 3, −1, 4, 0), 𝒩2 = (3)

Example 3.1.2. Consider the simplicial complex in figure 2.2 and the boundary
operator matrices:

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜕2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With respect to the algorithm 3.1, the initial matching vectors are:

𝒩0 = (0, 0, 0, 0), 𝒩1 = (0, 0, 0, 0, 0), 𝒩2 = (0)

As you know each row in 𝜕𝑘 represents a (𝑘 − 1)-simplex and if in some row,
there is just one element equal to 1, that (𝑘 − 1)-simplex is a free face and can be
deleted with its coface. Now in 𝜕2, there are three free faces, here we match the
first 1-simplex with its coface. Therefore 𝛿2 become a zero dimensional matrix and

20 Discrete Morse Matching Computation

𝜕1, 𝒩1 and 𝒩2 will be updated:

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 1 0
1 1 0 1
0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝒩1 = (−1, 0, 0, 0, 0), 𝒩2 = (1)

Now in 𝜕1, the first 0-simplex is a free face, so we match it with its coface and 𝜕1, 𝒩0
and 𝒩1 will be updated to:

𝜕1 =
⎡⎢⎢⎢⎣

1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎦
, 𝒩0 = (−2, 0, 0, 0), 𝒩1 = (−1, 1, 0, 0, 0)

Now as you see, there is no free face. So we have to delete a coface(a column in 𝜕1)
as critical. Here, we delete the first coface and the updated 𝜕1 will be:

𝜕1 =
⎡⎢⎢⎢⎣

1 0
0 1
1 1

⎤⎥⎥⎥⎦
Now, we have two free faces for matching. We match the first 0-simplex with first
1-simplex and 𝜕1, 𝒩0 and 𝒩1 will become:

𝜕1 =
[

1
1]

, 𝒩0 = (−2, −4, 0, 0), 𝒩1 = (−1, 1, 0, 2, 0)

Finally, we have two free faces and one coface, we match the first face with that
coface and we have:

𝒩0 = (−2, −4, −5, 0), 𝒩1 = (−1, 1, 0, 2, 3),

Here 𝜕1 becomes zero dimensional and so the algorithm is completed. Therefore,
with respect to matching vectors the discrete Vector field will be:

𝑉 = {([0], [02]), ([1], [13]), ([2], [23]), ([01], [012])}

3.1 Elementary Collapses Method 21

As you see 𝑐0 = 𝑐1 = 1 and 𝑐2 = 0 and they are equal to Betti numbers. Therefore,
the Morse matching is perfect.

As you saw in the example above, we did the matching with respect to the order
of simplices, but in [10], a random version is presented for this algorithm which
means that when there is no free face, we randomly select a facet to delete it as
critical. As an example, consider the graph depicted in figure 3.3. We want to find
a Morse matching. If we select an edge in random, the results can be different for
different edges. If we select the central edge, by following the algorithm, the discrete
Morse vector will be 𝐶 = (2, 3), which is not a perfect Morse matching, but if we
select any other of the edges, we will obtain a perfect matching with 𝐶 = (1, 2).
So, each simplex that we label as critical in this algorithm, may change the final
discrete Morse vector. This case can be either an advantage or a disadvantage. The
disadvantage is that if we want to calculate the homology groups and Betti numbers,
since the matching is not perfect, we cannot stop and we need to go on by computing
Morse complex.

If we focus on 1-dimensional simplicial complexes, by proposition 2.3.1, we
know for a graph a perfect Morse Matching always exists. The other method that we
will explain in the next section, guarantees the perfect Morse Matching for a graph.

The non perfect Morse Matching obtained by this method can be informative.
Let us compare the graphs in figures 3.3 and 3.4. As you see they have isomorphic
homology groups and so have equal Betti vectors which is (1, 2), But there is a dif-
ference among them. Since at the beginning, no one have a free face, so we need to
remove an edge and label it as critical. If all edges have the same probability to be the
first candidate, so the probability of not being concluded to a perfect Morse match-
ing for 𝐴7 is equal to 1

7 , while for 𝐴𝑚+6 it is 𝑚
𝑚+6 . You see that as 𝑚 increases, the

probability of a non perfect Morse matching will increase as well. In the following,
we consider a graph 𝐺 as a substitution of a 1-dimensional simplicial complex.

Corollary 3.1.1. Each basic cycle of 𝐺 must contain at least one critical edge.

This corollary is a result of a Morse Inequalities stated in theorem 2.0.2.

Definition 3.1.5. Let 𝐺 be a graph. A subset 𝐸′ ⊆ 𝐸 of the edge set of 𝐺 is called
a 𝑘-cut set if 𝛽0(𝐺) = 𝑘 + 𝛽0(𝐺 − 𝐸). If 𝐸′ = {𝑒} is a single edge, then 𝑒 is called
a 1-cut set of 𝐺.

22 Discrete Morse Matching Computation

b

b

b b

b

b

𝑣0

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

Fig. 3.3 The graph 𝐴7

b b b b𝑣0

𝑣1 𝑣2

𝑣3𝑣4 𝑣5 𝑣6 𝑣7 𝑣𝑛−1
bb 𝑣𝑛

b b b b b

Fig. 3.4 𝐴𝑚+6Similar structure to graph in figure 3.3, but with 𝑚 edges between the two
triangles

In order for 𝐸′ to be a 𝑘-cut set, clearly |𝐸′| ≥ 𝑘.

Proposition 3.1.1. Let 𝑓 ∶ 𝐺 → ℝ a discrete Morse function on 𝐺, and 𝑘 ∶=
𝑐1 − 𝛽1 > 0. Then there exists a subset 𝐸′

𝑗 of the set of critical edges of 𝑓 such that
𝐸′

𝑗 is a 𝑗-cut set for every 1 ≤ 𝑗 ≤ 𝑘.

Proof. Let 𝑀 denote the set of critical edges of 𝑓 . By Corollary 3.1.1, there is
a subset 𝐿 ⊆ 𝑀 such that 𝐺 − 𝐿 contains no cycles and hence is a forest with
𝛽0(𝐺 − 𝐿) = 𝛽0(𝐺) components. Since |𝐿| = 𝛽1(𝐺) and 𝐿 ⊆ 𝑀, |𝑀 − 𝐿| = 𝑘.
Hence the removal of any edge 𝑒 ∈ 𝑀 − 𝐿 from the graph 𝐺 − 𝐿 increases the
number of components by 1, and the result follows.

3.2 Method Based on Elementary Coreduction

We present here another algorithm to find a discrete Morse matching which is called
elementary coreduction based method. The method was introduced in [16] and

3.2 Method Based on Elementary Coreduction 23

an algorithm based on it was presented in [17]. Along its execution, this algorithm
will mark a face as either critical or matched. Once a face has been marked by the
algorithm, it is called labeled. Unmarked faces are called unlabeled. This method
instead of looking for free faces, looks for simplices that have just one unlabeled
1-codimensional face. If there is no simplex satisfying this condition, the algorithm
will label one of the minimal unlabeled faces as critical. One can see an example of
this algorithm in figure 3.5. At first, there is no simplex with just one unlabeled face,
so one of the minimal faces is labeled as critical, in this case 𝑣1. Then 𝑣2 is matched
with [𝑣1, 𝑣2], and successively, 𝑣3 with [𝑣1, 𝑣3]. Finally, [𝑣2, 𝑣3] is matched with
[𝑣1, 𝑣2, 𝑣3]. Therefore, the only critical simplex is 𝑣1 and the discrete vector field is

𝑉 = {([𝑣2], [𝑣1, 𝑣2]), ([𝑣3], [𝑣1, 𝑣3]), ([𝑣2, 𝑣3], [𝑣1, 𝑣2, 𝑣3])}

and the matching vectors will be

𝒩0 = (0, −1, −2), 𝒩1 = (2, 3, −1), 𝒩2 = (3)

The second algorithm is written in table 3.2. In the following, we give two propo-
sitions, one that proves algorithm based on coreduction gives a Morse matching,
the other one proves that this method guarantees a perfect Morse matching for 1-
dimensional simplicial complexes.

Proposition 3.2.1. The algorithm based on elementary coreduction gives a Morse
matching of the modified Hasse diagram of a simplicial complex.

Proof. Here, we follow the same approach that we used in 3.1. The algorithm always
tries to match those simplices that are unlabeled and as soon as they are labeled as
either critical or matched, the algorithm do not look at them for matching anymore.
So, it is impossible for a simplex to be matched more than one time.

Now, in order to show that this is a Morse matching, we have to show that it is
acyclic. We prove this by absurd. Let us assume that we have the following sequence
of matchings

(𝜏1, 𝜎1), (𝜏2, 𝜎2), ⋯ (𝜏𝑛, 𝜎𝑛), with 𝜏𝑖 ◁ 𝜎𝑖−1 for 𝑖 = 2, … , 𝑛

inducing a path in the modified Hasse diagram. Assume that 𝜏𝑛 ◁ 𝜎1 to obtain a
cycle. Observe that, when we matched 𝜏1 and 𝜎1, 𝜎1 has just had one unlabeled

24 Discrete Morse Matching Computation

1-codimensional face and this means that its other faces had been earlier marked as
either critical or matched. But the matching (𝜏𝑛, 𝜎𝑛) is successive to (𝜏1, 𝜎1), thus
the only possibility for 𝜏𝑛 to be a face of both 𝜎1 and 𝜎𝑛 is that it was critical which
is a contradiction.

Proposition 3.2.2. The algorithm based on elementary coreduction guarantees a
perfect Morse matching for 1-dimensional simplicial complexes.

Proof. Let us assume that the simplicial complex 𝐾 is actually a connected graph
𝐺 with 𝑛 vertices and 𝑚 edges. We will prove that the matched edges are giving us
a spanning tree on 𝐺. The algorithm for 𝐺 is exactly working like Prim’s algorithm
(see [18]), because firstly for this algorithm a vertex is labeled as critical and Prim’s
algorithm does the same action by choosing an initial vertex, secondly in this algo-
rithm the matching of an unlabeled edge with its single one unlabeled endpoint is
exactly the same to the adding an edge into the spanning tree while one of its end-
points is already included in tree and the other is not. Now we know that Prim’s
algorithm guarantees a spanning tree on 𝐺, therefore the Matching algorithm gives
an spanning tree, too. So the discrete vector field will be a set of pairs of the 𝑛 − 1
edges in the spanning tree and the vertices they are matched with.

Now suppose 𝐺 is not connected and the components are 𝐺1, 𝐺2, ⋯ , 𝐺𝑛. The
algorithm labels a vertex, say 𝑣 ∈ 𝑉 (𝐺1), as critical and as proved above, we will
obtain a perfect Morse matching on 𝐺1 with a discrete vector field 𝑉1. Afterwards,
since the matching is done on 𝐺1 and in other components there is no edge with just
one unlabeled face, the algorithmwill label a vertex in another component as critical
and the it does the matching as it has done for 𝐺1. Therefore, in each component
there is just one critical vertex with a discrete Morse vector 𝑉𝑛. The discrete vector
field for 𝐺 will be

𝑉 = 𝑉1 ∪ 𝑉2 ∪ ⋯ ∪ 𝑉𝑛

The discrete vector fields for each component have no simplices in common, there-
fore the union of these discrete vector fields is a disjoint union and 𝑉 will be a
discrete vector field. Moreover, since in each component the matching is acyclic,
then in the disjoint union we have no cycle either.

3.2 Method Based on Elementary Coreduction 25

b

𝑣1

𝑣2 𝑣3

𝑣1 critical

𝑣2 𝑣3 𝑣 1
cr
it
ic
a
l

𝑣3
𝑣1 critical

b𝑣1 critical
bbb

Fig. 3.5 An example of second method of Matching

[𝑣1, 𝑣2, 𝑣3]

[𝑣1, 𝑣2] [𝑣1, 𝑣3] [𝑣2, 𝑣3]

𝑣1 𝑣2 𝑣3

[𝑣1, 𝑣2, 𝑣3]

[𝑣1, 𝑣2] [𝑣1, 𝑣3] [𝑣2, 𝑣3]

𝑣1 𝑣2 𝑣3

[𝑣1, 𝑣2, 𝑣3]

[𝑣1, 𝑣2] [𝑣1, 𝑣3] [𝑣2, 𝑣3]

𝑣1 𝑣2 𝑣3

[𝑣1, 𝑣2, 𝑣3]

[𝑣1, 𝑣2] [𝑣1, 𝑣3] [𝑣2, 𝑣3]

𝑣1 𝑣2 𝑣3

[𝑣1, 𝑣2, 𝑣3]

[𝑣1, 𝑣2] [𝑣1, 𝑣3] [𝑣2, 𝑣3]

𝑣1 𝑣2 𝑣3

Fig. 3.6 The Process of Matching in figure 3.5 shown on Hasse Diagram

26 Discrete Morse Matching Computation

Algorithm 2: Morse Matching Based on Elementary Coreduction
Input: boundary matrices 𝜕∗ of simplicial complex 𝐾
Output: matching vectors 𝒩∗

0 ∶ Initialize 𝒩𝑘 = 0⃗ ∀𝑘 = 0, ⋯ , 𝑑𝑖𝑚(𝐾)
1 ∶ for 𝑘 = 1 → 𝑑𝑖𝑚(𝐾) − 1 ∶
2 ∶ while (𝜕𝑘! = 𝑛𝑢𝑙𝑙) do
3 ∶ while (There is no simplex with just one unlabeled 1-

codimensional face) do
4 ∶ 𝜕𝑘 ∶= Remove one face (one row in matrix 𝜕𝑘) and label it as

critical
5 ∶ 𝜕𝑘 ∶= Remove a simplex with its unlabeled face(Remove 𝑖th row

and 𝑗th column)
6 ∶ 𝜕𝑘−1 ∶= update 𝜕𝑘−1 by removing the 𝑖th column.
7 ∶ 𝜕𝑘+1 ∶= update 𝜕𝑘+1 by removing the 𝑗th row.
8 ∶ 𝒩𝑘(𝑗) = 𝑖
9 ∶ 𝒩𝑘−1(𝑖) = −𝑗

Table 3.2 Morse Matching Based on Elementary Coreduction

3.2.1 Parallel Morse Matching for 2D Simplicial Complex

Here we present a parallel version of the algorithm in table 3.2 for 2-dimensional
simplicial complexes which means that at a same time, the Morse matching algo-
rithm is applied to all boundary matrices separately. For this objective, we order the
simplices in colexicographical order (see B.0.2) and whenever the algorithm wants
to label a simplex either as critical or as matched, it selects the first simplices in
colexicographical order.

Since the matching algorithm is applied to all boundary matrices concurrently,
it could be possible to have a 𝑘-simplex being matched with a (𝑘 − 1)-simplex and a
(𝑘 + 1)-simplex at the same time. We call this situation double matching. Double
matching is not Morse matching and has to be handled in some way. For 𝑘-simplices
in a simplicial complex 𝐾 , we have two vectors 𝒩 −

𝑘 and 𝒩 +
𝑘 whose dimensions are

the number of 𝑘-simplices in 𝐾 and the i’th component for each one of them are

3.2 Method Based on Elementary Coreduction 27

Algorithm 3: Parallel Matching for 2-dimensional Simplicial Complex
Input: Colexicographically sorted boundary 𝑚 × 𝑛 matrix 𝜕𝑘, (𝑘 = 0, 1)
Output: Two integer vectors 𝒩𝑘, 𝒩𝑘−1 of length 𝑛 and 𝑚 respectively

0 ∶ Initialize 𝒩𝑘 ∶= (0, … , 0), 𝒩𝑘−1 ∶= (0, … , 0)
1 ∶ while (𝜕𝑘! = 𝑛𝑢𝑙𝑙) do
2 ∶ while (There is no column with only one nonzero element) do
3 ∶ 𝜕𝑘 ∶= Remove the first row of 𝜕𝑘
4 ∶ Find the first column 𝑗 with exactly one nonzero element
5 ∶ 𝜕𝑘 ∶= Remove the column 𝑗 with its matched row 𝑀(𝑗) = 𝑖
6 ∶ 𝒩𝑘(𝑗) = 𝑖
7 ∶ 𝒩𝑘−1(𝑖) = −𝑗

Table 3.3 Parallel Matching for 2-dimensional Simplicial Complex

𝒩 −
𝑘 (𝑖) =

{
𝑗 matched with j-th (𝑘 − 1)-simplex
0 critical

∀𝑘 = 0, ⋯ , dim (𝐾)

and

𝒩 +
𝑘 (𝑖) =

{
−𝑗 matched with j-th (𝑘 + 1)-simplex

0 critical
∀𝑘 = 0, ⋯ , dim (𝐾)

If we have double matching for a 𝑘-simplex, 𝒩 −
𝑘 (𝑖) ≠ 0 and 𝒩 +

𝑘 (𝑖) ≠ 0, where 𝑖
is the index of the 𝑘-simplex in colexicographical order. In such a situation, we have
to do the following steps

1. For each 𝑘 find the indices 𝑖 in 𝒩 −
𝑘 and 𝒩 +

𝑘 where 𝒩 −
𝑘 (𝑖) ≠ 0 and 𝒩 +

𝑘 (𝑖) ≠ 0

2. Set 𝒩 +
𝑘 (𝑖) = 0 and 𝒩 −

𝑘+1(𝑀(𝑖)) = 0, where 𝑀(𝑖) is the index of the (𝑘 + 1)-
simplex matched with 𝑖th 𝑘-simplex.

3. We set 𝒩𝑘 = 𝒩 −
𝑘 + 𝒩 +

𝑘

Step (3) is the final step that will give us the 𝑘-th matching vector. But there is an
exception here. For 1-simplices double matching never happens. We mention this
property as a proposition in the following.

Proposition 3.2.3. For algorithm 3, no double matching happens.

28 Discrete Morse Matching Computation

Proof. At first, we need to explain a little about the figures that we will use for this
proposition and also proposition 3.2.4. In these figures 1 ⟶ 1′ means that 1′ has
been removed from matrix (as either for a critical labeling or for a matching) not
later than 1. This diagrams help us to make the proofs more intuitive and show how
we end up to a contradiction.

In the following we denote (𝜎, 𝜏) ∈ 𝑉 by 𝜎 → 𝜏 . What we want to prove is
that for 1−simplices double matching never happens. Suppose there is at least one
1−simplex matched to a 0− and a 2−simplex. Let 𝜙 be double matched and maxi-
mal with respect the partial order among the double matched 1-simplices:

𝜙 = [𝑣𝑖, 𝑣𝑗] with 𝑣𝑖 < 𝑣𝑗

Matching of [𝑣𝑖, 𝑣𝑗] can have one of the following five situations

𝐶𝑎𝑠𝑒 1 [𝑣𝑖] → [𝑣𝑖, 𝑣𝑗]
𝐶𝑎𝑠𝑒 2 [𝑣𝑗] → [𝑣𝑖, 𝑣𝑗]
𝐶𝑎𝑠𝑒 𝐴 [𝑣𝑖, 𝑣𝑗] → [𝑣′, 𝑣𝑖, 𝑣𝑗]
𝐶𝑎𝑠𝑒 𝐵 [𝑣𝑖, 𝑣𝑗] → [𝑣𝑖, 𝑣′, 𝑣𝑗]
𝐶𝑎𝑠𝑒 𝐶 [𝑣𝑖, 𝑣𝑗] → [𝑣𝑖, 𝑣𝑗 , 𝑣′]

where 𝑣′ is a vertex such that, in Case A, 𝑣′ < 𝑣𝑖, in Case B, 𝑣𝑖 < 𝑣′ < 𝑣𝑗 and
in Case C, 𝑣𝑗 < 𝑣′.

Hence, we have 6 possibilities of having a double matching which are 1.A,
1.B,1.C, 2.A, 2.B, 2.C. Here, we prove one by one that these double matching never
happens.

Since the proof is to some extent complicated, for each case, we follow the proof
with a graphical presentation to show that how each case ends up to a contradiction.

Case 1.A:
Because we have [𝑣𝑖] → [𝑣𝑖, 𝑣𝑗] this means that [𝑣𝑗] has been already deleted
by the algorithm. Deleting a face, means that the simplex (in this case the ver-
tex) is already marked. It could be marked either as critical or as matched. Since
[𝑣𝑗] > [𝑣𝑖], it is thus impossible that the algorithm has marked it as critical, thus [𝑣𝑗]

3.2 Method Based on Elementary Coreduction 29

1

[𝑣𝑖, 𝑣𝑗]

[𝑣𝑖]

[𝑣𝑗]

[𝑣′, 𝑣𝑗]

[𝑣′]

[𝑣′, 𝑣𝑖]

1

1

1

1 1

b b b b b

bb

b

b

b

b

b

b b bb

Fig. 3.7 𝜕1 for Case 1.𝐴

is matched. Since [𝑣𝑗] has been marked before, so it has to be matched with one of
its 1-codimensional faces 𝜎, where in colexicographical order 𝜎 < [𝑣𝑖, 𝑣𝑗] . So, for
𝜎 we have:

∃𝑣ℎ such that [𝑣𝑗] → [𝑣ℎ, 𝑣𝑗].

On the other hand, since [𝑣′, 𝑣𝑖] < [𝑣′, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗] and [𝑣𝑗] has been marked
earlier, so the other face of [𝑣′, 𝑣𝑗], [𝑣′] should have been marked before [𝑣𝑗]. So
[𝑣′] should have been marked before [𝑣𝑖]. So with respect to the algorithm, [𝑣′, 𝑣𝑖]
is the legitimate simplex to be matched with [𝑣𝑖], that is a contradiction. In figure
3.7, the path that leads us to contradiction is shown.

Case1.B:

In this case we have 𝑣𝑖 < 𝑣′ < 𝑣𝑗 and so for 1-simplices [𝑣𝑖, 𝑣′] < [𝑣𝑖, 𝑣𝑗] <
[𝑣′, 𝑣𝑗].
[𝑣𝑖, 𝑣𝑗] → [𝑣𝑖, 𝑣′, 𝑣𝑗]means that the other two faces of [𝑣𝑖, 𝑣′, 𝑣𝑗] are alreadymarked.
For [𝑣′, 𝑣𝑗], since in colexicographical order it comes after [𝑣𝑖, 𝑣𝑗], it has to be
marked as a matched. So [𝑣′, 𝑣𝑗] has a coface 𝜎, where 𝜎 < [𝑣𝑖, 𝑣′, 𝑣𝑗]. So for
𝜎, we have the following:

∃ 𝑣ℎ < 𝑣𝑖 such that [𝑣′, 𝑣𝑗] → [𝑣ℎ, 𝑣′, 𝑣𝑗]

Now, consider the 1-codimensional faces of [𝑣ℎ, 𝑣′, 𝑣𝑗]which are [𝑣ℎ, 𝑣′] < [𝑣ℎ, 𝑣𝑗] <
[𝑣′, 𝑣𝑗]. So we have:

[𝑣ℎ, 𝑣′] < [𝑣𝑖, 𝑣′] < [𝑣ℎ, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗] < [𝑣′, 𝑣𝑗]

30 Discrete Morse Matching Computation

[𝑣ℎ, 𝑣′] [𝑣𝑖, 𝑣′] [𝑣ℎ, 𝑣𝑗] [𝑣𝑖, 𝑣𝑗]

[𝑣ℎ]

[𝑣𝑖]

[𝑣′]

[𝑣𝑗]

1

1 1

1

1

1

1

1

b b b b b b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

Fig. 3.8 𝜕1 for Case 1.𝐵

Now we get back to the matching process of 𝜕1. Similar to Case 1.A, [𝑣𝑗] should
be already matched with some other 1-simplex. Since [𝑣𝑗] is one of the faces of
[𝑣ℎ, 𝑣𝑗] , so the other 0-simplex [𝑣ℎ] should be marked before [𝑣𝑖] either as critical
or as matched. Since [𝑣ℎ] is the face of [𝑣ℎ, 𝑣′], so it means that [𝑣′] has already at
least one coface [𝑣ℎ, 𝑣′], that already can bematched with and this matching happens
before [𝑣𝑖] → [𝑣𝑖, 𝑣𝑗] . But in this situation [𝑣𝑖, 𝑣′] is left with one unmarked face
which is [𝑣𝑖] and by referring to the algorithm, [𝑣𝑖, 𝑣′] is the legitimate 1-simplex to
be matched with [𝑣𝑖]. So we end up here to another contradiction. In figure 3.8, you
see the path that leads to another matching which is a contradiction

Case1.C: It is similar to Case1.B. We have that 𝑣𝑖 < 𝑣𝑗 < 𝑣′ and for 1−simplices
we have

[𝑣𝑖, 𝑣𝑗] < [𝑣𝑖, 𝑣′] < [𝑣𝑗 , 𝑣′].

This means that when wematch [𝑣𝑖, 𝑣𝑗] and [𝑣𝑖, 𝑣𝑗 , 𝑣′], [𝑣𝑖, 𝑣′] and [𝑣𝑗 , 𝑣′] have been
already matched with their cofaces in the following form:

3.2 Method Based on Elementary Coreduction 31

[𝑣′]

[𝑣𝑖]

[𝑣𝑗]

[𝑣′, 𝑣𝑖] [𝑣′, 𝑣𝑗] [𝑣𝑖, 𝑣𝑗]

1 1

1

1

1

1

b b b b b b bbb b b b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 3.9 𝜕1 for Case 2.𝐴

[𝑣𝑖, 𝑣′] → [𝑣𝑔, 𝑣𝑖, 𝑣′], 𝑣𝑔 < 𝑣𝑖

[𝑣𝑗 , 𝑣′] → [𝑣ℎ, 𝑣𝑗 , 𝑣′], 𝑣ℎ < 𝑣𝑗

Similar to Case1.B we have that the edge [𝑣𝑔, 𝑣𝑖] < [𝑣𝑖, 𝑣𝑗] must have the two
unlabeled faces, and it follows the same for the edge [𝑣𝑔, 𝑣′] < [𝑣𝑖, 𝑣𝑗] , the edge
[𝑣ℎ, 𝑣′] < [𝑣𝑖, 𝑣𝑗] and finally the edge [𝑣ℎ, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗]. This produces is a contra-
diction because since we are in Case1, the vertex [𝑣𝑗] must be matched before [𝑣𝑖].

Case2.A: In this case we have [𝑣′, 𝑣𝑖] < [𝑣′, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗]. Because [𝑣𝑗] → [𝑣𝑖, 𝑣𝑗]
the vertex [𝑣𝑖] was already marked. The fact that [𝑣′, 𝑣𝑖] < [𝑣𝑖, 𝑣𝑗] ensures that the
vertex [𝑣′] was marked before [𝑣𝑗]. We obtain that [𝑣′, 𝑣𝑗] is a better candidate with
respect to [𝑣𝑖, 𝑣𝑗]. But this is not possible.

Case2.B:
[𝑣𝑖, 𝑣′] < [𝑣𝑖, 𝑣𝑗] < [𝑣′, 𝑣𝑗]

Because [𝑣𝑖, 𝑣𝑗] < [𝑣′, 𝑣𝑗] then ∃𝑣ℎ such that 𝑣ℎ < 𝑣𝑖 and [𝑣′, 𝑣𝑗] → [𝑣ℎ, 𝑣′, 𝑣𝑗] (the
column corresponding to [𝑣′, 𝑣𝑗] must be already marked). In particular, because
[𝑣𝑖, 𝑣′] < [𝑣𝑖, 𝑣𝑗] and [𝑣𝑖] is already marked, we must have [𝑣′] already marked as
well. Following the same reasoning, we have [𝑣ℎ, 𝑣′] < [𝑣𝑖, 𝑣𝑗] and [𝑣′]marked, that

32 Discrete Morse Matching Computation

[𝑣ℎ]

[𝑣𝑖]

[𝑣′]

[𝑣𝑗]

[𝑣ℎ, 𝑣′] [𝑣𝑖, 𝑣′] [𝑣ℎ, 𝑣𝑗] [𝑣𝑖, 𝑣𝑗]

1

1

1

1

1

1

1

1

b b b bbbbbbbbb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 3.10 𝜕1 Case 2.𝐵

implies [𝑣ℎ] marked. Finally because [𝑣ℎ, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗] with [𝑣ℎ] already marked
we obtain a contradiction.

Case2.C:
[𝑣𝑖, 𝑣𝑗] < [𝑣𝑖, 𝑣′] < [𝑣𝑗 , 𝑣′]

Similar to Case2.B, because [𝑣𝑖, 𝑣𝑗] < [𝑣𝑖, 𝑣′] and [𝑣𝑖, 𝑣𝑗] < [𝑣𝑗 , 𝑣′] it follows that
∃𝑣𝑔, 𝑣ℎ such that 𝑣𝑔 < 𝑣𝑖, 𝑣ℎ < 𝑣𝑖 and [𝑣𝑖, 𝑣′] → [𝑣𝑔, 𝑣𝑖, 𝑣′], [𝑣𝑗 , 𝑣′] → [𝑣ℎ, 𝑣𝑗 , 𝑣′].
Following the same scheme of Case2.B we obtain the following:

[𝑣𝑖] marked [𝑣𝑔, 𝑣𝑖] < [𝑣𝑖, 𝑣𝑗] ⟹
[𝑣𝑔] marked [𝑣𝑔, 𝑣′] < [𝑣𝑖, 𝑣𝑗] ⟹
[𝑣′] marked [𝑣ℎ, 𝑣′] < [𝑣𝑖, 𝑣𝑗] ⟹
[𝑣ℎ] marked [𝑣ℎ, 𝑣𝑗] < [𝑣𝑖, 𝑣𝑗] contradiction.

Therefore, we conclude that it is impossible to have a double matching.

Example 3.2.1. Consider an empty tetrahedron. We want to find a Morse matching
by using the semi parallel algorithm shown in table 3.3. If 𝑣1 < 𝑣2 < 𝑣3 < 𝑣4,
then colexicographical order [𝑣1, 𝑣2] < [𝑣1, 𝑣3] < [𝑣2, 𝑣3] < [𝑣1, 𝑣4] < [𝑣2, 𝑣4] <

3.2 Method Based on Elementary Coreduction 33

[𝑣3, 𝑣4], and for 2-simplices [𝑣1, 𝑣2, 𝑣3] < [𝑣1, 𝑣2, 𝑣4] < [𝑣1, 𝑣3, 𝑣4] < [𝑣2, 𝑣3, 𝑣4].
So the boundary matrices will be:

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜕2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We apply matching algorithm in table 3.3 separately for 𝜕1 and 𝜕2.

For 𝜕1, at fist, since we do not have any unlabeled 1-simplex with just one unla-
beled face, we mark(delete the correspondent row) the first simplex 𝑣0, as critical,
so we have:

𝜕1 =
⎡⎢⎢⎢⎣

1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤⎥⎥⎥⎦
, 𝒩0 = (0, 0, 0, 0), 𝒩 −

1 = (0, 0, 0, 0, 0, 0)

Now the first 1-simplex has just one unlabeled face, so they can get matched and 𝜕1,
𝒩0 and 𝒩1 will be updated to:

𝜕1 =
[

1 1 0 0 1
0 0 1 1 1]

, 𝒩0 = (0, −1, 0, 0), 𝒩 −
1 = (2, 0, 0, 0, 0, 0)

Again, we can match the first 1-simplex with first 0-simplex in 𝜕1. We have:

𝜕1 = [0 1 1 1] , 𝒩0 = (0, −1, −2, 0), 𝒩 −
1 = (2, 3, 0, 0, 0, 0)

and finally, we match the second 1-simplex with the remaining 0-simplex:

𝒩0 = (0, −1, −2, −4), 𝒩 −
1 = (2, 3, 0, 4, 0, 0)

34 Discrete Morse Matching Computation

Now we do the matching for 𝜕2. For having at least one 2-simplex with just one
unlabeled face, we need to label the first two 1-simplices as crtical. So 𝜕2 will be:

𝜕2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝒩 +
1 = (0, 0, 0, 0, 0, 0), 𝒩 −

2 = (0, 0, 0, 0)

Now we can match the first 2-simplex with the first 1-simplex and we will have:

𝜕2 =
⎡⎢⎢⎢⎣

1 1 0
1 0 1
0 1 1

⎤⎥⎥⎥⎦
, 𝒩 +

1 = (0, 0, −1, 0, 0, 0), 𝒩 −
2 = (3, 0, 0, 0)

Now there is no 2-simplex with just one unlabeled 1-simplex. So we mark the first
1-simplex as critical and 𝜕2 will become:

𝜕2 =
[

1 0 1
0 1 1]

Then we match the first 2-simplex with the first 1-simplex:

𝜕2 = [1 1] , 𝒩 +
1 = (0, 0, −1, 0, −2, 0), 𝒩 −

2 = (3, 5, 0, 0)

Finally, we match the first 2-simplex with remaining 1-simplex:

𝒩 +
1 = (0, 0, −1, 0, −2, −3), 𝒩 −

2 = (3, 5, 6, 0)

By looking at 𝒩 −
1 and 𝒩 +

1 , you see no double matching has happened, because
there is no 1-simplex 𝜏 such that 𝒩 −

1 (𝜏) ≠ 0 and 𝒩 +
1 (𝜏) ≠ 0. Finally the matching

vectors will be:

𝒩0 = (0, −1, −2, −4),
𝒩1 = 𝒩 −

1 + 𝒩 +
1 = (2, 3, −1, 4, −2, −3),

𝒩2 = 𝒩 −
2 = (3, 5, 6, 0)

3.2 Method Based on Elementary Coreduction 35

Algorithm 4: Parallel Morse Matching
Input: Colexicographically Sorted boundary 𝑚 × 𝑛 matrix 𝜕𝑘
Output: Two integer vectors 𝒩𝑘, 𝒩𝑘−1 of length 𝑛 and 𝑚 respectively

0 ∶ Initialize 𝒩𝑘 ∶= (0, … , 0), 𝒩𝑘−1 ∶= (0, … , 0)
1 ∶ 𝜕𝑘 ∶= In each column change the first 𝑘 − 1 1’s to 0 such that we have

just two 1’s in each column
2 ∶ while (𝜕𝑘! = 𝑛𝑢𝑙𝑙) do
3 ∶ while (There is no column with only one nonzero element) do
4 ∶ 𝜕𝑘 ∶= Remove the first row of 𝜕𝑘
5 ∶ Find the first column 𝑗 with exactly one nonzero element
6 ∶ 𝜕𝑘 ∶= Remove the column 𝑗 with its matched row 𝑀(𝑗) = 𝑖
7 ∶ 𝒩𝑘(𝑗) = 𝑖
8 ∶ 𝒩𝑘−1(𝑖) = −𝑗

Table 3.4 Parallel Morse Matching

3.2.2 Parallel Morse Matching Algorithm

The algorithm described in table 3.3, is parallel for 2-dimensional simplicial com-
plexes, but for higher dimensions we need to check if there is any double matching.
Now, we introduce a new version of the algorithm that can be parallelized for all
dimensions.

The parallel algorithm is written in table 3.4. What we generally do here is that
each simplex can be matched just with its two last 1-codimensional faces. Consider
that the simplices are ordered in colexicographical order.

Proposition 3.2.4. In algorithm 4 written in table 3.4, no double matching happens.

Proof. Consider a 𝑘-simplex 𝜏 = [𝑣𝑖0 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑘]. We want to prove that it is im-
possible for 𝜏 to be matched at the same time with a (𝑘 − 1) and a (𝑘 + 1)-simplex.
With respect to the algorithm 𝜏 can be matched with just one of two faces:

𝜙1 = [𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] 𝜙2 = [𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘]

On the other hand, it may have proper cofaces with two following form:

36 Discrete Morse Matching Computation

𝜎1 = [𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑘] ∀𝑗 < 𝑖0

𝜎2 = [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑘] ∀𝑖0 < 𝑗 < 𝑖1

Because of the procedure of the algorithm, it cannot be matched with other cofaces.
Four situations can happen that make the algorithm fail. These four situations are
four forms of double matching. Here, we prove one by one that none of them happen
in this algorithm.

Note: 𝜙 → 𝜎 notation here means that 𝜙 is matched with 𝜎 and 𝜙 ◁ 𝜎.

1. 𝜙1 → 𝜏 → 𝜎1

𝜙1 → 𝜏 means that 𝜙2 had been marked before as matched. 𝜙2 cannot be
critical, because with respect to the algorithm, a simplex will be marked as a
critical when there is no coface with exactly one unlabeled face. If we had such
a situation before, regarding to the algorithm, 𝜙1 has the priority compared to
𝜙2. So, if 𝜙2 is already marked, it is matched to another 𝑘-simplex:

𝜙2 → 𝜏′ = [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘] (𝑣′ < 𝑣𝑖0)

In the algorithm, in the step that 𝜏 is matched with𝜙1, 𝜏 has to be the first unla-
beled k-simplexwith only one unlabeled face. So the 𝑘-simplex [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘]
is alreadymarked and therefore it implies [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] is alreadymarked
aswell. But it is impossible, because in this case, the 𝑘-simplex [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘]
could be matched with 𝜙1 = [𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] before 𝜏. That’s a contradic-
tion.

Figure 3.11 shows the procedure of proof and the contradiction that finally we
end to. Every arrow in the picture shows that the element which the arrow is
pointing to, had to be removed(as either critical or matched) earlier than the
element that arrow is coming from.

2. 𝜙1 → 𝜏 → 𝜎2

3.2 Method Based on Elementary Coreduction 37

1

[𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ 𝑣𝑖𝑘]

[𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ 𝑣𝑖𝑘]

1

1

1

1 1

b b b b b

bb

b

b

b

b

b

b b bb

Fig. 3.11 𝜕𝑘 for First Case

𝜏 → 𝜎2 implies that the other face of 𝜎2 which is [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] > 𝜏
has been matched earlier. Therefore, there is a (𝑘 + 1)-simplex in the form
of [𝑣′, 𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] < 𝜎2, (such that 𝑣′ < 𝑣𝑖0) which is matched to
[𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘].
Right now let’s consider the two particular faces of [𝑣′, 𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]
in 𝜕𝑘−1; these two are [𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] and [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]. Right
now, consider the following ordering:

[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] < [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] < [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]
< [𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]

because 𝜙1 → 𝜏, so 𝜙2 has to be matched earlier. 𝜙2 is the second face
of [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] and so its first face which is [𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is al-
ready marked. Right now, because [𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is the first face of
[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘], so [𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] has to be matched to its sec-
ond face which is [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]. In another hand, [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is
the second face of [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] and because [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is
already marked, so 𝜙1 which is the first face of [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] has to
be matched to it. Consider that [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] < 𝜏. That’s a contra-
diction.

3. 𝜙2 → 𝜏 → 𝜎1

38 Discrete Morse Matching Computation

[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] [𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]

[𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

1

1 1

1

1

1

1

1

b b b b b b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

Fig. 3.12 𝜕𝑘 for Second Case

[𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] [𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]

1 1

1

1

1

1

b b b b b b bbb b b b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 3.13 𝜕𝑘 for Third Case

By considering the colexicographical order:

[𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] < [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] < [𝑣𝑖0 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑘]

𝜙2 → 𝜏 means that 𝜙1 has been marked before. You can see, 𝜙1 is the sec-
ond face of [𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘], So the other face [𝑣𝑗 , 𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘]
which is [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] had to be marked in advance. Besides, [𝑣𝑗 , 𝑣𝑖2 ,
𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] is the first face of [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘]. That’s where we get the
contradiction, because here the first column which has just one entry equal to
1 is [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 ⋯ , 𝑣𝑖𝑘], not 𝜏.

4. 𝜙2 → 𝜏 → 𝜎2

3.2 Method Based on Elementary Coreduction 39

[𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖0 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]

[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] [𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]

1

1

1

1

1

1

1

1

b b b bbbbbbbbb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 3.14 𝜕𝑘 for Fourth Case

𝜏 → 𝜎2 means that the second face of 𝜎2, [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] has beenmatched
before. So it should exist another (𝑘 + 1)-simplex before 𝜎2 such that it is
matched to [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] named 𝜎′ = [𝑣′, 𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]. But 𝜎′

has another face [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] < [𝑣𝑗 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘] that had to be
marked earlier and so as you may see in this case 𝜎′ has to be matched.
Right now, consider tow faces of 𝜎′ which are [𝑣′, 𝑣𝑗 , 𝑣𝑖2, 𝑣𝑖3 ⋯ , 𝑣𝑖𝑘] and
[𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ 𝑣𝑖𝑘]. Consider the following colexicographical order in 𝜕𝑘−1:

[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] < [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] < [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]
< [𝑣𝑖0 , 𝑣𝑖1 , 𝑣𝑖2 , ⋯ , 𝑣𝑖𝑘]

𝜙2 → 𝜏 means that 𝜙1 is already marked. 𝜙1 is the first face of [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 ,
⋯ , 𝑣𝑖𝑘], so here [𝑣𝑖0 , 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] can be matched to its second face
[𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘]. In addition, [𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is the second face of
[𝑣′, 𝑣𝑗 , 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] and its first face [𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] has to be already
marked. In another hand, [𝑣′, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] is the first face of the [𝑣′, 𝑣𝑖1 , 𝑣𝑖2 ,
𝑣𝑖3 , ⋯ , 𝑣𝑖𝑘] and the second face is 𝜙2. As you see this (𝑘 + 1)-simplex is the
better candidate (look at colexicographical order) to be matched to 𝜙2. That’s
the contradiction.

40 Discrete Morse Matching Computation

[0] [1] [2] [3] [4] [5] [6] [7]

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

[0123] [0124] [0134] [0234] [1234] [1235]

[01234]

Fig. 3.15 Hasse Diagram of a Simplicial Complex

3.2.3 An Example Of Parallel Morse Matching

In this subsection, we give a big example for parallel Morse matching. We show
the whole procedure on Hasse diagram. In figure 3.15, there is the Hasse Diagram
of a 4 dimensional simplicial complex. Then in figures 3.16 and 3.17, we remove
the first 𝑛 − 1 faces for any 𝑛-simplex. Then we split up the Hasse Diagram into
different layers and we do the matching for each layer separately. This procedure is
presented in figures 3.18, 3.19, 3.20 and 3.21. Then, as shown in figure 3.22, after the
matching is done, all layers will get back together and we have the complete schema
of matching. In all modified Hasse diagrams, those simplices with underlines are
critical simplices.

3.2 Method Based on Elementary Coreduction 41

[0] [1] [2] [3] [4] [5] [6] [7]

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

[0123] [0124] [0134] [0234] [1234] [1235]

[01234]

Fig. 3.16 Hasse Diagaram of the Simplicial Complex in Fig.3.15. Here the dashed lines are
those that have to be removed with respect to the algorithm in Table.3.4

[0] [1] [2] [3] [4] [5] [6] [7]

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

[0123] [0124] [0134] [0234] [1234] [1235]

[01234]

Fig. 3.17 The Hasse Diagram with removed arcs, this stucture can be parallelized

42 Discrete Morse Matching Computation

[0123] [0124] [0134] [0234] [1234] [1235]

[01234]

Fig. 3.18 Morse Matching for 𝜕4

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

[0123] [0124] [0134] [0234] [1234] [1235]

Fig. 3.19 Morse Matching for 𝜕3

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

Fig. 3.20 Morse Matching for 𝜕2

3.2 Method Based on Elementary Coreduction 43

[0] [1] [2] [3] [4] [5] [6] [7]

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

Fig. 3.21 Morse Matching for 𝜕1

[0] [1] [2] [3] [4] [5] [6] [7]

[01] [02] [12] [03] [13] [23] [04] [14] [24] [34] [15] [25] [35] [36] [56] [67]

[012] [013] [023] [123] [014] [024] [124] [034] [134] [234] [125] [135] [235] [356]

[0123] [0124] [0134] [0234] [1234] [1235]

[01234]

Fig. 3.22 Final result of Matching with just one critical cell [0]

Chapter 4

Application of Discrete Morse
Theory in Homology

In chapter 3, we showed two methods for Morse matching computation. In this
chapter, we will explain how to calculate the homology groups and Betti numbers
based on Morse matching. Using discrete Morse theory for computing homology
groups was given for the first time by Lewiner in [19].

In last chapter, we showed that for a 1-dimensional simplicial complex, there is
always a perfect Morse matching and in section 3.2, we described an algorithm that
always gives a perfect Morse matching. But if the Morse matching is not perfect, we
need to calculate the Morse complex by calculating the boundary operator matrices
𝜕ℳ

𝑘 . In section 2.2, we explained how to compute Morse boundary operators.

In the first section, wewill briefly explain twomethods forMorse boundary com-
putation, first method is based on constructing an adjacency matrix and the second
method is based on the modified Hasse diagram.

In the second section, we present a new method that merges computation of
Morse matching and Morse boundary operator matrices which means that as long
as the matching algorithm is being executed, the Morse boundary matrices are com-
puted at the same time.

4.1 Morse Boundary 45

4.1 Morse Boundary

After calculating the matching vectors 𝒩𝑘 (𝑘 = 0, 1, ⋯ , dim(𝐾)), we have to con-
struct the Morse boundary operator matrices 𝜕ℳ

𝑘 through V-paths computation.

Consider a boundary matrix 𝜕𝑘 which is an 𝑚 × 𝑛 matrix with two matching
vectors 𝒩𝑘−1 and 𝒩𝑘 with lengths 𝑚 and 𝑛, respectively. The number of zeros in
𝒩𝑘−1 and 𝒩𝑘 indicate how many (𝑘 − 1)- and 𝑘-critical simplices exist, respectively.
Suppose there are 𝑚𝑐 and 𝑛𝑐 critical simplices, so 𝜕ℳ

𝑘 will be an 𝑚𝑐 × 𝑛𝑐 matrix.
Since we are working on ℤ2 coefficients, 𝜕ℳ

𝑘 (𝑖, 𝑗) is equal to 1, if the number of
V-paths between the 𝑖-th (𝑘 − 1)-critical simplex and 𝑗-th 𝑘-critical simplex is an
odd number, otherwise that would be 0.

Adjacency Matrix Based Method

In this method, considering the subgraph of modified Hasse diagram that corre-
sponds to dimensions 𝑘 and 𝑘 − 1 of the simplicial complex as a directed graph with
𝑚 + 𝑛 vertices, at first we construct the adjacency matrix 𝒜𝑘. The dimension of this
matrix is (𝑚 + 𝑛) × (𝑚 + 𝑛). Then we can count the number of paths among any two
nodes thanks to the following theorem.

Theorem 4.1.1. If 𝒜 is the adjacency matrix of a graph or digraph 𝒢 with vertices
𝑣1, 𝑣2 ⋯ , 𝑣𝑛, then the 𝑖, 𝑗 entry of 𝒜 𝑘 is the number of paths of length 𝑘 from 𝑣𝑖 to
𝑣𝑗

Proof. See [20], pag. 136,137.

By this algorithm, the number of paths from node 𝑖 to 𝑗 is equal to Σ𝑡𝒜 𝑡(𝑖, 𝑗). In
this case, because the number of paths can be just odd. So here we can just consider
odd exponents of 𝒜 and make this algorithm faster.

Method Based on Modified Hasse diagram

In this method, we consider the modified Hasse diagram where the subgraph of
vertices that correspond to (𝑘 − 1)- and 𝑘-simplices construct a bipartite graph. We
divide the algorithm in two sub algorithms. At first, by referring tomatching vectors,
we do some modifications on boundary matrix, then from that modified matrix, the

46 Application of Discrete Morse Theory in Homology

next part of algorithm counts the number of paths between critical simplices. The
first part of this algorithm is shown in table 4.1.

In the second step, we have the modified boundary matrix as the input and by the
algorithm written in table 4.2, the number of V-paths between any pair of critical
(𝑘 − 1)- and 𝑘-simplices will be found.

Example 4.1.1. In example 2.2.1, the boundary matrices are

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜕2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the matching vectors are

𝒩0 = (0, 1, 2, 4), 𝒩1 = (−2, −3, 1, −4, 0), 𝒩2 = (−3)

By applying the algorithm in table 4.1 to 𝜕1, 𝒩0 and 𝒩1, 𝜕1 will be modified to

𝜕1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎦

and then by using algorithm in table 4.2, the Morse boundary operator matrix will
be

𝜕ℳ
1 = [0]

𝜕2 after the first algorithm will become zero dimensional.

4.1 Morse Boundary 47

Algorithm 5a: Boundary Matrix Adjustment
Input: Sorted boundary 𝑚 × 𝑛 matrix 𝜕𝑘 and matching vectors 𝒩𝑘−1 and 𝒩𝑘
Output: Modified boundary matrix, 𝑚𝑐 and 𝑛𝑐

0 ∶ Initialize 𝑚𝑐 = 0 and 𝑛𝑐 = 0
1 ∶ for 𝑖 ∶= 1 ∶ 𝑚 do
2 ∶ if 𝒩𝑘−1(𝑖) = 0
3 ∶ 𝑚𝑐 ∶= 𝑚𝑐 + 1
4 ∶ if 𝒩𝑘−1(𝑖) > 0
5 ∶ 𝜕𝑘(𝑖, 𝒩𝑘−1(𝑖)) ∶= −1
6 ∶ if 𝒩𝑘−1(𝑖) < 0
7 ∶ 𝜕𝑘 ∶=Remove 𝑖-th row of 𝜕𝑘
8 ∶ end
9 ∶ for 𝑖 ∶= 1 ∶ 𝑛 do
10 ∶ if 𝒩𝑘(𝑖) = 0
11 ∶ 𝑛𝑐 ∶= 𝑛𝑐 + 1
12 ∶ if 𝒩𝑘(𝑖) > 0
13 ∶ 𝜕𝑘 ∶=Remove 𝑖-th column of 𝜕𝑘
14 ∶ end

Table 4.1 Boundary Matrix Adjustment

Algorithm 5b: Morse Boundary Matrix
Input: Modified Boundary Matrix from algorithm 4.1
Output: Morse boundary matrix 𝜕ℳ

𝑘
0 ∶ for 𝑖 ∶= 1 ∶ 𝑚𝑐 and 𝑗 ∶= 1 ∶ 𝑛𝑐 do
1 ∶ if 𝜕𝑘(𝑖, 𝑗) = 1
2 ∶ 𝑑(𝑖, 𝑗) ∶= 𝑑(𝑖, 𝑗) + 1
3 ∶ 𝑑(𝑖, 𝑗) ∶= ∑𝑙 𝑑(𝑙, 𝑗)
4 ∶ 𝜕ℳ

𝑘 (𝑖, 𝑗) ∶= 𝑑(𝑖, 𝑗)mod2
5 ∶ end

Table 4.2 Morse Boundary Matrix

48 Application of Discrete Morse Theory in Homology

𝑣𝑘

𝑤𝑘−1

𝑥𝑘

𝑦𝑘−1
b b b bbb b

bbbbbbb b b b b b b b b b bb

bbbbbb b bb b b

bbbb

b b b bb b

Fig. 4.1 snapshot of when 𝑥𝑘 and 𝑦𝑘−1 are matched and the number of paths among non-
matched simplices has to be updated

4.2 Merging Morse Matching and Morse Boundary
Computation

In this section, we will merge the two steps of parallel matching andMorse boundary
matrix calculation to make a faster algorithm for computation of homology groups
and Betti numbers.

Suppose 𝑣𝑘 and𝑤𝑘−1 are two either critical or unlabeled 𝑘- and (𝑘−1)-simplices.
Let 𝜈𝑡(𝑣𝑘, 𝑤𝑘−1) show the number of V-paths between these two simplices at step 𝑡
of the execution of the algorithm 3.4. So in the beginning 𝜈0(𝑣𝑘, 𝑤𝑘−1) is equal to
1, if 𝑤𝑘−1 is one of the faces of 𝑣𝑘, otherwise it will be 0. Referring to figure 4.1,
when 𝑥𝑘 and 𝑦𝑘−1 are matched in step 𝑡, the number of paths in step 𝑡 will be:

𝜈𝑡(𝑣𝑘, 𝑤𝑘−1) = 𝜈𝑡−1(𝑣𝑘, 𝑤𝑘−1) + 𝜈𝑡−1(𝑣𝑘, 𝑦𝑘−1) × 𝜈𝑡−1(𝑥𝑘, 𝑤𝑘−1)

When the parallel matching algorithmwhich is written in table 3.4 (or in table 3.3
for 2-dimensional simplicial complexes) is running, by any matching the boundary
matrix will be updated by the above formula. There is a small difference for match-
ing, here whenever in 𝜕𝑘, a (𝑘 − 1)-simplex is marked as critical, we do not delete it
from 𝜕𝑘, because we need critical simplices for Morse boundary matrices, but like
before for matching algorithm they are not considered anymore. In the following,
by an example, we will explain how the algorithm works.

Example 4.2.1. In figure 4.3, you see a 2-simplicial complex with its two boundary
matrices 𝜕1 and 𝜕2. Then in figures 4.4, 4.5, you can see step by step how the match-
ing and updating for 𝜕1 operate at the same time. You see also the same procedure

4.2 Merging Morse Matching and Morse Boundary Computation 49

𝑣0

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

Fig. 4.2 Simplicial Complex 𝒦

for 𝜕2 in figures 4.6, 4.7 and 4.8. After the matching is finished, the 1-simplices that
are matched from the other side will be eliminated and finally we will end up with
two Morse boundary matrices 𝜕ℳ

1 and 𝜕ℳ
2 represented in figure 4.9.

Here we need to give some explanation about the figures. The arrows indicate
that the matching algorithm just look at the boundary matrix from that row to the
final row. The rows before that arrow are not considered in matching algorithm.
Just circled entries participate in matching algorithm, but for Morse boundary cal-
culation all entries will participate.

50 Application of Discrete Morse Theory in Homology

𝜕1:

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

[𝑣0, 𝑣1][𝑣1, 𝑣2][𝑣0, 𝑣3][𝑣1, 𝑣3][𝑣0, 𝑣4][𝑣1, 𝑣4][𝑣2, 𝑣4][𝑣3, 𝑣4][𝑣2, 𝑣5][𝑣4, 𝑣5]

1
1 1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1
1

[𝑣0, 𝑣1]
[𝑣1, 𝑣2]
[𝑣0, 𝑣3]
[𝑣1, 𝑣3]
[𝑣0, 𝑣4]
[𝑣1, 𝑣4]
[𝑣2, 𝑣4]
[𝑣3, 𝑣4]
[𝑣2, 𝑣5]
[𝑣4, 𝑣5]

[𝑣0, 𝑣1, 𝑣3] [𝑣0, 𝑣1, 𝑣4] [𝑣0, 𝑣3, 𝑣4] [𝑣1, 𝑣3, 𝑣4] [𝑣2, 𝑣4, 𝑣5]

1

1
1

1

1
1

1

1

1

1

1

1
1

1

1

𝜕2:

Fig. 4.3 two boundary matrices 𝜕1 and 𝜕2 of simplicial complex of Fig. 4.2

4.2 Merging Morse Matching and Morse Boundary Computation 51

10 :

20 :

30 :

40 :

50 :

60 :

11 21 31 41 51 61 71 81 91 101

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

10 :

20 :

30 :

40 :

50 :

60 :

11

1

1

21

1

1

31

1

1

41

1

1

51

1

1

61

1

1

71

1

1

81

1

1

91

1

1

101

1

1

10 :

30 :

40 :

50 :

60 :

21

1

1

31

1

1

41

1

1

51

1

1

61

1

1

71

1

1

81

1

1

91

1

1

101

1

1

10 :

40 :

50 :

60 :

31

1

1

41

1

1

51

1

1

61

1

1

71

1

1

81

1

1

91

1

1

101

1

1

Fig. 4.4 Matching and V-path counting Procedure for 𝜕1

52 Application of Discrete Morse Theory in Homology

41 51 61 71 81 91 101

10 :

50 :

60 : 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

10 :

60 :

41

0

0

61

0

0

71

0

0

81

0

0

91 101

1

11

1

10 :

41 61 71 81 101

0 0 0 0 0

Fig. 4.5 Matching and V-path Procedure for 𝜕1

4.2 Merging Morse Matching and Morse Boundary Computation 53

12 22 32 42 52

11 :

21 :

31 :

41 :

51 :

61 :

71 :

81 :

91 :

101 :

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

Step 1

12 22 32 42 52

11 :

21 :

31 :

41 :

51 :

61 :

71 :

81 :

91 :

101 :

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

Step 2

12 22 32 42 52

11 :

21 :

31 :

41 :

51 :

61 :

71 :

81 :

91 :

101 :

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

Step 3

12 22 32 42 52

11 :

21 :

31 :

41 :

51 :

61 :

71 :

81 :

91 :

101 :

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

Step 4

Fig. 4.6 Matching and V-path Procedure for 𝜕2

54 Application of Discrete Morse Theory in Homology

22 32 42 52

11 ∶
21 ∶
31 ∶
51 ∶
61 ∶
71 ∶
81 ∶
91 ∶
101 ∶

1

1
1 1
1

1
1

1
1

1

1

1

Step 5

22 32 42 52

11 ∶
21 ∶
31 ∶
51 ∶
61 ∶
71 ∶
81 ∶
91 ∶
101 ∶

1

1
1 1
1

1
1

1
1

1

1

1

Step 6

32 42 52

11 ∶
21 ∶
31 ∶
51 ∶
71 ∶
81 ∶
91 ∶
101 ∶

1
1

1
1

1
1

1

1
1

1

Step 7

42 52

11 ∶
21 ∶
31 ∶
51 ∶
71 ∶
91 ∶
101 ∶

1

0
0

1
1

1

Step 8

Fig. 4.7 Matching and V-path Procedure for 𝜕2 (continue)

4.2 Merging Morse Matching and Morse Boundary Computation 55

42

11 ∶
21 ∶
31 ∶
51 ∶
71 ∶
91 ∶

1

Step 9

42

11 ∶
21 ∶
31 ∶
51 ∶
71 ∶
91 ∶

Step 10 (done)

Fig. 4.8 Matching and V-path Procedure for 𝜕2 (continue)

56 Application of Discrete Morse Theory in Homology

𝜕ℳ
1 10 ∶

71

0 𝜕ℳ
2 71 ∶

42

0

Fig. 4.9 Combining the results of parallel algorithm on 𝜕1 and 𝜕2 in order to get the final 𝜕ℳ
1

and 𝜕ℳ
2

Chapter 5

Results

In this chapter, we are going to see how the proposed algorithms work on some
simplicial complexes. We used the data sets from [3], where there is a library of
triangulations. Here in order to check the complexity of algorithms for simplicial
complexes of different dimensions, we measure three quantities: real, user and sys-
tem time

1. Real time is the time from the invocation to the termination of a call.

2. User time is the amount of CPU time spent in user-mode code within the
process.

3. Sys or system time is the amount of CPU time spent in the kernel within the
process.

In general, real time is bigger than the total of user and sys time, because as
explained in the definition, real time is the total elapsed time of a process from be-
ginning till the end, while user and sys times show the time in a CPU. But, if we
can split our process into some subprocesses (or threads) and the process is passed
to more than one processors(or threads), then user and sys times can be even bigger
than real time, because in this case they are equal to the sum of times in all pro-
cessors and we are taking the advantage of parallel computing. We see the results
in two parts: the first part is the benchmark for parallel matching in tables 3.3 and
3.4 and the second part will be based on homology computation based on discrete
Morse theory that was explained in section 4.2.

58 Results

Note that for a n-dimensional simplicial complex, we use the notation 𝑓 =
(𝑓0, 𝑓1, ⋯ , 𝑓𝑛), where 𝑓𝑖 represent the number of 𝑖-simplices.

5.1 Parallel Morse Matching

By looking at the discrete Morse vector in all tables, the first point is that for all
simplicial complexes, the partial matching for 𝜕1 is perfect, but when we go to higher
dimensions, the matching will not be necessarily perfect. For example in figure 5.1,
you see that for all different permutations on vertices, the discrete Morse vector is
perfect. In some other simplicail complexes like 5.2, discrete Morse vector will not
be perfect anymore and by different permutations on vertices and it may change.

Another issue is the complexity. When the dimension becomes greater than one,
user time becomes greater than real time which means that we are taking the advan-
tage of parallel computation. Real time tells us how much time gets an process, if it
is not parallel. In figure 5.8, in the plot you see that when we increase the dimension,
the gap between the real and user time will increase.

The disadvantage of this method is for higher dimensions, because we need to
exclude some possibilities for making the parallel matching possible. One of the
possible solutions for this problem is to try to combine this solution with Morse
matching based on elementary collapses.

5.2 Results on Parallel Homology Calculation

In this section we concentrate on the practical results of algorithm that was explained
in section 4.2. In figure 5.9, you see the complexity of the algorithm for some sim-
plicial complexes. Like the previous section for Morse matching, you see when the
dimension increases, the complexity does not increase linearly. In figure 5.10, you
see the results for C.elegans that as we increase the dimension, the timing will not
change and that is the advantage of parallelization.

The point that we have to mention here is that for homology based on matrix re-
duction, parallelization is possible, but for Morse matching it was not so and we had
to do it sequentially. In this thesis, we proposed a method and made this paralleliza-

5.2 Results on Parallel Homology Calculation 59

tion possible and by looking at diagrams in figure 5.11, you see that the performance
with respect to the timing has been improved.

60 Results

Dimension
≤

Time

real user sys

DMVd2n12g6

P1
1

2

0.173s 0.115s 0.055s (1, 55)

0.249s 0.347s 0.128s (1, 12, 1)

P2
1

2

0.160s 0.105s 0.055s (1, 55)

0.230s 0.287s 0.119s (1, 12, 1)

P3
1

2

0.160s 0.105s 0.050s (1, 55)

0.230s 0.293s 0.119s (1, 12, 1)

P4
1

2

0.160s 0.105s 0.050s (1, 55)

0.250s 0.307s 0.130s (1, 12, 1)

P5
1

2

0.160s 0.105s 0.050s (1, 55)

0.256s 0.302s 0.142s (1, 12, 1)

P6
1

2

0.160s 0.107s 0.051s (1, 55)

0.250s 0.305s 0.134s (1, 12, 1)

Fig. 5.1 Results for different permutations of d2n12g6 with 𝑓 = (12, 66, 44) and optimal
𝐷𝑀𝑉 = (1, 12, 1)

5.2 Results on Parallel Homology Calculation 61

Dimension
≤

Time

real user sys

DMVregular 2 21 23 1

P1
1

2

0.187s 0.131s 0.053s (1, 127)

0.64s 1.098s 0.124s (1, 36, 7)

P2
1

2

0.191s 0.137s 0.05s (1, 127)

0.638s 1.94s 0.126s (1, 31, 2)

P3
1

2

0.180s 0.127s 0.050s (1, 127)

0.63s 1.084s 0.124s (1, 30, 1)

P4
1

2

0.180s 0.127s 0.049s (1, 127)

0.628s 1.074s 0.126s (1, 30, 1)

P5
1

2

0.197s 0.133s 0.053s (1, 127)

0.63s 1.082s 0.125s (1, 30, 1)

P6
1

2

0.186s 0.131s 0.051s (1, 127)

0.634s 1.084s 0.127s (1, 30, 1)

P7
1

2

0.185s 0.129s 0.052s (1, 127)

0.633s 1.089s 0.124s (1, 30, 1)

Fig. 5.2 Results for different permutations of regular 2 21 23 1 with 𝑓 = (21, 147, 98) and
optimal 𝐷𝑀𝑉 = (1, 30, 1)

62 Results

Dimension
≤

Time

real user sys

DMVrand2 n250 p0

P1
1

2

0.244s 0.190s 0.051s (1, 276)

20s 41s 0.163s (1, 12, 487)

P2
1

2

0.292s 0.195s 0.053s (1, 276)

21s 42s 0.168s (1, 10, 485)

P3
1

2

0.237s 0.172s 0.052s (1, 276)

21s 42s 0.175s (1, 7, 482)

P4
1

2

0.236s 0.182s 0.051s (1, 276)

21s 41.7s 0.164s (1, 7, 482)

P5
1

2

0.262s 0.197s 0.0513s (1, 276)

20.9s 41.5s 0.178s (1, 11, 486)

P6
1

2

0.245s 0.189s 0.051s (1, 276)

20.5s 40.8s 0.174s (1, 9, 484)

P7
1

2

0.248s 0.193s 0.052s (1, 276)

20.8s 41.3s 0.174s (1, 15, 490)

Fig. 5.3 Results for different permutations of rand2 n250 p0 with 𝑓 = (25, 300, 751) and
optimal 𝐷𝑀𝑉 = (1, 0, 475)

5.2 Results on Parallel Homology Calculation 63

Dimension
≤

Time

real user sys

DMVDouble Trefoil

P1

1

2

3

0.172s 0.117s 0.052s (1, 93)

0.9s 1.6s 0.156s (1, 3, 94)

(1, 3, 6, 4)1.15s 2.66s 0.442s

P2

1

2

3

0.17s 0.115s 0.051s (1, 93)

0.835s 1.5s 0.124s (1, 5, 96)

1.1s 2.46s 0.356s (1, 5, 11, 7)

P3

1

2

3

0.165s 0.113s 0.05s (1, 93)

0.8s 1.43s 0.115s (1, 5, 96)

1.1s 2.5s 0.375s (1, 5, 9, 5)

P4

1

2

3

0.17s 0.115s 0.05s (1, 93)

0.82s 1.48s 0.117s (1, 3, 94)

1.2s 2.8s 0.45s (1, 3, 5, 3)

P5

1

2

3

0.171s 0.116s 0.054s (1, 93)

0.83s 1.48s 0.123s (1, 3, 94)

1.2s 2.9s 0.413s (1, 3, 5, 3)

P6

1

2

3

0.17s 0.115s 0.51 (1, 93)

0.82s 1.5s 0.12s (1, 4, 95)

1.14s 2.64s 0.42 (1, 4, 10, 7)

P7

1

2

3

0.17s 0.115s 0.05s (1, 93)

0.8s 1.4s 0.123s (1, 5, 96)

1.05s 2.4s 0.38s (1, 5, 11, 7)

Fig. 5.4 Results for different permutations of double trefoil data with 𝑓 = (16, 108, 184, 92)
and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1)

64 Results

Dimension
≤

Time

real user sys

DMVBarnette spehere

P1

1

2

3

0.157s 0.103s 0.05s (1, 20)

0.216s 0.235s 0.126s (1, 0, 18)

(1, 0, 0, 1)0.271ss0.441s 0.239s

P2

1

2

3

0.17s 0.112s 0.055s (1, 20)

0.201s 0.223s 0.124s (1, 0, 18)

0.243s 0.418s 0.206s (1, 0, 0, 1)

P3

1

2

3

0.157s 0.103s 0.05s (1, 20)

0.197s 0.222s 0.12s (1, 0, 18)

0.264s 0.452s 0.218s (1, 0, 0, 1)

P4

1

2

3

0.162s 0.107s 0.051s (1, 20)

0.196s 0.219s 0.122s (1, 0, 18)

0.251s 0.411s 0.204s (1, 0, 0, 1)

P5

1

2

3

0.171s 0.116s 0.054s (1, 20)

0.195s 0.219s 0.121s (1, 0, 18)

0.25s 0.416s 0.205s (1, 0, 01)

P6

1

2

3

0.16s 0.105s 0.052s (1, 20)

0.199s 0.222s 0.12s (1, 0, 18)

0.266s 0.448s 0.238s (1, 0, 0, 1)

Fig. 5.5 Results for different permutations of Barnette spehere data with 𝑓 = (8, 27, 38, 19)
and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1)

5.2 Results on Parallel Homology Calculation 65

Dimension
≤

Time

real user sys

DMVPoincare

P1

1

2

3

0.182s 0.119s 0.051s (1, 91)

0.775s 1.35s 0.117s (1, 4, 93)

(1, 4, 8, 5)1.09s 2.53s 0.35s

P2

1

2

3

0.194s 0.131s 0.056s (1, 91)

0.838s 1.5s 0.117s (1, 3, 92)

1.08s 2.57s 0.4s (1, 3, 7, 5)

P3

1

2

3

0.168s 0.114s 0.05s (1, 91)

0.79s 1.39s 0.124s (1, 3, 92)

1.06s 2.44s 0.413s (1, 3, 5, 3)

P4

1

2

3

0.173s 0.117s 0.053s (1, 91)

0.79s 1.38s 0.127s (1, 3, 92)

1.35s 2.73s 0.485s (1, 3, 7, 5)

P5

1

2

3

0.183s 0.124s 0.054s (1, 91)

0.78s 1.39s 0.114s (1, 3, 92)

1.02s 2.32s 0.367s (1, 3, 8, 6)

P6

1

2

3

0.17s 0.116s 0.05s (1, 91)

0.78s 1.39s 0.117s (1, 4, 93)

1.04s 2.28s 0.42s (1, 4, 6, 3)

Fig. 5.6 Results for different permutations of poincare data with 𝑓 = (16, 106, 180, 90) and
optimal 𝐷𝑀𝑉 = (1, 2, 2, 1)

66 Results

Dimension
≤

Time

real user sys

DMVNon 4 2 Colorable

P1

1

2

3

2m0.5s2m0.25s0.073s (1, 1413)

252m 504s 2.4s (1, 30, 1441)

(1, 30, 71, 42)315m 868m 2.5s

P2

1

2

3

1m57s 1m56s 0.09s (1, 1413)

240m 480m 1.9s (1, 80, 1491)

310m 876m 2.6s (1, 80, 165, 86)

P3

1

2

3

2m2.9s2m1.6s0.1s (1, 1413)

297m 587m 5.75s (1, 83, 1494)

362m 1014m 11.5s (1, 83, 168, 86)

P4

1

2

3

2m28.7s2m28.4s0.08s (1, 1413)

283m 543m 2.8s (1, 77, 1488)

344m 950m 3.46s (1, 77, 168, 92)

P5

1

2

3

1m59.5s1m59.2s0.07s (1, 1413)

252m 498m 2.2s (1, 84, 1495)

408m 1017m 5.7s (1, 84, 168, 85)

P6

1

2

3

2m3ss 2m2.8s0.07s (1, 1413)

305m 564m 8s (1, 56, 1467)

420m 1059m 17s (1, 56, 96, 41)

Fig. 5.7 Results for different permutations of non 4 2 colorable data with 𝑓 =
(167, 1579, 2824, 1412) and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1)

5.2 Results on Parallel Homology Calculation 67

Dimension
≤

Time

real user sys

DMV600 cell

P1

1

2

3

4.23s 4.08s 0.08s (1, 601)

3m33s 6m5s 2.4s (1, 0, 599)

(1, 0, 0, 1)4m34s 10m5s 1m25s

0.0 0.5 1.0 1.5 2.0
Dimension

0

100

200

300

400

500

600

700

ti
m
e
(s
e
co
n
d
s)

600 cell with parallel Morse Matching

Real Time
User Time

Fig. 5.8 Results for 600 cell with 𝑓 = (120, 720, 1200, 600) and optimal 𝐷𝑀𝑉 = (1, 0, 0, 1)

68 Results

Dimension
≤

Time

real user sys

Betti numbersData

Rudin

1

2

3

204 137 55 (1, 53, 0, · · · , 0)

348 484 140 (1, 0, 41, 0, · · · , 0)

(1, 0, 0, 0, · · · , 0)383 769 264

Trefoil

1

2

3

182 128 51 (1, 57, 0, · · · , 0)

301 439 115 (1, 0, 55, 0, · · · , 0)

460 930 269 (1, 0, 0, 1, 0, · · · , 0)

Trefoil Arc

1

2

3

195 134 55 (1, 47, 0, · · · , 0)

293 403 128 (1, 0, 38, 0, · · · , 0)

354 672 229 (1, 0, 0, 0, · · · , 0)

Poincare

1

2

3

195 138 54 (1, 91, 0, · · · , 0)

540 895 128 (1, 0, 89, 0, · · · , 0)

850 1885 434 (1, 0, 0, 1, 0, · · · , 0)

Double Trefoil

1

2

3

200 138 54 (1, 93, 0, · · · , 0)

550 1925 130 (1, 0, 91, 0, · · · , 0)

870 1900 408 (1, 0, 0, 1, 0, · · · , 0)

Triple Trefoil Arc

1

2

3

192 135 54 (1, 111, 0, · · · , 0)

724 1265 124 (1, 0, 97, 0, · · · , 0)

1070 2550 446 (1, 0, 0, 0, · · · , 0)

Hyper.Dode.Space

1

2

3

207 147 56 (1, 170, 0, · · · , 0)

2000 3800 124 (1, 0, 168, 0, · · · , 0)

3614 8781 1116 (1, 0, 0, 1, 0 · · · , 0)

Fig. 5.9 Complexity and Betti Numbers for different dimensions and data

5.2 Results on Parallel Homology Calculation 69

Dimension
≤

Time

real user sys

Betti numbersData

Celegance

1

2

3

4

5

1m50s 1m49s 0.05s (1, 949, 0, · · · , 0)

22m50s 45m27s 0.241s (1, 251, 187, 0, · · · , 0)

23m 69m 0.3s (1, 251, 15, 0, · · · , 0)

23m 93m5s 0.4s (1, 251, 15, 0, 0, · · · , 0)

23m3.8s 94m56s 0.5s (1, 251, 15, 0, 0, · · · , 0)

Fig. 5.10 Complexity and Betti Numbers for different dimensions and of C.elegans by Ap-
plying Parallel Morse Algorithm

70 Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Dimension

0

20

40

60

80

100

120
ti
m
e
(m

in
u
te
s)

Celegance User Time Comparison

Reduced Time
Morse Time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Dimension

0

10

20

30

40

50

60

ti
m
e
(m

in
u
te
s)

Celegance Real Time Comparison

Reduced Time
Morse Time

Fig. 5.11 Complexity comparison between method based on morse matching and method
based on reducing the matrix

5.2 Results on Parallel Homology Calculation 71

Dimension
≤

Time

real user sys

Betti numbersData

Hom C5 K4

1

2

3

2m15.8s 2m7.1s 2.55s (1, 1441, 0, · · · , 0)

160m31s 313m27s 4.98s (1, 0, 1239, 0, · · · , 0)

205m 603m 7.5s (1, 0, 0, 1, 0, · · · , 0)

Knot

1

2

3

5m25.3s 5m24.9s 0.095s (1, 1550, 0, · · · , 0)

189m31s 370m27s 7s (1, 0, 1172, 0, · · · , 0)

176m50s 530m 5.6s (1, 0, 0, 0, · · · , 0)

Non 4 2 Colorable

1

2

3

57s 56.8s 0.09s (1, 1413, 0, · · · , 0)

126m 252m 1.6s (1, 0, 1412, 0, · · · , 0)

186m 547m 3.5s (1, 0, 0, 1, · · · , 0)

600 cell

1

2

3

13.8s 13s 0.06s (1, 601, 0, · · · , 0)

10m53s 21m42s 0.19s (1, 0, 599, 0, · · · , 0)

12m33s 37m34s 0.3s (1, 0, 0, 1, 0, · · · , 0)

Fig. 5.12 Complexity and Betti Numbers for different dimensions and data (continue of table
5.9), these tests are done on polito super computer

Chapter 6

Conclusion

In this thesis, we proposed a parallel algorithm for finding a discrete Morse vector
and actually it was a parallelized version of proposed algorithm in [17]. We just need
to arrange the simplices in colexicographical order and as we proved, for up to two
dimensional simplicial complexes, that worked perfectly and no double matching
happens. But for higher dimensional simplicial complexes some double matching
could happen, so by doing some modifications in the algorithm, we could fix this
problem, even though the optimality of discrete Morse vector could be affected, but
it could be a trade off between making the algorithm parallel and having a discrete
Morse vector with minimal critical simplices.

Referring to the figures in the previous section, we see that due to paralleliza-
tion by increasing the dimension, the complexity of algorithm does not necessarily
increase. So, this method can be really useful for high dimensional simplicial com-
plexes.

This idea can be extended for persistent homology as well and it can be done as
a future work. Besides, here we worked on ℤ2 coefficients, and this methodology
can be generalized and for example consider torsion as well.

References

[1] Y. Matsumoto. An Introduction to Morse Theory. Europe and Central Asia
Poverty Reduction and Economic Manag. American Mathematical Society,
2002.

[2] Robin Forman. Morse theory for cell complexes. Advances in Mathematics,
134(1):90 – 145, 1998.

[3] Frank H Lutz Bruno Benedetti. Library of Triangulations. http://page.math.
tu-berlin.de/~lutz/stellar/library_of_triangulations/.

[4] Robin Forman. A user’s guide to discrete morse theory. Séminaire
Lotharingien de Combinatoire [electronic only], 48:B48c, 35 p., electronic
only–B48c, 35 p., electronic only, 2002.

[5] N. Mramor Kosta, M. Pamuk, and H. Varli. Perfect Discrete Morse Functions
on Connected Sums. ArXiv e-prints, January 2015.

[6] Robin Forman. Witten–morse theory for cell complexes†. Topology, 37(5):945
– 979, 1998.

[7] J.W. Milnor. Morse Theory. Annals of mathematics studies. Princeton Uni-
versity Press, 1963.

[8] K.P. Knudson. Morse Theory: Smooth and Discrete. World Scientific, 2015.

[9] Yanfeng Chen. A brief history of morse homology.

[10] Bruno Benedetti and Frank H. Lutz. Random discrete morse theory and a new
library of triangulations. CoRR, abs/1303.6422, 2013.

[11] E.C. Zeeman. On the dunce hat. Topology, 2(4):341 – 358, 1963.

[12] Rafael Ayala, Desamparados Fernández-Ternero, and José Antonio Vilches.
Perfect discrete morse functions on 2-complexes. Pattern Recognition Letters,
33(11):1495 – 1500, 2012. Computational Topology in Image Context.

[13] Michael Joswig and Marc E. Pfetsch. Computing optimal Morse matchings.
SIAM Journal on Discrete Mathematics, 20(1):11–25, 2006.

http://page.math.tu-berlin.de/~lutz/stellar/library_of_triangulations/
http://page.math.tu-berlin.de/~lutz/stellar/library_of_triangulations/

74 References

[14] Alexander Engström. Discrete morse functions from fourier transforms. Ex-
perimental Mathematics, 18(1):45–53, 2009.

[15] Dmitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algo-
rithms and computation in mathematics. Springer, 2008.

[16] Marian Mrozek and Bogdan Batko. Coreduction homology algorithm. Dis-
crete & Computational Geometry, 41(1):96–118, 2009.

[17] P. Dłotko andH.Wagner. Computing homology and persistent homology using
iterated Morse decomposition. ArXiv e-prints, October 2012.

[18] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technology Journal, 36:1389–1401, 1957.

[19] Thomas Lewiner, Hélio Lopes, and Geovan Tavares. Optimal discrete morse
functions for 2-manifolds. Computational Geometry, 26(3):221 – 233, 2003.

[20] Mark Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

[21] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University
Press, 2002.

[22] Afra J. Zomorodian, M. J. Ablowitz, S. H. Davis, E. J. Hinch, A. Iserles, J. Ock-
endon, and P. J. Olver. Topology for Computing (Cambridge Monographs on
Applied and Computational Mathematics). Cambridge University Press, New
York, NY, USA, 2005.

Appendix A

Complexes

Following [21], we give some definitions.

Definition A.0.1 (𝑘-cell). A 𝑘-dimensional cell or briefly 𝑘-cell is a topological
space 𝑋 homeomorphic to 𝑘-ball.

Definition A.0.2 (Cell Complex). A cell or a CW complex is a space 𝑋 constructed
in the following way:

1. Start with a discrete set 𝑋0, whose points are regarded as 0-cells.

2. Inductively, form the 𝑛-skeleton 𝑋𝑛 from 𝑋𝑛−1 by attracting 𝑛-cells 𝑒𝑛
𝛼 via

maps𝜙𝛼 ∶ 𝑆𝑛−1 → 𝑋𝑛−1. This means that𝑋𝑛 is the quotient space of𝑋𝑛−1⊔𝛼
𝐷𝑛

𝛼 under the identifications 𝑥 ∼ 𝜙𝛼(𝑥) for 𝑥 ∈ 𝜕𝐷𝑛
𝛼. The cell 𝑒𝑛

𝛼 is the
homeomorphic image of 𝐷𝑛

𝛼 − 𝜕𝐷𝑛
𝛼 under the quotient map.

3. 𝑋 = ∪𝑛𝑋𝑛 with the weak topology.

Definition A.0.3 (abstract simplicial). A finite abstract simplicial complex is a finite
set 𝑆 together with a collection 𝐾 of subsets of 𝑆 such that if 𝜎 ∈ 𝐾 and 𝜏 ⊂ 𝜎 ,
then 𝜏 ∈ 𝐾 .

Following [22], we present the following definitions.

Definition A.0.4 (𝑘-simplex). A k-simplex is the convex hull of k+1 linearly inde-
pendent set of points 𝑆 = {𝑣0, 𝑣1, ⋯ , 𝑣𝑘}.

76 Complexes

Definition A.0.5 (face(coface)). A face of 𝜎 is the convex hull 𝜏 of a non-empty
subset of the 𝑣𝑖 and we write 𝜏 ⪯ 𝜎. Besides, it is proper, if the subset is not the
entire set. If 𝜏 is the 1-codimensional face of 𝜎, we write 𝜏 ◁ 𝜎 or 𝜎 ▷ 𝜏.

Definition A.0.6 (simplicial complex). A simplicial complex 𝐾 is a finite set of sim-
plices such that

1. 𝜎 ∈ 𝐾, 𝜏 ⪯ 𝜎 ⇒ 𝜏 ∈ 𝐾

2. 𝜎, 𝜎′ ∈ 𝐾 ⇒ 𝜎 ∩ 𝜎′ ⪯ 𝜎, 𝜎′ or 𝜎 ∩ 𝜎′ = ∅

Definition A.0.7. [Facet] A facet is any simplex in a complex that is not a face of
any larger simplex

Definition A.0.8 (Pure Simplicial Complex). A simplicial complex 𝐾 is called pure,
if all of its facets have the same dimension.

Appendix B

Some Notes on Set Theory

Here, we give two definitions for sets.

Definition B.0.1 (Lexicographical Order). Consider a set 𝑆 = {𝑣0, 𝑣1, ⋯}, where
for each 𝑖 < 𝑗, 𝑣𝑖 < 𝑣𝑗 . For two subset of 𝑆, 𝐴1 = {𝑣𝑖0 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑚} and 𝐴2 =
{𝑣𝑗0 , 𝑣𝑗1 , ⋯ , 𝑣𝑗𝑚}, we say 𝐴1 <𝑙𝑒𝑥 𝐴2, if:

∃ 𝑘 ∶ ∀ 𝑡 < 𝑘 𝑣𝑖𝑡 = 𝑣𝑗𝑡 , 𝑣𝑖𝑘 < 𝑣𝑗𝑘

Definition B.0.2 (Colexicographical Order). Consider a set 𝑆 = {𝑣0, 𝑣1, ⋯}, where
for each 𝑖 < 𝑗, 𝑣𝑖 < 𝑣𝑗 . For two subset of 𝑆, 𝐴1 = {𝑣𝑖0 , 𝑣𝑖1 , ⋯ , 𝑣𝑖𝑚} and 𝐴2 =
{𝑣𝑗0 , 𝑣𝑗1 , ⋯ , 𝑣𝑗𝑚}, we say 𝐴1 <𝑐𝑜𝑙 𝐴2, if:

∃ 𝑘 ∶ ∀ 𝑡 > 𝑘 𝑣𝑖𝑡 = 𝑣𝑗𝑡 , 𝑣𝑖𝑘 < 𝑣𝑗𝑘

In order to clarify the difference among these two ordering, let us give an exam-
ple.

Example B.0.1. Suppose 𝑆 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} where 𝑣0 < 𝑣1 < 𝑣2 < 𝑣3. Consider
all subsets of 𝑆 with 2 elements. In lexicographical order, the ordering is:

{𝑣0, 𝑣1} <𝑙𝑒𝑥 {𝑣0, 𝑣2} <𝑙𝑒𝑥 {𝑣0, 𝑣3} <𝑙𝑒𝑥 {𝑣1, 𝑣2} <𝑙𝑒𝑥 {𝑣1, 𝑣3} <𝑙𝑒𝑥 {𝑣2, 𝑣3}

while in colexicographical order, we have:

{𝑣0, 𝑣1} <𝑐𝑜𝑙 {𝑣0, 𝑣2} <𝑐𝑜𝑙 {𝑣1, 𝑣2} <𝑐𝑜𝑙 {𝑣0, 𝑣3} <𝑐𝑜𝑙 {𝑣1, 𝑣3} <𝑐𝑜𝑙 {𝑣2, 𝑣3}

Appendix C

Basic Concepts in Algebraic Topology

Following [22] and [21], we have the following definitions.

Definition C.0.1 (Homotopy). Consider mappings 𝑓, 𝑔 ∶ 𝑋 ⟶ 𝑌 . We say 𝑓 is
homotopic to 𝑔 if for all points 𝑥 ∈ 𝑋, there exists a continuous map 𝐹 ∶ 𝑋 ×𝐼 ⟶
𝑌 such that 𝐹 (𝑥, 0) = 𝑓(𝑥) and 𝐹 (𝑥, 1) = 𝑔(𝑥). The map 𝐹 is called a homotopy
from 𝑓 to 𝑔.

Definition C.0.2 (Homotopy Equivalence). Two spaces 𝑋 and 𝑌 are homotopy
equivalent, if there exist two maps 𝑓 ∶ 𝑋 ⟶ 𝑌 and 𝑔 ∶ 𝑌 ⟶ 𝑋 where 𝑓 ∘ 𝑔 is
homotopic to identity map on 𝑌 and 𝑔 ∘ 𝑓 is homotopic to identity map on 𝑋.

DefinitionC.0.3. Let𝐾 be a simplicial complex. The 𝑘’th chain group of𝐾 denoted
by 𝐶𝑘(𝐾), is a vector space spanned by 𝑘-simplices of 𝐾 and the 𝑘’th boundary
operator 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 such that:

𝜕𝑘[𝑣0, 𝑣1, ⋯ , 𝑣𝑘] = Σ𝑘
𝑗=1(−1)𝑗[𝑣0, 𝑣1, ⋯ , ̂𝑣𝑗 , ⋯ , 𝑣𝑘]

Then the 𝑘th homology group of a simplicial complex 𝐾 is defined as:

𝐻𝑘(𝐾) = 𝑘𝑒𝑟𝜕𝑘/𝐼𝑚𝜕𝑘+1

If the simplicial complex has dimension equal to 𝑛, then we have a chain of 𝑛 bound-
ary operations. Here, 𝑘𝑒𝑟 𝜕𝑘 is called kth cycle group and it is shown by 𝑍𝑘 and
𝐼𝑚 𝜕𝑘 is called kth boundary group and it is shown by 𝐵𝑘.

79

The dimension of the free part of 𝐻𝑘 is called kth Betti number. If we write
the 𝑘th homology group in the following form:

𝐻𝑘(𝐾) = 𝐷𝛽 ⊕ (
𝑛

⨁
𝑖=1

𝐷/𝑑𝑖𝐷)

then 𝛽 here in this formula corresponds exactly to Betti number, because it’s the
dimension of the free part of the homology group.

In order to have a better understanding of Betti number consider a donut. For a
donut 𝛽0 = 1, because donut is a connected object, 𝛽1 = 2, since it has two holes
and finally 𝛽2 = 1 for the void.

Definition C.0.4 (Euler Characteristics). Euler Characteristics 𝒳 of a simplicial
complex 𝐾 is the alternating sum of Betti numbers, namely:

𝒳(𝐾) = 𝛽0 − 𝛽1 + 𝛽2 + ⋯

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Discrete Morse Theory
	2.1 Morse Matching
	2.2 Morse Complex
	2.3 Some Notes on Perfect Morse Function

	3 Discrete Morse Matching Computation
	3.1 Elementary Collapses Method
	3.2 Method Based on Elementary Coreduction
	3.2.1 Parallel Morse Matching for 2D Simplicial Complex
	3.2.2 Parallel Morse Matching Algorithm
	3.2.3 An Example Of Parallel Morse Matching

	4 Application of Discrete Morse Theory in Homology
	4.1 Morse Boundary
	4.2 Merging Morse Matching and Morse Boundary Computation

	5 Results
	5.1 Parallel Morse Matching
	5.2 Results on Parallel Homology Calculation

	6 Conclusion
	References
	Appendix A Complexes
	Appendix B Some Notes on Set Theory
	Appendix C Basic Concepts in Algebraic Topology

