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Highlighter: automatic highlighting of electronic
learning documents

Elena Baralis, Member, IEEE, and Luca Cagliero Member, IEEE

Abstract—Electronic textual documents are among the most popular teaching content accessible through e-learning platforms.
Teachers or learners with different levels of knowledge can access the platform and highlight portions of textual content which are
deemed as particularly relevant. The highlighted documents can be shared with the learning community in support of oral lessons or
individual learning. However, highlights are often incomplete or unsuitable for learners with different levels of knowledge. This paper
addresses the problem of predicting new highlights of partly highlighted electronic learning documents. With the goal of enriching
teaching content with additional features, text classification techniques are exploited to automatically analyze portions of documents
enriched with manual highlights made by users with different levels of knowledge and to generate ad hoc prediction models. Then, the
generated models are applied to the remaining content to suggest highlights. To improve the quality of the learning experience,
learners may explore highlights generated by models tailored to different levels of knowledge. We tested the prediction system on real
and benchmark documents highlighted by domain experts and we compared the performance of various classifiers in generating
highlights. The achieved results demonstrated the high accuracy of the predictions and the applicability of the proposed approach to
real teaching documents.

Index Terms—E-learning, Text mining, Classification.
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1 INTRODUCTION

E -LEARNING platforms are complex systems aimed at
efficiently supporting learning activities with the help

of electronic devices (e.g. laptops, tablets, mobile phones).
Compared to traditional approaches to learning, they sim-
plify the interaction between teachers and learners [1], be-
cause they allow (i) sharing electronic teaching materials
with multiple users, (ii) access video lectures and other
teaching content through electronic devices (PCs, laptops,
tablets, mobile phones), and (iii) exchanging feedbacks on
practices, exercises, or theoretical lessons through dedicated
communication channels. The most commonly shared elec-
tronic teaching materials are textual documents [2]. They
encompass lecture notes, e-books, scientific articles, or tech-
nical reports. However, due to the ever increasing amount
of electronic documents retrievable from heterogeneous
sources, the manual inspection of these teaching materi-
als may become practically unfeasible. Hence, there is a
need for automated analytics solutions to analyze electronic
teaching content and to automatically infer potentially use-
ful information.

In this paper we address the issue of automatically
generating document highlights. Highlights are graphical
signs that are usually exploited to mark part of the textual
content. For example, the most significant parts of the text
can be underlined, colored, or circled. The importance of
text highlights in learning activities has been confirmed
by previous studies on educational psychology (e.g. [3])
and visual document analysis (e.g. [4]). The highlighted
documents can be easily shared between teachers and learn-
ers through e-learning platforms [2]. However, the man-
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ual generation of text highlights is time-consuming, i.e.,
it cannot be applied to very large document collections
without a significant human effort, and prone to errors
for learners who have limited knowledge on the document
subject. Automating the process of text highlighting requires
generating advanced analytical models able to (i) capture
the underlying correlations between textual contents and
(ii) scale towards large document collections.

The contribution of this paper is twofold: (1) It pro-
poses to use text classification techniques to automate the
process of highlighting learning documents. (2) It considers
the proficiency level of the highlighting users to drive the
generation of new highlights.
Objective 1 - Highlight generation based on classification
techniques. Given a set of partially highlighted learning
documents we aim at automatically generating new high-
lights by applying classification techniques. Classifiers are
established data mining algorithms which have found ap-
plication in various application domains. Their applicability
to textual data is established [5]. Starting from a set of man-
ually highlighted sentences, we build an abstract model,
called classifier, which incorporates all the salient informa-
tion needed to automatically predict whether a sentence
should be highlighted or not. Our approach is data-driven
and (almost) language-independent, i.e., it does not rely
on advanced language processing techniques. Specifically,
we analyze the content of previously highlighted docu-
ments ranging over the same topic to study the correlations
between the occurrence of terms (or sequences of terms)
in sentences and the presence/absence of highlights. Such
correlations will be exploited to predict new highlights.
Our approach is applicable to homogenous documents (i.e.,
documents ranging over the same topic), because it relies
on frequency-based text analyses. For the sake of simplicity,
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hereafter we will assume that a sentence is highlighted if at
least a portion of its textual content is highlighted. The ex-
tension of the proposed approach to documents highlighted
at different granularity levels (e.g. at the levels of single
words or of paragraphs) is straightforward and its results
are discussed in Section 6.

To build the classifier we tested multiple strategies,
among which Bayesian classifiers [6], decision trees [7],
Support Vector Machines [8], rule-based [9], Neural Net-
works [9], and associative classifiers [10]. To characterize the
sentences of the learning documents, the classifier considers
the following features: (i) the occurrences of single terms
(unigrams), (ii) the occurrence of sequences of terms (n-
grams), and (iii) the level of knowledge of the user who
highlighted the sentence (if available). We tested our ap-
proach on benchmark documents highlighted by domain
experts, i.e., the Document Understanding Conference 2005
SCU-marked documents [11]. Specifically, we compared the
performance of various classifiers in generating highlights.
The classifiers achieved good accuracy values in predicting
highlights.
Objective 2 - Highlight generation driven by the knowl-
edge level of the highlighting users. The reliability and
usability of text highlights strongly depend on the level of
expertise of the highlighting users [12]. For example, thanks
to their proficiency on the covered topic, expert users can
produce more reliable highlights than beginners. However,
in some cases, the highlights made by users with lower
levels of knowledge can be useful for supporting learning
activities as well. For example, they may cover background
knowledge commonly disregarded by advanced readers.
Learning platforms often allow users to specify their cur-
rent knowledge level on specific topics. In some cases, this
information is not explicitly available, but it can be either
inferred from the user role (e.g. academic professor, student
of a B.Sc.university-level course) or assessed using ad hoc
evaluation strategies (e.g. [13]).

Our aim is to exploit the information about the level
of knowledge of the highlighting users during highlight
generation and exploration. Since users with the same
knowledge level are most likely to highlight the same parts
of the text [12], we learn one classification model per level.
Each model captures the underlying correlations hidden in
the text highlighted by users with the same level. Hence,
per-level models generate highlights tailored to different
levels of knowledge. To improve the quality of the learning
experience, learners may perform a per-level exploration
of the newly generated highlights by adapting the level of
exploration to their needs. The applicability of the proposed
approach was validated on real teaching materials provided
to the students of a B.Sc. university-level course.

This paper is organized as follows. Section 2 compares
the proposed work with state-of-the-art related approaches.
Section 3 introduces the preliminary concepts and the
notation used throughout the paper. Sections 4 and 5
thoroughly describe the proposed approach and its
applicability to related issues, respectively. Section 6
presents the results of the experimental evaluation
conducted on benchmark and real documents. Finally,
Section 7 draws conclusions and presents future
developments of this work.

2 RELATED WORK

Some efforts to automatically generate highlights of generic
documents have already been made. For example, in [14]–
[16] information highlighting facilities have been proposed
to assist users in evaluating relevance of accessed docu-
ments. The accessed documents are identified by a search
engine in response to a user query. The parts of the text that
are deemed as worth highlighting are identified by match-
ing salient keywords in contextual vocabularies. In [17] the
authors addressed the complementary issue of automati-
cally recording the marks applied to paper documents on
their electronic originals. In this paper, highlight generation
is data-driven and not driven by user-generated queries.
This approach, unlike keyword driven ones, does not re-
quire any a priori knowledge on the learner’s interests and
is applicable to a broader set of users.

The main contribution of this work is in the area of learn-
ing analytics, which entails the measurement, collection,
analysis, and reporting of data about learners and their con-
texts [18]. It combines different disciplines such as computer
science, statistics, psychology, and pedagogy. A prominent
branch of research, called educational data mining, concerns
the application of data mining techniques to data generated
from educational settings (e.g. universities) [19]. Learning
analytics tools have different goals, among which (a) the
analysis and prediction of students’ performance (e.g. [20],
[21]), (b) the improvement of the quality of the learning ex-
perience by offering personalized and/or subject-wise ser-
vices (e.g. [22], [23]), and (c) the extraction of salient content
from large teaching data and its exploitation through online
or mobile platforms (e.g. [24], [25]). The system proposed in
this paper falls into category (c). The tool proposed in [25]
focuses on automatically answering to learners’ questions
by applying text summarization techniques, while in [24]
summaries of textual documents are generated to improve
the accessibility of the learning materials through mobile
devices. Unlike [24], [25], the approach proposed in this
paper is not query-driven and relies on text classification
techniques rather than on summarization algorithms.

Text classification aims at defining an abstract model of
a set of classes, called classifier, which is built from a set
of labeled textual data, i.e., the training set. The classifier
is then used to appropriately classify new textual data for
which the class label is unknown. In our context, the training
set consists of a set of document sentences manually labeled
as highlighted or non-highlighted by teachers or learners with
different levels of knowledge. The prediction task focuses on
deciding whether a sentence belonging to a non-highlighted
(portion of) document is worth being highlighted or not.
Many text classifiers have been proposed in literature.
Amongst others, Support Vector Machines (SVMs) (e.g. [8])
and Neural Networks (NNs) (e.g. [26]) are commonly the
mostly used classification models, because they are able to
perform fairly accurate predictions. Alternative solutions
include Bayesian algorithms (e.g. [27] and Decision trees
(e.g. [28]). A survey of text classification techniques is given
in [5]. Some attempts to use existing classification algo-
rithms in learning analytics have already been performed.
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For example, in [21], [29] the authors focused on predicting
the final outcomes of students in different contexts. The goal
of this work is different. To the best of our knowledge, text
classification techniques have never been used to predict
text highlights of teaching documents.

Text summarization entails generating a concise sum-
mary of a collection of textual documents. Sentence-based
summarizers are automated tools that generate a sum-
mary consisting of a selection of the most significant doc-
ument sentences in the collection. Many summarization
approaches have been proposed in literature. Depending on
the strategy used to perform sentence selection, they can
be classified as (i) Clustering-based approaches (e.g., [30]),
if they exploit clustering algorithms to group similar sen-
tences and then pick the most significant sentences within
each group. (ii) Graph-based approaches (e.g., [31]), if they
rely on graph indexing algorithms. (iii) Optimization-based
strategies, if they exploit Singular Value Decomposition [32]
or Integer Linear Programming [33], or similar strategies
to select salient document sentences. (iv) Itemset-based ap-
proaches (e.g., [34]), if they exploit frequent itemsets, which
represent sets of document terms of arbitrary length, to
capture the underlying correlations among multiple terms.
While the classification problem addressed by this paper
is a prediction task based on past humanly generated pre-
dictions (i.e., the set of previously highlighted sentences),
in the summarization problem the goal is to describe most
salient document features without any a priori information.
An experimental comparison between text summarizers and
classification techniques in the context under analysis is
given in Section 6.

3 PRELIMINARIES

We consider textual documents as they are the most com-
mon teaching materials accessible through e-learning plat-
forms. For example, teachers usually share lecture notes,
books, reports, articles, or scientific papers in electronic
form with their students. These electronic documents can be
easily explored through multiple devices, such as laptops,
tablets, and smart-phones [1]. In this study, we will consider
only the textual content of the documents, while disre-
garding references, figures, charts, and their corresponding
subtitles. Users of e-learning platforms can be teachers
or learners. For example, to share the material related to
university-level courses, academic professors and teaching
assistants can upload books and lecture notes prior to each
lesson. Depending on their proficiency on the course topics,
students can be categorized in discrete knowledge levels
(e.g. beginner, intermediate, expert). The level of knowledge
can be either inferred from the user role (e.g. professor,
teaching assistant, 1st-year student of a B.Sc.university-
level course) or it can be assessed using ad hoc evaluation
strategies (e.g. [13]). For the sake of simplicity, we assume
that each user of the platform has a unique knowledge level.

Users can enrich electronic documents with highlights.
We denote as highlight any graphical sign (e.g. underline,
circle) that is used to mark part of the textual content. For
our purposes, hereafter we will disregard all the textual
annotations made on the margin of the text. We will consider
only the highlights of the original text, which are deemed as

more reliable than textual annotations. In general, highlights
can be associated with single words, combinations of words,
sentences, or entire paragraphs. For the sake of simplicity,
hereafter we will assume that one sentence is highlighted
if at least part of its textual content is highlighted. The
problem of applying the proposed approach at different text
granularities is discussed in Section 5.

Sentences are labeled with class values which indicate
whether the sentence is highlighted or not. Since multiple
users can highlight the same sentence, a sentence may have
multiple class values, each one referring to a distinct level
(possibly assigned by several highlighting users with the
same level). For each class value assigned to the sentence,
the corresponding knowledge level is known.

Let D be the document collection under analysis. It
consists of a set of documents d1, d2, . . ., dn. Each document
can be modeled as a set of sentences (i.e., portions of
text separated by periods, question marks, or exclamation
marks). Let sij be the j-th sentence of document di ∈ D.
Let U be the set of users and let L be a discrete set of
levels of knowledge (e.g. beginner, intermediate, expert). Each
user uk ∈ U has a unique knowledge level lk ∈ L. Users
manually evaluated the sentences in D to decide whether
they should be highlighted or not. We denote as c(sij , lk) the
class value associated with sentence sij by users with level
lk. It takes value highlighted if the sentence is highlighted,
non-highlighted otherwise. The class value is missing for non-
evaluated sentences.

We will denote as training document collection Dtr a
collection of documents whose sentences have already been
evaluated, i.e., every sentence has one or more class values,
each one corresponding to a specific knowledge level. Fur-
thermore, we will denote as test document collection Dte a
collection of documents for which sentences have no eval-
uations (i.e., the corresponding class values are missing).
For convenience, hereafter we will denote as training (test)
sentence str ∈ Dtr (ste ∈ Dte) an arbitrary sentence in the
training (test) document collection.

Given a training document collection Dtr, a knowledge
level lk ∈ L, and a test document sentence ste ∈ Dte,
the problem addressed by this work is to determine the
value of c(ste, lk) based on Dtr and lk. Note that we aim
at generating per-level highlight predictions and not per-
user predictions. Hence, we target the prediction to the
subset of users with level lk and not to a specific user.
Therefore, predictions for a given sentence will be same
for all the users having the same level, but it may change
for users with different levels. If the levels of knowledge
in the training data are unknown, the problem reduces to
determining the class based on the content of the training
document collection solely.

4 HIGHLIGHTER: THE PROPOSED APPROACH

HIGHLIGHTER is a new approach to automatically highlight-
ing learning documents based on the previously highlighted
content. Figure 1 depicts the main steps of the proposed
approach.

The manually highlighted documents are first collected
into a training dataset (see Section 4.1). Some established
text processing steps are then applied to prepare the raw



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

Fig. 1. The SKIll Predictor architecture.

data to the next classification process (see Section 4.2).
Classification entails learning a model from the subset of
document sentences that have been manually highlighted
by human experts. The model is exploited to analyze new
sentences of the collection and decide whether they are
worth being highlighted or not based on their content and,
possibly, based on the level of knowledge of the highlighting
user (see Section 4.4). Finally, learners are provided with
highlights corresponding to different levels of knowledge
(see Section 4.5).

4.1 Data representation

For each sentence of the training and test document col-
lections we consider the following attributes: (i) the textual
content, (ii) the presence of highlights, and (iii) the level of
knowledge of the user who highlighted the sentence (if any).

The training data consists of a set of records. Each record
corresponds to a distinct pair 〈sij , lk〉, where lk is the knowl-
edge level of users who evaluated sentence sij ∈ D. For
example, if the document collection contains 100 sentences,
each one evaluated by users with three different levels, then
the training dataset consists of 300 records. Note that some
document sentences may be highlighted by users corre-
sponding to a subset of the possible knowledge levels (i.e.,
some combinations of sentence and level may not occur).
Each record stores the information about the highlights
made by users with knowledge level lk on sentence sij .
Specifically, we associate to each sentence sij a class value
c(sij , lk) and the knowledge level lk of user uk. The class
takes value highlighted if at least a portion of the sentence
text is highlighted, non-highlighted otherwise. The level of
knowledge indicates the proficiency level of the user who
evaluated the sentence. The structure of the test dataset is
analogous to those of the training dataset. However, the
class value associated with each record is unknown. Table 1
shows some examples of training and test records associated
with a text ranging over text classification.

4.2 Text preparation

To predict highlights from learning documents, the HIGH-
LIGHTER system considers the following features: (i) the
occurrences of single terms (unigrams) in the sentence text,
(ii) the occurrence of sequences of terms (n-grams), and (iii)
the level of knowledge of the user who highlighted the
sentence (if available). To properly handle textual features

during sentence classification, few basic preparation steps
are applied. First, non-textual content occurring in the text
is automatically filtered out before running the learning
process. Then, two established text processing steps are
applied: (i) stemming and (ii) stopword elimination.

Stemming. Stemming entails reducing words to their
base or root form (i.e., the stem) [35]. This step, which can
be enabled or disabled according to the user’s preferences,
remaps the textual content to a reduced number of word
roots. For example, nouns, verbs in gerund form, and past
tenses (e.g. words grants, granted, granting) are re-conducted
to a common root form (e.g. grant). This step is particularly
useful for reducing the bias in classification when statistics-
based text analyses are performed. For instance, different
conjugations of the same verb, which rarely occur in the text,
are transformed into their corresponding root form (i.e., the
word stem), which is more likely to occur frequently.

Stopword elimination. Stopword elimination entails fil-
tering out weakly informative words, i.e., the stopwords.
Examples of stopwords are articles, prepositions, and con-
junctions. In text analyses, these words are almost unin-
formative for predicting highlights and, thus, should be
ignored. Furthermore, since they are likely to frequently
occur in the analyzed data, their presence may bias the
quality of statistics-based text analyses.

We apply the Wordnet stemming and stopwords algo-
rithms for English-written documents. To cope with doc-
uments written in different languages, different stemming
and stopword elimination algorithms can be straightfor-
wardly integrated as well.

To analyze the occurrence of single terms in the sentence
text, after stemming and stopword elimination the sentence
text is transformed into a term frequency-inverse document
frequency (tf-idf) matrix [36]. Tf-idf is an established term
statistics, which is briefly introduced below.
The tf-idf matrix. The term frequency-inverse document
frequency (tf-idf) evaluator [36] is commonly used to mea-
sure how important a word stem is in a text [35]. In our
context, an arbitrary element tiqi of the tf-idf matrix TI is
defined as follows: tiqi =

nqi

|si| · log
|S|

|{si∈S : wq∈si}| , where S
is the set of sentences occurring in the training document
collection Dtr, nqi is the number of occurrences of the q-
th stem wq in the i-th sentence si ∈ S, |si| is the number
of word stems that are contained in si, and |S|

|{si∈S : wq∈si}|
represents the inverse document frequency of the stem wq in
the whole collection. The logarithm of the inverse document
frequency is minimal when the inverse document frequency
is equal to 1 (i.e., a term occurs in every sentence of the
dataset) and thus the corresponding tf-idf value reduces to
zero.

The key idea behind the tf-idf statistics is that word
stems appearing frequently in few sentences (i.e., high local
term frequency), but rarely in the whole collection (i.e., low
document frequency), are the most discriminative ones in
text classification.

Table 2 reports the tf-idf values associated with each
word stem in the example dataset in Table 1. For example,
word stems occurring in most sentences (e.g. data) have
relatively low tf-idf values, whereas word stems occurring
in few sentences (e.g. word stem algorithm) have relatively
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TABLE 1
Examples of training and test records.

Sentence text Level of knowledge Class
TRAINING

Text mining is related to machine learning and, to some extent, to artificial intelligence as well. Expert Yes
Classification and Decision Trees are prediction algorithms Beginner No
Support Vector Machines are commonly used on textual data Intermediate No
Textual data are inherently sparse, because words are likely to occur only in few sentences Expert Yes
Support Vector Machines were designed for coping with textual data Beginner Yes

TEST
Support Vector Machines are among the most accurate classifiers on textual data Beginner ?

TABLE 2
tf-idf matrix (transposed).

Word stem s1 s2 s3 s4 s5

Algorithm 0 0.447 0 0 0
Artifici 0.375 0 0 0 0
Classif 0 0.447 0 0 0

Common 0 0 0.716 0 0
Cope 0 0 0 0 0.582
Data 0 0 0.227 0.127 0.185
Decis 0 0.447 0 0 0

Design 0 0 0 0 0.582
Extent 0.375 0 0 0 0
Inher 0 0 0 0.402 0

Intellig 0.375 0 0 0 0
Learn 0.375 0 0 0 0
Like 0 0 0 0.402 0

Machin 0.119 0 0.227 0 0.185
Mine 0.375 0 0 0 0
Occur 0 0 0 0.402 0
Predict 0 0.447 0 0 0
Relat 0.375 0 0 0 0

Sentenc 0 0 0 0.402 0
Spars 0 0 0 0.402 0

Support 0 0 0.408 0 0.331
Text 0.375 0 0 0 0
Tree 0 0.447 0 0 0

Vector 0 0 0.408 0 0.331
Word 0 0 0 0.402 0

TABLE 3
Training dataset (extract).

Record Algorithm Artifici Classif . . . Level Class
s1 0 0.375 0 . . . Expert Yes
s2 0.447 0 0.447 . . . Beginner No
s3 0 0 0 . . . Intermediate No
s4 0 0 0 . . . Expert Yes
s5 0 0 0 . . . Beginner Yes

high tf-idf values.
Starting from the tf-idf matrix associated with the doc-

ument sentences, a training and a test datasets are gen-
erated. Both datasets have the same structure: a tf-idf
matrix enriched with two new columns level of knowledge
and class indicating, respectively, the level of the knowl-
edge of the highlighting user and the information about
the presence/absence of an highlight (highlighted/non-
highlighted). For example, Table 3 reports an extract of the
training dataset generated from the training collection and
tf-idf matrix in Tables 1 and 2. A similar procedure is applied
to the test records. In the latter case, the value of the class is
unknown and represents the target of the prediction.

Combinations of terms, such as data mining, can provide
additional information with respect to single terms data and
mining. For this reason, we generate also an extended ver-

sion of the tf-idf matrix in Table 2 including both unigrams
and n-grams (n>1). In our context, n-grams are sequences of
n word stems. As discussed in Section 6, using the extended
tf-idf matrix allows achieving better performance than using
only the standard one.

For example, since sentence with id 1 in Table 1 contains
the sequence of words text mining, in the tf-idf matrix in the
extended matrix version we added a column labeled as text
mine, which indicates the occurrence/absence of the corre-
sponding sequence of word stems within each document
sentence. Note that, since the formula of tf-idf simply relies
on frequency counts, its extension to the case of n-grams is
straightforward [36].

4.3 Feature selection
To predict the class value of the test records, features in
the training dataset may have different importance. Some of
them are strongly correlated with the class and, thus, their
presence is crucial to perform accurate predictions. Others
are uncorrelated with the class. Hence, their presence could
be harmful, in terms of both accuracy and efficiency of the
classification process.

Feature selection is the task of selecting a smaller subset
of dataset features that are worth considering in place of the
whole feature set [35]. It is often applied prior to text classi-
fication to filter out the n-grams that have least importance
or relatively weak correlation with the class [5]. To perform
accurate highlight predictions we filter unigrams/n-grams
based on their average tf-idf value in the training dataset.
Tf-idf values are commonly used as quality measures of
the importance of the terms in the document collections
in both text categorization [5] and summarization [30]. To
decide whether a sentence should be highlighted or not, we
apply the classification algorithms to a filtered version of the
dataset including the top-K unigrams/n-grams in order of
decreasing average tf-idf value. The impact of parameter K
on classifier performance is discussed in Section 6.2.

4.4 Text classification
Classification is a two-step process which entails: (i) Learn-
ing a model from the training dataset, called classifier, which
considers the most significant correlations between the class
and the other data features, and (ii) assigning a class value
to each record in the test dataset, based on the previously
generated model.

To investigate the use of text classification algorithms in
highlight prediction, we learn multiple benchmark classi-
fiers relying on different techniques.
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4.5 Per-level document highlighting

If in the training dataset there is no information about the
level of knowledge of the users, one single classification
model is generated and used to predict new highlights.
Otherwise, the knowledge level of the highlighting users
is considered because it is deemed as relevant to perform
accurate highlight predictions. The use of the knowledge
level in the prediction process will yield the following
advantages.
Tailoring highlights to users with different knowledge
levels. Since users with the same level of knowledge are
likely to highlight the same parts of the text [12], we parti-
tion training records according to the knowledge level of the
highlighting user and we generate one classification model
per level. Each model captures the underlying correlations
hidden in the text highlighted by users with the same
level. Hence, per-level models produce highlights tailored
to different levels.
Enabling per-level highlight exploration. The reliability
and usability of text highlights strongly depend on the level
of expertise of the highlighting users [12]. For example,
thanks to their proficiency on the covered topic, expert
users can produce more reliable highlights than beginners.
However, in some cases, the highlights made by users with
lower levels of knowledge can be useful for supporting
learning activities as well. For example, they may cover
background knowledge commonly disregarded by domain
experts. Our aim is to exploit the information about the level
of knowledge of the highlighting users during highlight
exploration. Specifically, to improve the quality of the learn-
ing experience, learners are provided with highlights corre-
sponding to different levels of knowledge and may perform
a per-level exploration of the newly generated highlights by
adapting the level of exploration to their needs.

In Section 6 we validated the performance of both the
unified and the per-level models generated from benchmark
document collections.

5 ANALYSIS OF DOCUMENT HIGHLIGHTS AT DIF-
FERENT GRANULARITY LEVELS

The approach described in Section 4 relies on the assump-
tion that documents are enriched with highlights at the
sentence level. However, learning documents can be high-
lighted at different granularity levels. For example, users
can highlight separate words within the same sentence,
short sequences of words, or entire paragraphs consisting
of a few sentences.

Since the methodology proposed in this paper to predict
document highlights is general, it can be easily extended to
documents enriched with highlights at different granularity
levels. To effectively cope with documents highlighted at
the level of paragraphs, sentences within the same para-
graph are first merged together and then inserted into the
training dataset. Conversely, when highlights are mapped
to n-grams (i.e., sequences of n terms) each training record
is identified by a distinct pair 〈user, n-gram〉 and the level
of abstraction of the selected features depends on the least
granularity level of the highlighted text. For example, while
considering highlights of 3-grams (i.e., sequences of three

words in a row), the textual features characterizing the
textual content can be unigrams or bigrams.

In Section 4 we labeled a sentence as highlighted if at
least a portion of its textual content is highlighted. This
assumption entails considering some extra contents during
the classification process with respect to those manually
highlighted by the users. Considering this additional con-
tent will result in generating some extra features in the
training dataset, which are probably somehow related to but
do not necessarily correspond to the actually highlighted
content. To overcome this issue, as described in Section 4.3,
we apply a feature selection step before running the classifi-
cation algorithm which selects only the most significant data
features, thus improving the effectiveness and efficiency of
the classification process. An experimental analysis of the
impact of the feature selection step on benchmark data is
reported in Section 6.

6 EXPERIMENTAL RESULTS

We performed a large suite of experiments to analyze the
accuracy of the highlight predictions (see Section 6.1), the
impact of considering n-grams and of the feature selection
step on the accuracy of the generated predictions (see Sec-
tion 6.2), the impact of false positive/negative outcomes
on classifier performance (see Section 6.3), the applicability
of the proposed method on real teaching documents (see
Section 6.4), the use of summarization techniques to address
highlight prediction (see Section 6.5), and the training and
prediction times (see Section 6.6).

All the experiments were performed on a quad-core 3.30
GHz Intel Xeon workstation with 16 GB of RAM, running
Ubuntu Linux 12.04 LTS. To test the performance of different
state-of-the-art text classifiers, we used the implementations
available in the RapidMiner data mining and machine
learning suite (version 5.3.015). Specifically, we considered
the following classifiers belonging to different categories
(indicated in italic face below).

• Bayesian classifiers: Naive Bayes [6]
• Support Vector Machines: The LibSVM classifier [8]
• Decision trees: The ID3 classifier [7]
• Rule-based classifiers: Ripper [9]
• Neural Networks: Auto Multi-Layer Perceptron (Au-

toMLP) [37]
• Instance-based classifiers: The K-Nearest Neighbor

Classifier [38]
• Associative classifiers: The Live and Let Live (L3)

Classifier [10]
• Logistic regression: SparseLOGREG (SLOGREG) [39]

More details on the classification models are given in [40].
Since no associative classifier is integrated in RapidMiner,
we separately tested the state-of-the-art L3 classifier [10] by
using the Weka plugin provided by the respective authors.
For each classifier we tested several configuration settings,
among those recommended by the respective authors, and
we selected the best performing one over all the tested
datasets. In the feature selection step, we set the top-K
number of word stems to 250 as standard configuration. To
compare the performance of text classifiers with that of text
summarizers, we re-implemented the Association Mixture



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Text Summarization (AMTS) algorithm [41] to the best of
our understanding, and we used the implementation of
the Integer Linear Programming-based ICSI summarization
system (ICSIsumm) [42] provided by the respective authors.
All the experiments were performed on a quad-core 3.30
GHz Intel Xeon workstation with 16 GB of RAM, running
Ubuntu Linux 12.04 LTS.

6.1 Accuracy of the highlight predictions

To study the accuracy of the highlight predictions, we
performed experiments on the Document Understanding
Conference 2005 (DUC’05) SCU-marked collections [11].
Analyzed documents. The collection is a benchmark for
textual document summarization, which consists of a set
of news documents ranging over different topics. Based on
the covered topics, documents are organized in collections.
A group of manually written summaries of the document
collections are edited by hand by real end users to produce
a set of simple declarative phrases, hereafter denoted as
Summary Content Units (SCUs), for each topic. Thanks to
the effort of the university of Ottawa, SCUs were mapped
to the original document sentences through the Pyramid
evaluation system [43] to generate a set of SCU-enriched
document collections, i.e., 27 document collections high-
lighted at the sentence level. SCUs correspond to sentence
highlights, possibly enriched with textual comments and
a weight, which indicates the pertinence of the highlight
to the main topic of the document. For our purposes, we
ignored the textual content associated with the SCUs and
we considered the weight of a SCU as a measure of the
level of knowledge of the user who generated the SCU. SCU
weights are assumed to be a good indicator of the level of
proficiency of the highlighting user, because expert users
are more likely to highlight sentences pertinent to the topic
under analysis than non-expert ones.

In the DUC’05 documents, more than 10% of the doc-
ument sentences were enriched with SCUs. SCU weights
range from 1 to 7. Approximately 35% have minimal weight
(1), 30% of the SCUs have maximal weight (7), whereas the
intermediate weights (from 2 to 6) have similar frequency
counts and cover altogether approximately 35% of the SCUs.
SCU weights are roughly distributed equally across all
documents.
Accuracy definition. We evaluated classifier performance
in terms of classification accuracy. Accuracy measures
the ability of the classifier to correctly classify unlabeled
records [35]. It is the ratio between the number of correctly
classified data records and the number of tested records.
In our context, it indicates the percentage of sentences
that were correctly labeled as Highlighted or Not highlighted
according to the model generated on the training data.
Validation procedure. Accuracy has been computed by
using a 10-fold stratified cross validation test. Specifically,
the training dataset is first randomly partitioned into 10
folds, each one including approximately the same number of
sentences and having the same class label distribution (i.e.,
having approximately the same percentage of highlighted
sentences). Then, one fold is considered as test dataset,
whereas the remaining ones are used as training set. The
classification process is validated by computing the per-fold

accuracy value (i.e., the percentage of correctly classified
records in the test dataset). Then, the test dataset is changed
and the same procedure is iterated until all the ten per-
fold accuracy values are computed. The resulting accuracy
estimate is given by the sum of the per-fold accuracy values.

6.1.1 Results
Table 4 summarizes the accuracy results achieved by all the
classifiers on the benchmark datasets without considering
the levels of knowledge (i.e., by generating a unified model
from all the manually highlighted sentences). We recall
that approximately 10% of the sentences in the document
collection were highlighted by at least one user. Table 5
reports the average accuracy results achieved by the per-
level classification models (i.e., one classification model per
level of knowledge). In the latter case, the detailed results
per dataset were omitted for the sake of brevity. For each
classifier we selected unigrams (single terms) and bigrams
(sequences of 2 terms) as discriminative features and ap-
plied the feature selection step with K=250. In the tables we
reported the results achieved by a reference configuration
chosen by performing several tests with different settings
and by choosing the one that achieved the best average
performance over all datasets. The best parameter settings
are specified below each classifier name. For each collection,
the best classifier performance is written in boldface.

The Neural Network Auto Multi-Layer Perceptron (Au-
toMLP) performed best by considering both the unified
model (approximately 87%) and six out of seven per-level
models (between 88.5% and 90.7%). Hence, approximately
9 out of 10 highlight predictions were correct. Despite its
simplicity, the Naive Bayes classifier achieved accurate val-
ues fairly close to AutoMLP. Similarly, The L3 associative
classifier and the SparseLOGREG algorithm achieved aver-
agely high accuracy values, whereas the average accuracy
of the predictions made by LibSVM, K-NN, ID3, and Ripper
are fairly lower. Due to the inherently higher complexity of
the problem, the accuracies achieved by the unified models
are, on average, lower than those achieved by the per-level
models. Among the per-level predictions, model predictions
corresponding to higher levels of knowledge are slightly
more accurate than lower-level ones. This is probably due
to the higher sparsity of the textual data distribution at
lower levels of knowledge. Anyway, the average accuracy
performance is encouraging: over all the per-level models,
the worst performing classifier correctly predicted, on aver-
age, more than 85 document highlights out of 100.

We also tuned the performance of the classifiers sepa-
rately for each dataset. Specifically, we considered a poten-
tially different configuration setting for each dataset. Based
on the achieved results (not reported here for the sake of
brevity) AutoMLP and L3 have proven themselves to be
again the most accurate classifiers (e.g. average accuracies
for the unified model AutoMLP 88.58%, L3 88.10%).

To validate the statistical significance of the accuracy
improvements achieved by the AutoMLP classifier, we used
the 10-fold cross-validated paired t-test. All tests were ap-
plied at significance level p = 0.05 (95%) on all the evalu-
ated datasets. The performance of the AutoMLP classifier
was compared with that of all the other classifiers, by
considering both the reference and the tuned configuration
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TABLE 4
Unified model. Comparison between state-of-the-art classifiers on average percentage accuracy. For each dataset, the best accuracy value is

written in boldface and all significant worsening w.r.t. AutoMLP reference config. (t-test value above 0.05) are starred.

Collection Naive Bayes L3 SLOGREG AutoMLP LibSVM k-NN ID3 Ripper
(Num. sentences) s=1% kernel=polyn. cycles=500 kernel=sigmoid k=5 Crit.=Gain R. Crit.=I.G.

c=50% ε=0.001 num. gener.=10 type=C-SVC dist=mixed-Eucl. min gain=0.05 ratio=0.9
Compact rules ε=0.001

d311i (1152) 87.52 89.35 87.87 88.65 88.22 79.84 88.66 89.00
d324e2 (168) 84.12 85.11 84.36 84.37 81.39∗ 63.04∗ 77.20∗ 80.63
d324e3 (256) 82.08∗ 86.94 83.92∗ 86.11 85.55 60.56∗ 82.70 83.71
d324e (331) 83.12 84.41 83.39 81.59 78.79∗ 63.69∗ 74.19∗ 79.56
d345j (463) 83.11 85.74 85.90 85.25 84.10 79.51 81.81 80.00∗

d366i (220) 90.88∗ 92.20 92.09 92.25 92.03 92.14 90.88 90.66
d376e (356) 78.35 79.68∗ 81.06 81.06 77.37∗ 77.96 81.81 77.58∗

d391h (508) 90.16 90.49 89.52∗ 90.70 85.03∗ 89.04 85.84∗ 89.04
d393f (822) 88.52 88.93 88.20 88.52 79.99∗ 86.20 86.93 85.99

d400b2 (303) 88.04 88.48 88.66 87.59 88.30 82.14 84.55 83.66
d400b (637) 88.44 87.89 88.72 88.17 89.27 84.77 85.87 85.05∗

d407b2 (347) 85.95 86.22 87.82 87.44 86.88 83.04 85.84 84.63
d407b (633) 87.52 87.33 88.67 87.24 87.62 85.24 86.57 85.24
d413a (776) 80.97 82.45 82.16 81.71 79.02 76.17∗ 83.21 81.72
d422c (580) 81.33 78.40∗ 81.54∗ 82.80 80.71 76.15∗ 79.87∗ 76.15∗

d426a2 (769) 90.12 91.31 92.12 90.04 89.60 84.10∗ 91.60 88.56
d426a (595) 90.20∗ 91.00∗ 92.52 92.52 90.13 86.87 91.51 91.43
d431h (556) 88.45 89.71 88.72 89.44 86.73 87.00 87.01 87.00
d435f (756) 87.64 88.42 88.85 87.82 88.16 85.65 85.04 87.81
d632i (926) 83.90∗ 86.39 85.80∗ 88.04 85.08∗ 81.54 78.70∗ 82.37

d633g2 (439) 85.65∗ 85.20∗ 85.65∗ 86.21 82.02∗ 83.17 80.00∗ 83.62
d633g (715) 87.14 87.15 87.37 87.15 84.45∗ 83.88 82.86∗ 84.33
d654f (547) 86.10 87.00 86.42∗ 87.66 84.12∗ 84.36 82.22∗ 85.683
d671g (701) 86.19 86.51 86.51 85.87 85.24 80.00∗ 85.87 85.87
d683j (682) 84.37 84.24 82.75∗ 84.89 82.75 72.83∗ 82.74 80.44∗

d695c2 (742) 88.09 88.56 88.56 88.75 86.77 84.79 86.39 86.01
d695c (731) 87.68 88.24 88.71 88.25 86.94 84.98 87.13 86.10

Average and std dev. 86.13 ± 2.98 86.94 ± 1.92 86.96 ± 2.88 86.99 ± 2.86 85.05 ± 3.30 80.69 ± 1.72 84.33 ± 2.79 84.51 ± 1.79

TABLE 5
Per-level models. Comparison between state-of-the-art classifiers on average percentage accuracy and standard deviation.

Level of Naive Bayes L3 SLOGREG AutoMLP LibSVM k-NN ID3 Ripper
knowledge s=1% kernel=polyn. cycles=500 kernel=sigmoid k=5 Crit.=Gain Ratio Crit.=I.G.

c=50% ε=0.001 num. gener.=10 type=C-SVC dist=mixed-Eucl. min gain=0.05 ratio=0.9
Compact rules ε=0.001

1 (min) 88.03 ± 2.90 88.23 ± 1.70 88.35 ± 2.83 88.51 ± 2.76 86.37 ± 0.88 85.82 ± 3.06 87.08 ± 2.23 86.37 ± 0.88
2 89.96 ± 3.04 89.08 ± 1.58 87.09 ± 3.18 88.43 ± 2.23 87.57 ± 1.12 85.06 ± 3.97 86.11 ± 2.35 87.57 ± 1.12
3 89.96 ± 2.44 90.19 ± 1.29 89.91 ± 2.25 90.19 ± 1.94 88.70 ± 0.78 88.12 ± 2.81 89.01 ± 2.02 88.70 ± 0.78
4 89.91 ± 2.29 90.17 ± 1.32 89.92 ± 2.35 90.36 ± 1.84 89.06 ± 0.85 88.41 ± 2.54 89.08 ± 1.93 89.06 ± 0.85
5 90.30 ± 2.12 90.28 ± 1.30 90.33 ± 2.06 90.61 ± 1.58 89.04 ± 2.63 89.97 ± 0.79 89.56 ± 1.71 89.97 ± 0.79
6 90.38 ± 2.28 90.53 ± 1.14 90.41 ± 2.22 90.72 ± 1.84 89.90 ± 0.80 88.71 ± 2.79 89.85 ± 1.84 89.90 ± 0.80

7 (max) 90.23 ± 2.23 90.69 ± 1.26 90.24 ± 2.27 90.69 ± 1.85 89.91 ± 0.86 88.64 ± 2.88 89.87 ± 1.82 89.91 ± 0.86

settings. For each comparison, Table 6 reports the number
of collections on which the AutoMLP classifier performs
statistically better/worse than the classifier reported in the
corresponding column. More details on the per-dataset com-
parisons are given in Table 4. Specifically, for each dataset
every significant worsening w.r.t. AutoMLP (with reference
configuration) is starred. The AutoMLP classifier confirmed
to be, on average, the most accurate classifiers (e.g., 5 sta-
tistically significant accuracy improvements against Naive
Bayes using the reference configuration settings against only
one significant accuracy worsening).

6.2 Impact of n-grams and feature selection
We separately analyzed the impact of (i) the presence of n-
grams and (ii) the use of feature selection on the accuracy
performance of the proposed approach. To address issue (i)
we repeated all the experiments described in Section 6.1 on a
simplified version of the datasets including only unigrams.
To address issue (ii) we repeated all the experiments by
enabling and disabling the feature selection step.

The achieved results are quite interesting: due to the
combinatorial growth in the number of generated combi-
nations, before feature selection 3 features out of 4 are bi-
grams (approximately 9000 bigrams against 2000 unigrams).
Conversely, after feature selection only 1 feature out of
4 is a bigram. Hence, the feature selection step pruned
a quite large number of bigrams which were deemed as
not discriminative for classification purposes. The presence
of bigrams improved the accuracy of the predictions (e.g.
AutoMLP +1.2% by using the unified model). Therefore, al-
though many combinations of terms are not significant thus
they are early pruned, a subset of them is very informative
and strongly correlated with the class label.

We analyzed also the impact of parameter K on the
accuracy results. Figure 2 plots the average accuracy val-
ues achieved by AutoMLP on three representative DUC’05
collections with different values of K by considering also
bigrams. The three collections are characterized by different
number of sentences, average sentence length, and word
stem frequencies. For example, collection d366i is rather
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TABLE 6
Statistical tests of significance. x/y indicates that the AutoMLP classifier with standard/tuned configuration is significantly better x times (worse y

times) than the classifier in column

Unified model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 5/1 3/1 5/1 9/0 8/0 8/0 6/0
AutoMLP tuned config. 7/0 3/1 6/1 11/0 9/0 9/0 6/1

Level-1 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 3/1 4/2 6/4 7/2 6/0 4/0 6/2
AutoMLP tuned config. 4/1 5/3 6/3 9/1 7/0 6/1 8/0

Level-2 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 2/2 1/1 3/1 4/2 6/1 4/1 3/1
AutoMLP tuned config. 1/1 1/1 4/1 4/0 9/0 5/1 4/0

Level-3 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 3/2 2/1 3/0 4/1 5/1 3/1 6/2
AutoMLP tuned config. 4/1 2/0 3/0 6/1 6/2 4/2 8/1

Level-4 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 5/3 3/2 2/1 3/0 6/2 4/2 3/1
AutoMLP tuned config. 6/3 3/2 3/1 4/0 7/0 5/1 4/1

Level-5 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 4/2 2/1 2/0 3/1 3/1 3/2 2/0
AutoMLP tuned config. 4/1 2/1 1/0 5/3 4/2 5/3 3/0

Level-6 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 3/1 3/2 2/0 4/2 7/3 5/1 4/1
AutoMLP tuned config. 5/2 3/1 1/0 6/3 8/2 6/0 5/0

Level-7 model. Paired t-test, p=0.05
Naive Bayes L3 SLOGREG LibSVM K-NN ID3 Ripper

AutoMLP reference config. 2/2 1/1 2/1 3/2 4/2 3/1 3/1
AutoMLP tuned config. 1/1 1/1 1/0 3/1 5/1 3/0 3/0

small and contains a limited number of word stems (approx-
imately 30% less than both d345j and d695c) but term fre-
quencies are on average higher (approximately 10% higher
than the others). Collection d345j contains approximately
twice the number of sentences of d366i, but sentence length
is rather limited, whereas collection d695c is large and con-
sists of relatively long sentences. According to the achieved
results, by varying the value of K between 200 and 350 the
quality of the predictions remains roughly stable. Similar
results were achieved on the other document collections.
The best performance was achieved on small- and medium-
size collections, because they include a larger number of
frequently occurring stems. However, the variance of the ac-
curacy values achieved on all the documents in the DUC’05
collection is relatively low (below 4%) by varying K in this
value range, whereas it significantly increases by consider-
ing a larger set of K values (approximately 12% with K
between 100 and 500). Hence, in the selected value range,
the sensitivity of this parameter on classifier performance is
relatively low. On the other hand, the number and size of
the documents within each collection may affect the quality
of the prediction while setting K values out of the suggested
value range. For example, when coping with very small
document collections, setting very large values of K may
yield data overfitting. Conversely, while setting K in the
range [200, 350], the classifier performance appeared to be
roughly stable for all the tested document collections. Based
on the achieved results, we recommend to set K to 250 as
default setting.

6.3 Recall and precision of the predictions

The accuracy measure does not consider the presence of
false positives/negatives in the prediction outcomes. In our
context, false positives are particularly harmful, because
they imply an excessive use of text highlights.

To gain insights into the quality of the highlight pre-
dictions, we computed also precision and recall of class
highlighted. Precision is the ratio between the number of
sentences correctly assigned to class highlighted and the
total number of sentences assigned to class highlighted. It
measures to what extent highlight predictions are reliable
(i.e., the percentage of true positives over all positive predic-
tions). Recall is the ratio between the number of sentences
correctly assigned to class highlighted and the total number
of sentences actually belonging to class highlighted. It mea-
sures the completeness of the prediction set with respect to
the actual set of highlighted sentences (i.e., the percentage
of true positives over the number of expected positives).

According to the achieved results, the presence of false
positives is quite limited both on benchmark and on real
data. All classifiers are fairly precise, i.e., precision of
class highlighted above 83%. The most precise classifier
is AutoMLP (87.92%). L3, AutoMLP, LibSVM, SLOGREG
achieved good recall values as well (all above 80%), whereas
the recall values of Naive Bayes, Ripper, and k-NN are a bit
lower (between 74% and 79%). Figures 2(b) and 2(c) plot
the precision and recall values of class highlighted achieved
on three representative DUC’05 collections with different
values of K .
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Fig. 2. Impact of parameter K on classification performance.

TABLE 7
Real teaching document. Top-10 highlighted sentences.

Highlighted sentence Rank Num. of
highlights

It takes time to bring about large-scale change, but in the future I think we will be living in cities that fundamentally operate differently. 1st 12
Overall, the changes to these smart cities will be incremental, whether they are driven by researchers like Beckman and Catlett, urban
planners, private innovators, or some combination.

1st 12

Experts say cities that capitalize on all the new urban data could become more efficient and more enjoyable places to live. 3rd 11
City planners will be able to make more informed decisions about where to place new bus stops or how much road salt to apply to certain
areas after a heavy snow.

3rd 11

Now you have city governments regrouping and developing comprehensive long-range visions of the role information technology will
play in making their city better.

5th 10

The leading urban centers are not placing their technological futures in the hands of a company or a single university research group. 6th 9
The challenges are diverse and demanding, but a handful of new projects around the world are providing a glimpse of what a truly smart
city could offer.

7th 8

As urban populations increase, the number of data-generating sensors and Internet-connected devices will grow even faster. 8th 5
This public utility approach is one of the common threads linking the different smart city projects. 9th 5
As an example, Birchenall cites Glasgow’s new cycling app, which helps riders plan routes, easily locate bicycle racks, and more; 10th 3

6.4 Validation on real learning documents

We studied the applicability of the proposed approach in a
real learning scenario. We collected highlights on a teaching
document by means of a crowd-sourcing experience with
students of a university-level Computer Science course.
The experience, carried out on a voluntary basis, lasted
one month and was conducted by involving 52 students
of a Database course (a 2nd year B.S. course) given by
the Politecnico di Torino, an Italian technical university.
Students were invited to participate to the crowd-sourcing
experience by filling an anonymous questionnaire available
at the course website. The activity consisted in reading a
scientific article [44], which presents the key aspects be-
hind the diffusion of Smart Cities and Open Data, and
highlighting sentences from the given article based on their
personal judgment and experience. The article was given
to the students as additional teaching material and was
deemed as an example of technical document whose topic
can be of interest for most of the course participants. The
document is characterized by 52 sentences, 22 of which were
highlighted by at least one student. Table 7 reports the top-
10 highlighted sentences in the teaching document. For each
sentence, the textual content, the number of user highlights,
and the corresponding ranking are reported.

The goal of this experimental study was to apply the
HIGHLIGHTER approach to real teaching documents en-
riched with manual highlights to automatically predict new
highlights. Since we have no a priori knowledge about
the proficiency of individual students, we assumed that
all the students have a basic knowledge on the topic. To

this purpose, we applied a train-test leave-one-out vali-
dation strategy, which is appropriate for small/medium-
size datasets [35]. Specifically, we randomly partitioned the
dataset in two parts, hereafter denoted as train and test.
The train consists of all the document sentences, except
for one. Sentences in the train are enriched with the corre-
sponding highlights and used to generate the classification
models. The test comprises the remaining sentence and it is
exploited to perform highlight predictions by temporarily
ignoring the actual class value. The test sentence is labeled
as highlighted or non-highlighted according to the prediction
made by the classification model. Then, to evaluate classi-
fier performance prediction values are compared with the
expected values. The procedure is iterated by considering
all the possible combinations of train and test sets.

Before running the classifiers, the textual content is
prepared to the next classification process by applying the
preprocessing and feature selection steps, executed with
K=250. For example, according to tf-idf ranking, unigrams
public, future, technology and bigram public utility are selected
because they all placed in the top-10 tf-idf ranking.

The classification results, which were achieved by using
the reference configurations reported in Section 6.1 for all
the tested algorithms, can be summarized as follows: L3,
AutoMLP, and LibSVM correctly classified 45 sentences out
of 52 (average accuracy 86.54%), SLOGREG 43 (82.69%),
Naive Bayes, and Ripper 42 (80.77%), and k-NN 40 (76.92%).
The fairly high accuracy values confirm that the classi-
fication models are able to capture the most significant
correlations between the text features and the class.
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Fig. 3. Accuracy comparison between best performing classifiers and
text summarizers by varying the level of knowledge.

6.5 Comparison with summarization approaches

Most general-purpose document summarizers are unsuit-
able for addressing the problem under analysis, because
they select a significant subset of document sentences with-
out considering any prior knowledge on the document
collection (i.e., past highlights are ignored). Furthermore,
sentences are not only evaluated based on their individual
interest, but also according to their pertinence and level of
redundancy with respect to the already selected sentences.

To investigate the use of document summarizers to ad-
dress highlight prediction we identified a summarization
contest that is somehow related to the problem under anal-
ysis. Specifically, in the Update Summarization Task of the
Text Analysis Conference (TAC) 2008, the contest was to
generate the summaries of two document sets A and B.
To summarize set B we assume to know the content of
the documents in A. To tailor the document summarization
process to the problem under analysis, we considered the
set of highlights of the sentences in A as the summary
of A and we summarized the documents in B given the
summary of A. A more thorough description of the ad-
dressed task is given in [42]. To perform the experimental
evaluation, we considered the following two summarizers:
(i) a recently proposed summarizer relying on word associa-
tion discovery, i.e., Association Mixture Text Summarization
(AMTS) [41], (ii) a widely used open source text summarizer
relying on the Integer Linear Programming, i.e., Integer
Linear Programming-based ICSI multi-document summa-
rization system (ICSIsumm) [42]. ICSIsumm achieved ex-
cellent performance on the TAC’08 datasets, while AMTS
is a recently proposed and quite effective document sum-
marizer that considers also the user-specified background
knowledge beyond the original document content.

Similar to what previously described in Section 6.1, to es-
timate the average accuracy of each summarizer we applied
a 10-fold stratified cross validation test on the benchmark
DUC’05 document collections. Specifically, for each fold we
ran the summarizer on the textual content of the test set
using, as background knowledge, the document highlights
in the training set. The sentences included in the output
summary, which represent the result of the prediction, are
then compared with the actual highlights in the test set
to count the number of matchings. Figure 3 compares the
average accuracy values achieved by the ICSIsumm and
AMTS summarizers with different levels of knowledge with
those achieved by the two best performing classifiers Au-
toMLP and L3 on the DUC’05 collections. By using unified
models the accuracy values are 86.99% for AutoMLP, 86.94%

for the L3 classifier, 78.95% for ICSISumm, and 79.15% for
AMTS. The two classifiers performed significantly better
than the document summarizers (approximately +10%) with
both per-level and unified models. According to the 10-fold
cross validated paired t-test, the improvements achieved by
AutoMLP with respect to both summarizers are statistically
significant on 9 datasets out of 27.

6.6 Execution time

Learning classification models is the most computationally
intensive task of the presented approach. For this reason,
we analyzed the time spent in learning classification models
with different techniques on the benchmark datasets.

Depending on the analyzed data distribution, Support
Vector Machines and Neural Networks took between few
minutes to 1 hour (approximately) to learn the classifier.
Conversely, the training times of L3, Decision Trees, Logistic
Regression, Ripper, and Naive Bayes were at least one order
of magnitude lower. The k-NN classifier does not generate
any classification model. Thus, most of the computational
time (typically between few seconds and few minutes) is
spent in class value prediction. For all the other classifiers,
the prediction time is negligible.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes HIGHLIGHTER, a new approach to
automatically generating highlights of learning documents.
It generates classification models tailored to different levels
of knowledge from a set of highlighted documents to predict
new highlights, which are provided to learners to improve
the quality of their learning experience. A performance
comparison between various classifiers on benchmark data
and an analysis of the usability of the proposed approach on
real document collections have been performed. In the cur-
rent version of the system, highlights are not personalized.
Specifically, the same highlights are deemed as appropriate
for all the users having the same level of knowledge. As
future work, we aim at tailoring the automatically generated
highlights to specific users. Therefore, we would like to
generate not only unified and per-level models, but also
user-centric models. Furthermore, we currently ignore the
presence of textual annotations, which could enrich the
document content with additional notes or rephrases. We
plan to analyze such automatically generated content to
gain insights into the level of knowledge of learners.
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